/* * Copyright 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef DRM_FOURCC_H #define DRM_FOURCC_H #include "drm.h" #if defined(__cplusplus) extern "C" { #endif /** * DOC: overview * * In the DRM subsystem, framebuffer pixel formats are described using the * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the * fourcc code, a Format Modifier may optionally be provided, in order to * further describe the buffer's format - for example tiling or compression. * * Format Modifiers * ---------------- * * Format modifiers are used in conjunction with a fourcc code, forming a * unique fourcc:modifier pair. This format:modifier pair must fully define the * format and data layout of the buffer, and should be the only way to describe * that particular buffer. * * Having multiple fourcc:modifier pairs which describe the same layout should * be avoided, as such aliases run the risk of different drivers exposing * different names for the same data format, forcing userspace to understand * that they are aliases. * * Format modifiers may change any property of the buffer, including the number * of planes and/or the required allocation size. Format modifiers are * vendor-namespaced, and as such the relationship between a fourcc code and a * modifier is specific to the modifier being used. For example, some modifiers * may preserve meaning - such as number of planes - from the fourcc code, * whereas others may not. * * Modifiers must uniquely encode buffer layout. In other words, a buffer must * match only a single modifier. A modifier must not be a subset of layouts of * another modifier. For instance, it's incorrect to encode pitch alignment in * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel * aligned modifier. That said, modifiers can have implicit minimal * requirements. * * For modifiers where the combination of fourcc code and modifier can alias, * a canonical pair needs to be defined and used by all drivers. Preferred * combinations are also encouraged where all combinations might lead to * confusion and unnecessarily reduced interoperability. An example for the * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts. * * There are two kinds of modifier users: * * - Kernel and user-space drivers: for drivers it's important that modifiers * don't alias, otherwise two drivers might support the same format but use * different aliases, preventing them from sharing buffers in an efficient * format. * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users * see modifiers as opaque tokens they can check for equality and intersect. * These users mustn't need to know to reason about the modifier value * (i.e. they are not expected to extract information out of the modifier). * * Vendors should document their modifier usage in as much detail as * possible, to ensure maximum compatibility across devices, drivers and * applications. * * The authoritative list of format modifier codes is found in * `include/uapi/drm/drm_fourcc.h` * * Open Source User Waiver * ----------------------- * * Because this is the authoritative source for pixel formats and modifiers * referenced by GL, Vulkan extensions and other standards and hence used both * by open source and closed source driver stacks, the usual requirement for an * upstream in-kernel or open source userspace user does not apply. * * To ensure, as much as feasible, compatibility across stacks and avoid * confusion with incompatible enumerations stakeholders for all relevant driver * stacks should approve additions. */ #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ ((__u32)(c) << 16) | ((__u32)(d) << 24)) #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ /* Reserve 0 for the invalid format specifier */ #define DRM_FORMAT_INVALID 0 /* color index */ #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */ #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */ #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */ #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ /* 1 bpp Darkness (inverse relationship between channel value and brightness) */ #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */ /* 2 bpp Darkness (inverse relationship between channel value and brightness) */ #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */ /* 4 bpp Darkness (inverse relationship between channel value and brightness) */ #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */ /* 8 bpp Darkness (inverse relationship between channel value and brightness) */ #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */ /* 1 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */ /* 2 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */ /* 4 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */ /* 8 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ /* 10 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */ /* 12 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */ /* 16 bpp Red (direct relationship between channel value and brightness) */ #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ /* 16 bpp RG */ #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ /* 32 bpp RG */ #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ /* 8 bpp RGB */ #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ /* 16 bpp RGB */ #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ /* 24 bpp RGB */ #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ /* 32 bpp RGB */ #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ /* 64 bpp RGB */ #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */ #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */ #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */ #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */ /* * Floating point 64bpp RGB * IEEE 754-2008 binary16 half-precision float * [15:0] sign:exponent:mantissa 1:5:10 */ #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ /* * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits * of unused padding per component: */ #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */ /* packed YCbCr */ #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */ #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */ #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ /* * packed Y2xx indicate for each component, xx valid data occupy msb * 16-xx padding occupy