// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Red Hat, Inc. * Copyright (C) 2016-2023 Christoph Hellwig. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "../internal.h" #define IOEND_BATCH_SIZE 4096 /* * Structure allocated for each folio to track per-block uptodate, dirty state * and I/O completions. */ struct iomap_folio_state { spinlock_t state_lock; unsigned int read_bytes_pending; atomic_t write_bytes_pending; /* * Each block has two bits in this bitmap: * Bits [0..blocks_per_folio) has the uptodate status. * Bits [b_p_f...(2*b_p_f)) has the dirty status. */ unsigned long state[]; }; static struct bio_set iomap_ioend_bioset; static inline bool ifs_is_fully_uptodate(struct folio *folio, struct iomap_folio_state *ifs) { struct inode *inode = folio->mapping->host; return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); } static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, unsigned int block) { return test_bit(block, ifs->state); } static bool ifs_set_range_uptodate(struct folio *folio, struct iomap_folio_state *ifs, size_t off, size_t len) { struct inode *inode = folio->mapping->host; unsigned int first_blk = off >> inode->i_blkbits; unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; unsigned int nr_blks = last_blk - first_blk + 1; bitmap_set(ifs->state, first_blk, nr_blks); return ifs_is_fully_uptodate(folio, ifs); } static void iomap_set_range_uptodate(struct folio *folio, size_t off, size_t len) { struct iomap_folio_state *ifs = folio->private; unsigned long flags; bool uptodate = true; if (ifs) { spin_lock_irqsave(&ifs->state_lock, flags); uptodate = ifs_set_range_uptodate(folio, ifs, off, len); spin_unlock_irqrestore(&ifs->state_lock, flags); } if (uptodate) folio_mark_uptodate(folio); } static inline bool ifs_block_is_dirty(struct folio *folio, struct iomap_folio_state *ifs, int block) { struct inode *inode = folio->mapping->host; unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); return test_bit(block + blks_per_folio, ifs->state); } static unsigned ifs_find_dirty_range(struct folio *folio, struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) { struct inode *inode = folio->mapping->host; unsigned start_blk = offset_in_folio(folio, *range_start) >> inode->i_blkbits; unsigned end_blk = min_not_zero( offset_in_folio(folio, range_end) >> inode->i_blkbits, i_blocks_per_folio(inode, folio)); unsigned nblks = 1; while (!ifs_block_is_dirty(folio, ifs, start_blk)) if (++start_blk == end_blk) return 0; while (start_blk + nblks < end_blk) { if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) break; nblks++; } *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); return nblks << inode->i_blkbits; } static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, u64 range_end) { struct iomap_folio_state *ifs = folio->private; if (*range_start >= range_end) return 0; if (ifs) return ifs_find_dirty_range(folio, ifs, range_start, range_end); return range_end - *range_start; } static void ifs_clear_range_dirty(struct folio *folio, struct iomap_folio_state *ifs, size_t off, size_t len) { struct inode *inode = folio->mapping->host; unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); unsigned int first_blk = (off >> inode->i_blkbits); unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; unsigned int nr_blks = last_blk - first_blk + 1; unsigned long flags; spin_lock_irqsave(&ifs->state_lock, flags); bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); spin_unlock_irqrestore(&ifs->state_lock, flags); } static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) { struct iomap_folio_state *ifs = folio->private; if (ifs) ifs_clear_range_dirty(folio, ifs, off, len); } static void ifs_set_range_dirty(struct folio *folio, struct iomap_folio_state *ifs, size_t off, size_t len) { struct inode *inode = folio->mapping->host; unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); unsigned int first_blk = (off >> inode->i_blkbits); unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; unsigned int nr_blks = last_blk - first_blk + 1; unsigned long flags; spin_lock_irqsave(&ifs->state_lock, flags); bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); spin_unlock_irqrestore(&ifs->state_lock, flags); } static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) { struct iomap_folio_state *ifs = folio->private; if (ifs) ifs_set_range_dirty(folio, ifs, off, len); } static struct iomap_folio_state *ifs_alloc(struct inode *inode, struct folio *folio, unsigned int flags) { struct iomap_folio_state *ifs = folio->private; unsigned int nr_blocks = i_blocks_per_folio(inode, folio); gfp_t gfp; if (ifs || nr_blocks <= 1) return ifs; if (flags & IOMAP_NOWAIT) gfp = GFP_NOWAIT; else gfp = GFP_NOFS | __GFP_NOFAIL; /* * ifs->state tracks two sets of state flags when the * filesystem block size is smaller than the folio size. * The first state tracks per-block uptodate and the * second tracks per-block dirty state. */ ifs = kzalloc(struct_size(ifs, state, BITS_TO_LONGS(2 * nr_blocks)), gfp); if (!ifs) return ifs; spin_lock_init(&ifs->state_lock); if (folio_test_uptodate(folio)) bitmap_set(ifs->state, 0, nr_blocks); if (folio_test_dirty(folio)) bitmap_set(ifs->state, nr_blocks, nr_blocks); folio_attach_private(folio, ifs); return ifs; } static void ifs_free(struct folio *folio) { struct iomap_folio_state *ifs = folio_detach_private(folio); if (!ifs) return; WARN_ON_ONCE(ifs->read_bytes_pending != 0); WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != folio_test_uptodate(folio)); kfree(ifs); } /* * Calculate the range inside the folio that we actually need to read. */ static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, loff_t *pos, loff_t length, size_t *offp, size_t *lenp) { struct iomap_folio_state *ifs = folio->private; loff_t orig_pos = *pos; loff_t isize = i_size_read(inode); unsigned block_bits = inode->i_blkbits; unsigned block_size = (1 << block_bits); size_t poff = offset_in_folio(folio, *pos); size_t plen = min_t(loff_t, folio_size(folio) - poff, length); size_t orig_plen = plen; unsigned first = poff >> block_bits; unsigned last = (poff + plen - 1) >> block_bits; /* * If the block size is smaller than the page size, we need to check the * per-block uptodate status and adjust the offset and length if needed * to avoid reading in already uptodate ranges. */ if (ifs) { unsigned int i; /* move forward for each leading block marked uptodate */ for (i = first; i <= last; i++) { if (!ifs_block_is_uptodate(ifs, i)) break; *pos += block_size; poff += block_size; plen -= block_size; first++; } /* truncate len if we find any trailing uptodate block(s) */ for ( ; i <= last; i++) { if (ifs_block_is_uptodate(ifs, i)) { plen -= (last - i + 1) * block_size; last = i - 1; break; } } } /* * If the extent spans the block that contains the i_size, we need to * handle both halves separately so that we properly zero data in the * page cache for blocks that are entirely outside of