// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pgalloc-track.h" #include "internal.h" #include "swap.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NUMA unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif static vm_fault_t do_fault(struct vm_fault *vmf); static vm_fault_t do_anonymous_page(struct vm_fault *vmf); static bool vmf_pte_changed(struct vm_fault *vmf); /* * Return true if the original pte was a uffd-wp pte marker (so the pte was * wr-protected). */ static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) { if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) return false; return pte_marker_uffd_wp(vmf->orig_pte); } /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_wants_old_prefaulted_pte static inline bool arch_wants_old_prefaulted_pte(void) { /* * Transitioning a PTE from 'old' to 'young' can be expensive on * some architectures, even if it's performed in hardware. By * default, "false" means prefaulted entries will be 'young'. */ return false; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member) { trace_rss_stat(mm, member); } /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling, bool mm_wr_locked) { do { unsigned long addr = vma->vm_start; struct vm_area_struct *next; /* * Note: USER_PGTABLES_CEILING may be passed as ceiling and may * be 0. This will underflow and is okay. */ next = mas_find(mas, ceiling - 1); /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ if (mm_wr_locked) vma_start_write(vma); unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = mas_find(mas, ceiling - 1); if (mm_wr_locked) vma_start_write(vma); unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } while (vma); } void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) { spinlock_t *ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ pmd_populate(mm, pmd, *pte); *pte = NULL; } spin_unlock(ptl); } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; pmd_install(mm, pmd, &new); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ smp_wmb(); /* See comment in pmd_install() */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->read_folio : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) /* * NOTE: New users of ZONE_DEVICE will not set pte_devmap() * and will have refcounts incremented on their struct pages * when they are inserted into PTEs, thus they are safe to * return here. Legacy ZONE_DEVICE pages that set pte_devmap() * do not have refcounts. Example of legacy ZONE_DEVICE is * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. */ return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { struct page *page = vm_normal_page(vma, addr, pte); if (page) return page_folio(page); return NULL; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif static void restore_exclusive_pte(struct vm_area_struct *vma, struct page *page, unsigned long address, pte_t *ptep) { pte_t orig_pte; pte_t pte; swp_entry_t entry; orig_pte = ptep_get(ptep); pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); if (pte_swp_soft_dirty(orig_pte)) pte = pte_mksoft_dirty(pte); entry = pte_to_swp_entry(orig_pte); if (pte_swp_uffd_wp(orig_pte)) pte = pte_mkuffd_wp(pte); else if (is_writable_device_exclusive_entry(entry)) pte = maybe_mkwrite(pte_mkdirty(pte), vma); VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); /* * No need to take a page reference as one was already * created when the swap entry was made. */ if (PageAnon(page)) page_add_anon_rmap(page, vma, address, RMAP_NONE); else /* * Currently device exclusive access only supports anonymous * memory so the entry shouldn't point to a filebacked page. */ WARN_ON_ONCE(1); set_pte_at(vma->vm_mm, address, ptep, pte); /* * No need to invalidate - it was non-present before. However * secondary CPUs may have mappings that need invalidating. */ update_mmu_cache(vma, address, ptep); } /* * Tries to restore an exclusive pte if the page lock can be acquired without * sleeping. */ static int try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, unsigned long addr) { swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); struct page *page = pfn_swap_entry_to_page(entry); if (trylock_page(page)) { restore_exclusive_pte(vma, page, addr, src_pte); unlock_page(page); return 0; } return -EBUSY; } /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t orig_pte = ptep_get(src_pte); pte_t pte = orig_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(orig_pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return -EIO; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } /* Mark the swap entry as shared. */ if (pte_swp_exclusive(orig_pte)) { pte = pte_swp_clear_exclusive(orig_pte); set_pte_at(src_mm, addr, src_pte, pte); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = pfn_swap_entry_to_page(entry); rss[mm_counter(page)]++; if (!is_readable_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both parent and child * to be set to read. A previously exclusive entry is * now shared. */ entry = make_readable_migration_entry( swp_offset(entry)); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(orig_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(orig_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = pfn_swap_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; /* Cannot fail as these pages cannot get pinned. */ BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_writable_device_private_entry(entry) && is_cow_mapping(vm_flags)) { entry = make_readable_device_private_entry( swp_offset(entry)); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(orig_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_exclusive_entry(entry)) { /* * Make device exclusive entries present by restoring the * original entry then copying as for a present pte. Device * exclusive entries currently only support private writable * (ie. COW) mappings. */ VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); if (try_restore_exclusive_pte(src_pte, src_vma, addr)) return -EBUSY; return -ENOENT; } else if (is_pte_marker_entry(entry)) { pte_marker marker = copy_pte_marker(entry, dst_vma); if (marker) set_pte_at(dst_mm, addr, dst_pte, make_pte_marker(marker)); return 0; } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page. * * NOTE! The usual case is that this isn't required; * instead, the caller can just increase the page refcount * and re-use the pte the traditional way. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct folio **prealloc, struct page *page) { struct folio *new_folio; pte_t pte; new_folio = *prealloc; if (!new_folio) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(&new_folio->page, page, addr, src_vma); __folio_mark_uptodate(new_folio); folio_add_new_anon_rmap(new_folio, dst_vma, addr); folio_add_lru_vma(new_folio, dst_vma); rss[MM_ANONPAGES]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_mkuffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct folio **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = ptep_get(src_pte); struct page *page; struct folio *folio; page = vm_normal_page(src_vma, addr, pte); if (page) folio = page_folio(page); if (page && folio_test_anon(folio)) { /* * If this page may have been pinned by the parent process, * copy the page immediately for the child so that we'll always * guarantee the pinned page won't be randomly replaced in the * future. */ folio_get(folio); if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { /* Page may be pinned, we have to copy. */ folio_put(folio); return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, page); } rss[MM_ANONPAGES]++; } else if (page) { folio_get(folio); page_dup_file_rmap(page, false); rss[mm_counter_file(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct folio *new_folio; new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); if (!new_folio) return NULL; if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { folio_put(new_folio); return NULL; } folio_throttle_swaprate(new_folio, GFP_KERNEL); return new_folio; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; pte_t ptent; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct folio *prealloc = NULL; again: progress = 