lsb */ #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ /* * packed Y4xx indicate for each component, xx valid data occupy msb * 16-xx padding occupy lsb except Y410 */ #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ /* * packed YCbCr420 2x2 tiled formats * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile */ /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') /* * 1-plane YUV 4:2:0 * In these formats, the component ordering is specified (Y, followed by U * then V), but the exact Linear layout is undefined. * These formats can only be used with a non-Linear modifier. */ #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') /* * 2 plane RGB + A * index 0 = RGB plane, same format as the corresponding non _A8 format has * index 1 = A plane, [7:0] A */ #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') /* * 2 plane YCbCr * index 0 = Y plane, [7:0] Y * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian * or * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian */ #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ /* * 2 plane YCbCr * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian */ #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ #define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */ #define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y:x [10:6] little endian * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian */ #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y:x [10:6] little endian * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian */ #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y:x [12:4] little endian * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian */ #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ /* * 2 plane YCbCr MSB aligned * index 0 = Y plane, [15:0] Y little endian * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian */ #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ /* 2 plane YCbCr420. * 3 10 bit components and 2 padding bits packed into 4 bytes. * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian */ #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */ /* 3 plane non-subsampled (444) YCbCr * 16 bits per component, but only 10 bits are used and 6 bits are padded * index 0: Y plane, [15:0] Y:x [10:6] little endian * index 1: Cb plane, [15:0] Cb:x [10:6] little endian * index 2: Cr plane, [15:0] Cr:x [10:6] little endian */ #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') /* 3 plane non-subsampled (444) YCrCb * 16 bits per component, but only 10 bits are used and 6 bits are padded * index 0: Y plane, [15:0] Y:x [10:6] little endian * index 1: Cr plane, [15:0] Cr:x [10:6] little endian * index 2: Cb plane, [15:0] Cb:x [10:6] little endian */ #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') /* * 3 plane YCbCr * index 0: Y plane, [7:0] Y * index 1: Cb plane, [7:0] Cb * index 2: Cr plane, [7:0] Cr * or * index 1: Cr plane, [7:0] Cr * index 2: Cb plane, [7:0] Cb */ #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ /* * Format Modifiers: * * Format modifiers describe, typically, a re-ordering or modification * of the data in a plane of an FB. This can be used to express tiled/ * swizzled formats, or compression, or a combination of the two. * * The upper 8 bits of the format modifier are a vendor-id as assigned * below. The lower 56 bits are assigned as vendor sees fit. */ /* Vendor Ids: */ #define DRM_FORMAT_MOD_VENDOR_NONE 0 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a /* add more to the end as needed */ #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) #define fourcc_mod_get_vendor(modifier) \ (((modifier) >> 56) & 0xff) #define fourcc_mod_is_vendor(modifier, vendor) \ (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor) #define fourcc_mod_code(vendor, val) \ ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) /* * Format Modifier tokens: * * When adding a new token please document the layout with a code comment, * similar to the fourcc codes above. drm_fourcc.h is considered the * authoritative source for all of these. * * Generic modifier names: * * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names * for layouts which are common across multiple vendors. To preserve * compatibility, in cases where a vendor-specific definition already exists and * a generic name for it is desired, the common name is a purely symbolic alias * and must use the same numerical value as the original definition. * * Note that generic names should only be used for modifiers which describe * generic layouts (such as pixel re-ordering), which may have * independently-developed support across multiple vendors. * * In future cases where a generic layout is identified before merging with a * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor * 'NONE' could be considered. This should only be for obvious, exceptional * cases to avoid polluting the 'GENERIC' namespace with modifiers which only * apply to a single vendor. * * Generic names should not be used for cases where multiple hardware vendors * have implementations of the same standardised compression scheme (such as * AFBC). In those cases, all implementations should use the same format * modifier(s), reflecting the vendor of the standard. */ #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE /* * Invalid Modifier * * This modifier can be used as a sentinel to terminate the format modifiers * list, or to initialize a variable with an invalid modifier. It might also be * used to report an error back to userspace for certain APIs. */ #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) /* * Linear Layout * * Just plain linear layout. Note that this is different from no specifying any * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), * which tells the driver to also take driver-internal information into account * and so might actually result in a tiled framebuffer. */ #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) /* * Deprecated: use DRM_FORMAT_MOD_LINEAR instead * * The "none" format modifier doesn't actually mean that the modifier is * implicit, instead it means that the layout is linear. Whether modifiers are * used is out-of-band information carried in an API-specific way (e.g. in a * flag for drm_mode_fb_cmd2). */ #define DRM_FORMAT_MOD_NONE 0 /* Intel framebuffer