i_size. */ if (orig_pos <= isize && orig_pos + orig_plen > isize) { unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; if (first <= end && last > end) plen -= (last - end) * block_size; } *offp = poff; *lenp = plen; } static void iomap_finish_folio_read(struct folio *folio, size_t off, size_t len, int error) { struct iomap_folio_state *ifs = folio->private; bool uptodate = !error; bool finished = true; if (ifs) { unsigned long flags; spin_lock_irqsave(&ifs->state_lock, flags); if (!error) uptodate = ifs_set_range_uptodate(folio, ifs, off, len); ifs->read_bytes_pending -= len; finished = !ifs->read_bytes_pending; spin_unlock_irqrestore(&ifs->state_lock, flags); } if (finished) folio_end_read(folio, uptodate); } static void iomap_read_end_io(struct bio *bio) { int error = blk_status_to_errno(bio->bi_status); struct folio_iter fi; bio_for_each_folio_all(fi, bio) iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); bio_put(bio); } struct iomap_readpage_ctx { struct folio *cur_folio; bool cur_folio_in_bio; struct bio *bio; struct readahead_control *rac; }; /** * iomap_read_inline_data - copy inline data into the page cache * @iter: iteration structure * @folio: folio to copy to * * Copy the inline data in @iter into @folio and zero out the rest of the folio. * Only a single IOMAP_INLINE extent is allowed at the end of each file. * Returns zero for success to complete the read, or the usual negative errno. */ static int iomap_read_inline_data(const struct iomap_iter *iter, struct folio *folio) { const struct iomap *iomap = iomap_iter_srcmap(iter); size_t size = i_size_read(iter->inode) - iomap->offset; size_t offset = offset_in_folio(folio, iomap->offset); if (folio_test_uptodate(folio)) return 0; if (WARN_ON_ONCE(size > iomap->length)) return -EIO; if (offset > 0) ifs_alloc(iter->inode, folio, iter->flags); folio_fill_tail(folio, offset, iomap->inline_data, size); iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); return 0; } static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, loff_t pos) { const struct iomap *srcmap = iomap_iter_srcmap(iter); return srcmap->type != IOMAP_MAPPED || (srcmap->flags & IOMAP_F_NEW) || pos >= i_size_read(iter->inode); } static loff_t iomap_readpage_iter(const struct iomap_iter *iter, struct iomap_readpage_ctx *ctx, loff_t offset) { const struct iomap *iomap = &iter->iomap; loff_t pos = iter->pos + offset; loff_t length = iomap_length(iter) - offset; struct folio *folio = ctx->cur_folio; struct iomap_folio_state *ifs; loff_t orig_pos = pos; size_t poff, plen; sector_t sector; if (iomap->type == IOMAP_INLINE) return iomap_read_inline_data(iter, folio); /* zero post-eof blocks as the page may be mapped */ ifs = ifs_alloc(iter->inode, folio, iter->flags); iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); if (plen == 0) goto done; if (iomap_block_needs_zeroing(iter, pos)) { folio_zero_range(folio, poff, plen); iomap_set_range_uptodate(folio, poff, plen); goto done; } ctx->cur_folio_in_bio = true; if (ifs) { spin_lock_irq(&ifs->state_lock); ifs->read_bytes_pending += plen; spin_unlock_irq(&ifs->state_lock); } sector = iomap_sector(iomap, pos); if (!ctx->bio || bio_end_sector(ctx->bio) != sector || !bio_add_folio(ctx->bio, folio, plen, poff)) { gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); gfp_t orig_gfp = gfp; unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); if (ctx->bio) submit_bio(ctx->bio); if (ctx->rac) /* same as readahead_gfp_mask */ gfp |= __GFP_NORETRY | __GFP_NOWARN; ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), REQ_OP_READ, gfp); /* * If the bio_alloc fails, try it again for a single page to * avoid having to deal with partial page reads. This emulates * what do_mpage_read_folio does. */ if (!ctx->bio) { ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, orig_gfp); } if (ctx->rac) ctx->bio->bi_opf |= REQ_RAHEAD; ctx->bio->bi_iter.bi_sector = sector; ctx->bio->bi_end_io = iomap_read_end_io; bio_add_folio_nofail(ctx->bio, folio, plen, poff); } done: /* * Move the caller beyond our range so that it keeps making progress. * For that, we have to include any leading non-uptodate ranges, but * we can skip trailing ones as they will be handled in the next * iteration. */ return pos - orig_pos + plen; } static loff_t iomap_read_folio_iter(const struct iomap_iter *iter, struct iomap_readpage_ctx *ctx) { struct folio *folio = ctx->cur_folio; size_t offset = offset_in_folio(folio, iter->pos); loff_t length = min_t(loff_t, folio_size(folio) - offset, iomap_length(iter)); loff_t done, ret; for (done = 0; done < length; done += ret) { ret = iomap_readpage_iter(iter, ctx, done); if (ret <= 0) return ret; } return done; } int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) { struct iomap_iter iter = { .inode = folio->mapping->host, .pos = folio_pos(folio), .len = folio_size(folio), }; struct iomap_readpage_ctx ctx = { .cur_folio = folio, }; int ret; trace_iomap_readpage(iter.inode, 1); while ((ret = iomap_iter(&iter, ops)) > 0) iter.processed = iomap_read_folio_iter(&iter, &ctx); if (ctx.bio) { submit_bio(ctx.bio); WARN_ON_ONCE(!ctx.cur_folio_in_bio); } else { WARN_ON_ONCE(ctx.cur_folio_in_bio); folio_unlock(folio); } /* * Just like mpage_readahead and block_read_full_folio, we always * return 0 and just set the folio error flag on errors. This * should be cleaned up throughout the stack eventually. */ return 0; } EXPORT_SYMBOL_GPL(iomap_read_folio); static loff_t iomap_readahead_iter(const struct iomap_iter *iter, struct iomap_readpage_ctx *ctx) { loff_t length = iomap_length(iter); loff_t done, ret; for (done = 0; done < length; done += ret) { if (ctx->cur_folio && offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { if (!ctx->cur_folio_in_bio) folio_unlock(ctx->cur_folio); ctx->cur_folio = NULL; } if (!ctx->cur_folio) { ctx->cur_folio = readahead_folio(ctx->rac); ctx->cur_folio_in_bio = false; } ret = iomap_readpage_iter(iter, ctx, done); if (ret <= 0) return ret; } return done; } /** * iomap_readahead - Attempt to read pages from a file. * @rac: Describes the pages to be read. * @ops: The operations vector for the filesystem. * * This function is for filesystems to call to implement their readahead * address_space operation. * * Context: The @ops callbacks may submit I/O (eg to read the addresses of * blocks from disc), and may wait for it. The caller may be trying to * access a different page, and so sleeping excessively should be avoided. * It may allocate memory, but should avoid costly allocations. This * function is called with memalloc_nofs set, so allocations will not cause * the filesystem to be reentered. */ void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) { struct iomap_iter iter = { .inode = rac->mapping->host, .pos = readahead_pos(rac), .len = readahead_length(rac), }; struct iomap_readpage_ctx ctx = { .rac = rac, }; trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); while (iomap_iter(&iter, ops) > 