// SPDX-License-Identifier: GPL-2.0-or-later /* * IP multicast routing support for mrouted 3.6/3.8 * * (c) 1995 Alan Cox, * Linux Consultancy and Custom Driver Development * * Fixes: * Michael Chastain : Incorrect size of copying. * Alan Cox : Added the cache manager code * Alan Cox : Fixed the clone/copy bug and device race. * Mike McLagan : Routing by source * Malcolm Beattie : Buffer handling fixes. * Alexey Kuznetsov : Double buffer free and other fixes. * SVR Anand : Fixed several multicast bugs and problems. * Alexey Kuznetsov : Status, optimisations and more. * Brad Parker : Better behaviour on mrouted upcall * overflow. * Carlos Picoto : PIMv1 Support * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header * Relax this requirement to work with older peers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ipmr_rule { struct fib_rule common; }; struct ipmr_result { struct mr_table *mrt; }; /* Big lock, protecting vif table, mrt cache and mroute socket state. * Note that the changes are semaphored via rtnl_lock. */ static DEFINE_SPINLOCK(mrt_lock); static struct net_device *vif_dev_read(const struct vif_device *vif) { return rcu_dereference(vif->dev); } /* Multicast router control variables */ /* Special spinlock for queue of unresolved entries */ static DEFINE_SPINLOCK(mfc_unres_lock); /* We return to original Alan's scheme. Hash table of resolved * entries is changed only in process context and protected * with weak lock mrt_lock. Queue of unresolved entries is protected * with strong spinlock mfc_unres_lock. * * In this case data path is free of exclusive locks at all. */ static struct kmem_cache *mrt_cachep __ro_after_init; static struct mr_table *ipmr_new_table(struct net *net, u32 id); static void ipmr_free_table(struct mr_table *mrt); static void ip_mr_forward(struct net *net, struct mr_table *mrt, struct net_device *dev, struct sk_buff *skb, struct mfc_cache *cache, int local); static int ipmr_cache_report(const struct mr_table *mrt, struct sk_buff *pkt, vifi_t vifi, int assert); static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, int cmd); static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); static void mroute_clean_tables(struct mr_table *mrt, int flags); static void ipmr_expire_process(struct timer_list *t); #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES #define ipmr_for_each_table(mrt, net) \ list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ lockdep_rtnl_is_held() || \ list_empty(&net->ipv4.mr_tables)) static struct mr_table *ipmr_mr_table_iter(struct net *net, struct mr_table *mrt) { struct mr_table *ret; if (!mrt) ret = list_entry_rcu(net->ipv4.mr_tables.next, struct mr_table, list); else ret = list_entry_rcu(mrt->list.next, struct mr_table, list); if (&ret->list == &net->ipv4.mr_tables) return NULL; return ret; } static struct mr_table *ipmr_get_table(struct net *net, u32 id) { struct mr_table *mrt; ipmr_for_each_table(mrt, net) { if (mrt->id == id) return mrt; } return NULL; } static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, struct mr_table **mrt) { int err; struct ipmr_result res; struct fib_lookup_arg arg = { .result = &res, .flags = FIB_LOOKUP_NOREF, }; /* update flow if oif or iif point to device enslaved to l3mdev */ l3mdev_update_flow(net, flowi4_to_flowi(flp4)); err = fib_rules_lookup(net->ipv4.mr_rules_ops, flowi4_to_flowi(flp4), 0, &arg); if (err < 0) return err; *mrt = res.mrt; return 0; } static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg) { struct ipmr_result *res = arg->result; struct mr_table *mrt; switch (rule->action) { case FR_ACT_TO_TBL: break; case FR_ACT_UNREACHABLE: return -ENETUNREACH; case FR_ACT_PROHIBIT: return -EACCES; case FR_ACT_BLACKHOLE: default: return -EINVAL; } arg->table = fib_rule_get_table(rule, arg); mrt = ipmr_get_table(rule->fr_net, arg->table); if (!mrt) return -EAGAIN; res->mrt = mrt; return 0; } static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) { return 1; } static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh, struct nlattr **tb, struct netlink_ext_ack *extack) { return 0; } static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, struct nlattr **tb) { return 1; } static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh) { frh->dst_len = 0; frh->src_len = 0; frh->tos = 0; return 0; } static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { .family = RTNL_FAMILY_IPMR, .rule_size = sizeof(struct ipmr_rule), .addr_size = sizeof(u32), .action = ipmr_rule_action, .match = ipmr_rule_match, .configure = ipmr_rule_configure, .compare = ipmr_rule_compare, .fill = ipmr_rule_fill, .nlgroup = RTNLGRP_IPV4_RULE, .owner = THIS_MODULE, }; static int __net_init ipmr_rules_init(struct net *net) { struct fib_rules_ops *ops; struct mr_table *mrt; int err; ops = fib_rules_register(&ipmr_rules_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); INIT_LIST_HEAD(&net->ipv4.mr_tables); mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); if (IS_ERR(mrt)) { err = PTR_ERR(mrt); goto err1; } err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT); if (err < 0) goto err2; net->ipv4.mr_rules_ops = ops; return 0; err2: rtnl_lock(); ipmr_free_table(mrt); rtnl_unlock(); err1: fib_rules_unregister(ops); return err; } static void __net_exit ipmr_rules_exit(struct net *net) { struct mr_table *mrt, *next; ASSERT_RTNL(); list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { list_del(&mrt->list); ipmr_free_table(mrt); } fib_rules_unregister(net->ipv4.mr_rules_ops); } static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); } static unsigned int ipmr_rules_seq_read(struct net *net) { return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); } bool ipmr_rule_default(const struct fib_rule *rule) { return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; } EXPORT_SYMBOL(ipmr_rule_default); #else #define ipmr_for_each_table(mrt, net) \ for (mrt = net->ipv4.mrt; mrt; mrt = NULL) static struct mr_table *ipmr_mr_table_iter(struct net *net, struct mr_table *mrt) { if (!mrt) return net->ipv4.mrt; return NULL; } static struct mr_table *ipmr_get_table(struct net *net, u32 id) { return net->ipv4.mrt; } static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, struct mr_table **mrt) { *mrt = net->ipv4.mrt; return 0; } static int __net_init ipmr_rules_init(struct net *net) { struct mr_table *mrt; mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); if (IS_ERR(mrt)) return PTR_ERR(mrt); net->ipv4.mrt = mrt; return 0; } static void __net_exit ipmr_rules_exit(struct net *net) { ASSERT_RTNL(); ipmr_free_table(net->ipv4.mrt); net->ipv4.mrt = NULL; } static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static unsigned int ipmr_rules_seq_read(struct net *net) { return 0; } bool ipmr_rule_default(const struct fib_rule *rule) { return true; } EXPORT_SYMBOL(ipmr_rule_default); #endif static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, const void *ptr) { const struct mfc_cache_cmp_arg *cmparg = arg->key; const struct mfc_cache *c = ptr; return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || cmparg->mfc_origin != c->mfc_origin; } static const struct rhashtable_params ipmr_rht_params = { .head_offset = offsetof(struct mr_mfc, mnode), .key_offset = offsetof(struct mfc_cache, cmparg), .key_len = sizeof(struct mfc_cache_cmp_arg), .nelem_hint = 3, .obj_cmpfn = ipmr_hash_cmp, .automatic_shrinking = true, }; static void ipmr_new_table_set(struct mr_table *mrt, struct net *net) { #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); #endif } static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { .mfc_mcastgrp = htonl(INADDR_ANY), .mfc_origin = htonl(INADDR_ANY), }; static struct mr_table_ops ipmr_mr_table_ops = { .rht_params = &ipmr_rht_params, .cmparg_any = &ipmr_mr_table_ops_cmparg_any, }; static struct mr_table *ipmr_new_table(struct net *net, u32 id) { struct mr_table *mrt; /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ if (id != RT_TABLE_DEFAULT && id >= 1000000000) return ERR_PTR(-EINVAL); mrt = ipmr_get_table(net, id); if (mrt) return mrt; return mr_table_alloc(net, id, &ipmr_mr_table_ops, ipmr_expire_process, ipmr_new_table_set); } static void ipmr_free_table(struct mr_table *mrt) { timer_shutdown_sync(&mrt->ipmr_expire_timer); mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); rhltable_destroy(&mrt->mfc_hash); kfree(mrt); } /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ /* Initialize ipmr pimreg/tunnel in_device */ static bool ipmr_init_vif_indev(const struct net_device *dev) { struct in_device *in_dev; ASSERT_RTNL(); in_dev = __in_dev_get_rtnl(dev); if (!in_dev) return false; ipv4_devconf_setall(in_dev); neigh_parms_data_state_setall(in_dev->arp_parms); IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; return true; } static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) { struct net_device *tunnel_dev, *new_dev; struct ip_tunnel_parm_kern p = { }; int err; tunnel_dev = __dev_get_by_name(net, "tunl0"); if (!tunnel_dev) goto out; p.iph.daddr = v->vifc_rmt_addr.s_addr; p.iph.saddr = v->vifc_lcl_addr.s_addr; p.iph.version = 4; p.iph.ihl = 5; p.iph.protocol = IPPROTO_IPIP; sprintf(p.name, "dvmrp%d", v->vifc_vifi); if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) goto out; err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, SIOCADDTUNNEL); if (err) goto out; new_dev = __dev_get_by_name(net, p.name); if (!new_dev) goto out; new_dev->flags |= IFF_MULTICAST; if (!ipmr_init_vif_indev(new_dev)) goto out_unregister; if (dev_open(new_dev, NULL)) goto out_unregister; dev_hold(new_dev); err = dev_set_allmulti(new_dev, 1); if (err) { dev_close(new_dev); tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, SIOCDELTUNNEL); dev_put(new_dev); new_dev = ERR_PTR(err); } return new_dev; out_unregister: unregister_netdevice(new_dev); out: return ERR_PTR(-ENOBUFS); } #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) { struct net *net = dev_net(dev); struct mr_table *mrt; struct flowi4 fl4 = { .flowi4_oif = dev->ifindex, .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, .flowi4_mark = skb->mark, }; int err; err = ipmr_fib_lookup(net, &fl4, &mrt); if (err < 0) { kfree_skb(skb); return err; } DEV_STATS_ADD(dev, tx_bytes, skb->len); DEV_STATS_INC(dev, tx_packets); rcu_read_lock(); /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), IGMPMSG_WHOLEPKT); rcu_read_unlock(); kfree_skb(skb); return NETDEV_TX_OK; } static int reg_vif_get_iflink(const struct net_device *dev) { return 0; } static const struct net_device_ops reg_vif_netdev_ops = { .ndo_start_xmit = reg_vif_xmit, .ndo_get_iflink = reg_vif_get_iflink, }; static void reg_vif_setup(struct net_device *dev) { dev->type = ARPHRD_PIMREG; dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; dev->flags = IFF_NOARP; dev->netdev_ops = ®_vif_netdev_ops; dev->needs_free_netdev = true; dev->features |= NETIF_F_NETNS_LOCAL; } static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) { struct net_device *dev; char name[IFNAMSIZ]; if (mrt->id == RT_TABLE_DEFAULT) sprintf(name, "pimreg"); else sprintf(name, "pimreg%u", mrt->id); dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); if (!dev) return NULL; dev_net_set(dev, net); if (register_netdevice(dev)) { free_netdev(dev); return NULL; } if (!ipmr_init_vif_indev(dev)) goto failure; if (dev_open(dev, NULL)) goto failure; dev_hold(dev); return dev; failure: unregister_netdevice(dev); return NULL; } /* called with rcu_read_lock() */ static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, unsigned int pimlen) { struct net_device *reg_dev = NULL; struct iphdr *encap; int vif_num; encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); /* Check that: * a. packet is really sent to a multicast group * b. packet is not a NULL-REGISTER * c. packet is not truncated */ if (!ipv4_is_multicast(encap->daddr) || encap->tot_len == 0 || ntohs(encap->tot_len) + pimlen > skb->len) return 1; /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ vif_num = READ_ONCE(mrt->mroute_reg_vif_num); if (vif_num >= 0) reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); if (!reg_dev) return 1; skb->mac_header = skb->network_header; skb_pull(skb, (u8 *)encap - skb->data); skb_reset_network_header(skb); skb->protocol = htons(ETH_P_IP); skb->ip_summed = CHECKSUM_NONE; skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); netif_rx(skb); return NET_RX_SUCCESS; } #else static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) { return NULL; } #endif static int call_ipmr_vif_entry_notifiers(struct net *net, enum fib_event_type event_type, struct vif_device *vif, struct net_device *vif_dev, vifi_t vif_index, u32 tb_id) { return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, vif, vif_dev, vif_index, tb_id, &net->ipv4.ipmr_seq); } static int call_ipmr_mfc_entry_notifiers(struct net *net, enum fib_event_type event_type, struct mfc_cache *mfc, u32 tb_id) { return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, &mfc->_c, tb_id, &net->ipv4.ipmr_seq); } /** * vif_delete - Delete a VIF entry * @mrt: Table to delete from * @vifi: VIF identifier to delete * @notify: Set to 1, if the caller is a notifier_call * @head: if unregistering the VIF, place it on this queue */ static int vif_delete(struct mr_table *mrt, int vifi, int notify, struct list_head *head) { struct net *net = read_pnet(&mrt->net); struct vif_device *v; struct net_device *dev; struct in_device *in_dev; if (vifi < 0 || vifi >= mrt->maxvif) return -EADDRNOTAVAIL; v = &mrt->vif_table[vifi]; dev = rtnl_dereference(v->dev); if (!dev) return -EADDRNOTAVAIL; spin_lock(&mrt_lock); call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, vifi, mrt->id); RCU_INIT_POINTER(v->dev, NULL); if (vifi == mrt->mroute_reg_vif_num) { /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ WRITE_ONCE(mrt->mroute_reg_vif_num, -1); } if (vifi + 1 == mrt->maxvif) { int tmp; for (tmp = vifi - 1; tmp >= 0; tmp--) { if (VIF_EXISTS(mrt, tmp)) break; } WRITE_ONCE(mrt->maxvif, tmp + 1); } spin_unlock(&mrt_lock); dev_set_allmulti(dev, -1); in_dev = __in_dev_get_rtnl(dev); if (in_dev) { IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, dev->ifindex, &in_dev->cnf); ip_rt_multicast_event(in_dev); } if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) unregister_netdevice_queue(dev, head); netdev_put(dev, &v->dev_tracker); return 0; } static void ipmr_cache_free_rcu(struct rcu_head *head) { struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); } static void ipmr_cache_free(struct mfc_cache *c) { call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); } /* Destroy an unresolved cache entry, killing queued skbs * and reporting error to netlink readers. */ static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) { struct net *net = read_pnet(&mrt->net); struct sk_buff *skb; struct nlmsgerr *e; atomic_dec(&mrt->cache_resolve_queue_len); while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { if (ip_hdr(skb)->version == 0) { struct nlmsghdr *nlh = skb_pull(skb, sizeof(struct iphdr)); nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); e = nlmsg_data(nlh); e->error = -ETIMEDOUT; memset(&e->msg, 0, sizeof(e->msg)); rtnl_unicast(skb, net, NETLINK_CB(skb).portid); } else { kfree_skb(skb); } } ipmr_cache_free(c); } /* Timer process for the unresolved queue. */ static void ipmr_expire_process(struct timer_list *t) { struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); struct mr_mfc *c, *next; unsigned long expires; unsigned long now; if (!spin_trylock(&mfc_unres_lock)) { mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); return; } if (list_empty(&mrt->mfc_unres_queue)) goto out; now = jiffies; expires = 10*HZ; list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { if (time_after(c->mfc_un.unres.expires, now)) { unsigned long interval = c->mfc_un.unres.expires - now; if (interval < expires) expires = interval; continue; } list_del(&c->list); mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); ipmr_destroy_unres(mrt, (struct mfc_cache *)c); } if (!list_empty(&mrt->mfc_unres_queue)) mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); out: spin_unlock(&mfc_unres_lock); } /* Fill oifs list. It is called under locked mrt_lock. */ static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, unsigned char *ttls) { int vifi; cache->mfc_un.res.minvif = MAXVIFS; cache->mfc_un.res.maxvif = 0; memset(cache->mfc_un.res.ttls, 255, MAXVIFS); for (vifi = 0; vifi < mrt->maxvif; vifi++) { if (VIF_EXISTS(mrt, vifi) && ttls[vifi] && ttls[vifi] < 255) { cache->mfc_un.res.ttls[vifi] = ttls[vifi]; if (cache->mfc_un.res.minvif > vifi) cache->mfc_un.res.minvif = vifi; if (cache->mfc_un.res.maxvif <= vifi) cache->mfc_un.res.maxvif = vifi + 1; } } cache->mfc_un.res.lastuse = jiffies; } static int vif_add(struct net *net, struct mr_table *mrt, struct vifctl *vifc, int mrtsock) { struct netdev_phys_item_id ppid = { }; int vifi = vifc->vifc_vifi; struct vif_device *v = &mrt->vif_table[vifi]; struct net_device *dev; struct in_device *in_dev; int err; /* Is vif busy ? */ if (VIF_EXISTS(mrt, vifi)) return -EADDRINUSE; switch (vifc->vifc_flags) { case VIFF_REGISTER: if (!ipmr_pimsm_enabled()) return -EINVAL; /* Special Purpose VIF in PIM * All the packets will be sent to the daemon */ if (mrt->mroute_reg_vif_num >= 0) return -EADDRINUSE; dev = ipmr_reg_vif(net, mrt); if (!dev) return -ENOBUFS; err = dev_set_allmulti(dev, 1); if (err) { unregister_netdevice(dev); dev_put(dev); return err; } break; case VIFF_TUNNEL: dev = ipmr_new_tunnel(net, vifc); if (IS_ERR(dev)) return PTR_ERR(dev); break; case VIFF_USE_IFINDEX: case 0: if (vifc->vifc_flags == VIFF_USE_IFINDEX) { dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); if (dev && !