#ifndef IOU_CORE_H #define IOU_CORE_H #include #include #include #include #include #include #include #include "io-wq.h" #include "slist.h" #include "filetable.h" #ifndef CREATE_TRACE_POINTS #include #endif enum { IOU_OK = 0, IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, /* * Requeue the task_work to restart operations on this request. The * actual value isn't important, should just be not an otherwise * valid error code, yet less than -MAX_ERRNO and valid internally. */ IOU_REQUEUE = -3072, /* * Intended only when both IO_URING_F_MULTISHOT is passed * to indicate to the poll runner that multishot should be * removed and the result is set on req->cqe.res. */ IOU_STOP_MULTISHOT = -ECANCELED, }; struct io_wait_queue { struct wait_queue_entry wq; struct io_ring_ctx *ctx; unsigned cq_tail; unsigned cq_min_tail; unsigned nr_timeouts; int hit_timeout; ktime_t min_timeout; ktime_t timeout; struct hrtimer t; #ifdef CONFIG_NET_RX_BUSY_POLL ktime_t napi_busy_poll_dt; bool napi_prefer_busy_poll; #endif }; static inline bool io_should_wake(struct io_wait_queue *iowq) { struct io_ring_ctx *ctx = iowq->ctx; int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; /* * Wake up if we have enough events, or if a timeout occurred since we * started waiting. For timeouts, we always want to return to userspace, * regardless of event count. */ return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; } #define IORING_MAX_ENTRIES 32768 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) unsigned long rings_size(unsigned int flags, unsigned int sq_entries, unsigned int cq_entries, size_t *sq_offset); int io_uring_fill_params(unsigned entries, struct io_uring_params *p); bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); int io_run_task_work_sig(struct io_ring_ctx *ctx); void io_req_defer_failed(struct io_kiocb *req, s32 res); bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); void __io_commit_cqring_flush(struct io_ring_ctx *ctx); struct file *io_file_get_normal(struct io_kiocb *req, int fd); struct file *io_file_get_fixed(struct io_kiocb *req, int fd, unsigned issue_flags); void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, unsigned flags); bool io_alloc_async_data(struct io_kiocb *req); void io_req_task_queue(struct io_kiocb *req); void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); void io_req_task_queue_fail(struct io_kiocb *req, int ret); void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); void tctx_task_work(struct callback_head *cb); __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); int io_uring_alloc_task_context(struct task_struct *task, struct io_ring_ctx *ctx); int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, int start, int end); void io_req_queue_iowq(struct io_kiocb *req); int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); void __io_submit_flush_completions(struct io_ring_ctx *ctx); struct io_wq_work *io_wq_free_work(struct io_wq_work *work); void io_wq_submit_work(struct io_wq_work *work); void io_free_req(struct io_kiocb *req); void io_queue_next(struct io_kiocb *req); void io_task_refs_refill(struct io_uring_task *tctx); bool __io_alloc_req_refill(struct io_ring_ctx *ctx); bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, bool cancel_all); void io_activate_pollwq(struct io_ring_ctx *ctx); static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) { #if defined(CONFIG_PROVE_LOCKING) lockdep_assert(in_task()); if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) lockdep_assert_held(&ctx->uring_lock); if (ctx->flags & IORING_SETUP_IOPOLL) { lockdep_assert_held(&ctx->uring_lock); } else if (!ctx->task_complete) { lockdep_assert_held(&ctx->completion_lock); } else if (ctx->submitter_task) { /* * ->submitter_task may be NULL and we can still post a CQE, * if the ring has been setup with IORING_SETUP_R_DISABLED. * Not from an SQE, as those cannot be submitted, but via * updating tagged resources. */ if (!percpu_ref_is_dying(&ctx->refs)) lockdep_assert(current == ctx->submitter_task); } #endif } static inline void io_req_task_work_add(struct io_kiocb *req) { __io_req_task_work_add(req, 0); } static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) { if (!wq_list_empty(&ctx->submit_state.compl_reqs) || ctx->submit_state.cq_flush) __io_submit_flush_completions(ctx); } #define io_for_each_link(pos, head) \ for (pos = (head); pos; pos = pos->link) static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, struct io_uring_cqe **ret, bool overflow) { io_lockdep_assert_cq_locked(ctx); if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { if (unlikely(!io_cqe_cache_refill(ctx, overflow))) return false; } *ret = ctx->cqe_cached; ctx->cached_cq_tail++; ctx->cqe_cached++; if (ctx->flags & IORING_SETUP_CQE32) ctx->cqe_cached++; return true; } static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) { return io_get_cqe_overflow(ctx, ret, false); } static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, struct io_kiocb *req) { struct io_uring_cqe *cqe; /* * If we can't get a cq entry, userspace overflowed the * submission (by quite a lot). Increment the overflow count in * the ring. */ if (unlikely(!io_get_cqe(ctx, &cqe))) return false; memcpy(cqe, &req->cqe, sizeof(*cqe)); if (ctx->flags & IORING_SETUP_CQE32) { memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); memset(&req->big_cqe, 0, sizeof(req->big_cqe)); } if (trace_io_uring_complete_enabled()) trace_io_uring_complete(req->ctx, req, cqe); return true; } static inline void req_set_fail(struct io_kiocb *req) { req->flags |= REQ_F_FAIL; if (req->flags & REQ_F_CQE_SKIP) { req->flags &= ~REQ_F_CQE_SKIP; req->flags |= REQ_F_SKIP_LINK_CQES; } } static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) { req->cqe.res = res; req->cqe.flags = cflags; } static inline bool req_has_async_data(struct io_kiocb *req) { return req->flags & REQ_F_ASYNC_DATA; } static inline void io_put_file(struct io_kiocb *req) { if (!