0) iter.processed = iomap_readahead_iter(&iter, &ctx); if (ctx.bio) submit_bio(ctx.bio); if (ctx.cur_folio) { if (!ctx.cur_folio_in_bio) folio_unlock(ctx.cur_folio); } } EXPORT_SYMBOL_GPL(iomap_readahead); /* * iomap_is_partially_uptodate checks whether blocks within a folio are * uptodate or not. * * Returns true if all blocks which correspond to the specified part * of the folio are uptodate. */ bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) { struct iomap_folio_state *ifs = folio->private; struct inode *inode = folio->mapping->host; unsigned first, last, i; if (!ifs) return false; /* Caller's range may extend past the end of this folio */ count = min(folio_size(folio) - from, count); /* First and last blocks in range within folio */ first = from >> inode->i_blkbits; last = (from + count - 1) >> inode->i_blkbits; for (i = first; i <= last; i++) if (!ifs_block_is_uptodate(ifs, i)) return false; return true; } EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); /** * iomap_get_folio - get a folio reference for writing * @iter: iteration structure * @pos: start offset of write * @len: Suggested size of folio to create. * * Returns a locked reference to the folio at @pos, or an error pointer if the * folio could not be obtained. */ struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) { fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; if (iter->flags & IOMAP_NOWAIT) fgp |= FGP_NOWAIT; fgp |= fgf_set_order(len); return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, fgp, mapping_gfp_mask(iter->inode->i_mapping)); } EXPORT_SYMBOL_GPL(iomap_get_folio); bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) { trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), folio_size(folio)); /* * If the folio is dirty, we refuse to release our metadata because * it may be partially dirty. Once we track per-block dirty state, * we can release the metadata if every block is dirty. */ if (folio_test_dirty(folio)) return false; ifs_free(folio); return true; } EXPORT_SYMBOL_GPL(iomap_release_folio); void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) { trace_iomap_invalidate_folio(folio->mapping->host, folio_pos(folio) + offset, len); /* * If we're invalidating the entire folio, clear the dirty state * from it and release it to avoid unnecessary buildup of the LRU. */ if (offset == 0 && len == folio_size(folio)) { WARN_ON_ONCE(folio_test_writeback(folio)); folio_cancel_dirty(folio); ifs_free(folio); } } EXPORT_SYMBOL_GPL(iomap_invalidate_folio); bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) { struct inode *inode = mapping->host; size_t len = folio_size(folio); ifs_alloc(inode, folio, 0); iomap_set_range_dirty(folio, 0, len); return filemap_dirty_folio(mapping, folio); } EXPORT_SYMBOL_GPL(iomap_dirty_folio); static void iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) { loff_t i_size = i_size_read(inode); /* * Only truncate newly allocated pages beyoned EOF, even if the * write started inside the existing inode size. */ if (pos + len > i_size) truncate_pagecache_range(inode, max(pos, i_size), pos + len - 1); } static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, size_t poff, size_t plen, const struct iomap *iomap) { struct bio_vec bvec; struct bio bio; bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); bio_add_folio_nofail(&bio, folio, plen, poff); return submit_bio_wait(&bio); } static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, size_t len, struct folio *folio) { const struct iomap *srcmap = iomap_iter_srcmap(iter); struct iomap_folio_state *ifs; loff_t block_size = i_blocksize(iter->inode); loff_t block_start = round_down(pos, block_size); loff_t block_end = round_up(pos + len, block_size); unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); size_t from = offset_in_folio(folio, pos), to = from + len; size_t poff, plen; /* * If the write or zeroing completely overlaps the current folio, then * entire folio will be dirtied so there is no need for * per-block state tracking structures to be attached to this folio. * For the unshare case, we must read in the ondisk contents because we * are not changing pagecache contents. */ if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && pos + len >= folio_pos(folio) + folio_size(folio)) return 0; ifs = ifs_alloc(iter->inode, folio, iter->flags); if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) return -EAGAIN; if (folio_test_uptodate(folio)) return 0; do { iomap_adjust_read_range(iter->inode, folio, &block_start, block_end - block_start, &poff, &plen); if (plen == 0) break; if (!(iter->flags & IOMAP_UNSHARE) && (from <= poff || from >= poff + plen) && (to <= poff || to >= poff + plen)) continue; if (iomap_block_needs_zeroing(iter, block_start)) { if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) return -EIO; folio_zero_segments(folio, poff, from, to, poff + plen); } else { int status; if (iter->flags & IOMAP_NOWAIT) return -EAGAIN; status = iomap_read_folio_sync(block_start, folio, poff, plen, srcmap); if (status) return status; } iomap_set_range_uptodate(folio, poff, plen); } while ((block_start += plen) < block_end); return 0; } static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) { const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; if (folio_ops && folio_ops->get_folio) return folio_ops->get_folio(iter, pos, len); else return iomap_get_folio(iter, pos, len); } static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, struct folio *folio) { const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; if (folio_ops && folio_ops->put_folio) { folio_ops->put_folio(iter->inode, pos, ret, folio); } else { folio_unlock(folio); folio_put(folio); } } static int iomap_write_begin_inline(const struct iomap_iter *iter, struct folio *folio) { /* needs more work for the tailpacking case; disable for now */ if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) return -EIO; return iomap_read_inline_data(iter, folio); } static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, size_t len, struct folio **foliop) { const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; const struct iomap *srcmap = iomap_iter_srcmap(iter); struct folio *folio; int status = 0; BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); if (srcmap != &iter->iomap) BUG_ON(pos + len > srcmap->offset + srcmap->length); if (fatal_signal_pending(current)) return -EINTR; if (!mapping_large_folio_support(iter->inode->i_mapping)) len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); folio = __iomap_get_folio(iter, pos, len); if (IS_ERR(folio)) return PTR_ERR(folio); /* * Now we have a locked folio, before we do anything with it we need to * check that the iomap we have cached is not stale. The inode extent * mapping can change due to concurrent IO in flight (e.g. * IOMAP_UNWRITTEN state can change and memory reclaim could have * reclaimed a previously partially written page at this index after IO * completion before this write reaches this file offset) and hence we * could do the wrong thing here (zero a page range incorrectly or fail * to zero) and corrupt data. */ if (folio_ops && folio_ops->iomap_valid) { bool iomap_valid = folio_ops->iomap_valid(iter->inode, &iter->iomap); if (!iomap_valid) { iter->iomap.flags |= IOMAP_F_STALE; status = 0; goto out_unlock; } } if (pos + len > folio_pos(folio) + folio_size(folio)) len = folio_pos(folio) + folio_size(folio) - pos; if (srcmap->type == IOMAP_INLINE) status = iomap_write_begin_inline(iter, folio); else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) status = __block_write_begin_int(folio, pos, len, NULL, srcmap); else status = __iomap_write_begin(iter, pos, len, folio); if (unlikely(status)) goto out_unlock; *foliop = folio; return 0; out_unlock: __iomap_put_folio(iter, pos, 0, folio); return status; } static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, size_t copied, struct folio *folio) { flush_dcache_folio(folio); /* * The blocks that were entirely written will now be uptodate, so we * don't have to worry about a read_folio reading them and overwriting a * partial write. However, if we've encountered a short write and only * partially written into a block, it will not be marked uptodate, so a * read_folio might come in and destroy our partial write. * * Do the simplest thing and just treat any short write to a * non-uptodate page as a zero-length write, and force the caller to * redo the whole thing. */ if (unlikely(copied < len && !folio_test_uptodate(folio))) return false; iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); filemap_dirty_folio(inode->i_mapping, folio); return true; } static void iomap_write_end_inline(const struct iomap_iter *iter, struct folio *folio, loff_t pos, size_t copied) { const struct iomap *iomap = &iter->iomap; void *addr; WARN_ON_ONCE(!folio_test_uptodate(folio)); BUG_ON(!iomap_inline_data_valid(iomap)); flush_dcache_folio(folio); addr = kmap_local_folio(folio, pos); memcpy(iomap_inline_data(iomap, pos), addr, copied); kunmap_local(addr); mark_inode_dirty(iter->inode); } /* * Returns true if all copied bytes have been written to the pagecache, * otherwise return false. */ static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, size_t copied, struct folio *folio) { const struct iomap *srcmap = iomap_iter_srcmap(iter); if (srcmap->type == IOMAP_INLINE) { iomap_write_end_inline(iter, folio, pos, copied); return true; } if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { size_t bh_written; bh_written = block_write_end(NULL, iter->inode->i_mapping, pos, len, copied, folio, NULL); WARN_ON_ONCE(bh_written != copied && bh_written != 0); return bh_written == copied; } return __iomap_write_end(iter->inode, pos, len, copied, folio); } static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) { loff_t length = iomap_length(iter); loff_t pos = iter->pos; ssize_t total_written = 0; long status = 0; struct address_space *mapping = iter->inode->i_mapping; size_t chunk = mapping_max_folio_size(mapping); unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; do { struct folio *folio; loff_t old_size; size_t offset; /* Offset into folio */ size_t bytes; /* Bytes to write to folio */ size_t copied; /* Bytes copied from user */ size_t written; /* Bytes have been written */ bytes = iov_iter_count(i); retry: offset = pos & (chunk - 1); bytes = min(chunk - offset, bytes); status = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags); if (unlikely(status)) break; if (bytes > length) bytes = length; /* * Bring in the user page that we'll copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. * * For async buffered writes the assumption is that the user * page has already been faulted in. This can be optimized by * faulting the user page. */ if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { status = -EFAULT; break; } status = iomap_write_begin(iter, pos, bytes, &folio); if (unlikely(status)) { iomap_write_failed(iter->inode, pos, bytes); break; } if (iter->iomap.flags & IOMAP_F_STALE) break; offset = offset_in_folio(folio, pos); if (bytes > folio_size(folio) - offset) bytes = folio_size(folio) - offset; if (mapping_writably_mapped(mapping)) flush_dcache_folio(folio); copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); written = iomap_write_end(iter, pos, bytes, copied, folio) ? copied : 0; /* * Update the in-memory inode size after copying the data into * the page cache. It's up to the file system to write the * updated size to disk, preferably after I/O completion so that * no stale data is exposed. Only once that's done can we * unlock and release the folio. */ old_size = iter->inode->i_size; if (pos + written > old_size) { i_size_write(iter->inode, pos + written); iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; } __iomap_put_folio(iter, pos, written, folio); if (old_size < pos) pagecache_isize_extended(iter->inode, old_size, pos); cond_resched(); if (unlikely(written == 0)) { /* * A short copy made iomap_write_end() reject the * thing entirely. Might be memory poisoning * halfway through, might be a race with munmap, * might be severe memory pressure. */ iomap_write_failed(iter->inode, pos, bytes); iov_iter_revert(i, copied); if (chunk > PAGE_SIZE) chunk /= 2; if (copied) { bytes = copied; goto retry; } } else { pos += written; total_written += written; length -= written; } } while (iov_iter_count(i) && length); if (status == -EAGAIN) { iov_iter_revert(i, total_written); return -EAGAIN; } return total_written ? total_written : status; } ssize_t iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, const struct iomap_ops *ops, void *private) { struct iomap_iter iter = { .inode = iocb->ki_filp->f_mapping->host, .pos = iocb->ki_pos, .len = iov_iter_count(i), .flags = IOMAP_WRITE, .private = private, }; ssize_t ret; if (iocb->ki_flags & IOCB_NOWAIT) iter.flags |= IOMAP_NOWAIT; while ((ret = iomap_iter(&iter, ops)) > 0) iter.processed = iomap_write_iter(&iter, i); if (unlikely(iter.pos == iocb->ki_pos)) return ret; ret = iter.pos - iocb->ki_pos; iocb->ki_pos = iter.pos; return ret; } EXPORT_SYMBOL_GPL(iomap_file_buffered_write); static void iomap_write_delalloc_ifs_punch(struct inode *inode, struct folio *folio, loff_t start_byte, loff_t end_byte, struct iomap *iomap, iomap_punch_t punch) { unsigned int first_blk, last_blk, i; loff_t last_byte; u8 blkbits = inode->i_blkbits; struct iomap_folio_state *ifs; /* * When we have per-block dirty tracking, there can be * blocks within a folio which are marked uptodate * but not dirty. In that case it is necessary to punch * out such blocks to avoid leaking any delalloc blocks. */ ifs = folio->private; if (!ifs) return; last_byte = min_t(loff_t, end_byte - 1, folio_pos(folio) + folio_size(folio) - 1); first_blk = offset_in_folio(folio, start_byte) >> blkbits; last_blk = offset_in_folio(folio, last_byte) >> blkbits; for (i = first_blk; i <= last_blk; i++) { if (!ifs_block_is_dirty(folio, ifs, i)) punch(inode, folio_pos(folio) + (i << blkbits), 1 << blkbits, iomap); } } static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, struct iomap *iomap, iomap_punch_t punch) { if (!folio_test_dirty(folio)) return; /* if dirty, punch up to offset */ if (start_byte > *punch_start_byte) { punch(inode, *punch_start_byte, start_byte - *punch_start_byte, iomap); } /* Punch non-dirty blocks within folio */ iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte, iomap, punch); /* * Make sure the next punch start is correctly bound to * the end of this data range, not the end of the folio. */ *punch_start_byte = min_t(loff_t, end_byte, folio_pos(folio) + folio_size(folio)); } /* * Scan the data range passed to us for dirty page cache folios. If we find a * dirty folio, punch out the preceding range and update the offset from which * the next punch will start from. * * We can punch out storage reservations under clean pages because they either * contain data that has been written back - in which case the delalloc punch * over that range is a no-op - or they have been read faults in which case they * contain zeroes and we can remove the delalloc backing range and any new * writes to those pages will do the normal hole filling operation... * * This makes the logic simple: we only need to keep the delalloc extents only * over the dirty ranges of the page cache. * * This function uses [start_byte, end_byte) intervals (i.e. open ended) to * simplify range iterations. */ static void iomap_write_delalloc_scan(struct inode *inode, loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, struct iomap *iomap, iomap_punch_t punch) { while (start_byte < end_byte) { struct folio *folio; /* grab locked page */ folio = filemap_lock_folio(inode->i_mapping, start_byte >> PAGE_SHIFT); if (IS_ERR(folio)) { start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + PAGE_SIZE; continue; } iomap_write_delalloc_punch(inode, folio, punch_start_byte, start_byte, end_byte, iomap, punch); /* move offset to start of next folio in range */ start_byte = folio_pos(folio) + folio_size(folio); folio_unlock(folio); folio_put(folio); } } /* * When a short write occurs, the filesystem might need to use ->iomap_end * to remove space reservations created in ->iomap_begin. * * For filesystems that use delayed allocation, there can be dirty pages over * the delalloc extent outside the range of a short write but still within the * delalloc extent allocated for this iomap if the write raced with page * faults. * * Punch out all the delalloc blocks in the range given except for those that * have dirty data still pending in the page cache - those are going to be * written and so must still retain the delalloc backing for writeback. * * The punch() callback *must* only punch delalloc extents in the range passed * to it. It must skip over all other types of extents in the range and leave * them completely unchanged. It must do this punch atomically with respect to * other extent modifications. * * The punch() callback may be called with a folio locked to prevent writeback * extent allocation racing at the edge of the range we are currently punching. * The locked folio may or may not cover the range being punched, so it is not * safe for the punch() callback to lock folios itself. * * Lock order is: * * inode->i_rwsem (shared or exclusive) * inode->i_mapping->invalidate_lock (exclusive) * folio_lock() * ->punch * internal filesystem allocation lock * * As we are scanning the page cache for data, we don't need to reimplement the * wheel - mapping_seek_hole_data() does exactly what we need to identify the * start and end of data ranges correctly even for sub-folio block sizes. This * byte range based iteration is especially convenient because it means we * don't have to care about variable size folios, nor where the start or end of * the data range lies within a folio, if they lie within the same folio or even * if there are multiple discontiguous data ranges within the folio. * * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so * can return data ranges that exist in the cache beyond EOF. e.g. a page fault * spanning EOF will initialise the post-EOF data to zeroes and mark it up to * date. A write page fault can then mark it dirty. If we then fail a write() * beyond EOF into that up to date cached range, we allocate a delalloc block * beyond EOF and then have to punch it out. Because the range is up to date, * mapping_seek_hole_data() will return it, and we will skip the punch because * the folio is dirty. THis is incorrect - we always need to punch out delalloc * beyond EOF in this case as writeback will never write back and covert that * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, * resulting in always punching out the range from the EOF to the end of the * range the iomap spans. * * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) * returns the end of the data range (data_end). Using closed intervals would * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose * the code to subtle off-by-one bugs.... */ void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte, loff_t end_byte, unsigned flags, struct iomap *iomap, iomap_punch_t punch) { loff_t punch_start_byte = start_byte; loff_t scan_end_byte = min(i_size_read(inode), end_byte); /* * The caller must hold invalidate_lock to avoid races with page faults * re-instantiating folios and dirtying them via ->page_mkwrite whilst * we walk the cache and perform delalloc extent removal. Failing to do * this can leave dirty pages with no space reservation in the cache. */ lockdep_assert_held_write(&inode->i_mapping->invalidate_lock); while (start_byte < scan_end_byte) { loff_t data_end; start_byte = mapping_seek_hole_data(inode->i_mapping, start_byte, scan_end_byte, SEEK_DATA); /* * If there is no more data to scan, all that is left is to * punch out the remaining range. * * Note that mapping_seek_hole_data is only supposed to return * either an offset or -ENXIO, so WARN on any other error as * that would be an API change without updating the callers. */ if (start_byte == -ENXIO || start_byte == scan_end_byte) break; if (WARN_ON_ONCE(start_byte < 0)) return; WARN_ON_ONCE(start_byte < punch_start_byte); WARN_ON_ONCE(start_byte > scan_end_byte); /* * We find the end of this contiguous cached data range by * seeking from start_byte to the beginning of the next hole. */ data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, scan_end_byte, SEEK_HOLE); if (WARN_ON_ONCE(data_end < 0)) return; /* * If we race with post-direct I/O invalidation of the page cache, * there might be no data left at start_byte. */ if (data_end == start_byte) continue; WARN_ON_ONCE(data_end < start_byte); WARN_ON_ONCE(data_end > scan_end_byte); iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte, data_end, iomap, punch); /* The next data search starts at the end of this