__in_dev_get_rtnl(dev)) { dev_put(dev); return -EADDRNOTAVAIL; } } else { dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); } if (!dev) return -EADDRNOTAVAIL; err = dev_set_allmulti(dev, 1); if (err) { dev_put(dev); return err; } break; default: return -EINVAL; } in_dev = __in_dev_get_rtnl(dev); if (!in_dev) { dev_put(dev); return -EADDRNOTAVAIL; } IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, dev->ifindex, &in_dev->cnf); ip_rt_multicast_event(in_dev); /* Fill in the VIF structures */ vif_device_init(v, dev, vifc->vifc_rate_limit, vifc->vifc_threshold, vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), (VIFF_TUNNEL | VIFF_REGISTER)); err = dev_get_port_parent_id(dev, &ppid, true); if (err == 0) { memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); v->dev_parent_id.id_len = ppid.id_len; } else { v->dev_parent_id.id_len = 0; } v->local = vifc->vifc_lcl_addr.s_addr; v->remote = vifc->vifc_rmt_addr.s_addr; /* And finish update writing critical data */ spin_lock(&mrt_lock); rcu_assign_pointer(v->dev, dev); netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); if (v->flags & VIFF_REGISTER) { /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); } if (vifi+1 > mrt->maxvif) WRITE_ONCE(mrt->maxvif, vifi + 1); spin_unlock(&mrt_lock); call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, vifi, mrt->id); return 0; } /* called with rcu_read_lock() */ static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, __be32 origin, __be32 mcastgrp) { struct mfc_cache_cmp_arg arg = { .mfc_mcastgrp = mcastgrp, .mfc_origin = origin }; return mr_mfc_find(mrt, &arg); } /* Look for a (*,G) entry */ static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, __be32 mcastgrp, int vifi) { struct mfc_cache_cmp_arg arg = { .mfc_mcastgrp = mcastgrp, .mfc_origin = htonl(INADDR_ANY) }; if (mcastgrp == htonl(INADDR_ANY)) return mr_mfc_find_any_parent(mrt, vifi); return mr_mfc_find_any(mrt, vifi, &arg); } /* Look for a (S,G,iif) entry if parent != -1 */ static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, __be32 origin, __be32 mcastgrp, int parent) { struct mfc_cache_cmp_arg arg = { .mfc_mcastgrp = mcastgrp, .mfc_origin = origin, }; return mr_mfc_find_parent(mrt, &arg, parent); } /* Allocate a multicast cache entry */ static struct mfc_cache *ipmr_cache_alloc(void) { struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); if (c) { c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; c->_c.mfc_un.res.minvif = MAXVIFS; c->_c.free = ipmr_cache_free_rcu; refcount_set(&c->_c.mfc_un.res.refcount, 1); } return c; } static struct mfc_cache *ipmr_cache_alloc_unres(void) { struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); if (c) { skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; } return c; } /* A cache entry has gone into a resolved state from queued */ static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, struct mfc_cache *uc, struct mfc_cache *c) { struct sk_buff *skb; struct nlmsgerr *e; /* Play the pending entries through our router */ while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { if (ip_hdr(skb)->version == 0) { struct nlmsghdr *nlh = skb_pull(skb, sizeof(struct iphdr)); if (mr_fill_mroute(mrt, skb, &c->_c, nlmsg_data(nlh)) > 0) { nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; } else { nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); e = nlmsg_data(nlh); e->error = -EMSGSIZE; memset(&e->msg, 0, sizeof(e->msg)); } rtnl_unicast(skb, net, NETLINK_CB(skb).portid); } else { rcu_read_lock(); ip_mr_forward(net, mrt, skb->dev, skb, c, 0); rcu_read_unlock(); } } } /* Bounce a cache query up to mrouted and netlink. * * Called under rcu_read_lock(). */ static int ipmr_cache_report(const struct mr_table *mrt, struct sk_buff *pkt, vifi_t vifi, int assert) { const int ihl = ip_hdrlen(pkt); struct sock *mroute_sk; struct igmphdr *igmp; struct igmpmsg *msg; struct sk_buff *skb; int ret; mroute_sk = rcu_dereference(mrt->mroute_sk); if (!mroute_sk) return -EINVAL; if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); else skb = alloc_skb(128, GFP_ATOMIC); if (!skb) return -ENOBUFS; if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { /* Ugly, but we have no choice with this interface. * Duplicate old header, fix ihl, length etc. * And all this only to mangle msg->im_msgtype and * to set msg->im_mbz to "mbz" :-) */ skb_push(skb, sizeof(struct iphdr)); skb_reset_network_header(skb); skb_reset_transport_header(skb); msg = (struct igmpmsg *)skb_network_header(skb); memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); msg->im_msgtype = assert; msg->im_mbz = 0; if (assert == IGMPMSG_WRVIFWHOLE) { msg->im_vif = vifi; msg->im_vif_hi = vifi >> 8; } else { /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); msg->im_vif = vif_num; msg->im_vif_hi = vif_num >> 8; } ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + sizeof(struct iphdr)); } else { /* Copy the IP header */ skb_set_network_header(skb, skb->len); skb_put(skb, ihl); skb_copy_to_linear_data(skb, pkt->data, ihl); /* Flag to the kernel this is a route add */ ip_hdr(skb)->protocol = 0; msg = (struct igmpmsg *)skb_network_header(skb); msg->im_vif = vifi; msg->im_vif_hi = vifi >> 8; ipv4_pktinfo_prepare(mroute_sk, pkt, false); memcpy(skb->cb, pkt->cb, sizeof(skb->cb)); /* Add our header */ igmp = skb_put(skb, sizeof(struct igmphdr)); igmp->type = assert; msg->im_msgtype = assert; igmp->code = 0; ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ skb->transport_header = skb->network_header; } igmpmsg_netlink_event(mrt, skb); /* Deliver to mrouted */ ret = sock_queue_rcv_skb(mroute_sk, skb); if (ret < 0) { net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); kfree_skb(skb); } return ret; } /* Queue a packet for resolution. It gets locked cache entry! */ /* Called under rcu_read_lock() */ static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb, struct net_device *dev) { const struct iphdr *iph = ip_hdr(skb); struct mfc_cache *c; bool found = false; int err; spin_lock_bh(&mfc_unres_lock); list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { if (c->mfc_mcastgrp == iph->daddr && c->mfc_origin == iph->saddr) { found = true; break; } } if (!found) { /* Create a new entry if allowable */ c = ipmr_cache_alloc_unres(); if (!c) { spin_unlock_bh(&mfc_unres_lock); kfree_skb(skb); return -ENOBUFS; } /* Fill in the new cache entry */ c->_c.mfc_parent = -1; c->mfc_origin = iph->saddr; c->mfc_mcastgrp = iph->daddr; /* Reflect first query at mrouted. */ err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); if (err < 0) { /* If the report failed throw the cache entry out - Brad Parker */ spin_unlock_bh(&mfc_unres_lock); ipmr_cache_free(c); kfree_skb(skb); return err; } atomic_inc(&mrt->cache_resolve_queue_len); list_add(&c->_c.list, &mrt->mfc_unres_queue); mroute_netlink_event(mrt, c, RTM_NEWROUTE); if (atomic_read(&mrt->cache_resolve_queue_len) == 1) mod_timer(&mrt->ipmr_expire_timer, c->_c.mfc_un.unres.expires); } /* See if we can append the packet */ if (c->_c.mfc_un.unres.unresolved.qlen > 3) { kfree_skb(skb); err = -ENOBUFS; } else { if (dev) { skb->dev = dev; skb->skb_iif = dev->ifindex; } skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); err = 0; } spin_unlock_bh(&mfc_unres_lock); return err; } /* MFC cache manipulation by user space mroute daemon */ static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) { struct net *net = read_pnet(&mrt->net); struct mfc_cache *c; /* The entries are added/deleted only under RTNL */ rcu_read_lock(); c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, mfc->mfcc_mcastgrp.s_addr, parent); rcu_read_unlock(); if (!c) return -ENOENT; rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); list_del_rcu(&c->_c.list); call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); mroute_netlink_event(mrt, c, RTM_DELROUTE); mr_cache_put(&c->_c); return 0; } static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, struct mfcctl *mfc, int mrtsock, int parent) { struct mfc_cache *uc, *c; struct mr_mfc *_uc; bool found; int ret; if (mfc->mfcc_parent >= MAXVIFS) return -ENFILE; /* The entries are added/deleted only under RTNL */ rcu_read_lock(); c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, mfc->mfcc_mcastgrp.s_addr, parent); rcu_read_unlock(); if (c) { spin_lock(&mrt_lock); c->_c.mfc_parent = mfc->mfcc_parent; ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); if (!mrtsock) c->_c.mfc_flags |= MFC_STATIC; spin_unlock(&mrt_lock); call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, mrt->id); mroute_netlink_event(mrt, c, RTM_NEWROUTE); return 0; } if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) return -EINVAL; c = ipmr_cache_alloc(); if (!c) return -ENOMEM; c->mfc_origin = mfc->mfcc_origin.s_addr; c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; c->_c.mfc_parent = mfc->mfcc_parent; ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); if (!mrtsock) c->_c.mfc_flags |= MFC_STATIC; ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, ipmr_rht_params); if (ret) { pr_err("ipmr: rhtable insert error %d\n", ret); ipmr_cache_free(c); return ret; } list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); /* Check to see if we resolved a queued list. If so we * need to send on the frames and tidy up. */ found = false; spin_lock_bh(&mfc_unres_lock); list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { uc = (struct mfc_cache *)_uc; if (uc->mfc_origin == c->mfc_origin && uc->mfc_mcastgrp == c->mfc_mcastgrp) { list_del(&_uc->list); atomic_dec(&mrt->cache_resolve_queue_len); found = true; break; } } if (list_empty(&mrt->mfc_unres_queue)) del_timer(&mrt->ipmr_expire_timer); spin_unlock_bh(&mfc_unres_lock); if (found) { ipmr_cache_resolve(net, mrt, uc, c); ipmr_cache_free(uc); } call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); mroute_netlink_event(mrt, c, RTM_NEWROUTE); return 0; } /* Close the multicast socket, and clear the vif tables etc */ static void mroute_clean_tables(struct mr_table *mrt, int flags) { struct net *net = read_pnet(&mrt->net); struct mr_mfc *c, *tmp; struct mfc_cache *cache; LIST_HEAD(list); int i; /* Shut down all active vif entries */ if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { for (i = 0; i < mrt->maxvif; i++) { if (((mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS_STATIC)) || (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) continue; vif_delete(mrt, i, 0, &list); } unregister_netdevice_many(&list); } /* Wipe the cache */ if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) continue; rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); list_del_rcu(&c->list); cache = (struct mfc_cache *)c; call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, mrt->id); mroute_netlink_event(mrt, cache, RTM_DELROUTE); mr_cache_put(c); } } if (flags & MRT_FLUSH_MFC) { if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { spin_lock_bh(&mfc_unres_lock); list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { list_del(&c->list); cache = (struct mfc_cache *)c; mroute_netlink_event(mrt, cache, RTM_DELROUTE); ipmr_destroy_unres(mrt, cache); } spin_unlock_bh(&mfc_unres_lock); } } } /* called from ip_ra_control(), before an RCU grace period, * we don't need to call synchronize_rcu() here */ static void mrtsock_destruct(struct sock *sk) { struct net *net = sock_net(sk); struct mr_table *mrt; rtnl_lock(); ipmr_for_each_table(mrt, net) { if (sk == rtnl_dereference(mrt->mroute_sk)) { IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv4.devconf_all); RCU_INIT_POINTER(mrt->mroute_sk, NULL); mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); } } rtnl_unlock(); } /* Socket options and virtual interface manipulation. The whole * virtual interface system is a complete heap, but unfortunately * that's how BSD mrouted happens to think. Maybe one day with a proper * MOSPF/PIM router set up we can clean this up. */ int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen) { struct net *net = sock_net(sk); int val, ret = 0, parent = 0; struct mr_table *mrt; struct vifctl vif; struct mfcctl mfc; bool do_wrvifwhole; u32 uval; /* There's one exception to the lock - MRT_DONE which needs to unlock */ rtnl_lock(); if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_IGMP) { ret = -EOPNOTSUPP; goto out_unlock; } mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); if (!mrt) { ret = -ENOENT; goto out_unlock; } if (optname != MRT_INIT) { if (sk != rcu_access_pointer(mrt->mroute_sk) && !ns_capable(net->user_ns, CAP_NET_ADMIN)) { ret = -EACCES; goto out_unlock; } } switch (optname) { case MRT_INIT: if (optlen != sizeof(int)) { ret = -EINVAL; break; } if (rtnl_dereference(mrt->mroute_sk)) { ret = -EADDRINUSE; break; } ret = ip_ra_control(sk, 1, mrtsock_destruct); if (ret == 0) { rcu_assign_pointer(mrt->mroute_sk, sk); IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv4.devconf_all); } break; case MRT_DONE: if (sk != rcu_access_pointer(mrt->mroute_sk)) { ret = -EACCES; } else { /* We need to unlock here because mrtsock_destruct takes * care of rtnl itself and we can't change that due to * the IP_ROUTER_ALERT setsockopt which runs without it. */ rtnl_unlock(); ret = ip_ra_control(sk, 0, NULL); goto out; } break; case MRT_ADD_VIF: case MRT_DEL_VIF: if (optlen != sizeof(vif)) { ret = -EINVAL; break; } if (copy_from_sockptr(&vif, optval, sizeof(vif))) { ret = -EFAULT; break; } if (vif.vifc_vifi >= MAXVIFS) { ret = -ENFILE; break; } if (optname == MRT_ADD_VIF) { ret = vif_add(net, mrt, &vif, sk == rtnl_dereference(mrt->mroute_sk)); } else { ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); } break; /* Manipulate the forwarding caches. These live * in a sort of kernel/user symbiosis. */ case MRT_ADD_MFC: case MRT_DEL_MFC: parent = -1; fallthrough; case MRT_ADD_MFC_PROXY: case MRT_DEL_MFC_PROXY: if (optlen != sizeof(mfc)) { ret = -EINVAL; break; } if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { ret = -EFAULT; break; } if (parent == 0) parent = mfc.mfcc_parent; if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) ret = ipmr_mfc_delete(mrt, &mfc, parent); else ret = ipmr_mfc_add(net, mrt, &mfc, sk == rtnl_dereference(mrt->mroute_sk), parent); break; case MRT_FLUSH: if (optlen != sizeof(val)) { ret = -EINVAL; break; } if (copy_from_sockptr(&val, optval, sizeof(val))) { ret = -EFAULT; break; } mroute_clean_tables(mrt, val); break; /* Control PIM assert. */ case MRT_ASSERT: if (optlen != sizeof(val)) { ret = -EINVAL; break; } if (copy_from_sockptr(&val, optval, sizeof(val))) { ret = -EFAULT; break; } mrt->mroute_do_assert = val; break; case MRT_PIM: if (!ipmr_pimsm_enabled()) { ret = -ENOPROTOOPT; break; } if (optlen != sizeof(val)) { ret = -EINVAL; break; } if (copy_from_sockptr(&val, optval, sizeof(val))) { ret = -EFAULT; break; } do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); val = !!val; if (val != mrt->mroute_do_pim) { mrt->mroute_do_pim = val; mrt->mroute_do_assert = val; mrt->mroute_do_wrvifwhole = do_wrvifwhole; } break; case MRT_TABLE: if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { ret = -ENOPROTOOPT; break; } if (optlen != sizeof(uval)) { ret = -EINVAL; break; } if (copy_from_sockptr(&uval, optval, sizeof(uval))) { ret = -EFAULT; break; } if (sk == rtnl_dereference(mrt->mroute_sk)) { ret = -EBUSY; } else { mrt = ipmr_new_table(net, uval); if (IS_ERR(mrt)) ret = PTR_ERR(mrt); else raw_sk(sk)->ipmr_table = uval; } break; /* Spurious command, or MRT_VERSION which you cannot set. */ default: ret = -ENOPROTOOPT; } out_unlock: rtnl_unlock(); out: return ret; } /* Execute if this ioctl is a special mroute ioctl */ int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { switch (cmd) { /* These userspace buffers will be consumed by ipmr_ioctl() */ case SIOCGETVIFCNT: { struct sioc_vif_req buffer; return sock_ioctl_inout(sk, cmd, arg, &buffer, sizeof(buffer)); } case