// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C)2002 USAGI/WIDE Project * * Authors * * Mitsuru KANDA @USAGI : IPv6 Support * Kazunori MIYAZAWA @USAGI : * Kunihiro Ishiguro * * This file is derived from net/ipv4/esp.c */ #define pr_fmt(fmt) "IPv6: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct esp_skb_cb { struct xfrm_skb_cb xfrm; void *tmp; }; struct esp_output_extra { __be32 seqhi; u32 esphoff; }; #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0])) /* * Allocate an AEAD request structure with extra space for SG and IV. * * For alignment considerations the upper 32 bits of the sequence number are * placed at the front, if present. Followed by the IV, the request and finally * the SG list. * * TODO: Use spare space in skb for this where possible. */ static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int seqihlen) { unsigned int len; len = seqihlen; len += crypto_aead_ivsize(aead); if (len) { len += crypto_aead_alignmask(aead) & ~(crypto_tfm_ctx_alignment() - 1); len = ALIGN(len, crypto_tfm_ctx_alignment()); } len += sizeof(struct aead_request) + crypto_aead_reqsize(aead); len = ALIGN(len, __alignof__(struct scatterlist)); len += sizeof(struct scatterlist) * nfrags; return kmalloc(len, GFP_ATOMIC); } static inline void *esp_tmp_extra(void *tmp) { return PTR_ALIGN(tmp, __alignof__(struct esp_output_extra)); } static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int seqhilen) { return crypto_aead_ivsize(aead) ? PTR_ALIGN((u8 *)tmp + seqhilen, crypto_aead_alignmask(aead) + 1) : tmp + seqhilen; } static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv) { struct aead_request *req; req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead), crypto_tfm_ctx_alignment()); aead_request_set_tfm(req, aead); return req; } static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead, struct aead_request *req) { return (void *)ALIGN((unsigned long)(req + 1) + crypto_aead_reqsize(aead), __alignof__(struct scatterlist)); } static void esp_ssg_unref(struct xfrm_state *x, void *tmp, struct sk_buff *skb) { struct crypto_aead *aead = x->data; int extralen = 0; u8 *iv; struct aead_request *req; struct scatterlist *sg; if (x->props.flags & XFRM_STATE_ESN) extralen += sizeof(struct esp_output_extra); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); /* Unref skb_frag_pages in the src scatterlist if necessary. * Skip the first sg which comes from skb->data. */ if (req->src != req->dst) for (sg = sg_next(req->src); sg; sg = sg_next(sg)) skb_page_unref(page_to_netmem(sg_page(sg)), skb->pp_recycle); } #ifdef CONFIG_INET6_ESPINTCP struct esp_tcp_sk { struct sock *sk; struct rcu_head rcu; }; static void esp_free_tcp_sk(struct rcu_head *head) { struct esp_tcp_sk *esk = container_of(head, struct esp_tcp_sk, rcu); sock_put(esk->sk); kfree(esk); } static struct sock *esp6_find_tcp_sk(struct xfrm_state *x) { struct xfrm_encap_tmpl *encap = x->encap; struct net *net = xs_net(x); struct esp_tcp_sk *esk; __be16 sport, dport; struct sock *nsk; struct sock *sk; sk = rcu_dereference(x->encap_sk); if (sk && sk->sk_state == TCP_ESTABLISHED) return sk; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; nsk = rcu_dereference_protected(x->encap_sk, lockdep_is_held(&x->lock)); if (sk && sk == nsk) { esk = kmalloc(sizeof(*esk), GFP_ATOMIC); if (!esk) { spin_unlock_bh(&x->lock); return ERR_PTR(-ENOMEM); } RCU_INIT_POINTER(x->encap_sk, NULL); esk->sk = sk; call_rcu(&esk->rcu, esp_free_tcp_sk); } spin_unlock_bh(&x->lock); sk = __inet6_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, &x->id.daddr.in6, dport, &x->props.saddr.in6, ntohs(sport), 0, 0); if (!sk) return ERR_PTR(-ENOENT); if (!tcp_is_ulp_esp(sk)) { sock_put(sk); return ERR_PTR(-EINVAL); } spin_lock_bh(&x->lock); nsk = rcu_dereference_protected(x->encap_sk, lockdep_is_held(&x->lock)); if (encap->encap_sport != sport || encap->encap_dport != dport) { sock_put(sk); sk = nsk ?: ERR_PTR(-EREMCHG); } else if (sk == nsk) { sock_put(sk); } else { rcu_assign_pointer(x->encap_sk, sk); } spin_unlock_bh(&x->lock); return sk; } static int esp_output_tcp_finish(struct xfrm_state *x, struct sk_buff *skb) { struct sock *sk; int err; rcu_read_lock(); sk = esp6_find_tcp_sk(x); err = PTR_ERR_OR_ZERO(sk); if (err) goto out; bh_lock_sock(sk); if (sock_owned_by_user(sk)) err = espintcp_queue_out(sk, skb); else err = espintcp_push_skb(sk, skb); bh_unlock_sock(sk); out: rcu_read_unlock(); return err; } static int esp_output_tcp_encap_cb(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct xfrm_state *x = dst->xfrm; return esp_output_tcp_finish(x, skb); } static int esp_output_tail_tcp(struct xfrm_state *x, struct sk_buff *skb) { int err; local_bh_disable(); err = xfrm_trans_queue_net(xs_net(x), skb, esp_output_tcp_encap_cb); local_bh_enable(); /* EINPROGRESS just happens to do the right thing. It * actually means that the skb has been consumed and * isn't coming back. */ return err ?: -EINPROGRESS; } #else static int esp_output_tail_tcp(struct xfrm_state *x, struct sk_buff *skb) { WARN_ON(1); return -EOPNOTSUPP; } #endif static void esp_output_encap_csum(struct sk_buff *skb) { /* UDP encap with IPv6 requires a valid checksum */ if (*skb_mac_header(skb) == IPPROTO_UDP) { struct udphdr *uh = udp_hdr(skb); struct ipv6hdr *ip6h = ipv6_hdr(skb); int len = ntohs(uh->len); unsigned int offset = skb_transport_offset(skb); __wsum csum = skb_checksum(skb, offset, skb->len - offset, 0); uh->check = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, len, IPPROTO_UDP, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } } static void esp_output_done(void *data, int err) { struct sk_buff *skb = data; struct xfrm_offload *xo = xfrm_offload(skb); void *tmp; struct xfrm_state *x; if (xo && (xo->flags & XFRM_DEV_RESUME)) { struct sec_path *sp = skb_sec_path(skb); x = sp->xvec[sp->len - 1]; } else { x = skb_dst(skb)->xfrm; } tmp = ESP_SKB_CB(skb)->tmp; esp_ssg_unref(x, tmp, skb); kfree(tmp); esp_output_encap_csum(skb); if (xo && (xo->flags & XFRM_DEV_RESUME)) { if (err) { XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR); kfree_skb(skb); return; } skb_push(skb, skb->data - skb_mac_header(skb)); secpath_reset(skb); xfrm_dev_resume(skb); } else { if (!err && x->encap && x->encap->encap_type == TCP_ENCAP_ESPINTCP) esp_output_tail_tcp(x, skb); else xfrm_output_resume(skb->sk, skb, err); } } /* Move ESP header back into place. */ static void esp_restore_header(struct sk_buff *skb, unsigned int offset) { struct ip_esp_hdr *esph = (void *)(skb->data + offset); void *tmp = ESP_SKB_CB(skb)->tmp; __be32 *seqhi = esp_tmp_extra(tmp); esph->seq_no = esph->spi; esph->spi = *seqhi; } static void esp_output_restore_header(struct sk_buff *skb) { void *tmp = ESP_SKB_CB(skb)->tmp; struct esp_output_extra *extra = esp_tmp_extra(tmp); esp_restore_header(skb, skb_transport_offset(skb) + extra->esphoff - sizeof(__be32)); } static struct ip_esp_hdr *esp_output_set_esn(struct sk_buff *skb, struct xfrm_state *x, struct ip_esp_hdr *esph, struct esp_output_extra *extra) { /* For ESN we move the header forward by 4 bytes to * accommodate the high bits. We will move it back after * encryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { __u32 seqhi; struct xfrm_offload *xo = xfrm_offload(skb); if (xo) seqhi = xo->seq.hi; else seqhi = XFRM_SKB_CB(skb)->seq.output.hi; extra->esphoff = (unsigned char *)esph - skb_transport_header(skb); esph = (struct ip_esp_hdr *)((unsigned char *)esph - 4); extra->seqhi = esph->spi; esph->seq_no = htonl(seqhi); } esph->spi = x->id.spi; return esph; } static void esp_output_done_esn(void *data, int err) { struct sk_buff *skb = data; esp_output_restore_header(skb); esp_output_done(data, err); } static struct ip_esp_hdr *esp6_output_udp_encap(struct sk_buff *skb, int encap_type, struct esp_info *esp, __be16 sport, __be16 dport) { struct udphdr *uh; unsigned int len; len = skb->len + esp->tailen - skb_transport_offset(skb); if (len > U16_MAX) return ERR_PTR(-EMSGSIZE); uh = (struct udphdr *)esp->esph; uh->source = sport; uh->dest = dport; uh->len = htons(len); uh->check = 0; *skb_mac_header(skb) = IPPROTO_UDP; return (struct ip_esp_hdr *)(uh + 1); } #ifdef CONFIG_INET6_ESPINTCP static struct ip_esp_hdr *esp6_output_tcp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { __be16 *lenp = (void *)esp->esph; struct ip_esp_hdr *esph; unsigned int len; struct sock *sk; len = skb->len + esp->tailen - skb_transport_offset(skb); if (len > IP_MAX_MTU) return ERR_PTR(-EMSGSIZE); rcu_read_lock(); sk = esp6_find_tcp_sk(x); rcu_read_unlock(); if (IS_ERR(sk)) return ERR_CAST(sk); *lenp = htons(len); esph = (struct ip_esp_hdr *)(lenp + 1); return esph; } #else static struct ip_esp_hdr *esp6_output_tcp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { return ERR_PTR(-EOPNOTSUPP); } #endif static int esp6_output_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { struct xfrm_encap_tmpl *encap = x->encap; struct ip_esp_hdr *esph; __be16 sport, dport; int encap_type; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; encap_type = encap->encap_type; spin_unlock_bh(&x->lock); switch (encap_type) { default: case UDP_ENCAP_ESPINUDP: esph = esp6_output_udp_encap(skb, encap_type, esp, sport, dport); break; case TCP_ENCAP_ESPINTCP: esph = esp6_output_tcp_encap(x, skb, esp); break; } if (IS_ERR(esph)) return PTR_ERR(esph); esp->esph = esph; return 0; } int esp6_output_head(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *tail; int nfrags; int esph_offset; struct page *page; struct sk_buff *trailer; int tailen = esp->tailen; if (x->encap) { int err = esp6_output_encap(x, skb, esp); if (err < 0) return err; } if (ALIGN(tailen, L1_CACHE_BYTES) > PAGE_SIZE || ALIGN(skb->data_len, L1_CACHE_BYTES) > PAGE_SIZE) goto cow; if (!skb_cloned(skb)) { if (tailen <= skb_tailroom(skb)) { nfrags = 1; trailer = skb; tail = skb_tail_pointer(trailer); goto skip_cow; } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS) && !skb_has_frag_list(skb)) { int allocsize; struct sock *sk = skb->sk; struct page_frag *pfrag = &x->xfrag; esp->inplace = false; allocsize = ALIGN(tailen, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto cow; } page = pfrag->page; get_page(page); tail = page_address(page) + pfrag->offset; esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); nfrags = skb_shinfo(skb)->nr_frags; __skb_fill_page_desc(skb, nfrags, page, pfrag->offset, tailen); skb_shinfo(skb)->nr_frags = ++nfrags; pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); nfrags++; skb->len += tailen; skb->data_len += tailen; skb->truesize += tailen; if (sk && sk_fullsock(sk)) refcount_add(tailen, &sk->sk_wmem_alloc); goto out; } } cow: esph_offset = (unsigned char *)esp->esph - skb_transport_header(skb); nfrags = skb_cow_data(skb, tailen, &trailer); if (nfrags < 0) goto out; tail = skb_tail_pointer(trailer); esp->esph = (struct ip_esp_hdr *)(skb_transport_header(skb) + esph_offset); skip_cow: esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); pskb_put(skb, trailer, tailen); out: return nfrags; } EXPORT_SYMBOL_GPL(esp6_output_head); int esp6_output_tail(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *iv; int alen; void *tmp; int ivlen; int assoclen; int extralen; struct page *page; struct ip_esp_hdr *esph; struct aead_request *req; struct crypto_aead *aead; struct scatterlist *sg, *dsg; struct esp_output_extra *extra; int err = -ENOMEM; assoclen = sizeof(struct ip_esp_hdr); extralen = 0; if (x->props.flags & XFRM_STATE_ESN) { extralen += sizeof(*extra); assoclen += sizeof(__be32); } aead = x->data; alen = crypto_aead_authsize(aead); ivlen = crypto_aead_ivsize(aead); tmp = esp_alloc_tmp(aead, esp->nfrags + 2, extralen); if (!tmp) goto error; extra = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); if (esp->inplace) dsg = sg; else dsg = &sg[esp->nfrags]; esph = esp_output_set_esn(skb, x, esp->esph, extra); esp->esph = esph; sg_init_table(sg, esp->nfrags); err = skb_to_sgvec(skb, sg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; if (!esp->inplace) { int allocsize; struct page_frag *pfrag = &x->xfrag; allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto error_free; } skb_shinfo(skb)->nr_frags = 1; page = pfrag->page; get_page(page); /* replace page frags in skb with new page */ __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len); pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1); err = skb_to_sgvec(skb, dsg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; } if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_output_done_esn, skb); else aead_request_set_callback(req, 0, esp_output_done, skb); aead_request_set_crypt(req, sg, dsg, ivlen + esp->clen, iv); aead_request_set_ad(req, assoclen); memset(iv, 0, ivlen); memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&esp->seqno + 8 - min(ivlen, 8), min(ivlen, 8)); ESP_SKB_CB(skb)->tmp = tmp; err = crypto_aead_encrypt(req); switch (err) { case -EINPROGRESS: goto error; case -ENOSPC: err = NET_XMIT_DROP; break; case 0: if ((x->props.flags & XFRM_STATE_ESN)) esp_output_restore_header(skb); esp_output_encap_csum(skb); } if (sg != dsg) esp_ssg_unref(x, tmp, skb); if (!err && x->encap && x->encap->encap_type == TCP_ENCAP_ESPINTCP) err = esp_output_tail_tcp(x, skb); error_free: kfree(tmp); error: return err; } EXPORT_SYMBOL_GPL(esp6_output_tail); static int esp6_output(struct xfrm_state *x, struct sk_buff *skb) { int alen; int blksize; struct ip_esp_hdr *esph; struct crypto_aead *aead; struct esp_info esp; esp.inplace = true; esp.proto = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_ESP; /* skb is pure payload to encrypt */ aead = x->data; alen = crypto_aead_authsize(aead); esp.tfclen = 0; if (x->tfcpad) { struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb); u32 padto; padto = min(x->tfcpad, xfrm_state_mtu(x, dst->child_mtu_cached)); if (skb->len < padto) esp.tfclen = padto - skb->len; } blksize = ALIGN(crypto_aead_blocksize(aead), 4); esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize); esp.plen = esp.clen - skb->len - esp.tfclen; esp.tailen = esp.tfclen + esp.plen + alen; esp.esph = ip_esp_hdr(skb); esp.nfrags = esp6_output_head(x, skb, &esp); if (esp.nfrags < 0) return esp.nfrags; esph = esp.esph; esph->spi = x->id.spi; esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); esp.seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low + ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32)); skb_push(skb, -skb_network_offset(skb)); return esp6_output_tail(x, skb, &esp); } static inline int esp_remove_trailer(struct sk_buff *skb) { struct xfrm_state *x = xfrm_input_state(skb); struct crypto_aead *aead = x->data; int alen, hlen, elen; int