one. */ start_byte = data_end; } if (punch_start_byte < end_byte) punch(inode, punch_start_byte, end_byte - punch_start_byte, iomap); } EXPORT_SYMBOL_GPL(iomap_write_delalloc_release); static loff_t iomap_unshare_iter(struct iomap_iter *iter) { struct iomap *iomap = &iter->iomap; loff_t pos = iter->pos; loff_t length = iomap_length(iter); loff_t written = 0; if (!iomap_want_unshare_iter(iter)) return length; do { struct folio *folio; int status; size_t offset; size_t bytes = min_t(u64, SIZE_MAX, length); bool ret; status = iomap_write_begin(iter, pos, bytes, &folio); if (unlikely(status)) return status; if (iomap->flags & IOMAP_F_STALE) break; offset = offset_in_folio(folio, pos); if (bytes > folio_size(folio) - offset) bytes = folio_size(folio) - offset; ret = iomap_write_end(iter, pos, bytes, bytes, folio); __iomap_put_folio(iter, pos, bytes, folio); if (WARN_ON_ONCE(!ret)) return -EIO; cond_resched(); pos += bytes; written += bytes; length -= bytes; balance_dirty_pages_ratelimited(iter->inode->i_mapping); } while (length > 0); return written; } int iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, const struct iomap_ops *ops) { struct iomap_iter iter = { .inode = inode, .pos = pos, .flags = IOMAP_WRITE | IOMAP_UNSHARE, }; loff_t size = i_size_read(inode); int ret; if (pos < 0 || pos >= size) return 0; iter.len = min(len, size - pos); while ((ret = iomap_iter(&iter, ops)) > 0) iter.processed = iomap_unshare_iter(&iter); return ret; } EXPORT_SYMBOL_GPL(iomap_file_unshare); /* * Flush the remaining range of the iter and mark the current mapping stale. * This is used when zero range sees an unwritten mapping that may have had * dirty pagecache over it. */ static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i) { struct address_space *mapping = i->inode->i_mapping; loff_t end = i->pos + i->len - 1; i->iomap.flags |= IOMAP_F_STALE; return filemap_write_and_wait_range(mapping, i->pos, end); } static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) { loff_t pos = iter->pos; loff_t length = iomap_length(iter); loff_t written = 0; do { struct folio *folio; int status; size_t offset; size_t bytes = min_t(u64, SIZE_MAX, length); bool ret; status = iomap_write_begin(iter, pos, bytes, &folio); if (status) return status; if (iter->iomap.flags & IOMAP_F_STALE) break; /* warn about zeroing folios beyond eof that won't write back */ WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size); offset = offset_in_folio(folio, pos); if (bytes > folio_size(folio) - offset) bytes = folio_size(folio) - offset; folio_zero_range(folio, offset, bytes); folio_mark_accessed(folio); ret = iomap_write_end(iter, pos, bytes, bytes, folio); __iomap_put_folio(iter, pos, bytes, folio); if (WARN_ON_ONCE(!ret)) return -EIO; pos += bytes; length -= bytes; written += bytes; } while (length > 0); if (did_zero) *did_zero = true; return written; } int iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, const struct iomap_ops *ops) { struct iomap_iter iter = { .inode = inode, .pos = pos, .len = len, .flags = IOMAP_ZERO, }; struct address_space *mapping = inode->i_mapping; unsigned int blocksize = i_blocksize(inode); unsigned int off = pos & (blocksize - 1); loff_t plen = min_t(loff_t, len, blocksize - off); int ret; bool range_dirty; /* * Zero range can skip mappings that are zero on disk so long as * pagecache is clean. If pagecache was dirty prior to zero range, the * mapping converts on writeback completion and so must be zeroed. * * The simplest way to deal with this across a range is to flush * pagecache and process the updated mappings. To avoid excessive * flushing on partial eof zeroing, special case it to zero the * unaligned start portion if already dirty in pagecache. */ if (off && filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) { iter.len = plen; while ((ret = iomap_iter(&iter, ops)) > 0) iter.processed = iomap_zero_iter(&iter, did_zero); iter.len = len - (iter.pos - pos); if (ret || !iter.len) return ret; } /* * To avoid an unconditional flush, check pagecache state and only flush * if dirty and the fs returns a mapping that might convert on * writeback. */ range_dirty = filemap_range_needs_writeback(inode->i_mapping, iter.pos, iter.pos + iter.len - 1); while ((ret = iomap_iter(&iter, ops)) > 0) { const struct iomap *srcmap = iomap_iter_srcmap(&iter); if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) { loff_t proc = iomap_length(&iter); if (range_dirty) { range_dirty = false; proc = iomap_zero_iter_flush_and_stale(&iter); } iter.processed = proc; continue; } iter.processed = iomap_zero_iter(&iter, did_zero); } return ret; } EXPORT_SYMBOL_GPL(iomap_zero_range); int iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, const struct iomap_ops *ops) { unsigned int blocksize = i_blocksize(inode); unsigned int off = pos & (blocksize - 1); /* Block boundary? Nothing to do */ if (!off) return 0; return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); } EXPORT_SYMBOL_GPL(iomap_truncate_page); static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, struct folio *folio) { loff_t length = iomap_length(iter); int ret; if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { ret = __block_write_begin_int(folio, iter->pos, length, NULL, &iter->iomap); if (ret) return ret; block_commit_write(&folio->page, 0, length); } else { WARN_ON_ONCE(!folio_test_uptodate(folio)); folio_mark_dirty(folio); } return length; } vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) { struct iomap_iter iter = { .inode = file_inode(vmf->vma->vm_file), .flags = IOMAP_WRITE | IOMAP_FAULT, }; struct folio *folio = page_folio(vmf->page); ssize_t ret; folio_lock(folio); ret = folio_mkwrite_check_truncate(folio, iter.inode); if (ret < 0) goto out_unlock; iter.pos = folio_pos(folio); iter.len = ret; while ((ret = iomap_iter(&iter, ops)) > 0) iter.processed = iomap_folio_mkwrite_iter(&iter, folio); if (ret < 0) goto out_unlock; folio_wait_stable(folio); return VM_FAULT_LOCKED; out_unlock: folio_unlock(folio); return vmf_fs_error(ret); } EXPORT_SYMBOL_GPL(iomap_page_mkwrite); static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, size_t len) { struct iomap_folio_state *ifs = folio->private; WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) folio_end_writeback(folio); } /* * We're now finished for good with this ioend structure. Update the page * state, release holds on bios, and finally free up memory. Do not use the * ioend after this. */ static u32 iomap_finish_ioend(struct iomap_ioend *ioend, int error) { struct inode *inode = ioend->io_inode; struct bio *bio = &ioend->io_bio; struct folio_iter fi; u32 folio_count = 0; if (error) { mapping_set_error(inode->i_mapping, error); if (!bio_flagged(bio, BIO_QUIET)) { pr_err_ratelimited( "%s: writeback error on inode %lu, offset %lld, sector %llu", inode->i_sb->s_id, inode->i_ino, ioend->io_offset, ioend->io_sector); } } /* walk all folios in bio, ending page IO on them */ bio_for_each_folio_all(fi, bio) { iomap_finish_folio_write(inode, fi.folio, fi.length); folio_count++; } bio_put(bio); /* frees the ioend */ return folio_count; } /* * Ioend completion routine for merged bios. This can only be called from task * contexts as merged ioends can be of unbound length. Hence we have to break up * the writeback completions into manageable chunks to avoid long scheduler * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get * good batch processing throughput without creating adverse scheduler latency * conditions. */ void iomap_finish_ioends(struct iomap_ioend *ioend, int error) { struct list_head tmp; u32 completions; might_sleep(); list_replace_init(&ioend->io_list, &tmp); completions = iomap_finish_ioend(ioend, error); while (!list_empty(&tmp)) { if (completions > IOEND_BATCH_SIZE * 8) { cond_resched(); completions = 0; } ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); list_del_init(&ioend->io_list); completions += iomap_finish_ioend(ioend, error); } } EXPORT_SYMBOL_GPL(iomap_finish_ioends); /* * We can merge two adjacent ioends if they have the same set of work to do. */ static bool iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) { if (ioend->io_bio.bi_status != next->io_bio.bi_status) return false; if (next->io_flags & IOMAP_F_BOUNDARY) return false; if ((ioend->io_flags & IOMAP_F_SHARED) ^ (next->io_flags & IOMAP_F_SHARED)) return false; if ((ioend->io_type == IOMAP_UNWRITTEN) ^ (next->io_type == IOMAP_UNWRITTEN)) return false; if (ioend->io_offset + ioend->io_size != next->io_offset) return false; /* * Do not merge physically discontiguous ioends. The filesystem * completion functions will have to iterate the physical * discontiguities even if we merge the ioends at a logical level, so * we don't gain anything by merging physical discontiguities here. * * We cannot use bio->bi_iter.bi_sector here as it is modified during * submission so does not point to the start sector of the bio at * completion. */ if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) return false; return true; } void iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) { struct iomap_ioend *next; INIT_LIST_HEAD(&ioend->io_list); while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, io_list))) { if (!iomap_ioend_can_merge(ioend, next)) break; list_move_tail(&next->io_list, &ioend->io_list); ioend->io_size += next->io_size; } } EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); static int iomap_ioend_compare(void *priv, const struct list_head *a, const struct list_head *b) { struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); if (ia->io_offset < ib->io_offset) return -1; if (ia->io_offset > ib->io_offset) return 1; return 0; } void iomap_sort_ioends(struct list_head *ioend_list) { list_sort(NULL, ioend_list, iomap_ioend_compare); } EXPORT_SYMBOL_GPL(iomap_sort_ioends); static void iomap_writepage_end_bio(struct bio *bio) { iomap_finish_ioend(iomap_ioend_from_bio(bio), blk_status_to_errno(bio->bi_status)); } /* * Submit the final bio for an ioend. * * If @error is non-zero, it means that we have a situation where some part of * the submission process has failed after we've marked pages for writeback. * We cannot cancel ioend directly in that case, so call the bio end I/O handler * with the error status here to run the normal I/O completion handler to clear * the writeback bit and let the file system proess the errors. */ static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) { if (!wpc->ioend) return error; /* * Let the file systems prepare the I/O submission and hook in an I/O * comletion handler. This also needs to happen in case after a * failure happened so that the file system end I/O handler gets called * to clean up. */ if (wpc->ops->prepare_ioend) error = wpc->ops->prepare_ioend(wpc->ioend, error); if (error) { wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); bio_endio(&wpc->ioend->io_bio); } else { submit_bio(&wpc->ioend->io_bio); } wpc->ioend = NULL; return error; } static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, struct writeback_control *wbc, struct inode *inode, loff_t pos) { struct iomap_ioend *ioend; struct bio *bio; bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, REQ_OP_WRITE | wbc_to_write_flags(wbc), GFP_NOFS, &iomap_ioend_bioset); bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); bio->bi_end_io = iomap_writepage_end_bio; wbc_init_bio(wbc, bio); bio->bi_write_hint = inode->i_write_hint; ioend = iomap_ioend_from_bio(bio); INIT_LIST_HEAD(&ioend->io_list); ioend->io_type = wpc->iomap.type; ioend->io_flags = wpc->iomap.flags; if (pos > wpc->iomap.offset) wpc->iomap.flags &= ~IOMAP_F_BOUNDARY; ioend->io_inode = inode; ioend->io_size = 0; ioend->io_offset = pos; ioend->io_sector = bio->bi_iter.bi_sector; wpc->nr_folios = 0; return ioend; } static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos) { if (wpc->iomap.offset == pos && (wpc->iomap.flags & IOMAP_F_BOUNDARY)) return false; if ((wpc->iomap.flags & IOMAP_F_SHARED) != (wpc->ioend->io_flags & IOMAP_F_SHARED)) return false; if (wpc->iomap.type != wpc->ioend->io_type) return false; if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) return false; if (iomap_sector(&wpc->iomap, pos) != bio_end_sector(&wpc->ioend->io_bio)) return false; /* * Limit ioend bio chain lengths to minimise IO completion latency. This * also prevents long tight loops ending page writeback on all the * folios in the ioend. */ if (wpc->nr_folios >= IOEND_BATCH_SIZE) return false; return true; } /* * Test to see if we have an existing ioend structure that we could append to * first; otherwise finish off the current ioend and start another. * * If a new ioend is created and cached, the old ioend is submitted to the block * layer instantly. Batching optimisations are provided by higher level block * plugging. * * At the end of a writeback pass, there will be a cached ioend remaining on the * writepage context that the caller will need to submit. */ static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, struct writeback_control *wbc, struct folio *folio, struct inode *inode, loff_t pos, loff_t end_pos, unsigned len) { struct iomap_folio_state *ifs = folio->private; size_t poff = offset_in_folio(folio, pos); int error; if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) { new_ioend: error = iomap_submit_ioend(wpc, 0); if (error) return error; wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos); } if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) goto new_ioend; if (ifs) atomic_add(len, &ifs->write_bytes_pending); /* * Clamp io_offset and io_size to the incore EOF so that ondisk * file size updates in the ioend completion are byte-accurate. * This avoids recovering files with zeroed tail regions when * writeback races with appending writes: * * Thread 1: Thread 2: * ------------ ----------- * write [A, A+B] * update inode size to A+B * submit I/O [A, A+BS] * write [A+B, A+B+C] * update