SIOCGETSGCNT: { struct sioc_sg_req buffer; return sock_ioctl_inout(sk, cmd, arg, &buffer, sizeof(buffer)); } } /* return code > 0 means that the ioctl was not executed */ return 1; } /* Getsock opt support for the multicast routing system. */ int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, sockptr_t optlen) { int olr; int val; struct net *net = sock_net(sk); struct mr_table *mrt; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_IGMP) return -EOPNOTSUPP; mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); if (!mrt) return -ENOENT; switch (optname) { case MRT_VERSION: val = 0x0305; break; case MRT_PIM: if (!ipmr_pimsm_enabled()) return -ENOPROTOOPT; val = mrt->mroute_do_pim; break; case MRT_ASSERT: val = mrt->mroute_do_assert; break; default: return -ENOPROTOOPT; } if (copy_from_sockptr(&olr, optlen, sizeof(int))) return -EFAULT; if (olr < 0) return -EINVAL; olr = min_t(unsigned int, olr, sizeof(int)); if (copy_to_sockptr(optlen, &olr, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, olr)) return -EFAULT; return 0; } /* The IP multicast ioctl support routines. */ int ipmr_ioctl(struct sock *sk, int cmd, void *arg) { struct vif_device *vif; struct mfc_cache *c; struct net *net = sock_net(sk); struct sioc_vif_req *vr; struct sioc_sg_req *sr; struct mr_table *mrt; mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); if (!mrt) return -ENOENT; switch (cmd) { case SIOCGETVIFCNT: vr = (struct sioc_vif_req *)arg; if (vr->vifi >= mrt->maxvif) return -EINVAL; vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif); rcu_read_lock(); vif = &mrt->vif_table[vr->vifi]; if (VIF_EXISTS(mrt, vr->vifi)) { vr->icount = READ_ONCE(vif->pkt_in); vr->ocount = READ_ONCE(vif->pkt_out); vr->ibytes = READ_ONCE(vif->bytes_in); vr->obytes = READ_ONCE(vif->bytes_out); rcu_read_unlock(); return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; case SIOCGETSGCNT: sr = (struct sioc_sg_req *)arg; rcu_read_lock(); c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr); if (c) { sr->pktcnt = c->_c.mfc_un.res.pkt; sr->bytecnt = c->_c.mfc_un.res.bytes; sr->wrong_if = c->_c.mfc_un.res.wrong_if; rcu_read_unlock(); return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT struct compat_sioc_sg_req { struct in_addr src; struct in_addr grp; compat_ulong_t pktcnt; compat_ulong_t bytecnt; compat_ulong_t wrong_if; }; struct compat_sioc_vif_req { vifi_t vifi; /* Which iface */ compat_ulong_t icount; compat_ulong_t ocount; compat_ulong_t ibytes; compat_ulong_t obytes; }; int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { struct compat_sioc_sg_req sr; struct compat_sioc_vif_req vr; struct vif_device *vif; struct mfc_cache *c; struct net *net = sock_net(sk); struct mr_table *mrt; mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); if (!mrt) return -ENOENT; switch (cmd) { case SIOCGETVIFCNT: if (copy_from_user(&vr, arg, sizeof(vr))) return -EFAULT; if (vr.vifi >= mrt->maxvif) return -EINVAL; vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); rcu_read_lock(); vif = &mrt->vif_table[vr.vifi]; if (VIF_EXISTS(mrt, vr.vifi)) { vr.icount = READ_ONCE(vif->pkt_in); vr.ocount = READ_ONCE(vif->pkt_out); vr.ibytes = READ_ONCE(vif->bytes_in); vr.obytes = READ_ONCE(vif->bytes_out); rcu_read_unlock(); if (copy_to_user(arg, &vr, sizeof(vr))) return -EFAULT; return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; case SIOCGETSGCNT: if (copy_from_user(&sr, arg, sizeof(sr))) return -EFAULT; rcu_read_lock(); c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); if (c) { sr.pktcnt = c->_c.mfc_un.res.pkt; sr.bytecnt = c->_c.mfc_un.res.bytes; sr.wrong_if = c->_c.mfc_un.res.wrong_if; rcu_read_unlock(); if (copy_to_user(arg, &sr, sizeof(sr))) return -EFAULT; return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } #endif static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); struct mr_table *mrt; struct vif_device *v; int ct; if (event != NETDEV_UNREGISTER) return NOTIFY_DONE; ipmr_for_each_table(mrt, net) { v = &mrt->vif_table[0]; for (ct = 0; ct < mrt->maxvif; ct++, v++) { if (rcu_access_pointer(v->dev) == dev) vif_delete(mrt, ct, 1, NULL); } } return NOTIFY_DONE; } static struct notifier_block ip_mr_notifier = { .notifier_call = ipmr_device_event, }; /* Encapsulate a packet by attaching a valid IPIP header to it. * This avoids tunnel drivers and other mess and gives us the speed so * important for multicast video. */ static void ip_encap(struct net *net, struct sk_buff *skb, __be32 saddr, __be32 daddr) { struct iphdr *iph; const struct iphdr *old_iph = ip_hdr(skb); skb_push(skb, sizeof(struct iphdr)); skb->transport_header = skb->network_header; skb_reset_network_header(skb); iph = ip_hdr(skb); iph->version = 4; iph->tos = old_iph->tos; iph->ttl = old_iph->ttl; iph->frag_off = 0; iph->daddr = daddr; iph->saddr = saddr; iph->protocol = IPPROTO_IPIP; iph->ihl = 5; iph->tot_len = htons(skb->len); ip_select_ident(net, skb, NULL); ip_send_check(iph); memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); nf_reset_ct(skb); } static inline int ipmr_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct ip_options *opt = &(IPCB(skb)->opt); IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); if (unlikely(opt->optlen)) ip_forward_options(skb); return dst_output(net, sk, skb); } #ifdef CONFIG_NET_SWITCHDEV static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, int in_vifi, int out_vifi) { struct vif_device *out_vif = &mrt->vif_table[out_vifi]; struct vif_device *in_vif = &mrt->vif_table[in_vifi]; if (!skb->offload_l3_fwd_mark) return false; if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) return false; return netdev_phys_item_id_same(&out_vif->dev_parent_id, &in_vif->dev_parent_id); } #else static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, int in_vifi, int out_vifi) { return false; } #endif /* Processing handlers for ipmr_forward, under rcu_read_lock() */ static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, int in_vifi, struct sk_buff *skb, int vifi) { const struct iphdr *iph = ip_hdr(skb); struct vif_device *vif = &mrt->vif_table[vifi]; struct net_device *vif_dev; struct net_device *dev; struct rtable *rt; struct flowi4 fl4; int encap = 0; vif_dev = vif_dev_read(vif); if (!vif_dev) goto out_free; if (vif->flags & VIFF_REGISTER) { WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); DEV_STATS_INC(vif_dev, tx_packets); ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); goto out_free; } if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) goto out_free; if (vif->flags & VIFF_TUNNEL) { rt = ip_route_output_ports(net, &fl4, NULL, vif->remote, vif->local, 0, 0, IPPROTO_IPIP, RT_TOS(iph->tos), vif->link); if (IS_ERR(rt)) goto out_free; encap = sizeof(struct iphdr); } else { rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 0, 0, IPPROTO_IPIP, RT_TOS(iph->tos), vif->link); if (IS_ERR(rt)) goto out_free; } dev = rt->dst.dev; if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { /* Do not fragment multicasts. Alas, IPv4 does not * allow to send ICMP, so that packets will disappear * to blackhole. */ IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); ip_rt_put(rt); goto out_free; } encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; if (skb_cow(skb, encap)) { ip_rt_put(rt); goto out_free; } WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); skb_dst_drop(skb); skb_dst_set(skb, &rt->dst); ip_decrease_ttl(ip_hdr(skb)); /* FIXME: forward and output firewalls used to be called here. * What do we do with netfilter? -- RR */ if (vif->flags & VIFF_TUNNEL) { ip_encap(net, skb, vif->local, vif->remote); /* FIXME: extra output firewall step used to be here. --RR */ DEV_STATS_INC(vif_dev, tx_packets); DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); } IPCB(skb)->flags |= IPSKB_FORWARDED; /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally * not only before forwarding, but after forwarding on all output * interfaces. It is clear, if mrouter runs a multicasting * program, it should receive packets not depending to what interface * program is joined. * If we will not make it, the program will have to join on all * interfaces. On the other hand, multihoming host (or router, but * not mrouter) cannot join to more than one interface - it will * result in receiving multiple packets. */ NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, net, NULL, skb, skb->dev, dev, ipmr_forward_finish); return; out_free: kfree_skb(skb); } /* Called with mrt_lock or rcu_read_lock() */ static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) { int ct; /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) break; } return ct; } /* "local" means that we should preserve one skb (for local delivery) */ /* Called uner rcu_read_lock() */ static void ip_mr_forward(struct net *net, struct mr_table *mrt, struct net_device *dev, struct sk_buff *skb, struct mfc_cache *c, int local) { int true_vifi = ipmr_find_vif(mrt, dev); int psend = -1; int vif, ct; vif = c->_c.mfc_parent; c->_c.mfc_un.res.pkt++; c->_c.mfc_un.res.bytes += skb->len; c->_c.mfc_un.res.lastuse = jiffies; if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { struct mfc_cache *cache_proxy; /* For an (*,G) entry, we only check that the incoming * interface is part of the static tree. */ cache_proxy = mr_mfc_find_any_parent(mrt, vif); if (cache_proxy && cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) goto forward; } /* Wrong interface: drop packet and (maybe) send PIM assert. */ if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { if (rt_is_output_route(skb_rtable(skb))) { /* It is our own packet, looped back. * Very complicated situation... * * The best workaround until routing daemons will be * fixed is not to redistribute packet, if it was * send through wrong interface. It means, that * multicast applications WILL NOT work for * (S,G), which have default multicast route pointing * to wrong oif. In any case, it is not a good * idea to use multicasting applications on router. */ goto dont_forward; } c->_c.mfc_un.res.wrong_if++; if (true_vifi >= 0 && mrt->mroute_do_assert && /* pimsm uses asserts, when switching from RPT to SPT, * so that we cannot check that packet arrived on an oif. * It is bad, but otherwise we would need to move pretty * large chunk of pimd to kernel. Ough... --ANK */ (mrt->mroute_do_pim || c->_c.mfc_un.res.ttls[true_vifi] < 255) && time_after(jiffies, c->_c.mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { c->_c.mfc_un.res.last_assert = jiffies; ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); if (mrt->mroute_do_wrvifwhole) ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRVIFWHOLE); } goto dont_forward; } forward: WRITE_ONCE(mrt->vif_table[vif].pkt_in, mrt->vif_table[vif].pkt_in + 1); WRITE_ONCE(mrt->vif_table[vif].bytes_in, mrt->vif_table[vif].bytes_in + skb->len); /* Forward the frame */ if (c->mfc_origin == htonl(INADDR_ANY) && c->mfc_mcastgrp == htonl(INADDR_ANY)) { if (true_vifi >= 0 && true_vifi != c->_c.mfc_parent && ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { /* It's an (*,*) entry and the packet is not coming from * the upstream: forward the packet to the upstream * only. */ psend = c->_c.mfc_parent; goto last_forward; } goto dont_forward; } for (ct = c->_c.mfc_un.res.maxvif - 1; ct >= c->_c.mfc_un.res.minvif; ct--) { /* For (*,G) entry, don't forward to the incoming interface */ if ((c->mfc_origin != htonl(INADDR_ANY) || ct != true_vifi) && ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { if (psend != -1) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) ipmr_queue_xmit(net, mrt, true_vifi, skb2, psend); } psend = ct; } } last_forward: if (psend != -1) { if (local) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) ipmr_queue_xmit(net, mrt, true_vifi, skb2, psend); } else { ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); return; } } dont_forward: if (!local) kfree_skb(skb); } static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); struct iphdr *iph = ip_hdr(skb); struct flowi4 fl4 = { .daddr = iph->daddr, .saddr = iph->saddr, .flowi4_tos = iph->tos & INET_DSCP_MASK, .flowi4_oif = (rt_is_output_route(rt) ? skb->dev->ifindex : 0), .flowi4_iif = (rt_is_output_route(rt) ? LOOPBACK_IFINDEX : skb->dev->ifindex), .flowi4_mark = skb->mark, }; struct mr_table *mrt; int err; err = ipmr_fib_lookup(net, &fl4, &mrt); if (err) return ERR_PTR(err); return mrt; } /* Multicast packets for forwarding arrive here * Called with rcu_read_lock(); */ int ip_mr_input(struct sk_buff *skb) { struct mfc_cache *cache; struct net *net = dev_net(skb->dev); int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; struct mr_table *mrt; struct net_device *dev; /* skb->dev passed in is the loX master dev for vrfs. * As there are no vifs associated with loopback devices, * get the proper interface that does have a vif associated with it. */ dev = skb->dev; if (netif_is_l3_master(skb->dev)) { dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); if (!dev) { kfree_skb(skb); return -ENODEV; } } /* Packet is looped back after forward, it should not be * forwarded second time, but still can be delivered locally. */ if (IPCB(skb)->flags & IPSKB_FORWARDED) goto dont_forward; mrt = ipmr_rt_fib_lookup(net, skb); if (IS_ERR(mrt)) { kfree_skb(skb); return PTR_ERR(mrt); } if (!local) { if (IPCB(skb)->opt.router_alert) { if (ip_call_ra_chain(skb)) return 0; } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { /* IGMPv1 (and broken IGMPv2 implementations sort of * Cisco IOS <= 11.2(8)) do not put router alert * option to IGMP packets destined to routable * groups. It is very bad, because it means * that we can forward NO IGMP messages. */ struct sock *mroute_sk; mroute_sk = rcu_dereference(mrt->mroute_sk); if (mroute_sk) { nf_reset_ct(skb); raw_rcv(mroute_sk, skb); return 0; } } } /* already under rcu_read_lock() */ cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); if (!cache) { int vif = ipmr_find_vif(mrt, dev); if (vif >= 0) cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, vif); } /* No usable cache entry */ if (!cache) { int vif; if (local) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); ip_local_deliver(skb); if (!skb2) return -ENOBUFS; skb = skb2; } vif = ipmr_find_vif(mrt, dev); if (vif >= 0) return ipmr_cache_unresolved(mrt, vif, skb, dev); kfree_skb(skb); return -ENODEV; } ip_mr_forward(net, mrt, dev, skb, cache, local); if (local) return ip_local_deliver(skb); return 0; dont_forward: if (local) return ip_local_deliver(skb); kfree_skb(skb); return 0; } #ifdef CONFIG_IP_PIMSM_V1 /* Handle IGMP messages of PIMv1 */ int pim_rcv_v1(struct sk_buff *skb) { struct igmphdr *pim; struct net *net = dev_net(skb->dev); struct mr_table *mrt; if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) goto drop; pim = igmp_hdr(skb); mrt = ipmr_rt_fib_lookup(net, skb); if (IS_ERR(mrt)) goto drop; if (!mrt->mroute_do_pim || pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) goto drop; if (__pim_rcv(mrt, skb, sizeof(*pim))) { drop: kfree_skb(skb); } return 0; } #endif #ifdef CONFIG_IP_PIMSM_V2 static int pim_rcv(struct sk_buff *skb) { struct pimreghdr *pim; struct net *net = dev_net(skb->dev); struct mr_table *mrt; if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) goto drop; pim = (struct pimreghdr *)skb_transport_header(skb); if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || (pim->flags & PIM_NULL_REGISTER) || (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && csum_fold(skb_checksum(skb, 0, skb->len, 0)))) goto drop; mrt = ipmr_rt_fib_lookup(net, skb); if (IS_ERR(mrt)) goto drop; if (__pim_rcv(mrt, skb, sizeof(*pim))) { drop: kfree_skb(skb); } return 0; } #endif int ipmr_get_route(struct net *net, struct sk_buff *skb, __be32 saddr, __be32 daddr, struct rtmsg *rtm, u32 portid) { struct mfc_cache *cache; struct mr_table *mrt; int err; mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); if (!mrt) return -ENOENT; rcu_read_lock(); cache = ipmr_cache_find(mrt, saddr, daddr); if (!cache && skb->dev) { int vif = ipmr_find_vif(mrt, skb->dev); if (vif >= 0) cache = ipmr_cache_find_any(mrt, daddr, vif); } if (!cache) { struct sk_buff *skb2; struct iphdr *iph; struct net_device *dev; int vif = -1; dev = skb->dev; if (dev) vif = ipmr_find_vif(mrt, dev); if (vif < 0) { rcu_read_unlock(); return -ENODEV; } skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); if (!skb2) { rcu_read_unlock(); return -ENOMEM; } NETLINK_CB(skb2).portid = portid; skb_push(skb2, sizeof(struct iphdr)); skb_reset_network_header(skb2); iph = ip_hdr(skb2); iph->ihl = sizeof(struct iphdr) >> 2; iph->saddr = saddr; iph->daddr = daddr; iph->version = 0; err = ipmr_cache_unresolved(mrt, vif, skb2, dev); rcu_read_unlock(); return err; } err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); rcu_read_unlock(); return