0; init_rss_vec(rss); /* * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the * error handling here, assume that exclusive mmap_lock on dst and src * protects anon from unexpected THP transitions; with shmem and file * protected by mmap_lock-less collapse skipping areas with anon_vma * (whereas vma_needs_copy() skips areas without anon_vma). A rework * can remove such assumptions later, but this is good enough for now. */ dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); if (!src_pte) { pte_unmap_unlock(dst_pte, dst_ptl); /* ret == 0 */ goto out; } spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } ptent = ptep_get(src_pte); if (pte_none(ptent)) { progress++; continue; } if (unlikely(!pte_present(ptent))) { ret = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (ret == -EIO) { entry = pte_to_swp_entry(ptep_get(src_pte)); break; } else if (ret == -EBUSY) { break; } else if (!ret) { progress += 8; continue; } /* * Device exclusive entry restored, continue by copying * the now present pte. */ WARN_ON_ONCE(ret != -ENOENT); } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ folio_put(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(orig_src_pte, src_ptl); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (ret == -EIO) { VM_WARN_ON_ONCE(!entry.val); if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret == -EBUSY) { goto out; } else if (ret == -EAGAIN) { prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; } else if (ret) { VM_WARN_ON_ONCE(1); } /* We've captured and resolved the error. Reset, try again. */ ret = 0; if (addr != end) goto again; out: if (unlikely(prealloc)) folio_put(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } /* * Return true if the vma needs to copy the pgtable during this fork(). Return * false when we can speed up fork() by allowing lazy page faults later until * when the child accesses the memory range. */ static bool vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { /* * Always copy pgtables when dst_vma has uffd-wp enabled even if it's * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable * contains uffd-wp protection information, that's something we can't * retrieve from page cache, and skip copying will lose those info. */ if (userfaultfd_wp(dst_vma)) return true; if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return true; if (src_vma->anon_vma) return true; /* * Don't copy ptes where a page fault will fill them correctly. Fork * becomes much lighter when there are big shared or private readonly * mappings. The tradeoff is that copy_page_range is more efficient * than faulting. */ return false; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; if (!vma_needs_copy(dst_vma, src_vma)) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ vma_assert_write_locked(src_vma); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { untrack_pfn_clear(dst_vma); ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } /* Whether we should zap all COWed (private) pages too */ static inline bool should_zap_cows(struct zap_details *details) { /* By default, zap all pages */ if (!details) return true; /* Or, we zap COWed pages only if the caller wants to */ return details->even_cows; } /* Decides whether we should zap this page with the page pointer specified */ static inline bool should_zap_page(struct zap_details *details, struct page *page) { /* If we can make a decision without *page.. */ if (should_zap_cows(details)) return true; /* E.g. the caller passes NULL for the case of a zero page */ if (!page) return true; /* Otherwise we should only zap non-anon pages */ return !PageAnon(page); } static inline bool zap_drop_file_uffd_wp(struct zap_details *details) { if (!details) return false; return details->zap_flags & ZAP_FLAG_DROP_MARKER; } /* * This function makes sure that we'll replace the none pte with an uffd-wp * swap special pte marker when necessary. Must be with the pgtable lock held. */ static inline void zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr, pte_t *pte, struct zap_details *details, pte_t pteval) { /* Zap on anonymous always means dropping everything */ if (vma_is_anonymous(vma)) return; if (zap_drop_file_uffd_wp(details)) return; pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); init_rss_vec(rss); start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); if (!pte) return addr; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = ptep_get(pte); struct page *page; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { unsigned int delay_rmap; page = vm_normal_page(vma, addr, ptent); if (unlikely(!should_zap_page(details, page))) continue; ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); if (unlikely(!page)) { ksm_might_unmap_zero_page(mm, ptent); continue; } delay_rmap = 0; if (!PageAnon(page)) { if (pte_dirty(ptent)) { set_page_dirty(page); if (tlb_delay_rmap(tlb)) { delay_rmap = 1; force_flush = 1; } } if (pte_young(ptent) && likely(vma_has_recency(vma))) mark_page_accessed(page); } rss[mm_counter(page)]--; if (!delay_rmap) { page_remove_rmap(page, vma, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); } if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry) || is_device_exclusive_entry(entry)) { page = pfn_swap_entry_to_page(entry); if (unlikely(!should_zap_page(details, page))) continue; /* * Both device private/exclusive mappings should only * work with anonymous page so far, so we don't need to * consider uffd-wp bit when zap. For more information, * see zap_install_uffd_wp_if_needed(). */ WARN_ON_ONCE(!vma_is_anonymous(vma)); rss[mm_counter(page)]--; if (is_device_private_entry(entry)) page_remove_rmap(page, vma, false); put_page(page); } else if (!non_swap_entry(entry)) { /* Genuine swap entry, hence a private anon page */ if (!should_zap_cows(details)) continue; rss[MM_SWAPENTS]--; if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); } else if (is_migration_entry(entry)) { page = pfn_swap_entry_to_page(entry); if (!should_zap_page(details, page)) continue; rss[mm_counter(page)]--; } else if (pte_marker_entry_uffd_wp(entry)) { /* * For anon: always drop the marker; for file: only * drop the marker if explicitly requested. */ if (!vma_is_anonymous(vma) && !zap_drop_file_uffd_wp(details)) continue; } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { if (!should_zap_cows(details)) continue; } else { /* We should have covered all the swap entry types */ WARN_ON_ONCE(1); } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) { tlb_flush_mmu_tlbonly(tlb); tlb_flush_rmaps(tlb, vma); } pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Come back again if we didn't do everything. */ if (force_flush) tlb_flush_mmu(tlb); return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) { addr = next; continue; } /* fall through */ } else if (details && details->single_folio && folio_test_pmd_mappable(details->single_folio) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } if (pmd_none(*pmd)) { addr = next; continue; } addr = zap_pte_range(tlb, vma, pmd, addr, next, details); if (addr != next) pmd--; } while (pmd++, cond_resched(), addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details, bool mm_wr_locked) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0, mm_wr_locked); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { zap_flags_t zap_flags = details ? details->zap_flags : 0; __unmap_hugepage_range_final(tlb, vma, start, end, NULL, zap_flags); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @mas: the maple state * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * @tree_end: The maximum index to check * @mm_wr_locked: lock flag * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, unsigned long tree_end, bool mm_wr_locked) { struct mmu_notifier_range range; struct zap_details details = { .