modifiers */ /* * Intel X-tiling layout * * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) * in row-major layout. Within the tile bytes are laid out row-major, with * a platform-dependent stride. On top of that the memory can apply * platform-depending swizzling of some higher address bits into bit6. * * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. * On earlier platforms the is highly platforms specific and not useful for * cross-driver sharing. It exists since on a given platform it does uniquely * identify the layout in a simple way for i915-specific userspace, which * facilitated conversion of userspace to modifiers. Additionally the exact * format on some really old platforms is not known. */ #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) /* * Intel Y-tiling layout * * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) * chunks column-major, with a platform-dependent height. On top of that the * memory can apply platform-depending swizzling of some higher address bits * into bit6. * * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. * On earlier platforms the is highly platforms specific and not useful for * cross-driver sharing. It exists since on a given platform it does uniquely * identify the layout in a simple way for i915-specific userspace, which * facilitated conversion of userspace to modifiers. Additionally the exact * format on some really old platforms is not known. */ #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) /* * Intel Yf-tiling layout * * This is a tiled layout using 4Kb tiles in row-major layout. * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which * are arranged in four groups (two wide, two high) with column-major layout. * Each group therefore consists out of four 256 byte units, which are also laid * out as 2x2 column-major. * 256 byte units are made out of four 64 byte blocks of pixels, producing * either a square block or a 2:1 unit. * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width * in pixel depends on the pixel depth. */ #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) /* * Intel color control surface (CCS) for render compression * * The framebuffer format must be one of the 8:8:8:8 RGB formats. * The main surface will be plane index 0 and must be Y/Yf-tiled, * the CCS will be plane index 1. * * Each CCS tile matches a 1024x512 pixel area of the main surface. * To match certain aspects of the 3D hardware the CCS is * considered to be made up of normal 128Bx32 Y tiles, Thus * the CCS pitch must be specified in multiples of 128 bytes. * * In reality the CCS tile appears to be a 64Bx64 Y tile, composed * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. * But that fact is not relevant unless the memory is accessed * directly. */ #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) /* * Intel color control surfaces (CCS) for Gen-12 render compression. * * The main surface is Y-tiled and at plane index 0, the CCS is linear and * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in * main surface. In other words, 4 bits in CCS map to a main surface cache * line pair. The main surface pitch is required to be a multiple of four * Y-tile widths. */ #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) /* * Intel color control surfaces (CCS) for Gen-12 media compression * * The main surface is Y-tiled and at plane index 0, the CCS is linear and * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in * main surface. In other words, 4 bits in CCS map to a main surface cache * line pair. The main surface pitch is required to be a multiple of four * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, * planes 2 and 3 for the respective CCS. */ #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) /* * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render * compression. * * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear * and at index 1. The clear color is stored at index 2, and the pitch should * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits * represents Raw Clear Color Red, Green, Blue and Alpha color each represented * by 32 bits. The raw clear color is consumed by the 3d engine and generates * the converted clear color of size 64 bits. The first 32 bits store the Lower * Converted Clear Color value and the next 32 bits store the Higher Converted * Clear Color value when applicable. The Converted Clear Color values are * consumed by the DE. The last 64 bits are used to store Color Discard Enable * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line * corresponds to an area of 4x1 tiles in the main surface. The main surface * pitch is required to be a multiple of 4 tile widths. */ #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8) /* * Intel Tile 4 layout * * This is a tiled layout using 4KB tiles in a row-major layout. It has the same * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It * only differs from Tile Y at the 256B granularity in between. At this * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape * of 64B x 8 rows. */ #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9) /* * Intel color control surfaces (CCS) for DG2 render compression. * * The main surface is Tile 4 and at plane index 0. The CCS data is stored * outside of the GEM object in a reserved memory area dedicated for the * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The * main surface pitch is required to be a multiple of four Tile 4 widths. */ #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10) /* * Intel color control surfaces (CCS) for DG2 media compression. * * The main surface is Tile 4 and at plane index 0. For semi-planar formats * like NV12, the Y and UV planes are Tile 4 and are located at plane indices * 0 and 1, respectively. The CCS for all planes are stored outside of the * GEM object in a reserved memory area dedicated for the storage of the * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface * pitch is required to be a multiple of four Tile 4 widths. */ #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11) /* * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression. * * The main surface is Tile 4 and at plane index 0. The CCS data is stored * outside of the GEM object in a reserved memory area dedicated for the * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The * main surface pitch is required to be a multiple of four Tile 4 widths. The * clear color is stored at plane index 1 and the pitch should be 64 bytes * aligned. The format of the 256 bits of clear color data matches the one used * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description * for details. */ #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12) /* * Intel Color Control Surfaces (CCS) for display ver. 14 render compression. * * The main surface is tile4 and at plane index 0, the CCS is linear and * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in * main surface. In other words, 4 bits in CCS map to a main surface cache * line pair. The main surface pitch is required to be a multiple of four * tile4 widths. */ #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13) /* * Intel Color Control Surfaces (CCS) for display ver. 14 media compression * * The main surface is tile4 and at plane index 0, the CCS is linear and * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in * main surface. In other words, 4 bits in CCS map to a main surface cache * line pair. The main surface pitch is required to be a multiple of four * tile4 widths. For semi-planar formats like NV12, CCS planes follow the * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, * planes 2 and 3 for the respective CCS. */ #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14) /* * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render * compression. * * The main surface is tile4 and is at plane index 0 whereas CCS is linear * and at index 1. The clear color is stored at index 2, and the pitch should * be ignored. The clear color structure is 256 bits. The first 128 bits * represents Raw Clear Color Red, Green, Blue and Alpha color each represented * by 32 bits. The raw clear color is consumed by the 3d engine and generates * the converted clear color of size 64 bits. The first 32 bits store the Lower * Converted Clear Color value and the next 32 bits store the Higher Converted * Clear Color value when applicable. The Converted Clear Color values are * consumed by the DE. The last 64 bits are used to store Color Discard Enable * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line * corresponds to an area of 4x1 tiles in the main surface. The main surface * pitch is required to be a multiple of 4 tile widths. */ #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15) /* * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression * on integrated graphics * * The main surface is Tile 4 and at plane index 0. For semi-planar formats * like NV12, the Y and UV planes are Tile 4 and are located at plane indices * 0 and 1, respectively. The CCS for all planes are stored outside of the * GEM object in a reserved memory area dedicated for the storage of the * CCS data for all compressible GEM objects. */ #define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16) /* * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression * on discrete graphics * * The main surface is Tile 4 and at plane index 0. For semi-planar formats * like NV12, the Y and UV planes are Tile 4 and are located at plane indices * 0 and 1, respectively. The CCS for all planes are stored outside of the * GEM object in a reserved memory area dedicated for the storage of the * CCS data for all compressible GEM objects. The GEM object must be stored in * contiguous memory with a size aligned to 64KB */ #define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17) /* * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks * * Macroblocks are laid in a Z-shape, and each pixel data is following the * standard NV12 style. * As for NV12, an image is the result of two frame buffers: one for Y, * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). * Alignment requirements are (for each buffer): * - multiple of 128 pixels for the width * - multiple of 32 pixels for the height * * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html */ #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) /* * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks * * This is a simple tiled layout using tiles of 16x16 pixels in a row-major * layout. For YCbCr formats Cb/Cr components are taken in such a way that * they correspond to their 16x16 luma block. */ #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) /* * Qualcomm Compressed Format * * Refers to a compressed variant of the base format that is compressed. * Implementation may be platform and base-format specific. * * Each macrotile consists of m x n (mostly 4 x 4) tiles. * Pixel data pitch/stride is aligned with macrotile width. * Pixel data height is aligned with macrotile height. * Entire pixel data buffer is aligned with 4k(bytes). */ #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) /* * Qualcomm Tiled Format * * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed. * Implementation may be platform and base-format specific. * * Each macrotile consists of m x n (mostly 4 x 4) tiles. * Pixel data pitch/stride is aligned with macrotile width. * Pixel data height is aligned with macrotile height. * Entire pixel data buffer is aligned with 4k(bytes). */ #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3) /* * Qualcomm Alternate Tiled Format * * Alternate tiled format typically only used within GMEM. * Implementation may be platform and base-format specific. */ #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2) /* Vivante framebuffer modifiers */ /* * Vivante 4x4 tiling layout * * This is a simple tiled layout using tiles of 4x4 pixels in a row-major * layout. */ #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) /* * Vivante 64x64 super-tiling layout * * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- * major layout. * * For more information: see * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling */ #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) /* * Vivante 4x4 tiling layout for dual-pipe * * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a * different base address. Offsets from the base addresses are therefore halved * compared to the non-split tiled layout. */ #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) /* * Vivante 64x64 super-tiling layout for dual-pipe * * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile * starts at a different base address. Offsets from the base addresses are * therefore halved compared to the non-split super-tiled layout. */ #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) /* * Vivante TS (tile-status) buffer modifiers. They can be combined with all of * the color buffer tiling modifiers defined above. When TS is present it's a * separate buffer containing the clear/compression status of each tile. The * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer * tile size in bytes covered by one entry in the status buffer and s is the * number of status bits per entry. * We reserve the top 8 bits of the Vivante modifier space for tile status * clear/compression modifiers, as future cores might add some more TS layout * variations. */ #define VIVANTE_MOD_TS_64_4 (1ULL << 48) #define VIVANTE_MOD_TS_64_2 (2ULL << 48) #define VIVANTE_MOD_TS_128_4 (3ULL << 48) #define VIVANTE_MOD_TS_256_4 (4ULL << 48) #define VIVANTE_MOD_TS_MASK (0xfULL << 48) /* * Vivante compression modifiers. Those depend on a TS modifier being present * as the TS bits get reinterpreted as compression tags instead of simple * clear markers when compression is enabled. */ #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52) #define VIVANTE_MOD_COMP_MASK (0xfULL << 52) /* Masking out the extension bits will yield the base modifier. */ #define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \ VIVANTE_MOD_COMP_MASK) /* NVIDIA frame buffer modifiers */ /* * Tegra Tiled Layout, used by Tegra 2, 3 and 4. * * Pixels are arranged in simple tiles of 16 x 16 bytes. */ #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) /* * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, * and Tegra GPUs starting with Tegra K1. * * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies * based on the architecture generation. GOBs themselves are then arranged in * 3D blocks, with the block dimensions (in terms of GOBs) always being a power * of two, and hence expressible as their log2 equivalent (E.g., "2" represents * a block depth or height of "4"). * * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format * in full detail. * * Macro * Bits Param Description * ---- ----- ----------------------------------------------------------------- * * 3:0 h log2(height) of each block, in GOBs. Placed here for * compatibility with the existing * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. * * 4:4 - Must be 1, to indicate block-linear layout. Necessary for * compatibility with the existing * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. * * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block * size). Must be zero. * * Note there is no log2(width) parameter. Some portions of the * hardware support a block width of two gobs, but it is impractical * to use due to lack of support elsewhere, and has no known * benefits. * * 11:9 - Reserved (To support 2D-array textures with variable array stride * in blocks, specified via log2(tile width in blocks)). Must be * zero. * * 19:12 k Page Kind. This value directly maps to a field in the page * tables of all GPUs >= NV50. It affects the exact layout of bits * in memory and can be derived from the tuple * * (format, GPU model, compression type, samples per pixel) * * Where compression type is defined below. If GPU model were * implied by the format modifier, format, or memory buffer, page * kind would not need to be included in the modifier itself, but * since the modifier should define the layout of the associated * memory buffer independent from any device or other context, it * must be included here. * * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed * starting with Fermi GPUs. Additionally, the mapping between page * kind and bit layout has changed at various points. * * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping * 2 = Gob Height 8, Turing+ Page Kind mapping * 3 = Reserved for future use. * * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further * bit remapping step that occurs at an even lower level than the * page kind and block linear swizzles. This causes the layout of * surfaces mapped in those SOC's GPUs to be incompatible with the * equivalent mapping on other GPUs in the same system. * * 0 = Tegra K1 - Tegra Parker/TX2 Layout. * 1 = Desktop GPU and Tegra Xavier+ Layout * * 25:23 c Lossless Framebuffer Compression type. * * 0 = none * 1 = ROP/3D, layout 1, exact compression format implied by Page * Kind field * 2 = ROP/3D, layout 2, exact compression format implied by Page * Kind field * 3 = CDE horizontal * 4 = CDE vertical * 5 = Reserved for future use * 6 = Reserved for future use * 7 = Reserved for future use * * 55:25 - Reserved for future use. Must be zero. */ #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ fourcc_mod_code(NVIDIA, (0x10 | \ ((h) & 0xf) | \ (((k) & 0xff) << 12) | \ (((g) & 0x3) << 20) | \ (((s) & 0x1) << 22) | \ (((c) & 0x7) << 23))) /* To grandfather in prior block linear format modifiers to the above layout, * the page kind "0", which corresponds to "pitch/linear" and hence is unusable * with block-linear layouts, is remapped within drivers to the value 0xfe, * which corresponds to the "generic" kind used for simple single-sample * uncompressed color formats on Fermi - Volta GPUs. */ static inline __u64 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) { if (!(modifier & 0x10) || (modifier & (0xff << 12))) return modifier; else return modifier | (0xfe << 12); } /* * 16Bx2 Block Linear layout, used by Tegra K1 and later * * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked * vertically by a power of 2 (1 to 32 GOBs) to form a block. * * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. * * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. * Valid values are: * * 0 == ONE_GOB * 1 == TWO_GOBS * 2 == FOUR_GOBS * 3 == EIGHT_GOBS * 4 == SIXTEEN_GOBS * 5 == THIRTYTWO_GOBS * * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format * in full detail. */ #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) /* * Some Broadcom modifiers take parameters, for example the number of * vertical lines in the image. Reserve the lower 32 bits for modifier * type, and the next 24 bits for parameters. Top 8 bits are the * vendor code. */ #define __fourcc_mod_broadcom_param_shift 8 #define __fourcc_mod_broadcom_param_bits 