// SPDX-License-Identifier: GPL-2.0 /* * linux/mm/mlock.c * * (C) Copyright 1995 Linus Torvalds * (C) Copyright 2002 Christoph Hellwig */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" struct mlock_fbatch { local_lock_t lock; struct folio_batch fbatch; }; static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = { .lock = INIT_LOCAL_LOCK(lock), }; bool can_do_mlock(void) { if (rlimit(RLIMIT_MEMLOCK) != 0) return true; if (capable(CAP_IPC_LOCK)) return true; return false; } EXPORT_SYMBOL(can_do_mlock); /* * Mlocked folios are marked with the PG_mlocked flag for efficient testing * in vmscan and, possibly, the fault path; and to support semi-accurate * statistics. * * An mlocked folio [folio_test_mlocked(folio)] is unevictable. As such, it * will be ostensibly placed on the LRU "unevictable" list (actually no such * list exists), rather than the [in]active lists. PG_unevictable is set to * indicate the unevictable state. */ static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec) { /* There is nothing more we can do while it's off LRU */ if (!folio_test_clear_lru(folio)) return lruvec; lruvec = folio_lruvec_relock_irq(folio, lruvec); if (unlikely(folio_evictable(folio))) { /* * This is a little surprising, but quite possible: PG_mlocked * must have got cleared already by another CPU. Could this * folio be unevictable? I'm not sure, but move it now if so. */ if (folio_test_unevictable(folio)) { lruvec_del_folio(lruvec, folio); folio_clear_unevictable(folio); lruvec_add_folio(lruvec, folio); __count_vm_events(UNEVICTABLE_PGRESCUED, folio_nr_pages(folio)); } goto out; } if (folio_test_unevictable(folio)) { if (folio_test_mlocked(folio)) folio->mlock_count++; goto out; } lruvec_del_folio(lruvec, folio); folio_clear_active(folio); folio_set_unevictable(folio); folio->mlock_count = !!folio_test_mlocked(folio); lruvec_add_folio(lruvec, folio); __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); out: folio_set_lru(folio); return lruvec; } static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec) { VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); lruvec = folio_lruvec_relock_irq(folio, lruvec); /* As above, this is a little surprising, but possible */ if (unlikely(folio_evictable(folio))) goto out; folio_set_unevictable(folio); folio->mlock_count = !!folio_test_mlocked(folio); __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio)); out: lruvec_add_folio(lruvec, folio); folio_set_lru(folio); return lruvec; } static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec) { int nr_pages = folio_nr_pages(folio); bool isolated = false; if (!folio_test_clear_lru(folio)) goto munlock; isolated = true; lruvec = folio_lruvec_relock_irq(folio, lruvec); if (folio_test_unevictable(folio)) { /* Then mlock_count is maintained, but might undercount */ if (folio->mlock_count) folio->mlock_count--; if (folio->mlock_count) goto out; } /* else assume that was the last mlock: reclaim will fix it if not */ munlock: if (folio_test_clear_mlocked(folio)) { __zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); if (isolated || !folio_test_unevictable(folio)) __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); else __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); } /* folio_evictable() has to be checked *after* clearing Mlocked */ if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) { lruvec_del_folio(lruvec, folio); folio_clear_unevictable(folio); lruvec_add_folio(lruvec, folio); __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); } out: if (isolated) folio_set_lru(folio); return lruvec; } /* * Flags held in the low bits of a struct folio pointer on the mlock_fbatch. */ #define LRU_FOLIO 0x1 #define NEW_FOLIO 0x2 static inline struct folio *mlock_lru(struct folio *folio) { return (struct folio *)((unsigned long)folio + LRU_FOLIO); } static inline struct folio *mlock_new(struct folio *folio) { return (struct folio *)((unsigned long)folio + NEW_FOLIO); } /* * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can * make use of such folio pointer flags in future, but for now just keep it for * mlock. We could use three separate folio batches instead, but one feels * better (munlocking a full folio batch does not need to drain mlocking folio * batches first). */ static void mlock_folio_batch(struct folio_batch *fbatch) { struct lruvec *lruvec = NULL; unsigned long mlock; struct folio *folio; int i; for (i = 0; i < folio_batch_count(fbatch); i++) { folio = fbatch->folios[i]; mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO); folio = (struct folio *)((unsigned long)folio - mlock); fbatch->folios[i] = folio; if (mlock & LRU_FOLIO) lruvec = __mlock_folio(folio, lruvec); else if (mlock & NEW_FOLIO) lruvec = __mlock_new_folio(folio, lruvec); else lruvec = __munlock_folio(folio, lruvec); } if (lruvec) unlock_page_lruvec_irq(lruvec); folios_put(fbatch); } void mlock_drain_local(void) { struct folio_batch *fbatch; local_lock(&mlock_fbatch.lock); fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); if (folio_batch_count(fbatch)) mlock_folio_batch(fbatch); local_unlock(&mlock_fbatch.lock); } void mlock_drain_remote(int cpu) { struct folio_batch *fbatch; WARN_ON_ONCE(cpu_online(cpu)); fbatch = &per_cpu(mlock_fbatch.fbatch, cpu); if (folio_batch_count(fbatch)) mlock_folio_batch(fbatch); } bool need_mlock_drain(int cpu) { return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu)); } /** * mlock_folio - mlock a folio already on (or temporarily off) LRU * @folio: folio to be mlocked. */ void mlock_folio(struct folio *folio) { struct folio_batch *fbatch; local_lock(&mlock_fbatch.lock); fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); if (!folio_test_set_mlocked(folio)) { int nr_pages = folio_nr_pages(folio); zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); } folio_get(folio); if (!folio_batch_add(fbatch, mlock_lru(folio)) || folio_test_large(folio) || lru_cache_disabled()) mlock_folio_batch(fbatch); local_unlock(&mlock_fbatch.lock); } /** * mlock_new_folio - mlock a newly allocated folio not yet on LRU * @folio: folio to be mlocked, either normal or a THP head. */ void mlock_new_folio(struct folio *folio) { struct folio_batch *fbatch; int nr_pages = folio_nr_pages(folio); local_lock(&mlock_fbatch.lock); fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); folio_set_mlocked(folio); zone_stat_mod_folio(folio, NR_MLOCK, nr_pages); __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); folio_get(folio); if (!folio_batch_add(fbatch, mlock_new(folio)) || folio_test_large(folio) || lru_cache_disabled()) mlock_folio_batch(fbatch); local_unlock(&mlock_fbatch.lock); } /** * munlock_folio - munlock a folio * @folio: folio to be munlocked, either normal or a THP head. */ void munlock_folio(struct folio *folio) { struct folio_batch *fbatch; local_lock(&mlock_fbatch.lock); fbatch = this_cpu_ptr(&mlock_fbatch.fbatch); /* * folio_test_clear_mlocked(folio) must be left to __munlock_folio(), * which will check whether the folio is multiply mlocked. */ folio_get(folio); if (!folio_batch_add(fbatch, folio) || folio_test_large(folio) || lru_cache_disabled()) mlock_folio_batch(fbatch); local_unlock(&mlock_fbatch.lock); } static inline unsigned int folio_mlock_step(struct folio *folio, pte_t *pte, unsigned long addr, unsigned long end) { const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; unsigned int count = (end - addr) >> PAGE_SHIFT; pte_t ptent = ptep_get(pte); if (!folio_test_large(folio)) return 1; return folio_pte_batch(folio, addr, pte, ptent, count, fpb_flags, NULL, NULL, NULL); } static inline bool allow_mlock_munlock(struct folio *folio, struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned int step) { /* * For unlock, allow munlock large folio which is partially * mapped to VMA. As it's possible that large folio is * mlocked and VMA is split later. * * During memory pressure, such kind of large folio can * be split. And the pages are not in VM_LOCKed VMA * can be reclaimed. */ if (!(vma->vm_flags & VM_LOCKED)) return true; /* folio_within_range() cannot take KSM, but any small folio is OK */ if (!folio_test_large(folio)) return true; /* folio not in range [start, end), skip mlock */ if (!folio_within_range(folio, vma, start, end)) return false; /* folio is not fully mapped, skip mlock */ if (step != folio_nr_pages(folio)) return false; return true; } static int mlock_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; spinlock_t *ptl; pte_t *start_pte, *pte; pte_t ptent; struct folio *folio; unsigned int step = 1; unsigned long start = addr; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { if (!pmd_present(*pmd)) goto out; if (is_huge_zero_pmd(*pmd)) goto out; folio = pmd_folio(*pmd); if (vma->vm_flags & VM_LOCKED) mlock_folio(folio); else munlock_folio(folio); goto out; } start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); if (!start_pte) { walk->action = ACTION_AGAIN; return 0; } for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) { ptent = ptep_get(pte); if (!pte_present(ptent)) continue; folio = vm_normal_folio(vma, addr, ptent); if (!folio || folio_is_zone_device(folio)) continue; step = folio_mlock_step(folio, pte, addr, end); if (!allow_mlock_munlock(folio, vma, start, end, step)) goto next_entry; if (vma->vm_flags & VM_LOCKED) mlock_folio(folio); else munlock_folio(folio); next_entry: pte += step - 1; addr += (step - 1) << PAGE_SHIFT; } pte_unmap(start_pte); out: spin_unlock(ptl); cond_resched(); return 