// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2003 Bernardo Innocenti * * Based on former do_div() implementation from asm-parisc/div64.h: * Copyright (C) 1999 Hewlett-Packard Co * Copyright (C) 1999 David Mosberger-Tang * * * Generic C version of 64bit/32bit division and modulo, with * 64bit result and 32bit remainder. * * The fast case for (n>>32 == 0) is handled inline by do_div(). * * Code generated for this function might be very inefficient * for some CPUs. __div64_32() can be overridden by linking arch-specific * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S * or by defining a preprocessor macro in arch/include/asm/div64.h. */ #include #include #include #include #include #include /* Not needed on 64bit architectures */ #if BITS_PER_LONG == 32 #ifndef __div64_32 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) { uint64_t rem = *n; uint64_t b = base; uint64_t res, d = 1; uint32_t high = rem >> 32; /* Reduce the thing a bit first */ res = 0; if (high >= base) { high /= base; res = (uint64_t) high << 32; rem -= (uint64_t) (high*base) << 32; } while ((int64_t)b > 0 && b < rem) { b = b+b; d = d+d; } do { if (rem >= b) { rem -= b; res += d; } b >>= 1; d >>= 1; } while (d); *n = res; return rem; } EXPORT_SYMBOL(__div64_32); #endif #ifndef div_s64_rem s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) { u64 quotient; if (dividend < 0) { quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); *remainder = -*remainder; if (divisor > 0) quotient = -quotient; } else { quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); if (divisor < 0) quotient = -quotient; } return quotient; } EXPORT_SYMBOL(div_s64_rem); #endif /* * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder * @dividend: 64bit dividend * @divisor: 64bit divisor * @remainder: 64bit remainder * * This implementation is a comparable to algorithm used by div64_u64. * But this operation, which includes math for calculating the remainder, * is kept distinct to avoid slowing down the div64_u64 operation on 32bit * systems. */ #ifndef div64_u64_rem u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) { u32 high = divisor >> 32; u64 quot; if (high == 0) { u32 rem32; quot = div_u64_rem(dividend, divisor, &rem32); *remainder = rem32; } else { int n = fls(high); quot = div_u64(dividend >> n, divisor >> n); if (quot != 0) quot--; *remainder = dividend - quot * divisor; if (*remainder >= divisor) { quot++; *remainder -= divisor; } } return quot; } EXPORT_SYMBOL(div64_u64_rem); #endif /* * div64_u64 - unsigned 64bit divide with 64bit divisor * @dividend: 64bit dividend * @divisor: 64bit divisor * * This implementation is a modified version of the algorithm proposed * by the book 'Hacker's Delight'. The original source and full proof * can be found here and is available for use without restriction. * * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' */ #ifndef div64_u64 u64 div64_u64(u64 dividend, u64 divisor) { u32 high = divisor >> 32; u64 quot; if (high == 0) { quot = div_u64(dividend, divisor); } else { int n = fls(high); quot = div_u64(dividend >> n, divisor >> n); if (quot != 0) quot--; if ((dividend - quot * divisor) >= divisor) quot++; } return quot; } EXPORT_SYMBOL(div64_u64); #endif #ifndef div64_s64 s64 div64_s64(s64 dividend, s64 divisor) { s64 quot, t; quot = div64_u64(abs(dividend), abs(divisor)); t = (dividend ^ divisor) >> 63; return (quot ^ t) - t; } EXPORT_SYMBOL(div64_s64); #endif #endif /* BITS_PER_LONG == 32 */ /* * Iterative div/mod for use when dividend is not expected to be much * bigger than divisor. */ u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { return __iter_div_u64_rem(dividend, divisor, remainder); } EXPORT_SYMBOL(iter_div_u64_rem); #ifndef mul_u64_u64_div_u64 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) { if (ilog2(a) + ilog2(b) <= 62) return div64_u64(a * b, c); #if defined(__SIZEOF_INT128__) /* native 64x64=128 bits multiplication */ u128 prod = (u128)a * b; u64 n_lo = prod, n_hi = prod >> 64; #else /* perform a 64x64=128 bits multiplication manually */ u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32; u64 x, y, z; x = (u64)a_lo * b_lo; y = (u64)a_lo * b_hi + (u32)(x >> 32); z = (u64)a_hi * b_hi + (u32)(y >> 32); y = (u64)a_hi * b_lo + (u32)y; z += (u32)(y >> 32); x = (y << 32) + (u32)x; u64 n_lo = x, n_hi = z; #endif /* make sure c is not zero, trigger exception otherwise */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdiv-by-zero" if (unlikely(c == 0)) return 1/0; #pragma GCC diagnostic pop int shift = __builtin_ctzll(c); /* try reducing the fraction in case the dividend becomes <= 64 bits */ if ((n_hi >> shift) == 0) { u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo; return div64_u64(n, c >> shift); /* * The remainder value if needed would be: * res = div64_u64_rem(n, c >> shift, &rem); * rem = (rem << shift) + (n_lo - (n << shift)); */ } if (n_hi >= c) { /* overflow: result is unrepresentable in a u64 */ return -1; } /* Do the full 128 by 64 bits division */ shift = __builtin_clzll(c); c <<= shift; int p = 64 + shift; u64 res = 0; bool carry; do { carry = n_hi >> 63; shift = carry ? 1 : __builtin_clzll(n_hi); if (p < shift) break; p -= shift; n_hi <<= shift; n_hi |= n_lo >> (64 - shift); n_lo <<= shift; if (carry || (n_hi >= c)) { n_hi -= c; res |= 1ULL << p; } } while (n_hi); /* The remainder value if needed would be n_hi << p */ return res; } EXPORT_SYMBOL(mul_u64_u64_div_u64); #endif