48 #define fourcc_mod_broadcom_code(val, params) \ fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) #define fourcc_mod_broadcom_param(m) \ ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) #define fourcc_mod_broadcom_mod(m) \ ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ __fourcc_mod_broadcom_param_shift)) /* * Broadcom VC4 "T" format * * This is the primary layout that the V3D GPU can texture from (it * can't do linear). The T format has: * * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 * pixels at 32 bit depth. * * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually * 16x16 pixels). * * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows * they're (TR, BR, BL, TL), where bottom left is start of memory. * * - an image made of 4k tiles in rows either left-to-right (even rows of 4k * tiles) or right-to-left (odd rows of 4k tiles). */ #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) /* * Broadcom SAND format * * This is the native format that the H.264 codec block uses. For VC4 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. * * The image can be considered to be split into columns, and the * columns are placed consecutively into memory. The width of those * columns can be either 32, 64, 128, or 256 pixels, but in practice * only 128 pixel columns are used. * * The pitch between the start of each column is set to optimally * switch between SDRAM banks. This is passed as the number of lines * of column width in the modifier (we can't use the stride value due * to various core checks that look at it , so you should set the * stride to width*cpp). * * Note that the column height for this format modifier is the same * for all of the planes, assuming that each column contains both Y * and UV. Some SAND-using hardware stores UV in a separate tiled * image from Y to reduce the column height, which is not supported * with these modifiers. * * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes * wide, but as this is a 10 bpp format that translates to 96 pixels. */ #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(2, v) #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(3, v) #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(4, v) #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ fourcc_mod_broadcom_code(5, v) #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) /* Broadcom UIF format * * This is the common format for the current Broadcom multimedia * blocks, including V3D 3.x and newer, newer video codecs, and * displays. * * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are * stored in columns, with padding between the columns to ensure that * moving from one column to the next doesn't hit the same SDRAM page * bank. * * To calculate the padding, it is assumed that each hardware block * and the software driving it knows the platform's SDRAM page size, * number of banks, and XOR address, and that it's identical between * all blocks using the format. This tiling modifier will use XOR as * necessary to reduce the padding. If a hardware block can't do XOR, * the assumption is that a no-XOR tiling modifier will be created. */ #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) /* * Arm Framebuffer Compression (AFBC) modifiers * * AFBC is a proprietary lossless image compression protocol and format. * It provides fine-grained random access and minimizes the amount of data * transferred between IP blocks. * * AFBC has several features which may be supported and/or used, which are * represented using bits in the modifier. Not all combinations are valid, * and different devices or use-cases may support different combinations. * * Further information on the use of AFBC modifiers can be found in * Documentation/gpu/afbc.rst */ /* * The top 4 bits (out of the 56 bits allotted for specifying vendor specific * modifiers) denote the category for modifiers. Currently we have three * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of * sixteen different categories. */ #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) /* * AFBC superblock size * * Indicates the superblock size(s) used for the AFBC buffer. The buffer * size (in pixels) must be aligned to a multiple of the superblock size. * Four lowest significant bits(LSBs) are reserved for block size. * * Where one superblock size is specified, it applies to all planes of the * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, * the first applies to the Luma plane and the second applies to the Chroma * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). * Multiple superblock sizes are only valid for multi-plane YCbCr formats. */ #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) /* * AFBC lossless colorspace transform * * Indicates that the buffer makes use of the AFBC lossless colorspace * transform. */ #define AFBC_FORMAT_MOD_YTR (1ULL << 4) /* * AFBC block-split * * Indicates that the payload of each superblock is split. The second * half of the payload is positioned at a predefined offset from the start * of the superblock payload. */ #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) /* * AFBC sparse layout * * This flag indicates that the payload of each superblock must be stored at a * predefined position relative to the other superblocks in the same AFBC * buffer. This order is the same order used by the header buffer. In this mode * each superblock is given the same amount of space as an uncompressed * superblock of the particular format would require, rounding up to the next * multiple of 128 bytes in size. */ #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) /* * AFBC copy-block restrict * * Buffers with this flag must obey the copy-block restriction. The restriction * is such that there are no copy-blocks referring across the border of 8x8 * blocks. For the subsampled data the 8x8 limitation is also subsampled. */ #define AFBC_FORMAT_MOD_CBR (1ULL << 7) /* * AFBC tiled layout * * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all * superblocks inside a tile are stored together in memory. 