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, /* Careful - we need to zap private pages too! */ .even_cows = true, }; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); do { unmap_single_vma(tlb, vma, start_addr, end_addr, &details, mm_wr_locked); } while ((vma = mas_find(mas, tree_end - 1)) != NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { const unsigned long end = address + size; struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, address, end); if (is_vm_hugetlb_page(vma)) adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); tlb_gather_mmu(&tlb, vma->vm_mm); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); /* * unmap 'address-end' not 'range.start-range.end' as range * could have been expanded for hugetlb pmd sharing. */ unmap_single_vma(&tlb, vma, address, end, details, false); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (!range_in_vma(vma, address, address + size) || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(ptep_get(pte))) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, vma, false); set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(vma->vm_mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(vma, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); if (!start_pte) { ret = -EFAULT; goto out; } for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(vma, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vm_flags_set(vma, VM_MIXEDMAP); } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vm_flags_set(vma, VM_MIXEDMAP); } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; entry = ptep_get(pte); if (!pte_none(entry)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); goto out_unlock; } entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * pgprot typically only differs from @vma->vm_page_prot when drivers set * caching- and encryption bits different than those of @vma->vm_page_prot, * because the caching- or encryption mode may not be known at mmap() time. * * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, bool mkwrite) { pgprot_t pgprot = vma->vm_page_prot; int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(ptep_get(pte))); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } /* * Variant of remap_pfn_range that does not call track_pfn_remap. The caller * must have pre-validated the caching bits of the pgprot_t. */ int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pgd++, addr = next, addr != end); return 0; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { int err; err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); if (err) untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte, *mapped_pte; int err = 0; spinlock_t *ptl; if (create) { mapped_pte = pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { mapped_pte = pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); if (!pte) return -EINVAL; } arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(ptep_get(pte))) { err = fn(pte++, addr, data); if (err) break; } } while (addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(mapped_pte, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (pmd_none(*pmd) && !create) continue; if (WARN_ON_ONCE(pmd_leaf(*pmd))) return -EINVAL; if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { if (!create) continue; pmd_clear_bad(pmd); } err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (pud_none(*pud) && !create) continue; if (WARN_ON_ONCE(pud_leaf(*pud))) return -EINVAL; if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { if (!create) continue; pud_clear_bad(pud); } err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (p4d_none(*p4d) && !create) continue; if (WARN_ON_ONCE(p4d_leaf(*p4d))) return -EINVAL; if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { if (!create) continue; p4d_clear_bad(p4d); } err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none(*pgd) && !create) continue; if (WARN_ON_ONCE(pgd_leaf(*pgd))) return -EINVAL; if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { if (!create) continue; pgd_clear_bad(pgd); } err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct vm_fault *vmf) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spin_lock(vmf->ptl); same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); spin_unlock(vmf->ptl); } #endif pte_unmap(vmf->pte); vmf->pte = NULL; return same; } /* * Return: * 0: copied succeeded * -EHWPOISON: copy failed due to hwpoison in source page * -EAGAIN: copied failed (some other reason) */ static inline int __wp_page_copy_user(struct page *dst, struct page *src, struct vm_fault *vmf) { int ret; void *kaddr; void __user *uaddr; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { if (copy_mc_user_highpage(dst, src, addr, vma)) { memory_failure_queue(page_to_pfn(src), 0); return -EHWPOISON; } return 0; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ vmf->pte = NULL; if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ if (vmf->pte) update_mmu_tlb(vma, addr, vmf->pte); ret = -EAGAIN; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (vmf->pte) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ if (vmf->pte) update_mmu_tlb(vma, addr, vmf->pte); ret = -EAGAIN; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = 0; pte_unlock: if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) { vm_fault_t ret; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { folio_lock(folio); if (!folio->mapping) { folio_unlock(folio); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct folio *folio = page_folio(vmf->page); bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = folio_mark_dirty(folio); VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); /* * Take a local copy of the address_space - folio.mapping may be zeroed * by truncate after folio_unlock(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on folio_unlock()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = folio_raw_mapping(folio); folio_unlock(folio); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_COMPLETED; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page, * either due to COW or unsharing. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct folio *old_folio = NULL; struct folio *new_folio = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; int ret; delayacct_wpcopy_start(); if (vmf->page) old_folio = page_folio(vmf->page); if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); if (!new_folio) goto oom; } else { new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address, false); if (!new_folio) goto oom; ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); if (ret) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. * The -EHWPOISON case will not be retried. */ folio_put(new_folio); if (old_folio) folio_put(old_folio); delayacct_wpcopy_end(); return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; } kmsan_copy_page_meta(&new_folio->page, vmf->page); } if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) goto oom_free_new; folio_throttle_swaprate(new_folio, GFP_KERNEL); __folio_mark_uptodate(new_folio); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { if (old_folio) { if (!folio_test_anon(old_folio)) { dec_mm_counter(mm, mm_counter_file(&old_folio->page)); inc_mm_counter(mm, MM_ANONPAGES); } } else { ksm_might_unmap_zero_page(mm, vmf->orig_pte); inc_mm_counter(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(&new_folio->page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (unlikely(unshare)) { if (pte_soft_dirty(vmf->orig_pte)) entry = pte_mksoft_dirty(entry); if (pte_uffd_wp(vmf->orig_pte)) entry = pte_mkuffd_wp(entry); } else { entry = maybe_mkwrite(pte_mkdirty(entry), vma); } /* * Clear the pte entry and flush it first, before updating the * pte with the new entry, to keep TLBs on different CPUs in * sync. This code used to set the new PTE then flush TLBs, but * that left a window where the new PTE could be loaded into * some TLBs while the old PTE remains in others. */ ptep_clear_flush(vma, vmf->address, vmf->pte); folio_add_new_anon_rmap(new_folio, vma, vmf->address); folio_add_lru_vma(new_folio, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ BUG_ON(unshare && pte_write(entry)); set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_folio) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(vmf->page, vma, false); } /* Free the old page.. */ new_folio = old_folio; page_copied = 1; pte_unmap_unlock(vmf->pte, vmf->ptl); } else if (vmf->pte) { update_mmu_tlb(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); } mmu_notifier_invalidate_range_end(&range); if (new_folio) folio_put(new_folio); if (old_folio) { if (page_copied) free_swap_cache(&old_folio->page); folio_put(old_folio); } delayacct_wpcopy_end(); return 0; oom_free_new: folio_put(new_folio); oom: if (old_folio) folio_put(old_folio); delayacct_wpcopy_end(); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!vmf->pte) return VM_FAULT_NOPAGE; /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vmf->vma); return VM_FAULT_RETRY; } vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return 0; } static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; folio_get(folio); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); if (vmf->flags & FAULT_FLAG_VMA_LOCK) { folio_put(folio); vma_end_read(vmf->vma); return VM_FAULT_RETRY; } tmp = do_page_mkwrite(vmf, folio); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { folio_put(folio); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { folio_unlock(folio); folio_put(folio); return tmp; } } else { wp_page_reuse(vmf); folio_lock(folio); } ret |= fault_dirty_shared_page(vmf); folio_put(folio); return ret; } /* * This routine handles present pages, when * * users try to write to a shared page (FAULT_FLAG_WRITE) * * GUP wants to take a R/O pin on a possibly shared anonymous page * (FAULT_FLAG_UNSHARE) * * It is done by copying the page to a new address and decrementing the * shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've * done any necessary COW. * * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even * though the page will change only once the write actually happens. This * avoids a few races, and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; struct vm_area_struct *vma = vmf->vma; struct folio *folio = NULL; if (likely(!unshare)) { if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); } vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (vmf->page) folio = page_folio(vmf->page); /* * Shared mapping: we are guaranteed to have VM_WRITE and * FAULT_FLAG_WRITE set at this point. */ if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if (!vmf->page) return wp_pfn_shared(vmf); return wp_page_shared(vmf, folio); } /* * Private mapping: create an exclusive anonymous page copy if reuse * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. */ if (folio && folio_test_anon(folio)) { /* * If the page is exclusive to this process we must reuse the * page without further checks. */ if (PageAnonExclusive(vmf->page)) goto reuse; /* * We have to verify under folio lock: these early checks are * just an optimization to avoid locking the folio and freeing * the swapcache if there is little hope that we can reuse. * * KSM doesn't necessarily raise the folio refcount. */ if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) goto copy; if (!folio_test_lru(folio)) /* * We cannot easily detect+handle references from * remote LRU caches or references to LRU folios. */ lru_add_drain(); if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) goto copy; if (!folio_trylock(folio)) goto copy; if (folio_test_swapcache(folio)) folio_free_swap(folio); if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { folio_unlock(folio); goto copy; } /* * Ok, we've got the only folio reference from our mapping * and the folio is locked, it's dark out, and we're wearing * sunglasses. Hit it. */ page_move_anon_rmap(vmf->page, vma); folio_unlock(folio); reuse: if (unlikely(unshare)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } wp_page_reuse(vmf); return 0; } copy: if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) { pte_unmap_unlock(vmf->pte, vmf->ptl); vma_end_read(vmf->vma); return VM_FAULT_RETRY; } /* * Ok, we need to copy. Oh, well.. */ if (folio) folio_get(folio); pte_unmap_unlock(vmf->pte, vmf->ptl); #ifdef CONFIG_KSM if (folio && folio_test_ksm(folio)) count_vm_event(COW_KSM); #endif return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, pgoff_t first_index, pgoff_t last_index, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, first_index, last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = max(first_index, vba); zea = min(last_index, vea); unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_folio() - Unmap single folio from processes. * @folio: The locked folio to be unmapped. * * Unmap this folio from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a folio, it may find that * the page has been remapped again: and then uses unmap_mapping_folio() * to unmap it finally. */ void unmap_mapping_folio(struct folio *folio) { struct address_space *mapping = folio->mapping; struct zap_details details = { }; pgoff_t first_index; pgoff_t last_index; VM_BUG_ON(!folio_test_locked(folio)); first_index = folio->index; last_index = folio_next_index(folio) - 1; details.even_cows = false; details.single_folio = folio; details.zap_flags = ZAP_FLAG_DROP_MARKER; i_mmap_lock_read(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, first_index, last_index, &details); i_mmap_unlock_read(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; pgoff_t first_index = start; pgoff_t last_index = start + nr - 1; details.even_cows = even_cows; if (last_index < first_index) last_index = ULONG_MAX; i_mmap_lock_read(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, first_index, last_index, &details); i_mmap_unlock_read(mapping); } EXPORT_SYMBOL_GPL(unmap_mapping_pages); /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * Restore a potential device exclusive pte to a working pte entry */ static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) { struct folio *folio = page_folio(vmf->page); struct vm_area_struct *vma = vmf->vma; struct mmu_notifier_range range; vm_fault_t ret; /* * We need a reference to lock the folio because we don't hold * the PTL so a racing thread can remove the device-exclusive * entry and unmap it. If the folio is free the entry must * have been removed already. If it happens to have already * been re-allocated after being freed all we do is lock and * unlock it. */ if (!folio_try_get(folio)) return 0; ret = folio_lock_or_retry(folio, vmf); if (ret) { folio_put(folio); return ret; } mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma->vm_mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); mmu_notifier_invalidate_range_start(&range); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); folio_unlock(folio); folio_put(folio); mmu_notifier_invalidate_range_end(&range); return 0; } static inline bool should_try_to_free_swap(struct folio *folio, struct vm_area_struct *vma, unsigned int fault_flags) { if (!folio_test_swapcache(folio)) return false; if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || folio_test_mlocked(folio)) return true; /* * If we want to map a page that's in the swapcache writable, we * have to detect via the refcount if we're really the exclusive * user. Try freeing the swapcache to get rid of the swapcache * reference only in case it's likely that we'll be the exlusive user. */ return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && folio_ref_count(folio) == 2; } static vm_fault_t pte_marker_clear(struct vm_fault *vmf) { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!vmf->pte) return 0; /* * Be careful so that we will only recover a special uffd-wp pte into a * none pte. Otherwise it means the pte could have changed, so retry. * * This should also cover the case where e.g. the pte changed * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. * So is_pte_marker() check is not enough to safely drop the pte. */ if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } static vm_fault_t do_pte_missing(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } /* * This is actually a page-missing access, but with uffd-wp special pte * installed. It means this pte was wr-protected before being unmapped. */ static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) { /* * Just in case there're leftover special ptes even after the region * got unregistered - we can simply clear them. */ if (unlikely(!userfaultfd_wp(vmf->vma))) return pte_marker_clear(vmf); return