0; } /* * mlock_vma_pages_range() - mlock any pages already in the range, * or munlock all pages in the range. * @vma - vma containing range to be mlock()ed or munlock()ed * @start - start address in @vma of the range * @end - end of range in @vma * @newflags - the new set of flags for @vma. * * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED; * called for munlock() and munlockall(), to clear VM_LOCKED from @vma. */ static void mlock_vma_pages_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, vm_flags_t newflags) { static const struct mm_walk_ops mlock_walk_ops = { .pmd_entry = mlock_pte_range, .walk_lock = PGWALK_WRLOCK_VERIFY, }; /* * There is a slight chance that concurrent page migration, * or page reclaim finding a page of this now-VM_LOCKED vma, * will call mlock_vma_folio() and raise page's mlock_count: * double counting, leaving the page unevictable indefinitely. * Communicate this danger to mlock_vma_folio() with VM_IO, * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas. * mmap_lock is held in write mode here, so this weird * combination should not be visible to other mmap_lock users; * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED. */ if (newflags & VM_LOCKED) newflags |= VM_IO; vma_start_write(vma); vm_flags_reset_once(vma, newflags); lru_add_drain(); walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL); lru_add_drain(); if (newflags & VM_IO) { newflags &= ~VM_IO; vm_flags_reset_once(vma, newflags); } } /* * mlock_fixup - handle mlock[all]/munlock[all] requests. * * Filters out "special" vmas -- VM_LOCKED never gets set for these, and * munlock is a no-op. However, for some special vmas, we go ahead and * populate the ptes. * * For vmas that pass the filters, merge/split as appropriate. */ static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, vm_flags_t newflags) { struct mm_struct *mm = vma->vm_mm; int nr_pages; int ret = 0; vm_flags_t oldflags = vma->vm_flags; if (newflags == oldflags || (oldflags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || vma_is_dax(vma) || vma_is_secretmem(vma) || (oldflags & VM_DROPPABLE)) /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ goto out; vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto out; } /* * Keep track of amount of locked VM. */ nr_pages = (end - start) >> PAGE_SHIFT; if (!(newflags & VM_LOCKED)) nr_pages = -nr_pages; else if (oldflags & VM_LOCKED) nr_pages = 0; mm->locked_vm += nr_pages; /* * vm_flags is protected by the mmap_lock held in write mode. * It's okay if try_to_unmap_one unmaps a page just after we * set VM_LOCKED, populate_vma_page_range will bring it back. */ if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) { /* No work to do, and mlocking twice would be wrong */ vma_start_write(vma); vm_flags_reset(vma, newflags); } else { mlock_vma_pages_range(vma, start, end, newflags); } out: *prev = vma; return ret; } static int apply_vma_lock_flags(unsigned long start, size_t len, vm_flags_t flags) { unsigned long nstart, end, tmp; struct vm_area_struct *vma, *prev; VMA_ITERATOR(vmi, current->mm, start); VM_BUG_ON(offset_in_page(start)); VM_BUG_ON(len != PAGE_ALIGN(len)); end = start + len; if (end < start) return -EINVAL; if (end == start) return 0; vma = vma_iter_load(&vmi); if (!vma) return -ENOMEM; prev = vma_prev(&vmi); if (start > vma->vm_start) prev = vma; nstart = start; tmp = vma->vm_start; for_each_vma_range(vmi, vma, end) { int error; vm_flags_t newflags; if (vma->vm_start != tmp) return -ENOMEM; newflags = vma->vm_flags & ~VM_LOCKED_MASK; newflags |= flags; /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ tmp = vma->vm_end; if (tmp > end) tmp = end; error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags); if (error) return error; tmp = vma_iter_end(&vmi); nstart = tmp; } if (tmp < end) return -ENOMEM; return 0; } /* * Go through vma areas and sum size of mlocked * vma pages, as return value. * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) * is also counted. * Return value: previously mlocked page counts */ static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, unsigned long start, size_t len) { struct vm_area_struct *vma; unsigned long count = 0; unsigned long end; VMA_ITERATOR(vmi, mm, start); /* Don't overflow past ULONG_MAX */ if (unlikely(ULONG_MAX - len < start)) end = ULONG_MAX; else end = start + len; for_each_vma_range(vmi, vma, end) { if (vma->vm_flags & VM_LOCKED) { if (start > vma->vm_start) count -= (start - vma->vm_start); if (end < vma->vm_end) { count += end - vma->vm_start; break; } count += vma->vm_end - vma->vm_start; } } return count >> PAGE_SHIFT; } /* * convert get_user_pages() return value to posix mlock() error */ static int __mlock_posix_error_return(long retval) { if (retval == -EFAULT) retval = -ENOMEM; else if (retval == -ENOMEM) retval = -EAGAIN; return retval; } static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) { unsigned long locked; unsigned long lock_limit; int error = -ENOMEM; start = untagged_addr(start); if (!can_do_mlock()) return -EPERM; len = PAGE_ALIGN(len + (offset_in_page(start))); start &= PAGE_MASK; lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; locked = len >> PAGE_SHIFT; if (mmap_write_lock_killable(current->mm)) return -EINTR; locked += current->mm->locked_vm; if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { /* * It is possible that the regions requested intersect with * previously mlocked areas, that part area in "mm->locked_vm" * should not be counted to new mlock increment count. So check * and adjust locked count if necessary. */ locked -= count_mm_mlocked_page_nr(current->mm, start, len); } /* check against resource limits */ if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) error = apply_vma_lock_flags(start, len, flags); mmap_write_unlock(current->mm); if (error) return error; error = __mm_populate(start, len, 0); if (error) return __mlock_posix_error_return(error); return 0; } SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) { return do_mlock(start, len, VM_LOCKED); } SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) { vm_flags_t vm_flags = VM_LOCKED; if (flags & ~MLOCK_ONFAULT) return -EINVAL; if (flags & MLOCK_ONFAULT) vm_flags |= VM_LOCKONFAULT; return do_mlock(start, len, vm_flags); } SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) { int ret; start = untagged_addr(start); len = PAGE_ALIGN(len + (offset_in_page(start))); start &= PAGE_MASK; if (mmap_write_lock_killable(current->mm)) return -EINTR; ret = apply_vma_lock_flags(start, len, 0); mmap_write_unlock(current->mm); return ret; } /* * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) * and translate into the appropriate modifications to mm->def_flags and/or the * flags for all current VMAs. * * There are a couple of subtleties with this. If mlockall() is called multiple * times with different flags, the values do not necessarily stack. If mlockall * is called once including the MCL_FUTURE flag and then a second time without * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. */ static int apply_mlockall_flags(int flags) { VMA_ITERATOR(vmi, current->mm, 0); struct vm_area_struct *vma, *prev = NULL; vm_flags_t to_add = 0; current->mm->def_flags &= ~VM_LOCKED_MASK; if (flags & MCL_FUTURE) { current->mm->def_flags |= VM_LOCKED; if (flags & MCL_ONFAULT) current->mm->def_flags |= VM_LOCKONFAULT; if (!(flags & MCL_CURRENT)) goto out; } if (flags & MCL_CURRENT) { to_add |= VM_LOCKED; if (flags & MCL_ONFAULT) to_add |= VM_LOCKONFAULT; } for_each_vma(vmi, vma) { int error; vm_flags_t newflags; newflags = vma->vm_flags & ~VM_LOCKED_MASK; newflags |= to_add; error = mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end, newflags); /* Ignore errors, but prev needs fixing up. */ if (error) prev = vma; cond_resched(); } out: return 0; } SYSCALL_DEFINE1(mlockall, int, flags) { unsigned long lock_limit; int ret; if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || flags == MCL_ONFAULT) return -EINVAL; if (!can_do_mlock()) return -EPERM; lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; if (mmap_write_lock_killable(current->mm)) return -EINTR; ret = -ENOMEM; if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || capable(CAP_IPC_LOCK)) ret = apply_mlockall_flags(flags); mmap_write_unlock(current->mm); if (!ret && (flags & MCL_CURRENT)) mm_populate(0, TASK_SIZE); return ret; } SYSCALL_DEFINE0(munlockall) { int ret; if (mmap_write_lock_killable(current->mm)) return -EINTR; ret = apply_mlockall_flags(0); mmap_write_unlock(current->mm); return ret; } /* * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB * shm segments) get accounted against the user_struct instead. */ static DEFINE_SPINLOCK(shmlock_user_lock); int user_shm_lock(size_t size, struct ucounts *ucounts) { unsigned long lock_limit, locked; long memlock; int allowed = 0; locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; lock_limit = rlimit(RLIMIT_MEMLOCK); if (lock_limit != RLIM_INFINITY) lock_limit >>= PAGE_SHIFT; spin_lock(&shmlock_user_lock); memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); goto out; } if (!get_ucounts(ucounts)) { dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); allowed = 0; goto out; } allowed = 1; out: spin_unlock(&shmlock_user_lock); return allowed; } void user_shm_unlock(size_t size, struct ucounts *ucounts) { spin_lock(&shmlock_user_lock); dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); spin_unlock(&shmlock_user_lock); put_ucounts(ucounts); }