(req->flags & REQ_F_FIXED_FILE) && req->file) fput(req->file); } static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, unsigned issue_flags) { lockdep_assert_held(&ctx->uring_lock); if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) mutex_unlock(&ctx->uring_lock); } static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, unsigned issue_flags) { /* * "Normal" inline submissions always hold the uring_lock, since we * grab it from the system call. Same is true for the SQPOLL offload. * The only exception is when we've detached the request and issue it * from an async worker thread, grab the lock for that case. */ if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) mutex_lock(&ctx->uring_lock); lockdep_assert_held(&ctx->uring_lock); } static inline void io_commit_cqring(struct io_ring_ctx *ctx) { /* order cqe stores with ring update */ smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); } static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) { if (wq_has_sleeper(&ctx->poll_wq)) __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); } static inline void io_cqring_wake(struct io_ring_ctx *ctx) { /* * Trigger waitqueue handler on all waiters on our waitqueue. This * won't necessarily wake up all the tasks, io_should_wake() will make * that decision. * * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter * set in the mask so that if we recurse back into our own poll * waitqueue handlers, we know we have a dependency between eventfd or * epoll and should terminate multishot poll at that point. */ if (wq_has_sleeper(&ctx->cq_wait)) __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); } static inline bool io_sqring_full(struct io_ring_ctx *ctx) { struct io_rings *r = ctx->rings; /* * SQPOLL must use the actual sqring head, as using the cached_sq_head * is race prone if the SQPOLL thread has grabbed entries but not yet * committed them to the ring. For !SQPOLL, this doesn't matter, but * since this helper is just used for SQPOLL sqring waits (or POLLOUT), * just read the actual sqring head unconditionally. */ return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; } static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; unsigned int entries; /* make sure SQ entry isn't read before tail */ entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; return min(entries, ctx->sq_entries); } static inline int io_run_task_work(void) { bool ret = false; /* * Always check-and-clear the task_work notification signal. With how * signaling works for task_work, we can find it set with nothing to * run. We need to clear it for that case, like get_signal() does. */ if (test_thread_flag(TIF_NOTIFY_SIGNAL)) clear_notify_signal(); /* * PF_IO_WORKER never returns to userspace, so check here if we have * notify work that needs processing. */ if (current->flags & PF_IO_WORKER) { if (test_thread_flag(TIF_NOTIFY_RESUME)) { __set_current_state(TASK_RUNNING); resume_user_mode_work(NULL); } if (current->io_uring) { unsigned int count = 0; __set_current_state(TASK_RUNNING); tctx_task_work_run(current->io_uring, UINT_MAX, &count); if (count) ret = true; } } if (task_work_pending(current)) { __set_current_state(TASK_RUNNING); task_work_run(); ret = true; } return ret; } static inline bool io_local_work_pending(struct io_ring_ctx *ctx) { return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist); } static inline bool io_task_work_pending(struct io_ring_ctx *ctx) { return task_work_pending(current) || io_local_work_pending(ctx); } static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) { lockdep_assert_held(&ctx->uring_lock); } /* * Don't complete immediately but use deferred completion infrastructure. * Protected by ->uring_lock and can only be used either with * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. */ static inline void io_req_complete_defer(struct io_kiocb *req) __must_hold(&req->ctx->uring_lock) { struct io_submit_state *state = &req->ctx->submit_state; lockdep_assert_held(&req->ctx->uring_lock); wq_list_add_tail(&req->comp_list, &state->compl_reqs); } static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) { if (unlikely(ctx->off_timeout_used || ctx->drain_active || ctx->has_evfd || ctx->poll_activated)) __io_commit_cqring_flush(ctx); } static inline void io_get_task_refs(int nr) { struct io_uring_task *tctx = current->io_uring; tctx->cached_refs -= nr; if (unlikely(tctx->cached_refs < 0)) io_task_refs_refill(tctx); } static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) { return !ctx->submit_state.free_list.next; } extern struct kmem_cache *req_cachep; extern struct kmem_cache *io_buf_cachep; static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) { struct io_kiocb *req; req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); wq_stack_extract(&ctx->submit_state.free_list); return req; } static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) { if (unlikely(io_req_cache_empty(ctx))) { if (!__io_alloc_req_refill(ctx)) return false; } *req = io_extract_req(ctx); return true; } static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) { return likely(ctx->submitter_task == current); } static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) { return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || ctx->submitter_task == current); } /* * Terminate the request if either of these conditions are true: * * 1) It's being executed by the original task, but that task is marked * with PF_EXITING as it's exiting. * 2) PF_KTHREAD is set, in which case the invoker of the task_work is * our fallback task_work. */ static inline bool io_should_terminate_tw(void) { return current->flags & (PF_KTHREAD | PF_EXITING); } static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) { io_req_set_res(req, res, 0); req->io_task_work.func = io_req_task_complete; io_req_task_work_add(req); } /* * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each * slot. */ static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) { if (ctx->flags & IORING_SETUP_SQE128) return 2 * sizeof(struct io_uring_sqe); return sizeof(struct io_uring_sqe); } static inline bool io_file_can_poll(struct io_kiocb *req) { if (req->flags & REQ_F_CAN_POLL) return true; if (req->file && file_can_poll(req->file)) { req->flags |= REQ_F_CAN_POLL; return true; } return false; } static inline ktime_t io_get_time(struct io_ring_ctx *ctx) { if (ctx->clockid == CLOCK_MONOTONIC) return ktime_get(); return ktime_get_with_offset(ctx->clock_offset); } enum { IO_CHECK_CQ_OVERFLOW_BIT, IO_CHECK_CQ_DROPPED_BIT, }; static inline bool io_has_work(struct io_ring_ctx *ctx) { return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || io_local_work_pending(ctx); } #endif