err; } static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mfc_cache *c, int cmd, int flags) { struct nlmsghdr *nlh; struct rtmsg *rtm; int err; nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); if (!nlh) return -EMSGSIZE; rtm = nlmsg_data(nlh); rtm->rtm_family = RTNL_FAMILY_IPMR; rtm->rtm_dst_len = 32; rtm->rtm_src_len = 32; rtm->rtm_tos = 0; rtm->rtm_table = mrt->id; if (nla_put_u32(skb, RTA_TABLE, mrt->id)) goto nla_put_failure; rtm->rtm_type = RTN_MULTICAST; rtm->rtm_scope = RT_SCOPE_UNIVERSE; if (c->_c.mfc_flags & MFC_STATIC) rtm->rtm_protocol = RTPROT_STATIC; else rtm->rtm_protocol = RTPROT_MROUTED; rtm->rtm_flags = 0; if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) goto nla_put_failure; err = mr_fill_mroute(mrt, skb, &c->_c, rtm); /* do not break the dump if cache is unresolved */ if (err < 0 && err != -ENOENT) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags) { return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, cmd, flags); } static size_t mroute_msgsize(bool unresolved, int maxvif) { size_t len = NLMSG_ALIGN(sizeof(struct rtmsg)) + nla_total_size(4) /* RTA_TABLE */ + nla_total_size(4) /* RTA_SRC */ + nla_total_size(4) /* RTA_DST */ ; if (!unresolved) len = len + nla_total_size(4) /* RTA_IIF */ + nla_total_size(0) /* RTA_MULTIPATH */ + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) /* RTA_MFC_STATS */ + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) ; return len; } static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, int cmd) { struct net *net = read_pnet(&mrt->net); struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, mrt->maxvif), GFP_ATOMIC); if (!skb) goto errout; err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); if (err < 0) goto errout; rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); return; errout: kfree_skb(skb); if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); } static size_t igmpmsg_netlink_msgsize(size_t payloadlen) { size_t len = NLMSG_ALIGN(sizeof(struct rtgenmsg)) + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ /* IPMRA_CREPORT_PKT */ + nla_total_size(payloadlen) ; return len; } static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) { struct net *net = read_pnet(&mrt->net); struct nlmsghdr *nlh; struct rtgenmsg *rtgenm; struct igmpmsg *msg; struct sk_buff *skb; struct nlattr *nla; int payloadlen; payloadlen = pkt->len - sizeof(struct igmpmsg); msg = (struct igmpmsg *)skb_network_header(pkt); skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); if (!skb) goto errout; nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, sizeof(struct rtgenmsg), 0); if (!nlh) goto errout; rtgenm = nlmsg_data(nlh); rtgenm->rtgen_family = RTNL_FAMILY_IPMR; if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, msg->im_src.s_addr) || nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, msg->im_dst.s_addr) || nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) goto nla_put_failure; nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), nla_data(nla), payloadlen)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_cancel(skb, nlh); errout: kfree_skb(skb); rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); } static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rtmsg *rtm; int i, err; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); return -EINVAL; } if (!netlink_strict_get_check(skb)) return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy, extack); rtm = nlmsg_data(nlh); if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy, extack); if (err) return err; if ((tb[RTA_SRC] && !rtm->rtm_src_len) || (tb[RTA_DST] && !rtm->rtm_dst_len)) { NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); return -EINVAL; } for (i = 0; i <= RTA_MAX; i++) { if (!tb[i]) continue; switch (i) { case RTA_SRC: case RTA_DST: case RTA_TABLE: break; default: NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); return -EINVAL; } } return 0; } static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct nlattr *tb[RTA_MAX + 1]; struct sk_buff *skb = NULL; struct mfc_cache *cache; struct mr_table *mrt; __be32 src, grp; u32 tableid; int err; err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); if (err < 0) goto errout; src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); if (!mrt) { err = -ENOENT; goto errout_free; } /* entries are added/deleted only under RTNL */ rcu_read_lock(); cache = ipmr_cache_find(mrt, src, grp); rcu_read_unlock(); if (!cache) { err = -ENOENT; goto errout_free; } skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); if (!skb) { err = -ENOBUFS; goto errout_free; } err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, cache, RTM_NEWROUTE, 0); if (err < 0) goto errout_free; err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); errout: return err; errout_free: kfree_skb(skb); goto errout; } static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) { struct fib_dump_filter filter = { .rtnl_held = true, }; int err; if (cb->strict_check) { err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, &filter, cb); if (err < 0) return err; } if (filter.table_id) { struct mr_table *mrt; mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); if (!mrt) { if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) return skb->len; NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); return -ENOENT; } err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, &mfc_unres_lock, &filter); return skb->len ? : err; } return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, _ipmr_fill_mroute, &mfc_unres_lock, &filter); } static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { [RTA_SRC] = { .type = NLA_U32 }, [RTA_DST] = { .type = NLA_U32 }, [RTA_IIF] = { .type = NLA_U32 }, [RTA_TABLE] = { .type = NLA_U32 }, [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, }; static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) { switch (rtm_protocol) { case RTPROT_STATIC: case RTPROT_MROUTED: return true; } return false; } static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) { struct rtnexthop *rtnh = nla_data(nla); int remaining = nla_len(nla), vifi = 0; while (rtnh_ok(rtnh, remaining)) { mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; if (++vifi == MAXVIFS) break; rtnh = rtnh_next(rtnh, &remaining); } return remaining > 0 ? -EINVAL : vifi; } /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, struct mfcctl *mfcc, int *mrtsock, struct mr_table **mrtret, struct netlink_ext_ack *extack) { struct net_device *dev = NULL; u32 tblid = RT_TABLE_DEFAULT; struct mr_table *mrt; struct nlattr *attr; struct rtmsg *rtm; int ret, rem; ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy, extack); if (ret < 0) goto out; rtm = nlmsg_data(nlh); ret = -EINVAL; if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || rtm->rtm_type != RTN_MULTICAST || rtm->rtm_scope != RT_SCOPE_UNIVERSE || !ipmr_rtm_validate_proto(rtm->rtm_protocol)) goto out; memset(mfcc, 0, sizeof(*mfcc)); mfcc->mfcc_parent = -1; ret = 0; nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { switch (nla_type(attr)) { case RTA_SRC: mfcc->mfcc_origin.s_addr = nla_get_be32(attr); break; case RTA_DST: mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); break; case RTA_IIF: dev = __dev_get_by_index(net, nla_get_u32(attr)); if (!dev) { ret = -ENODEV; goto out; } break; case RTA_MULTIPATH: if (ipmr_nla_get_ttls(attr, mfcc) < 0) { ret = -EINVAL; goto out; } break; case RTA_PREFSRC: ret = 1; break; case RTA_TABLE: tblid = nla_get_u32(attr); break; } } mrt = ipmr_get_table(net, tblid); if (!mrt) { ret = -ENOENT; goto out; } *mrtret = mrt; *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; if (dev) mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); out: return ret; } /* takes care of both newroute and delroute */ static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); int ret, mrtsock, parent; struct mr_table *tbl; struct mfcctl mfcc; mrtsock = 0; tbl = NULL; ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); if (ret < 0) return ret; parent = ret ? mfcc.mfcc_parent : -1; if (nlh->nlmsg_type == RTM_NEWROUTE) return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); else return