padlen, trimlen; __wsum csumdiff; u8 nexthdr[2]; int ret; alen = crypto_aead_authsize(aead); hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); elen = skb->len - hlen; ret = skb_copy_bits(skb, skb->len - alen - 2, nexthdr, 2); BUG_ON(ret); ret = -EINVAL; padlen = nexthdr[0]; if (padlen + 2 + alen >= elen) { net_dbg_ratelimited("ipsec esp packet is garbage padlen=%d, elen=%d\n", padlen + 2, elen - alen); goto out; } trimlen = alen + padlen + 2; if (skb->ip_summed == CHECKSUM_COMPLETE) { csumdiff = skb_checksum(skb, skb->len - trimlen, trimlen, 0); skb->csum = csum_block_sub(skb->csum, csumdiff, skb->len - trimlen); } ret = pskb_trim(skb, skb->len - trimlen); if (unlikely(ret)) return ret; ret = nexthdr[1]; out: return ret; } int esp6_input_done2(struct sk_buff *skb, int err) { struct xfrm_state *x = xfrm_input_state(skb); struct xfrm_offload *xo = xfrm_offload(skb); struct crypto_aead *aead = x->data; int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); int hdr_len = skb_network_header_len(skb); if (!xo || !(xo->flags & CRYPTO_DONE)) kfree(ESP_SKB_CB(skb)->tmp); if (unlikely(err)) goto out; err = esp_remove_trailer(skb); if (unlikely(err < 0)) goto out; if (x->encap) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); int offset = skb_network_offset(skb) + sizeof(*ip6h); struct xfrm_encap_tmpl *encap = x->encap; u8 nexthdr = ip6h->nexthdr; __be16 frag_off, source; struct udphdr *uh; struct tcphdr *th; offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); if (offset == -1) { err = -EINVAL; goto out; } uh = (void *)(skb->data + offset); th = (void *)(skb->data + offset); hdr_len += offset; switch (x->encap->encap_type) { case TCP_ENCAP_ESPINTCP: source = th->source; break; case UDP_ENCAP_ESPINUDP: source = uh->source; break; default: WARN_ON_ONCE(1); err = -EINVAL; goto out; } /* * 1) if the NAT-T peer's IP or port changed then * advertise the change to the keying daemon. * This is an inbound SA, so just compare * SRC ports. */ if (!ipv6_addr_equal(&ip6h->saddr, &x->props.saddr.in6) || source != encap->encap_sport) { xfrm_address_t ipaddr; memcpy(&ipaddr.a6, &ip6h->saddr.s6_addr, sizeof(ipaddr.a6)); km_new_mapping(x, &ipaddr, source); /* XXX: perhaps add an extra * policy check here, to see * if we should allow or * reject a packet from a * different source * address/port. */ } /* * 2) ignore UDP/TCP checksums in case * of NAT-T in Transport Mode, or * perform other post-processing fixes * as per draft-ietf-ipsec-udp-encaps-06, * section 3.1.2 */ if (x->props.mode == XFRM_MODE_TRANSPORT) skb->ip_summed = CHECKSUM_UNNECESSARY; } skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); skb_pull_rcsum(skb, hlen); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -hdr_len); /* RFC4303: Drop dummy packets without any error */ if (err == IPPROTO_NONE) err = -EINVAL; out: return err; } EXPORT_SYMBOL_GPL(esp6_input_done2); static void esp_input_done(void *data, int err) { struct sk_buff *skb = data; xfrm_input_resume(skb, esp6_input_done2(skb, err)); } static void esp_input_restore_header(struct sk_buff *skb) { esp_restore_header(skb, 0); __skb_pull(skb, 4); } static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi) { struct xfrm_state *x = xfrm_input_state(skb); /* For ESN we move the header forward by 4 bytes to * accommodate the high bits. We will move it back after * decryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { struct ip_esp_hdr *esph = skb_push(skb, 4); *seqhi = esph->spi; esph->spi = esph->seq_no; esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi; } } static void esp_input_done_esn(void *data, int err) { struct sk_buff *skb = data; esp_input_restore_header(skb); esp_input_done(data, err); } static int esp6_input(struct xfrm_state *x, struct sk_buff *skb) { struct crypto_aead *aead = x->data; struct aead_request *req; struct sk_buff *trailer; int ivlen = crypto_aead_ivsize(aead); int elen = skb->len - sizeof(struct ip_esp_hdr) - ivlen; int nfrags; int assoclen; int seqhilen; int ret = 0; void *tmp; __be32 *seqhi; u8 *iv; struct scatterlist *sg; if (!pskb_may_pull(skb, sizeof(struct ip_esp_hdr) + ivlen)) { ret = -EINVAL; goto out; } if (elen <= 0) { ret = -EINVAL; goto out; } assoclen = sizeof(struct ip_esp_hdr); seqhilen = 0; if (x->props.flags & XFRM_STATE_ESN) { seqhilen += sizeof(__be32); assoclen += seqhilen; } if (!skb_cloned(skb)) { if (!skb_is_nonlinear(skb)) { nfrags = 1; goto skip_cow; } else if (!skb_has_frag_list(skb)) { nfrags = skb_shinfo(skb)->nr_frags; nfrags++; goto skip_cow; } } nfrags = skb_cow_data(skb, 0, &trailer); if (nfrags < 0) { ret = -EINVAL; goto out; } skip_cow: ret = -ENOMEM; tmp = esp_alloc_tmp(aead, nfrags, seqhilen); if (!tmp) goto out; ESP_SKB_CB(skb)->tmp = tmp; seqhi = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, seqhilen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); esp_input_set_header(skb, seqhi); sg_init_table(sg, nfrags); ret = skb_to_sgvec(skb, sg, 0, skb->len); if (unlikely(ret < 0)) { kfree(tmp); goto out; } skb->ip_summed = CHECKSUM_NONE; if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_input_done_esn, skb); else aead_request_set_callback(req, 0, esp_input_done, skb); aead_request_set_crypt(req, sg, sg, elen + ivlen, iv); aead_request_set_ad(req, assoclen); ret = crypto_aead_decrypt(req); if (ret == -EINPROGRESS) goto out; if ((x->props.flags & XFRM_STATE_ESN)) esp_input_restore_header(skb); ret = esp6_input_done2(skb, ret); out: return ret; } static int esp6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct net *net = dev_net(skb->dev); const struct ipv6hdr *iph = (const struct ipv6hdr *)skb->data; struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data + offset); struct xfrm_state *x; if (type != ICMPV6_PKT_TOOBIG && type != NDISC_REDIRECT) return 0; x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, esph->spi, IPPROTO_ESP, AF_INET6); if (!x) return 0; if (type == NDISC_REDIRECT) ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); else ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL)); xfrm_state_put(x); return 0; } static void esp6_destroy(struct xfrm_state *x) { struct crypto_aead *aead = x->data; if (!aead) return; crypto_free_aead(aead); } static int esp_init_aead(struct xfrm_state *x, struct netlink_ext_ack *extack) { char aead_name[CRYPTO_MAX_ALG_NAME]; struct crypto_aead *aead; int err; if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); return -ENAMETOOLONG; } aead = crypto_alloc_aead(aead_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) goto error; x->data = aead; err = crypto_aead_setkey(aead, x->aead->alg_key, (x->aead->alg_key_len + 7) / 8); if (err) goto error; err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8); if (err) goto error; return 0; error: NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); return err; } static int esp_init_authenc(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct crypto_aead *aead; struct crypto_authenc_key_param *param; struct rtattr *rta; char *key; char *p; char authenc_name[CRYPTO_MAX_ALG_NAME]; unsigned int keylen; int err; err = -ENAMETOOLONG; if ((x->props.flags & XFRM_STATE_ESN)) { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthencesn(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); goto error; } } else { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthenc(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); goto error; } } aead = crypto_alloc_aead(authenc_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } x->data = aead; keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) + (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param)); err = -ENOMEM; key = kmalloc(keylen, GFP_KERNEL); if (!key) goto error; p = key; rta = (void *)p; rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; rta->rta_len = RTA_LENGTH(sizeof(*param)); param = RTA_DATA(rta); p += RTA_SPACE(sizeof(*param)); if (x->aalg) { struct xfrm_algo_desc *aalg_desc; memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8); p += (x->aalg->alg_key_len + 7) / 8; aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0); BUG_ON(!aalg_desc); err = -EINVAL; if (aalg_desc->uinfo.auth.icv_fullbits / 8 != crypto_aead_authsize(aead)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto free_key; } err = crypto_aead_setauthsize( aead, x->aalg->alg_trunc_len / 8); if (err) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto free_key; } } param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8); memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8); err = crypto_aead_setkey(aead, key, keylen); free_key: kfree(key); error: return err; } static int esp6_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct crypto_aead *aead; u32 align; int err; x->data = NULL; if (x->aead) { err = esp_init_aead(x, extack); } else if (x->ealg) { err = esp_init_authenc(x, extack); } else { NL_SET_ERR_MSG(extack, "ESP: AEAD or CRYPT must be provided"); err = -EINVAL; } if (err) goto error; aead = x->data; x->props.header_len = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); switch (x->props.mode) { case XFRM_MODE_BEET: if (x->sel.family != AF_INET6) x->props.header_len += IPV4_BEET_PHMAXLEN + (sizeof(struct ipv6hdr) - sizeof(struct iphdr)); break; default: case XFRM_MODE_TRANSPORT: break; case XFRM_MODE_TUNNEL: x->props.header_len += sizeof(struct ipv6hdr); break; } if (x->encap) { struct xfrm_encap_tmpl *encap = x->encap; switch (encap->encap_type) { default: NL_SET_ERR_MSG(extack, "Unsupported encapsulation type for ESP"); err = -EINVAL; goto error; case UDP_ENCAP_ESPINUDP: x->props.header_len += sizeof(struct udphdr); break; #ifdef CONFIG_INET6_ESPINTCP case TCP_ENCAP_ESPINTCP: /* only the length field, TCP encap is done by * the socket */ x->props.header_len += 2; break; #endif } } align = ALIGN(crypto_aead_blocksize(aead), 4); x->props.trailer_len = align + 1 + crypto_aead_authsize(aead); error: return err; } static int esp6_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type esp6_type = { .owner = THIS_MODULE, .proto = IPPROTO_ESP, .flags = XFRM_TYPE_REPLAY_PROT, .init_state = esp6_init_state, .destructor = esp6_destroy, .input = esp6_input, .output = esp6_output, }; static struct xfrm6_protocol esp6_protocol = { .handler = xfrm6_rcv, .input_handler = xfrm_input, .cb_handler = esp6_rcv_cb, .err_handler = esp6_err, .priority = 0, }; static int __init esp6_init(void) { if (xfrm_register_type(&esp6_type, AF_INET6) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm6_protocol_register(&esp6_protocol, IPPROTO_ESP) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&esp6_type, AF_INET6); return -EAGAIN; } return 0; } static void __exit esp6_fini(void) { if (xfrm6_protocol_deregister(&esp6_protocol, IPPROTO_ESP) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&esp6_type, AF_INET6); } module_init(esp6_init); module_exit(esp6_fini); MODULE_DESCRIPTION("IPv6 ESP transformation helpers"); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_ESP);