// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ufs/inode.c * * Copyright (C) 1998 * Daniel Pirkl * Charles University, Faculty of Mathematics and Physics * * from * * linux/fs/ext2/inode.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include #include #include #include #include #include #include #include #include #include #include #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4]) { struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; int ptrs = uspi->s_apb; int ptrs_bits = uspi->s_apbshift; const long direct_blocks = UFS_NDADDR, indirect_blocks = ptrs, double_blocks = (1 << (ptrs_bits * 2)); int n = 0; UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); if (i_block < direct_blocks) { offsets[n++] = i_block; } else if ((i_block -= direct_blocks) < indirect_blocks) { offsets[n++] = UFS_IND_BLOCK; offsets[n++] = i_block; } else if ((i_block -= indirect_blocks) < double_blocks) { offsets[n++] = UFS_DIND_BLOCK; offsets[n++] = i_block >> ptrs_bits; offsets[n++] = i_block & (ptrs - 1); } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { offsets[n++] = UFS_TIND_BLOCK; offsets[n++] = i_block >> (ptrs_bits * 2); offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); offsets[n++] = i_block & (ptrs - 1); } else { ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); } return n; } typedef struct { void *p; union { __fs32 key32; __fs64 key64; }; struct buffer_head *bh; } Indirect; static inline int grow_chain32(struct ufs_inode_info *ufsi, struct buffer_head *bh, __fs32 *v, Indirect *from, Indirect *to) { Indirect *p; unsigned seq; to->bh = bh; do { seq = read_seqbegin(&ufsi->meta_lock); to->key32 = *(__fs32 *)(to->p = v); for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++) ; } while (read_seqretry(&ufsi->meta_lock, seq)); return (p > to); } static inline int grow_chain64(struct ufs_inode_info *ufsi, struct buffer_head *bh, __fs64 *v, Indirect *from, Indirect *to) { Indirect *p; unsigned seq; to->bh = bh; do { seq = read_seqbegin(&ufsi->meta_lock); to->key64 = *(__fs64 *)(to->p = v); for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++) ; } while (read_seqretry(&ufsi->meta_lock, seq)); return (p > to); } /* * Returns the location of the fragment from * the beginning of the filesystem. */ static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; int shift = uspi->s_apbshift-uspi->s_fpbshift; Indirect chain[4], *q = chain; unsigned *p; unsigned flags = UFS_SB(sb)->s_flags; u64 res = 0; UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", uspi->s_fpbshift, uspi->s_apbmask, (unsigned long long)mask); if (depth == 0) goto no_block; again: p = offsets; if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) goto ufs2; if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q)) goto changed; if (!q->key32) goto no_block; while (--depth) { __fs32 *ptr; struct buffer_head *bh; unsigned n = *p++; bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, q->key32) + (n>>shift)); if (!bh) goto no_block; ptr = (__fs32 *)bh->b_data + (n & mask); if (!grow_chain32(ufsi, bh, ptr, chain, ++q)) goto changed; if (!q->key32) goto no_block; } res = fs32_to_cpu(sb, q->key32); goto found; ufs2: if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q)) goto changed; if (!q->key64) goto no_block; while (--depth) { __fs64 *ptr; struct buffer_head *bh; unsigned n = *p++; bh = sb_bread(sb, uspi->s_sbbase + fs64_to_cpu(sb, q->key64) + (n>>shift)); if (!bh) goto no_block; ptr = (__fs64 *)bh->b_data + (n & mask); if (!grow_chain64(ufsi, bh, ptr, chain, ++q)) goto changed; if (!q->key64) goto no_block; } res = fs64_to_cpu(sb, q->key64); found: res += uspi->s_sbbase; no_block: while (q > chain) { brelse(q->bh); q--; } return res; changed: while (q > chain) { brelse(q->bh); q--; } goto again; } /* * Unpacking tails: we have a file with partial final block and * we had been asked to extend it. If the fragment being written * is within the same block, we need to extend the tail just to cover * that fragment. Otherwise the tail is extended to full block. * * Note that we might need to create a _new_ tail, but that will * be handled elsewhere; this is strictly for resizing old * ones. */ static bool ufs_extend_tail(struct inode *inode, u64 