do_pte_missing(vmf); } static vm_fault_t handle_pte_marker(struct vm_fault *vmf) { swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); unsigned long marker = pte_marker_get(entry); /* * PTE markers should never be empty. If anything weird happened, * the best thing to do is to kill the process along with its mm. */ if (WARN_ON_ONCE(!marker)) return VM_FAULT_SIGBUS; /* Higher priority than uffd-wp when data corrupted */ if (marker & PTE_MARKER_POISONED) return VM_FAULT_HWPOISON; if (pte_marker_entry_uffd_wp(entry)) return pte_marker_handle_uffd_wp(vmf); /* This is an unknown pte marker */ return VM_FAULT_SIGBUS; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct folio *swapcache, *folio = NULL; struct page *page; struct swap_info_struct *si = NULL; rmap_t rmap_flags = RMAP_NONE; bool exclusive = false; swp_entry_t entry; pte_t pte; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vmf)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_exclusive_entry(entry)) { vmf->page = pfn_swap_entry_to_page(entry); ret = remove_device_exclusive_entry(vmf); } else if (is_device_private_entry(entry)) { if (vmf->flags & FAULT_FLAG_VMA_LOCK) { /* * migrate_to_ram is not yet ready to operate * under VMA lock. */ vma_end_read(vma); ret = VM_FAULT_RETRY; goto out; } vmf->page = pfn_swap_entry_to_page(entry); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) goto unlock; /* * Get a page reference while we know the page can't be * freed. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); put_page(vmf->page); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else if (is_pte_marker_entry(entry)) { ret = handle_pte_marker(vmf); } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } /* Prevent swapoff from happening to us. */ si = get_swap_device(entry); if (unlikely(!si)) goto out; folio = swap_cache_get_folio(entry, vma, vmf->address); if (folio) page = folio_file_page(folio, swp_offset(entry)); swapcache = folio; if (!folio) { if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address, false); page = &folio->page; if (folio) { __folio_set_locked(folio); __folio_set_swapbacked(folio); if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, GFP_KERNEL, entry)) { ret = VM_FAULT_OOM; goto out_page; } mem_cgroup_swapin_uncharge_swap(entry); shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(folio, shadow); folio_add_lru(folio); /* To provide entry to swap_readpage() */ folio_set_swap_entry(folio, entry); swap_readpage(page, true, NULL); folio->private = NULL; } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); if (page) folio = page_folio(page); swapcache = folio; } if (!folio) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) ret = VM_FAULT_OOM; goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; goto out_release; } ret |= folio_lock_or_retry(folio, vmf); if (ret & VM_FAULT_RETRY) goto out_release; if (swapcache) { /* * Make sure folio_free_swap() or swapoff did not release the * swapcache from under us. The page pin, and pte_same test * below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not * changed. */ if (unlikely(!folio_test_swapcache(folio) || page_private(page) != entry.val)) goto out_page; /* * KSM sometimes has to copy on read faults, for example, if * page->index of !PageKSM() pages would be nonlinear inside the * anon VMA -- PageKSM() is lost on actual swapout. */ page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; goto out_page; } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { ret = VM_FAULT_HWPOISON; goto out_page; } folio = page_folio(page); /* * If we want to map a page that's in the swapcache writable, we * have to detect via the refcount if we're really the exclusive * owner. Try removing the extra reference from the local LRU * caches if required. */ if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && !folio_test_ksm(folio) && !folio_test_lru(folio)) lru_add_drain(); } folio_throttle_swaprate(folio, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) goto out_nomap; if (unlikely(!folio_test_uptodate(folio))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte * must never point at an anonymous page in the swapcache that is * PG_anon_exclusive. Sanity check that this holds and especially, that * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity * check after taking the PT lock and making sure that nobody * concurrently faulted in this page and set PG_anon_exclusive. */ BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); /* * Check under PT lock (to protect against concurrent fork() sharing * the swap entry concurrently) for certainly exclusive pages. */ if (!folio_test_ksm(folio)) { exclusive = pte_swp_exclusive(vmf->orig_pte); if (folio != swapcache) { /* * We have a fresh page that is not exposed to the * swapcache -> certainly exclusive. */ exclusive = true; } else if (exclusive && folio_test_writeback(folio) && data_race(si->flags & SWP_STABLE_WRITES)) { /* * This is tricky: not all swap backends support * concurrent page modifications while under writeback. * * So if we stumble over such a page in the swapcache * we must not set the page exclusive, otherwise we can * map it writable without further checks and modify it * while still under writeback. * * For these problematic swap backends, simply drop the * exclusive marker: this is perfectly fine as we start * writeback only if we fully unmapped the page and * there are no unexpected references on the page after * unmapping succeeded. After fully unmapped, no * further GUP references (FOLL_GET and FOLL_PIN) can * appear, so dropping the exclusive marker and mapping * it only R/O is fine. */ exclusive = false; } } /* * Some architectures may have to restore extra metadata to the page * when reading from swap. This metadata may be indexed by swap entry * so this must be called before swap_free(). */ arch_swap_restore(entry, folio); /* * Remove the swap entry and conditionally try to free up the swapcache. * We're already holding a reference on the page but haven't mapped it * yet. */ swap_free(entry); if (should_try_to_free_swap(folio, vma, vmf->flags)) folio_free_swap(folio); inc_mm_counter(vma->vm_mm, MM_ANONPAGES); dec_mm_counter(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); /* * Same logic as in do_wp_page(); however, optimize for pages that are * certainly not shared either because we just allocated them without * exposing them to the swapcache or because the swap entry indicates * exclusivity. */ if (!folio_test_ksm(folio) && (exclusive || folio_ref_count(folio) == 1)) { if (vmf->flags & FAULT_FLAG_WRITE) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; } rmap_flags |= RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) pte = pte_mkuffd_wp(pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(folio != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address); folio_add_lru_vma(folio, vma); } else { page_add_anon_rmap(page, vma, vmf->address, rmap_flags); } VM_BUG_ON(!folio_test_anon(folio) || (pte_write(pte) && !PageAnonExclusive(page))); set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); folio_unlock(folio); if (folio != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ folio_unlock(swapcache); folio_put(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); out: if (si) put_swap_device(si); return ret; out_nomap: if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: folio_unlock(folio); out_release: folio_put(folio); if (folio != swapcache && swapcache) { folio_unlock(swapcache); folio_put(swapcache); } if (si) put_swap_device(si); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); struct vm_area_struct *vma = vmf->vma; struct folio *folio; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(), so that OOM can * be distinguished from a transient failure of pte_offset_map(). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!vmf->pte) goto unlock; if (vmf_pte_changed(vmf)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); if (!folio) goto oom; if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; folio_throttle_swaprate(folio, GFP_KERNEL); /* * The memory barrier inside __folio_mark_uptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __folio_mark_uptodate(folio); entry = mk_pte(&folio->page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!vmf->pte) goto release; if (vmf_pte_changed(vmf)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); folio_put(folio); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter(vma->vm_mm, MM_ANONPAGES); folio_add_new_anon_rmap(folio, vma, vmf->address); folio_add_lru_vma(folio, vma); setpte: if (uffd_wp) entry = pte_mkuffd_wp(entry); set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: folio_put(folio); goto unlock; oom_free_page: folio_put(folio); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { struct page *page = vmf->page; vm_fault_t poisonret = VM_FAULT_HWPOISON; if (ret & VM_FAULT_LOCKED) { if (page_mapped(page)) unmap_mapping_pages(page_mapping(page), page->index, 1, false); /* Retry if a clean page was removed from the cache. */ if (invalidate_inode_page(page)) poisonret = VM_FAULT_NOPAGE; unlock_page(page); } put_page(page); vmf->page = NULL; return poisonret; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Just backoff if any subpage of a THP is corrupted otherwise * the corrupted page may mapped by PMD silently to escape the * check. This kind of THP just can be PTE mapped. Access to * the corrupted subpage should trigger SIGBUS as expected. */ if (unlikely(PageHasHWPoisoned(page))) return ret; /* * Archs like ppc64 need additional space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, vma, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { return VM_FAULT_FALLBACK; } #endif void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) { struct vm_area_struct *vma = vmf->vma; bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); bool write = vmf->flags & FAULT_FLAG_WRITE; bool prefault = vmf->address != addr; pte_t entry; flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); if (prefault && arch_wants_old_prefaulted_pte()) entry = pte_mkold(entry); else entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (unlikely(uffd_wp)) entry = pte_mkuffd_wp(entry); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, addr); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, vma, false); } set_pte_at(vma->vm_mm, addr, vmf->pte, entry); } static bool vmf_pte_changed(struct vm_fault *vmf) { if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); return !pte_none(ptep_get(vmf->pte)); } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vma->vm_flags & VM_SHARED)) { ret = check_stable_address_space(vma->vm_mm); if (ret) return ret; } if (pmd_none(*vmf->pmd)) { if (PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (vmf->prealloc_pte) pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) return VM_FAULT_OOM; } vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!vmf->pte) return VM_FAULT_NOPAGE; /* Re-check under ptl */ if (likely(!vmf_pte_changed(vmf))) { do_set_pte(vmf, page, vmf->address); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, vmf->address, vmf->pte); ret = 0; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); ret = VM_FAULT_NOPAGE; } pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_pages __read_mostly = 65536 >> PAGE_SHIFT; #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_pages << PAGE_SHIFT; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; /* * The minimum value is 1 page, however this results in no fault-around * at all. See should_fault_around(). */ fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function doesn't cross VMA or page table boundaries, in order to call * map_pages() and acquire a PTE lock only once. * * fault_around_pages defines how many pages we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_pages * PAGE_SIZE rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { pgoff_t nr_pages = READ_ONCE(fault_around_pages); pgoff_t pte_off = pte_index(vmf->address); /* The page offset of vmf->address within the VMA. */ pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; pgoff_t from_pte, to_pte; vm_fault_t ret; /* The PTE offset of the start address, clamped to the VMA. */ from_pte = max(ALIGN_DOWN(pte_off, nr_pages), pte_off - min(pte_off, vma_off)); /* The PTE offset of the end address, clamped to the VMA and PTE. */ to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, pte_off + vma_pages(vmf->vma) - vma_off) - 1; if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; } rcu_read_lock(); ret = vmf->vma->vm_ops->map_pages(vmf, vmf->pgoff + from_pte - pte_off, vmf->pgoff + to_pte - pte_off); rcu_read_unlock(); return ret; } /* Return true if we should do read fault-around, false otherwise */ static inline bool should_fault_around(struct vm_fault *vmf) { /* No ->map_pages? No way to fault around... */ if (!vmf->vma->vm_ops->map_pages) return false; if (uffd_disable_fault_around(vmf->vma)) return false; /* A single page implies no faulting 'around' at all. */ return fault_around_pages > 1; } static vm_fault_t do_read_fault(struct vm_fault *vmf) { vm_fault_t ret = 0; struct folio *folio; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (should_fault_around(vmf)) { ret = do_fault_around(vmf); if (ret) return ret; } if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vmf->vma); return VM_FAULT_RETRY; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); folio = page_folio(vmf->page); folio_unlock(folio); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) folio_put(folio); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vma); return VM_FAULT_RETRY; } if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; struct folio *folio; if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vma); return VM_FAULT_RETRY; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; folio = page_folio(vmf->page); /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { folio_unlock(folio); tmp = do_page_mkwrite(vmf, folio); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { folio_put(folio); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { folio_unlock(folio); folio_put(folio); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __folio_lock_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!vmf->pte)) ret = VM_FAULT_SIGBUS; else { /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(ptep_get(vmf->pte)))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); /* Record the current PID acceesing VMA */ vma_set_access_pid_bit(vma); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; bool writable = false; int last_cpupid; int target_nid; pte_t pte, old_pte; int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ spin_lock(vmf->ptl); if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } /* Get the normal PTE */ old_pte = ptep_get(vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); /* * Detect now whether the PTE could be writable; this information * is only valid while holding the PT lock. */ writable = pte_write(pte); if (!writable && vma_wants_manual_pte_write_upgrade(vma) && can_change_pte_writable(vma, vmf->address, pte)) writable = true; page = vm_normal_page(vma, vmf->address, pte); if (!page || is_zone_device_page(page)) goto out_map; /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) goto out_map; /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!writable) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; page_nid = page_to_nid(page); /* * For memory tiering mode, cpupid of slow memory page is used * to record page access time. So use default value. */ if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && !node_is_toptier(page_nid)) last_cpupid = (-1 & LAST_CPUPID_MASK); else last_cpupid = page_cpupid_last(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out_map; } pte_unmap_unlock(vmf->pte, vmf->ptl); writable = false; /* Migrate to the requested node */ if (migrate_misplaced_page(page, vma, target_nid)) { page_nid = target_nid; flags |= TNF_MIGRATED; } else { flags |= TNF_MIGRATE_FAIL; vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!vmf->pte)) goto out; if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } goto out_map; } out: if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; out_map: /* * Make it present again, depending on how arch implements * non-accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma_is_anonymous(vma)) return do_huge_pmd_anonymous_page(vmf); if (vma->vm_ops->huge_fault) { if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vma); return VM_FAULT_RETRY; } return vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); } return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; vm_fault_t ret; if (vma_is_anonymous(vma)) { if (likely(!unshare) && userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf); } if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { if (vma->vm_ops->huge_fault) { if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vma); return VM_FAULT_RETRY; } ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) struct vm_area_struct *vma = vmf->vma; /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vma)) return VM_FAULT_FALLBACK; if (vma->vm_ops->huge_fault) { if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vma); return VM_FAULT_RETRY; } return vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vma)) goto split; if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { if (vma->vm_ops->huge_fault) { if (vmf->flags & FAULT_FLAG_VMA_LOCK) { vma_end_read(vma); return VM_FAULT_RETRY; } ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __folio_lock_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; } else { /* * A regular pmd is established and it can't morph into a huge * pmd by anon khugepaged, since that takes mmap_lock in write * mode; but shmem or file collapse to THP could still morph * it into a huge pmd: just retry later if so. */ vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!vmf->pte)) return 0; vmf->orig_pte = ptep_get_lockless(vmf->pte); vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) return do_pte_missing(vmf); if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { if (!pte_write(entry)) return do_wp_page(vmf); else if (likely(vmf->flags & FAULT_FLAG_WRITE)) entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, vmf->pte); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * On entry, we hold either the VMA lock or the mmap_lock * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in * the result, the mmap_lock is not held on exit. See filemap_fault() * and __folio_lock_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .real_address = address, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; struct mm_struct *mm = vma->vm_mm; unsigned long vm_flags = vma->vm_flags; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && hugepage_vma_check(vma, vm_flags, false, true, true)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* * TODO once we support anonymous PUDs: NUMA case and * FAULT_FLAG_UNSHARE handling. */ if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && hugepage_vma_check(vma, vm_flags, false, true, true)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); if (unlikely(is_swap_pmd(vmf.orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(vmf.orig_pmd)); if (is_pmd_migration_entry(vmf.orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf); if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && !pmd_write(vmf.orig_pmd)) { ret = wp_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accounting * @mm: mm from which memcg should be extracted. It can be NULL. * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accounting. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* Incomplete faults will be accounted upon completion. */ if (ret & VM_FAULT_RETRY) return; /* * To preserve the behavior of older kernels, PGFAULT counters record * both successful and failed faults, as opposed to perf counters, * which ignore failed cases. */ count_vm_event(PGFAULT); count_memcg_event_mm(mm, PGFAULT); /* * Do not account for unsuccessful faults (e.g. when the address wasn't * valid). That includes arch_vma_access_permitted() failing before * reaching here. So this is not a "this many hardware page faults" * counter. We should use the hw profiling for that. */ if (ret & VM_FAULT_ERROR) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } #ifdef CONFIG_LRU_GEN static void lru_gen_enter_fault(struct vm_area_struct *vma) { /* the LRU algorithm only applies to accesses with recency */ current->in_lru_fault = vma_has_recency(vma); } static void lru_gen_exit_fault(void) { current->in_lru_fault = false; } #else static void lru_gen_enter_fault(struct vm_area_struct *vma) { } static void lru_gen_exit_fault(void) { } #endif /* CONFIG_LRU_GEN */ static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, unsigned int *flags) { if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) return VM_FAULT_SIGSEGV; /* * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's * just treat it like an ordinary read-fault otherwise. */ if (!is_cow_mapping(vma->vm_flags)) *flags &= ~FAULT_FLAG_UNSHARE; } else if (*flags & FAULT_FLAG_WRITE) { /* Write faults on read-only mappings are impossible ... */ if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) return VM_FAULT_SIGSEGV; /* ... and FOLL_FORCE only applies to COW mappings. */ if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && !is_cow_mapping(vma->vm_flags))) return VM_FAULT_SIGSEGV; } #ifdef CONFIG_PER_VMA_LOCK /* * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of * the assumption that lock is dropped on VM_FAULT_RETRY. */ if (WARN_ON_ONCE((*flags & (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) return VM_FAULT_SIGSEGV; #endif return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __folio_lock_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { /* If the fault handler drops the mmap_lock, vma may be freed */ struct mm_struct *mm = vma->vm_mm; vm_fault_t ret; __set_current_state(TASK_RUNNING); ret = sanitize_fault_flags(vma, &flags); if (ret) goto out; if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) { ret = VM_FAULT_SIGSEGV; goto out; } /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); lru_gen_enter_fault(vma); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); lru_gen_exit_fault(); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } out: mm_account_fault(mm, regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifdef CONFIG_LOCK_MM_AND_FIND_VMA #include static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) { /* Even if this succeeds, make it clear we *might* have slept */ if (likely(mmap_read_trylock(mm))) { might_sleep(); return true; } if (regs && !user_mode(regs)) { unsigned long ip = instruction_pointer(regs); if (!search_exception_tables(ip)) return false; } return !mmap_read_lock_killable(mm); } static inline bool mmap_upgrade_trylock(struct mm_struct *mm) { /* * We don't have this operation yet. * * It should be easy enough to do: it's basically a * atomic_long_try_cmpxchg_acquire() * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but * it also needs the proper lockdep magic etc. */ return false; } static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) { mmap_read_unlock(mm); if (regs && !user_mode(regs)) { unsigned long ip = instruction_pointer(regs); if (!search_exception_tables(ip)) return false; } return !mmap_write_lock_killable(mm); } /* * Helper for page fault handling. * * This is kind of equivalend to "mmap_read_lock()" followed * by "find_extend_vma()", except it's a lot more careful about * the locking (and will drop the lock on failure). * * For example, if we have a kernel bug that causes a page * fault, we don't want to just use mmap_read_lock() to get * the mm lock, because that would deadlock if the bug were * to happen while we're holding the mm lock for writing. * * So this checks the exception tables on kernel faults in * order to only do this all for instructions that are actually * expected to fault. * * We can also actually take the mm lock for writing if we * need to extend the vma, which helps the VM layer a lot. */ struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, unsigned long addr, struct pt_regs *regs) { struct vm_area_struct *vma; if (!get_mmap_lock_carefully(mm, regs)) return NULL; vma = find_vma(mm, addr); if (likely(vma && (vma->vm_start <= addr))) return vma; /* * Well, dang. We might still be successful, but only * if we can extend a vma to do so. */ if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { mmap_read_unlock(mm); return NULL; } /* * We can try to upgrade the mmap lock atomically, * in which case we can continue to use the vma * we already looked up. * * Otherwise we'll have to drop the mmap lock and * re-take it, and also look up the vma again, * re-checking it. */ if (!mmap_upgrade_trylock(mm)) { if (!upgrade_mmap_lock_carefully(mm, regs)) return NULL; vma = find_vma(mm, addr); if (!vma) goto fail; if (vma->vm_start <= addr) goto success; if (!