inode size to A+B+C * * * * After reboot: * 1) with A+B+C < A+BS, the file has zero padding in range * [A+B, A+B+C] * * |< Block Size (BS) >| * |DDDDDDDDDDDD0000000000000| * ^ ^ ^ * A A+B A+B+C * (EOF) * * 2) with A+B+C > A+BS, the file has zero padding in range * [A+B, A+BS] * * |< Block Size (BS) >|< Block Size (BS) >| * |DDDDDDDDDDDD0000000000000|00000000000000000000000000| * ^ ^ ^ ^ * A A+B A+BS A+B+C * (EOF) * * D = Valid Data * 0 = Zero Padding * * Note that this defeats the ability to chain the ioends of * appending writes. */ wpc->ioend->io_size += len; if (wpc->ioend->io_offset + wpc->ioend->io_size > end_pos) wpc->ioend->io_size = end_pos - wpc->ioend->io_offset; wbc_account_cgroup_owner(wbc, folio, len); return 0; } static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, struct writeback_control *wbc, struct folio *folio, struct inode *inode, u64 pos, u64 end_pos, unsigned dirty_len, unsigned *count) { int error; do { unsigned map_len; error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); if (error) break; trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); map_len = min_t(u64, dirty_len, wpc->iomap.offset + wpc->iomap.length - pos); WARN_ON_ONCE(!folio->private && map_len < dirty_len); switch (wpc->iomap.type) { case IOMAP_INLINE: WARN_ON_ONCE(1); error = -EIO; break; case IOMAP_HOLE: break; default: error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, end_pos, map_len); if (!error) (*count)++; break; } dirty_len -= map_len; pos += map_len; } while (dirty_len && !error); /* * We cannot cancel the ioend directly here on error. We may have * already set other pages under writeback and hence we have to run I/O * completion to mark the error state of the pages under writeback * appropriately. * * Just let the file system know what portion of the folio failed to * map. */ if (error && wpc->ops->discard_folio) wpc->ops->discard_folio(folio, pos); return error; } /* * Check interaction of the folio with the file end. * * If the folio is entirely beyond i_size, return false. If it straddles * i_size, adjust end_pos and zero all data beyond i_size. */ static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, u64 *end_pos) { u64 isize = i_size_read(inode); if (*end_pos > isize) { size_t poff = offset_in_folio(folio, isize); pgoff_t end_index = isize >> PAGE_SHIFT; /* * If the folio is entirely ouside of i_size, skip it. * * This can happen due to a truncate operation that is in * progress and in that case truncate will finish it off once * we've dropped the folio lock. * * Note that the pgoff_t used for end_index is an unsigned long. * If the given offset is greater than 16TB on a 32-bit system, * then if we checked if the folio is fully outside i_size with * "if (folio->index >= end_index + 1)", "end_index + 1" would * overflow and evaluate to 0. Hence this folio would be * redirtied and written out repeatedly, which would result in * an infinite loop; the user program performing this operation * would hang. Instead, we can detect this situation by * checking if the folio is totally beyond i_size or if its * offset is just equal to the EOF. */ if (folio->index > end_index || (folio->index == end_index && poff == 0)) return false; /* * The folio straddles i_size. * * It must be zeroed out on each and every writepage invocation * because it may be mmapped: * * A file is mapped in multiples of the page size. For a * file that is not a multiple of the page size, the * remaining memory is zeroed when mapped, and writes to that * region are not written out to the file. * * Also adjust the end_pos to the end of file and skip writeback * for all blocks entirely beyond i_size. */ folio_zero_segment(folio, poff, folio_size(folio)); *end_pos = isize; } return true; } static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, struct writeback_control *wbc, struct folio *folio) { struct iomap_folio_state *ifs = folio->private; struct inode *inode = folio->mapping->host; u64 pos = folio_pos(folio); u64 end_pos = pos + folio_size(folio); u64 end_aligned = 0; unsigned count = 0; int error = 0; u32 rlen; WARN_ON_ONCE(!folio_test_locked(folio)); WARN_ON_ONCE(folio_test_dirty(folio)); WARN_ON_ONCE(folio_test_writeback(folio)); trace_iomap_writepage(inode, pos, folio_size(folio)); if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { folio_unlock(folio); return 0; } WARN_ON_ONCE(end_pos <= pos); if (i_blocks_per_folio(inode, folio) > 1) { if (!ifs) { ifs = ifs_alloc(inode, folio, 0); iomap_set_range_dirty(folio, 0, end_pos - pos); } /* * Keep the I/O completion handler from clearing the writeback * bit until we have submitted all blocks by adding a bias to * ifs->write_bytes_pending, which is dropped after submitting * all blocks. */ WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); atomic_inc(&ifs->write_bytes_pending); } /* * Set the writeback bit ASAP, as the I/O completion for the single * block per folio case happen hit as soon as we're submitting the bio. */ folio_start_writeback(folio); /* * Walk through the folio to find dirty areas to write back. */ end_aligned = round_up(end_pos, i_blocksize(inode)); while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) { error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, pos, end_pos, rlen, &count); if (error) break; pos += rlen; } if (count) wpc->nr_folios++; /* * We can have dirty bits set past end of file in page_mkwrite path * while mapping the last partial folio. Hence it's better to clear * all the dirty bits in the folio here. */ iomap_clear_range_dirty(folio, 0, folio_size(folio)); /* * Usually the writeback bit is cleared by the I/O completion handler. * But we may end up either not actually writing any blocks, or (when * there are multiple blocks in a folio) all I/O might have finished * already at this point. In that case we need to clear the writeback * bit ourselves right after unlocking the page. */ folio_unlock(folio); if (ifs) { if (atomic_dec_and_test(&ifs->write_bytes_pending)) folio_end_writeback(folio); } else { if (!count) folio_end_writeback(folio); } mapping_set_error(inode->i_mapping, error); return error; } int iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, struct iomap_writepage_ctx *wpc, const struct iomap_writeback_ops *ops) { struct folio *folio = NULL; int error; /* * Writeback from reclaim context should never happen except in the case * of a VM regression so warn about it and refuse to write the data. */ if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == PF_MEMALLOC)) return -EIO; wpc->ops = ops; while ((folio = writeback_iter(mapping, wbc, folio, &error))) error = iomap_writepage_map(wpc, wbc, folio); return iomap_submit_ioend(wpc, error); } EXPORT_SYMBOL_GPL(iomap_writepages); static int __init iomap_buffered_init(void) { return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), offsetof(struct iomap_ioend, io_bio), BIOSET_NEED_BVECS); } fs_initcall(iomap_buffered_init);