writes_to, int *err, struct page *locked_page) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */ unsigned block = ufs_fragstoblks(lastfrag); unsigned new_size; void *p; u64 tmp; if (writes_to < (lastfrag | uspi->s_fpbmask)) new_size = (writes_to & uspi->s_fpbmask) + 1; else new_size = uspi->s_fpb; p = ufs_get_direct_data_ptr(uspi, ufsi, block); tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p), new_size - (lastfrag & uspi->s_fpbmask), err, locked_page); return tmp != 0; } /** * ufs_inode_getfrag() - allocate new fragment(s) * @inode: pointer to inode * @index: number of block pointer within the inode's array. * @new_fragment: number of new allocated fragment(s) * @err: we set it if something wrong * @new: we set it if we allocate new block * @locked_page: for ufs_new_fragments() */ static u64 ufs_inode_getfrag(struct inode *inode, unsigned index, sector_t new_fragment, int *err, int *new, struct page *locked_page) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; u64 tmp, goal, lastfrag; unsigned nfrags = uspi->s_fpb; void *p; /* TODO : to be done for write support if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) goto ufs2; */ p = ufs_get_direct_data_ptr(uspi, ufsi, index); tmp = ufs_data_ptr_to_cpu(sb, p); if (tmp) goto out; lastfrag = ufsi->i_lastfrag; /* will that be a new tail? */ if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag) nfrags = (new_fragment & uspi->s_fpbmask) + 1; goal = 0; if (index) { goal = ufs_data_ptr_to_cpu(sb, ufs_get_direct_data_ptr(uspi, ufsi, index - 1)); if (goal) goal += uspi->s_fpb; } tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, nfrags, err, locked_page); if (!tmp) { *err = -ENOSPC; return 0; } if (new) *new = 1; inode_set_ctime_current(inode); if (IS_SYNC(inode)) ufs_sync_inode (inode); mark_inode_dirty(inode); out: return tmp + uspi->s_sbbase; /* This part : To be implemented .... Required only for writing, not required for READ-ONLY. ufs2: u2_block = ufs_fragstoblks(fragment); u2_blockoff = ufs_fragnum(fragment); p = ufsi->i_u1.u2_i_data + block; goal = 0; repeat2: tmp = fs32_to_cpu(sb, *p); lastfrag = ufsi->i_lastfrag; */ } /** * ufs_inode_getblock() - allocate new block * @inode: pointer to inode * @ind_block: block number of the indirect block * @index: number of pointer within the indirect block * @new_fragment: number of new allocated fragment * (block will hold this fragment and also uspi->s_fpb-1) * @err: see ufs_inode_getfrag() * @new: see ufs_inode_getfrag() * @locked_page: see ufs_inode_getfrag() */ static u64 ufs_inode_getblock(struct inode *inode, u64 ind_block, unsigned index, sector_t new_fragment, int *err, int *new, struct page *locked_page) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; int shift = uspi->s_apbshift - uspi->s_fpbshift; u64 tmp = 0, goal; struct buffer_head *bh; void *p; if (!ind_block) return 0; bh = sb_bread(sb, ind_block + (index >> shift)); if (unlikely(!bh)) { *err = -EIO; return 0; } index &= uspi->s_apbmask >> uspi->s_fpbshift; if (uspi->fs_magic == UFS2_MAGIC) p = (__fs64 *)bh->b_data + index; else p = (__fs32 *)bh->b_data + index; tmp = ufs_data_ptr_to_cpu(sb, p); if (tmp) goto out; if (index && (uspi->fs_magic == UFS2_MAGIC ? (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) : (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1])))) goal = tmp + uspi->s_fpb; else goal = bh->b_blocknr + uspi->s_fpb; tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, uspi->s_fpb, err, locked_page); if (!tmp) goto out; if (new) *new = 1; mark_buffer_dirty(bh); if (IS_SYNC(inode)) sync_dirty_buffer(bh); inode_set_ctime_current(inode); mark_inode_dirty(inode); out: brelse (bh); UFSD("EXIT\n"); if (tmp) tmp += uspi->s_sbbase; return tmp; } /** * ufs_getfrag_block() - `get_block_t' function, interface between UFS and * read_folio, writepages and so on */ static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; int err = 0, new = 0; unsigned offsets[4]; int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets); u64 phys64 = 0; unsigned frag = fragment & uspi->s_fpbmask; phys64 = ufs_frag_map(inode, offsets, depth); if (!create) goto done; if (phys64) { if (fragment >= UFS_NDIR_FRAGMENT) goto done; read_seqlock_excl(&UFS_I(inode)->meta_lock); if (fragment < UFS_I(inode)->i_lastfrag) { read_sequnlock_excl(&UFS_I(inode)->meta_lock); goto done; } read_sequnlock_excl(&UFS_I(inode)->meta_lock); } /* This code entered only while writing ....? */ mutex_lock(&UFS_I(inode)->truncate_mutex); UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); if (unlikely(!depth)) { ufs_warning(sb, "ufs_get_block", "block > big"); err = -EIO; goto out; } if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) { unsigned lastfrag = UFS_I(inode)->i_lastfrag; unsigned tailfrags = lastfrag & uspi->s_fpbmask; if (tailfrags && fragment >= lastfrag) { if (!ufs_extend_tail(inode, fragment, &err, bh_result->b_page)) goto out; } } if (depth == 1) { phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, &err, &new, bh_result->b_page); } else { int i; phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, &err, NULL, NULL); for (i = 1; i < depth - 1; i++) phys64 = ufs_inode_getblock(inode, phys64, offsets[i], fragment, &err, NULL, NULL); phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1], fragment, &err, &new, bh_result->b_page); } out: if (phys64) { phys64 += frag; map_bh(bh_result, sb, phys64); if (new) set_buffer_new(bh_result); } mutex_unlock(&UFS_I(inode)->truncate_mutex); return err; done: if (phys64) map_bh(bh_result, sb, phys64 + frag); return 0; } static int ufs_writepages(struct address_space *mapping, struct writeback_control *wbc) { return mpage_writepages(mapping, wbc, ufs_getfrag_block); } static int ufs_read_folio(struct file *file, struct folio *folio) { return block_read_full_folio(folio, ufs_getfrag_block); } int ufs_prepare_chunk(struct folio *folio, loff_t pos, unsigned len) { return __block_write_begin(folio, pos, len, ufs_getfrag_block); } static void ufs_truncate_blocks(struct inode *); static void ufs_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); ufs_truncate_blocks(inode); } } static int ufs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct folio **foliop, void **fsdata) { int ret; ret = block_write_begin(mapping, pos, len, foliop, ufs_getfrag_block); if (unlikely(ret)) ufs_write_failed(mapping, pos + len); return ret; } static int ufs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct folio *folio, void *fsdata) { int ret; ret = generic_write_end(file, mapping, pos, len, copied, folio, fsdata); if (ret < len) ufs_write_failed(mapping, pos + len); return ret; } static sector_t ufs_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping,block,ufs_getfrag_block); } const struct address_space_operations ufs_aops = { .dirty_folio = block_dirty_folio, .invalidate_folio = block_invalidate_folio, .read_folio = ufs_read_folio, .writepages = ufs_writepages, .write_begin = ufs_write_begin, .write_end = ufs_write_end, .migrate_folio = buffer_migrate_folio, .bmap = ufs_bmap }; static void ufs_set_inode_ops(struct inode *inode) { if (S_ISREG(inode->i_mode)) { inode->i_op = &ufs_file_inode_operations; inode->i_fop = &ufs_file_operations; inode->i_mapping->a_ops = &ufs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &ufs_dir_inode_operations; inode->i_fop = &ufs_dir_operations; inode->i_mapping->a_ops = &ufs_aops; } else if (S_ISLNK(inode->i_mode)) { if (!inode->i_blocks) { inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink; inode->i_op = &simple_symlink_inode_operations; } else { inode->i_mapping->a_ops = &ufs_aops; inode->i_op = &page_symlink_inode_operations; inode_nohighmem(inode); } } else init_special_inode(inode, inode->i_mode, ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); } static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; umode_t mode; /* * Copy data to the in-core inode. */ inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); if (inode->i_nlink == 0) return -ESTALE; /* * Linux now has 32-bit uid and gid, so we can support EFT. */ i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); inode_set_atime(inode, (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec), 0); inode_set_ctime(inode, (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec), 0); inode_set_mtime(inode, (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec), 0); inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, sizeof(ufs_inode->ui_u2.ui_symlink) - 1); ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; } return 0; } static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; umode_t mode; UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); /* * Copy data to the in-core inode. */ inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); if (inode->i_nlink == 0) return -ESTALE; /* * Linux now has 32-bit uid and gid, so we can support EFT. */ i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); inode_set_atime(inode, fs64_to_cpu(sb, ufs2_inode->ui_atime), fs32_to_cpu(sb, ufs2_inode->ui_atimensec)); inode_set_ctime(inode, fs64_to_cpu(sb, ufs2_inode->ui_ctime), fs32_to_cpu(sb, ufs2_inode->ui_ctimensec)); inode_set_mtime(inode, fs64_to_cpu(sb, ufs2_inode->ui_mtime), fs32_to_cpu(sb, ufs2_inode->ui_mtimensec)); inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); /* ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); */ if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, sizeof(ufs2_inode->ui_u2.ui_addr)); } else { memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; } return 0; } struct inode *ufs_iget(struct super_block *sb, unsigned long ino) { struct ufs_inode_info *ufsi; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * bh; struct inode *inode; int err = -EIO; UFSD("ENTER, ino %lu\n", ino); if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", ino); return ERR_PTR(-EIO); } inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; ufsi = UFS_I(inode); bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); goto bad_inode; } if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; err = ufs2_read_inode(inode, ufs2_inode + ufs_inotofsbo(inode->i_ino)); } else { struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; err = ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); } brelse(bh); if (err) goto bad_inode; inode_inc_iversion(inode); ufsi->i_lastfrag = (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; ufsi->i_dir_start_lookup = 0; ufsi->i_osync = 0; ufs_set_inode_ops(inode); UFSD("EXIT\n"); unlock_new_inode(inode); return inode; bad_inode: iget_failed(inode); return ERR_PTR(err); } static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) { struct super_block *sb = inode->i_sb; struct ufs_inode_info *ufsi = UFS_I(inode); ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode_get_atime_sec(inode)); ufs_inode->ui_atime.tv_usec = 0; ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode_get_ctime_sec(inode)); ufs_inode->ui_ctime.tv_usec = 0; ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode_get_mtime_sec(inode)); ufs_inode->ui_mtime.tv_usec = 0; ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); } if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; } else if (inode->i_blocks) { memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, sizeof(ufs_inode->ui_u2.ui_symlink)); } if (!inode->i_nlink) memset (ufs_inode, 0, sizeof(struct ufs_inode)); } static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) { struct super_block *sb = inode->i_sb; struct ufs_inode_info *ufsi = UFS_I(inode); UFSD("ENTER\n"); ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); ufs_inode->ui_atime = cpu_to_fs64(sb, inode_get_atime_sec(inode)); ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode_get_atime_nsec(inode)); ufs_inode->ui_ctime = cpu_to_fs64(sb, inode_get_ctime_sec(inode)); ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode_get_ctime_nsec(inode)); ufs_inode->ui_mtime = cpu_to_fs64(sb, inode_get_mtime_sec(inode)); ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode_get_mtime_nsec(inode)); ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; } else if (inode->i_blocks) { memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, sizeof(ufs_inode->ui_u2.ui_symlink)); } if (!inode->i_nlink) memset (ufs_inode, 0, sizeof(struct ufs2_inode)); UFSD("EXIT\n"); } static int ufs_update_inode(struct inode * inode, int do_sync) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * bh; UFSD("ENTER, ino %lu\n", inode->i_ino); if (inode->i_ino < UFS_ROOTINO || inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); return -1; } bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); return -1; } if (uspi->fs_magic == UFS2_MAGIC) { struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; ufs2_update_inode(inode, ufs2_inode + ufs_inotofsbo(inode->i_ino)); } else { struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); } mark_buffer_dirty(bh); if (do_sync) sync_dirty_buffer(bh); brelse (bh); UFSD("EXIT\n"); return 0; } int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) { return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); } int ufs_sync_inode (struct inode *inode) { return ufs_update_inode (inode, 1); } void ufs_evict_inode(struct inode * inode) { int want_delete = 0; if (!inode->i_nlink && !is_bad_inode(inode)) want_delete = 1; truncate_inode_pages_final(&inode->i_data); if (want_delete) { inode->i_size = 0; if (inode->i_blocks && (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) ufs_truncate_blocks(inode); ufs_update_inode(inode, inode_needs_sync(inode)); } invalidate_inode_buffers(inode); clear_inode(inode); if (want_delete) ufs_free_inode(inode); } struct to_free { struct inode *inode; u64 to; unsigned count; }; static inline void free_data(struct to_free *ctx, u64 from, unsigned count) { if (ctx->count && ctx->to != from) { ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count); ctx->count = 0; } ctx->count += count; ctx->to = from + count; } #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) static void ufs_trunc_direct(struct inode *inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block * sb; struct ufs_sb_private_info * uspi; void *p; u64 frag1, frag2, frag3, frag4, block1, block2; struct to_free ctx = {.inode = inode}; unsigned i, tmp; UFSD("ENTER: ino %lu\n", inode->i_ino); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; frag1 = DIRECT_FRAGMENT; frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); frag3 = frag4 & ~uspi->s_fpbmask; block1 = block2 = 0; if (frag2 > frag3) { frag2 = frag4; frag3 = frag4 = 0; } else if (frag2 < frag3) { block1 = ufs_fragstoblks (frag2); block2 = ufs_fragstoblks (frag3); } UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," " frag3 %llu, frag4 %llu\n", inode->i_ino, (unsigned long long)frag1, (unsigned long long)frag2, (unsigned long long)block1, (unsigned long long)block2, (unsigned long long)frag3, (unsigned long long)frag4); if (frag1 >= frag2) goto next1; /* * Free first free fragments */ p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp ) ufs_panic (sb, "ufs_trunc_direct", "internal error"); frag2 -= frag1; frag1 = ufs_fragnum (frag1); ufs_free_fragments(inode, tmp + frag1, frag2); next1: /* * Free whole blocks */ for (i = block1 ; i < block2; i++) { p = ufs_get_direct_data_ptr(uspi, ufsi, i); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp) continue; write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); free_data(&ctx, tmp, uspi->s_fpb); } free_data(&ctx, 0, 0); if (frag3 >= frag4) goto next3; /* * Free last free fragments */ p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp ) ufs_panic(sb, "ufs_truncate_direct", "internal error"); frag4 = ufs_fragnum (frag4); write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); ufs_free_fragments (inode, tmp, frag4); next3: UFSD("EXIT: ino %lu\n", inode->i_ino); } static void free_full_branch(struct inode *inode, u64 ind_block, int depth) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize); unsigned i; if (!ubh) return; if (--depth) { for (i = 0; i < uspi->s_apb; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) free_full_branch(inode, block, depth); } } else { struct to_free ctx = {.inode = inode}; for (i = 0; i < uspi->s_apb; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) free_data(&ctx, block, uspi->s_fpb); } free_data(&ctx, 0, 0); } ubh_bforget(ubh); ufs_free_blocks(inode, ind_block, uspi->s_fpb); } static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned i; if (--depth) { for (i = from; i < uspi->s_apb ; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) { write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_mark_buffer_dirty(ubh); free_full_branch(inode, block, depth); } } } else { struct to_free ctx = {.inode = inode}; for (i = from; i < uspi->s_apb; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) { write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_mark_buffer_dirty(ubh); free_data(&ctx, block, uspi->s_fpb); } } free_data(&ctx, 0, 0); } if (IS_SYNC(inode) && ubh_buffer_dirty(ubh)) ubh_sync_block(ubh); ubh_brelse(ubh); } static int ufs_alloc_lastblock(struct inode *inode, loff_t size) { int err = 0; struct super_block *sb = inode->i_sb; struct address_space *mapping = inode->i_mapping; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned i, end; sector_t lastfrag; struct folio *folio; struct buffer_head *bh; u64 phys64; lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; if (!lastfrag) goto out; lastfrag--; folio = ufs_get_locked_folio(mapping, lastfrag >> (PAGE_SHIFT - inode->i_blkbits)); if (IS_ERR(folio)) { err = -EIO; goto out; } end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1); bh = folio_buffers(folio); for (i = 0; i < end; ++i) bh = bh->b_this_page; err = ufs_getfrag_block(inode, lastfrag, bh, 1); if (unlikely(err)) goto out_unlock; if (buffer_new(bh)) { clear_buffer_new(bh); clean_bdev_bh_alias(bh); /* * we do not zeroize fragment, because of * if it maped to hole, it already contains zeroes */ set_buffer_uptodate(bh); mark_buffer_dirty(bh); folio_mark_dirty(folio); } if (lastfrag >= UFS_IND_FRAGMENT) { end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; phys64 = bh->b_blocknr + 1; for (i = 0; i < end; ++i) { bh = sb_getblk(sb, i + phys64); lock_buffer(bh); memset(bh->b_data, 0, sb->s_blocksize); set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); sync_dirty_buffer(bh); brelse(bh); } } out_unlock: ufs_put_locked_folio(folio); out: return err; } static void ufs_truncate_blocks(struct inode *inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned offsets[4]; int depth; int depth2; unsigned i; struct ufs_buffer_head *ubh[3]; void *p; u64 block; if (inode->i_size) { sector_t last = (inode->i_size - 1) >> uspi->s_bshift; depth = ufs_block_to_path(inode, last, offsets); if (!depth) return; } else { depth = 1; } for (depth2 = depth - 1; depth2; depth2--) if (offsets[depth2] != uspi->s_apb - 1) break; mutex_lock(&ufsi->truncate_mutex); if (depth == 1) { ufs_trunc_direct(inode); offsets[0] = UFS_IND_BLOCK; } else { /* get the blocks that should be partially emptied */ p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++); for (i = 0; i < depth2; i++) { block = ufs_data_ptr_to_cpu(sb, p); if (!block) break; ubh[i] = ubh_bread(sb, block, uspi->s_bsize); if (!ubh[i]) { write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); break; } p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++); } while (i--) free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1); } for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) { p = ufs_get_direct_data_ptr(uspi, ufsi, i); block = ufs_data_ptr_to_cpu(sb, p); if (block) { write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); free_full_branch(inode, block, i - UFS_IND_BLOCK + 1); } } read_seqlock_excl(&ufsi->meta_lock); ufsi->i_lastfrag = DIRECT_FRAGMENT; read_sequnlock_excl(&ufsi->meta_lock); mark_inode_dirty(inode); mutex_unlock(&ufsi->truncate_mutex); } static int ufs_truncate(struct inode *inode, loff_t size) { int err = 0; UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", inode->i_ino, (unsigned long long)size, (unsigned long long)i_size_read(inode)); if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return -EINVAL; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; err = ufs_alloc_lastblock(inode, size); if (err) goto out; block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); truncate_setsize(inode, size); ufs_truncate_blocks(inode); inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); mark_inode_dirty(inode); out: UFSD("EXIT: err %d\n", err); return err; } int ufs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); unsigned int ia_valid = attr->ia_valid; int error; error = setattr_prepare(&nop_mnt_idmap, dentry, attr); if (error) return error; if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { error = ufs_truncate(inode, attr->ia_size); if (error) return error; } setattr_copy(&nop_mnt_idmap, inode, attr); mark_inode_dirty(inode); return 0; } const struct inode_operations ufs_file_inode_operations = { .setattr = ufs_setattr, };