(vma->vm_flags & VM_GROWSDOWN)) goto fail; } if (expand_stack_locked(vma, addr)) goto fail; success: mmap_write_downgrade(mm); return vma; fail: mmap_write_unlock(mm); return NULL; } #endif #ifdef CONFIG_PER_VMA_LOCK /* * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be * stable and not isolated. If the VMA is not found or is being modified the * function returns NULL. */ struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, unsigned long address) { MA_STATE(mas, &mm->mm_mt, address, address); struct vm_area_struct *vma; rcu_read_lock(); retry: vma = mas_walk(&mas); if (!vma) goto inval; if (!vma_start_read(vma)) goto inval; /* * find_mergeable_anon_vma uses adjacent vmas which are not locked. * This check must happen after vma_start_read(); otherwise, a * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA * from its anon_vma. */ if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) goto inval_end_read; /* Check since vm_start/vm_end might change before we lock the VMA */ if (unlikely(address < vma->vm_start || address >= vma->vm_end)) goto inval_end_read; /* Check if the VMA got isolated after we found it */ if (vma->detached) { vma_end_read(vma); count_vm_vma_lock_event(VMA_LOCK_MISS); /* The area was replaced with another one */ goto retry; } rcu_read_unlock(); return vma; inval_end_read: vma_end_read(vma); inval: rcu_read_unlock(); count_vm_vma_lock_event(VMA_LOCK_ABORT); return NULL; } #endif /* CONFIG_PER_VMA_LOCK */ #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) { /* Another has populated it */ p4d_free(mm, new); } else { smp_wmb(); /* See comment in pmd_install() */ pgd_populate(mm, pgd, new); } spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); smp_wmb(); /* See comment in pmd_install() */ p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); smp_wmb(); /* See comment in pmd_install() */ pud_populate(mm, pud, new); } else { /* Another has populated it */ pmd_free(mm, new); } spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!ptep) goto out; if (!pte_present(ptep_get(ptep))) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); out: return -EINVAL; } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(ptep_get(ptep)); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = ptep_get(ptep); if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } /** * generic_access_phys - generic implementation for iomem mmap access * @vma: the vma to access * @addr: userspace address, not relative offset within @vma * @buf: buffer to read/write * @len: length of transfer * @write: set to FOLL_WRITE when writing, otherwise reading * * This is a generic implementation for &vm_operations_struct.access for an * iomem mapping. This callback is used by access_process_vm() when the @vma is * not page based. */ int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; pte_t *ptep, pte; spinlock_t *ptl; int offset = offset_in_page(addr); int ret = -EINVAL; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return -EINVAL; retry: if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) return -EINVAL; pte = ptep_get(ptep); pte_unmap_unlock(ptep, ptl); prot = pgprot_val(pte_pgprot(pte)); phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; if ((write & FOLL_WRITE) && !pte_write(pte)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) goto out_unmap; if (!pte_same(pte, ptep_get(ptep))) { pte_unmap_unlock(ptep, ptl); iounmap(maddr); goto retry; } if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); ret = len; pte_unmap_unlock(ptep, ptl); out_unmap: iounmap(maddr); return ret; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. */ int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* Avoid triggering the temporary warning in __get_user_pages */ if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, offset; void *maddr; struct vm_area_struct *vma = NULL; struct page *page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); if (IS_ERR_OR_NULL(page)) { /* We might need to expand the stack to access it */ vma = vma_lookup(mm, addr); if (!vma) { vma = expand_stack(mm, addr); /* mmap_lock was dropped on failure */ if (!vma) return buf - old_buf; /* Try again if stack expansion worked */ continue; } /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ bytes = 0; #ifdef CONFIG_HAVE_IOREMAP_PROT if (vma->vm_ops && vma->vm_ops->access) bytes = vma->vm_ops->access(vma, addr, buf, len, write); #endif if (bytes <= 0) break; } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { if (pagefault_disabled()) return; __might_sleep(file, line); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(¤t->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline int process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, int (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l, ret; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); ret = process_subpage(addr + i * PAGE_SIZE, i, arg); if (ret) return ret; } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); ret = process_subpage(addr + i * PAGE_SIZE, i, arg); if (ret) return ret; } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); if (ret) return ret; cond_resched(); ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); if (ret) return ret; } return 0; } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p; might_sleep(); for (i = 0; i < pages_per_huge_page; i++) { p = nth_page(page, i); cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static int clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); return 0; } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static int copy_user_gigantic_page(struct folio *dst, struct folio *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_page; struct page *src_page; for (i = 0; i < pages_per_huge_page; i++) { dst_page = folio_page(dst, i); src_page = folio_page(src, i); cond_resched(); if (copy_mc_user_highpage(dst_page, src_page, addr + i*PAGE_SIZE, vma)) { memory_failure_queue(page_to_pfn(src_page), 0); return -EHWPOISON; } } return 0; } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static int copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma)) { memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); return -EHWPOISON; } return 0; } int copy_user_large_folio(struct folio *dst, struct folio *src, unsigned long addr_hint, struct vm_area_struct *vma) { unsigned int pages_per_huge_page = folio_nr_pages(dst); unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = &dst->page, .src = &src->page, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) return copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_folio_from_user(struct folio *dst_folio, const void __user *usr_src, bool allow_pagefault) { void *kaddr; unsigned long i, rc = 0; unsigned int nr_pages = folio_nr_pages(dst_folio); unsigned long ret_val = nr_pages * PAGE_SIZE; struct page *subpage; for (i = 0; i < nr_pages; i++) { subpage = folio_page(dst_folio, i); kaddr = kmap_local_page(subpage); if (!allow_pagefault) pagefault_disable(); rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); if (!allow_pagefault) pagefault_enable(); kunmap_local(kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; flush_dcache_page(subpage); cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct ptdesc *ptdesc) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; ptdesc->ptl = ptl; return true; } void ptlock_free(struct ptdesc *ptdesc) { kmem_cache_free(page_ptl_cachep, ptdesc->ptl); } #endif