8x8 tiles are used * for pixel formats up to and including 32 bpp while 4x4 tiles are used for * larger bpp formats. The order between the tiles is scan line. * When the tiled layout is used, the buffer size (in pixels) must be aligned * to the tile size. */ #define AFBC_FORMAT_MOD_TILED (1ULL << 8) /* * AFBC solid color blocks * * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth * can be reduced if a whole superblock is a single color. */ #define AFBC_FORMAT_MOD_SC (1ULL << 9) /* * AFBC double-buffer * * Indicates that the buffer is allocated in a layout safe for front-buffer * rendering. */ #define AFBC_FORMAT_MOD_DB (1ULL << 10) /* * AFBC buffer content hints * * Indicates that the buffer includes per-superblock content hints. */ #define AFBC_FORMAT_MOD_BCH (1ULL << 11) /* AFBC uncompressed storage mode * * Indicates that the buffer is using AFBC uncompressed storage mode. * In this mode all superblock payloads in the buffer use the uncompressed * storage mode, which is usually only used for data which cannot be compressed. * The buffer layout is the same as for AFBC buffers without USM set, this only * affects the storage mode of the individual superblocks. Note that even a * buffer without USM set may use uncompressed storage mode for some or all * superblocks, USM just guarantees it for all. */ #define AFBC_FORMAT_MOD_USM (1ULL << 12) /* * Arm Fixed-Rate Compression (AFRC) modifiers * * AFRC is a proprietary fixed rate image compression protocol and format, * designed to provide guaranteed bandwidth and memory footprint * reductions in graphics and media use-cases. * * AFRC buffers consist of one or more planes, with the same components * and meaning as an uncompressed buffer using the same pixel format. * * Within each plane, the pixel/luma/chroma values are grouped into * "coding unit" blocks which are individually compressed to a * fixed size (in bytes). All coding units within a given plane of a buffer * store the same number of values, and have the same compressed size. * * The coding unit size is configurable, allowing different rates of compression. * * The start of each AFRC buffer plane must be aligned to an alignment granule which * depends on the coding unit size. * * Coding Unit Size Plane Alignment * ---------------- --------------- * 16 bytes 1024 bytes * 24 bytes 512 bytes * 32 bytes 2048 bytes * * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned * to a multiple of the paging tile dimensions. * The dimensions of each paging tile depend on whether the buffer is optimised for * scanline (SCAN layout) or rotated (ROT layout) access. * * Layout Paging Tile Width Paging Tile Height * ------ ----------------- ------------------ * SCAN 16 coding units 4 coding units * ROT 8 coding units 8 coding units * * The dimensions of each coding unit depend on the number of components * in the compressed plane and whether the buffer is optimised for * scanline (SCAN layout) or rotated (ROT layout) access. * * Number of Components in Plane Layout Coding Unit Width Coding Unit Height * ----------------------------- --------- ----------------- ------------------ * 1 SCAN 16 samples 4 samples * Example: 16x4 luma samples in a 'Y' plane * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer * ----------------------------- --------- ----------------- ------------------ * 1 ROT 8 samples 8 samples * Example: 8x8 luma samples in a 'Y' plane * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer * ----------------------------- --------- ----------------- ------------------ * 2 DONT CARE 8 samples 4 samples * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer * ----------------------------- --------- ----------------- ------------------ * 3 DONT CARE 4 samples 4 samples * Example: 4x4 pixels in an RGB buffer without alpha * ----------------------------- --------- ----------------- ------------------ * 4 DONT CARE 4 samples 4 samples * Example: 4x4 pixels in an RGB buffer with alpha */ #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \ DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode) /* * AFRC coding unit size modifier. * * Indicates the number of bytes used to store each compressed coding unit for * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance * is the same for both Cb and Cr, which may be stored in separate planes. * * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store * each compressed coding unit in the first plane of the buffer. For RGBA buffers * this is the only plane, while for semi-planar and fully-planar YUV buffers, * this corresponds to the luma plane. * * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store * each compressed coding unit in the second and third planes in the buffer. * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s). * * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero. * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified. */ #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL) #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL) #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL) #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size) #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4) /* * AFRC scanline memory layout. * * Indicates if the buffer uses the scanline-optimised layout * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout. * The memory layout is the same for all planes. */ #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8) /* * Arm 16x16 Block U-Interleaved modifier * * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels * in the block are reordered. */ #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) /* * Allwinner tiled modifier * * This tiling mode is implemented by the VPU found on all Allwinner platforms, * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 * planes. * * With this tiling, the luminance samples are disposed in tiles representing * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. * The pixel order in each tile is linear and the tiles are disposed linearly, * both in row-major order. */ #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) /* * Amlogic Video Framebuffer Compression modifiers * * Amlogic uses a proprietary lossless image compression protocol and format * for their hardware video codec accelerators, either video decoders or * video input encoders. * * It considerably reduces memory bandwidth while writing and reading * frames in memory. * * The underlying storage is considered to be 3 components, 8bit or 10-bit * per component YCbCr 420, single plane : * - DRM_FORMAT_YUV420_8BIT * - DRM_FORMAT_YUV420_10BIT * * The first 8 bits of the mode defines the layout, then the following 8 bits * defines the options changing the layout. * * Not all combinations are valid, and different SoCs may support different * combinations of layout and options. */ #define __fourcc_mod_amlogic_layout_mask 0xff #define __fourcc_mod_amlogic_options_shift 8 #define __fourcc_mod_amlogic_options_mask 0xff #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ fourcc_mod_code(AMLOGIC, \ ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ (((__options) & __fourcc_mod_amlogic_options_mask) \ << __fourcc_mod_amlogic_options_shift)) /* Amlogic FBC Layouts */ /* * Amlogic FBC Basic Layout * * The basic layout is composed of: * - a body content organized in 64x32 superblocks with 4096 bytes per * superblock in default mode. * - a 32 bytes per 128x64 header block * * This layout is transferrable between Amlogic SoCs supporting this modifier. */ #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) /* * Amlogic FBC Scatter Memory layout * * Indicates the header contains IOMMU references to the compressed * frames content to optimize memory access and layout. * * In this mode, only the header memory address is needed, thus the * content memory organization is tied to the current producer * execution and cannot be saved/dumped neither transferrable between * Amlogic SoCs supporting this modifier. * * Due to the nature of the layout, these buffers are not expected to * be accessible by the user-space clients, but only accessible by the * hardware producers and consumers. * * The user-space clients should expect a failure while trying to mmap * the DMA-BUF handle returned by the producer. */ #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) /* Amlogic FBC Layout Options Bit Mask */ /* * Amlogic FBC Memory Saving mode * * Indicates the storage is packed when pixel size is multiple of word * boundaries, i.e. 8bit should be stored in this mode to save allocation * memory. * * This mode reduces body layout to 3072 bytes per 64x32 superblock with * the basic layout and 3200 bytes per 64x32 superblock combined with * the scatter layout. */ #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) /* * AMD modifiers * * Memory layout: * * without DCC: * - main surface * * with DCC & without DCC_RETILE: * - main surface in plane 0 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set) * * with DCC & DCC_RETILE: * - main surface in plane 0 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned) * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned) * * For multi-plane formats the above surfaces get merged into one plane for * each format plane, based on the required alignment only. * * Bits Parameter Notes * ----- ------------------------ --------------------------------------------- * * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_* * 12:8 TILE Values are AMD_FMT_MOD_TILE__* * 13 DCC * 14 DCC_RETILE * 15 DCC_PIPE_ALIGN * 16 DCC_INDEPENDENT_64B * 17 DCC_INDEPENDENT_128B * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_* * 20 DCC_CONSTANT_ENCODE * 23:21 PIPE_XOR_BITS Only for some chips * 26:24 BANK_XOR_BITS Only for some chips * 29:27 PACKERS Only for some chips * 32:30 RB Only for some chips * 35:33 PIPE Only for some chips * 55:36 - Reserved for future use, must be zero */ #define AMD_FMT_MOD fourcc_mod_code(AMD, 0) #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD) /* Reserve 0 for GFX8 and older */ #define AMD_FMT_MOD_TILE_VER_GFX9 1 #define AMD_FMT_MOD_TILE_VER_GFX10 2 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3 #define AMD_FMT_MOD_TILE_VER_GFX11 4 #define AMD_FMT_MOD_TILE_VER_GFX12 5 /* * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical * version. */ #define AMD_FMT_MOD_TILE_GFX9_64K_S 9 /* * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has * GFX9 as canonical version. * * 64K_D_2D on GFX12 is identical to 64K_D on GFX11. */ #define AMD_FMT_MOD_TILE_GFX9_64K_D 10 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31 /* Gfx12 swizzle modes: * 0 - LINEAR * 1 - 256B_2D - 2D block dimensions * 2 - 4KB_2D * 3 - 64KB_2D * 4 - 256KB_2D * 5 - 4KB_3D - 3D block dimensions * 6 - 64KB_3D * 7 - 256KB_3D */ #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1 #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4 #define AMD_FMT_MOD_DCC_BLOCK_64B 0 #define AMD_FMT_MOD_DCC_BLOCK_128B 1 #define AMD_FMT_MOD_DCC_BLOCK_256B 2 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF #define AMD_FMT_MOD_TILE_SHIFT 8 #define AMD_FMT_MOD_TILE_MASK 0x1F /* Whether DCC compression is enabled. */ #define AMD_FMT_MOD_DCC_SHIFT 13 #define AMD_FMT_MOD_DCC_MASK 0x1 /* * Whether to include two DCC surfaces, one which is rb & pipe aligned, and * one which is not-aligned. */ #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1 /* Only set if DCC_RETILE = false */ #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 /* * DCC supports embedding some clear colors directly in the DCC surface. * However, on older GPUs the rendering HW ignores the embedded clear color * and prefers the driver provided color. This necessitates doing a fastclear * eliminate operation before a process transfers control. * * If this bit is set that means the fastclear eliminate is not needed for these * embeddable colors. */ #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1 /* * The below fields are for accounting for per GPU differences. These are only * relevant for GFX9 and later and if the tile field is *_X/_T. * * PIPE_XOR_BITS = always needed * BANK_XOR_BITS = only for TILE_VER_GFX9 * PACKERS = only for TILE_VER_GFX10_RBPLUS * RB = only for TILE_VER_GFX9 & DCC * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN) */ #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7 #define AMD_FMT_MOD_PACKERS_SHIFT 27 #define AMD_FMT_MOD_PACKERS_MASK 0x7 #define AMD_FMT_MOD_RB_SHIFT 30 #define AMD_FMT_MOD_RB_MASK 0x7 #define AMD_FMT_MOD_PIPE_SHIFT 33 #define AMD_FMT_MOD_PIPE_MASK 0x7 #define AMD_FMT_MOD_SET(field, value) \ ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT) #define AMD_FMT_MOD_GET(field, value) \ (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK) #define AMD_FMT_MOD_CLEAR(field) \ (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT)) #if defined(__cplusplus) } #endif #endif /* DRM_FOURCC_H */