ipmr_mfc_delete(tbl, &mfcc, parent); } static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) { u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, mrt->mroute_reg_vif_num) || nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, mrt->mroute_do_assert) || nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, mrt->mroute_do_wrvifwhole)) return false; return true; } static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) { struct net_device *vif_dev; struct nlattr *vif_nest; struct vif_device *vif; vif = &mrt->vif_table[vifid]; vif_dev = rtnl_dereference(vif->dev); /* if the VIF doesn't exist just continue */ if (!vif_dev) return true; vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); if (!vif_nest) return false; if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, IPMRA_VIFA_PAD) || nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, IPMRA_VIFA_PAD) || nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, IPMRA_VIFA_PAD) || nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, IPMRA_VIFA_PAD) || nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { nla_nest_cancel(skb, vif_nest); return false; } nla_nest_end(skb, vif_nest); return true; } static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct ifinfomsg *ifm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); return -EINVAL; } if (nlmsg_attrlen(nlh, sizeof(*ifm))) { NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); return -EINVAL; } ifm = nlmsg_data(nlh); if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || ifm->ifi_change || ifm->ifi_index) { NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); return -EINVAL; } return 0; } static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nlmsghdr *nlh = NULL; unsigned int t = 0, s_t; unsigned int e = 0, s_e; struct mr_table *mrt; if (cb->strict_check) { int err = ipmr_valid_dumplink(cb->nlh, cb->extack); if (err < 0) return err; } s_t = cb->args[0]; s_e = cb->args[1]; ipmr_for_each_table(mrt, net) { struct nlattr *vifs, *af; struct ifinfomsg *hdr; u32 i; if (t < s_t) goto skip_table; nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWLINK, sizeof(*hdr), NLM_F_MULTI); if (!nlh) break; hdr = nlmsg_data(nlh); memset(hdr, 0, sizeof(*hdr)); hdr->ifi_family = RTNL_FAMILY_IPMR; af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); if (!af) { nlmsg_cancel(skb, nlh); goto out; } if (!ipmr_fill_table(mrt, skb)) { nlmsg_cancel(skb, nlh); goto out; } vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); if (!vifs) { nla_nest_end(skb, af); nlmsg_end(skb, nlh); goto out; } for (i = 0; i < mrt->maxvif; i++) { if (e < s_e) goto skip_entry; if (!ipmr_fill_vif(mrt, i, skb)) { nla_nest_end(skb, vifs); nla_nest_end(skb, af); nlmsg_end(skb, nlh); goto out; } skip_entry: e++; } s_e = 0; e = 0; nla_nest_end(skb, vifs); nla_nest_end(skb, af); nlmsg_end(skb, nlh); skip_table: t++; } out: cb->args[1] = e; cb->args[0] = t; return skb->len; } #ifdef CONFIG_PROC_FS /* The /proc interfaces to multicast routing : * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif */ static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct mr_vif_iter *iter = seq->private; struct net *net = seq_file_net(seq); struct mr_table *mrt; mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); if (!mrt) return ERR_PTR(-ENOENT); iter->mrt = mrt; rcu_read_lock(); return mr_vif_seq_start(seq, pos); } static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int ipmr_vif_seq_show(struct seq_file *seq, void *v) { struct mr_vif_iter *iter = seq->private; struct mr_table *mrt = iter->mrt; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); } else { const struct vif_device *vif = v; const struct net_device *vif_dev; const char *name; vif_dev = vif_dev_read(vif); name = vif_dev ? vif_dev->name : "none"; seq_printf(seq, "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", vif - mrt->vif_table, name, vif->bytes_in, vif->pkt_in, vif->bytes_out, vif->pkt_out, vif->flags, vif->local, vif->remote); } return 0; } static const struct seq_operations ipmr_vif_seq_ops = { .start = ipmr_vif_seq_start, .next = mr_vif_seq_next, .stop = ipmr_vif_seq_stop, .show = ipmr_vif_seq_show, }; static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) { struct net *net = seq_file_net(seq); struct mr_table *mrt; mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); if (!mrt) return ERR_PTR(-ENOENT); return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); } static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) { int n; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Group Origin Iif Pkts Bytes Wrong Oifs\n"); } else { const struct mfc_cache *mfc = v; const struct mr_mfc_iter *it = seq->private; const struct mr_table *mrt = it->mrt; seq_printf(seq, "%08X %08X %-3hd", (__force u32) mfc->mfc_mcastgrp, (__force u32) mfc->mfc_origin, mfc->_c.mfc_parent); if (it->cache != &mrt->mfc_unres_queue) { seq_printf(seq, " %8lu %8lu %8lu", mfc->_c.mfc_un.res.pkt, mfc->_c.mfc_un.res.bytes, mfc->_c.mfc_un.res.wrong_if); for (n = mfc->_c.mfc_un.res.minvif; n < mfc->_c.mfc_un.res.maxvif; n++) { if (VIF_EXISTS(mrt, n) && mfc->_c.mfc_un.res.ttls[n] < 255) seq_printf(seq, " %2d:%-3d", n, mfc->_c.mfc_un.res.ttls[n]); } } else { /* unresolved mfc_caches don't contain * pkt, bytes and wrong_if values */ seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); } seq_putc(seq, '\n'); } return 0; } static const struct seq_operations ipmr_mfc_seq_ops = { .start = ipmr_mfc_seq_start, .next = mr_mfc_seq_next, .stop = mr_mfc_seq_stop, .show = ipmr_mfc_seq_show, }; #endif #ifdef CONFIG_IP_PIMSM_V2 static const struct net_protocol pim_protocol = { .handler = pim_rcv, }; #endif static unsigned int ipmr_seq_read(struct net *net) { ASSERT_RTNL(); return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); } static int ipmr_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, ipmr_mr_table_iter, extack); } static const struct fib_notifier_ops ipmr_notifier_ops_template = { .family = RTNL_FAMILY_IPMR, .fib_seq_read = ipmr_seq_read, .fib_dump = ipmr_dump, .owner = THIS_MODULE, }; static int __net_init ipmr_notifier_init(struct net *net) { struct fib_notifier_ops *ops; net->ipv4.ipmr_seq = 0; ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv4.ipmr_notifier_ops = ops; return 0; } static void __net_exit ipmr_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); net->ipv4.ipmr_notifier_ops = NULL; } /* Setup for IP multicast routing */ static int __net_init ipmr_net_init(struct net *net) { int err; err = ipmr_notifier_init(net); if (err) goto ipmr_notifier_fail; err = ipmr_rules_init(net); if (err < 0) goto ipmr_rules_fail; #ifdef CONFIG_PROC_FS err = -ENOMEM; if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, sizeof(struct mr_vif_iter))) goto proc_vif_fail; if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, sizeof(struct mr_mfc_iter))) goto proc_cache_fail; #endif return 0; #ifdef CONFIG_PROC_FS proc_cache_fail: remove_proc_entry("ip_mr_vif", net->proc_net); proc_vif_fail: rtnl_lock(); ipmr_rules_exit(net); rtnl_unlock(); #endif ipmr_rules_fail: ipmr_notifier_exit(net); ipmr_notifier_fail: return err; } static void __net_exit ipmr_net_exit(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("ip_mr_cache", net->proc_net); remove_proc_entry("ip_mr_vif", net->proc_net); #endif ipmr_notifier_exit(net); } static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) { struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) ipmr_rules_exit(net); rtnl_unlock(); } static struct pernet_operations ipmr_net_ops = { .init = ipmr_net_init, .exit = ipmr_net_exit, .exit_batch = ipmr_net_exit_batch, }; int __init ip_mr_init(void) { int err; mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC); err = register_pernet_subsys(&ipmr_net_ops); if (err) goto reg_pernet_fail; err = register_netdevice_notifier(&ip_mr_notifier); if (err) goto reg_notif_fail; #ifdef CONFIG_IP_PIMSM_V2 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { pr_err("%s: can't add PIM protocol\n", __func__); err = -EAGAIN; goto add_proto_fail; } #endif rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, ipmr_rtm_route, NULL, 0); rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, ipmr_rtm_route, NULL, 0); rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, NULL, ipmr_rtm_dumplink, 0); return 0; #ifdef CONFIG_IP_PIMSM_V2 add_proto_fail: unregister_netdevice_notifier(&ip_mr_notifier); #endif reg_notif_fail: unregister_pernet_subsys(&ipmr_net_ops); reg_pernet_fail: kmem_cache_destroy(mrt_cachep); return err; }