// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/dir.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "acl.h" #include "xattr.h" #include #if IS_ENABLED(CONFIG_UNICODE) extern struct kmem_cache *f2fs_cf_name_slab; #endif static unsigned long dir_blocks(struct inode *inode) { return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1)) >> PAGE_SHIFT; } static unsigned int dir_buckets(unsigned int level, int dir_level) { if (level + dir_level < MAX_DIR_HASH_DEPTH / 2) return BIT(level + dir_level); else return MAX_DIR_BUCKETS; } static unsigned int bucket_blocks(unsigned int level) { if (level < MAX_DIR_HASH_DEPTH / 2) return 2; else return 4; } #if IS_ENABLED(CONFIG_UNICODE) /* If @dir is casefolded, initialize @fname->cf_name from @fname->usr_fname. */ int f2fs_init_casefolded_name(const struct inode *dir, struct f2fs_filename *fname) { struct super_block *sb = dir->i_sb; unsigned char *buf; int len; if (IS_CASEFOLDED(dir) && !is_dot_dotdot(fname->usr_fname->name, fname->usr_fname->len)) { buf = f2fs_kmem_cache_alloc(f2fs_cf_name_slab, GFP_NOFS, false, F2FS_SB(sb)); if (!buf) return -ENOMEM; len = utf8_casefold(sb->s_encoding, fname->usr_fname, buf, F2FS_NAME_LEN); if (len <= 0) { kmem_cache_free(f2fs_cf_name_slab, buf); if (sb_has_strict_encoding(sb)) return -EINVAL; /* fall back to treating name as opaque byte sequence */ return 0; } fname->cf_name.name = buf; fname->cf_name.len = len; } return 0; } void f2fs_free_casefolded_name(struct f2fs_filename *fname) { unsigned char *buf = (unsigned char *)fname->cf_name.name; if (buf) { kmem_cache_free(f2fs_cf_name_slab, buf); fname->cf_name.name = NULL; } } #endif /* CONFIG_UNICODE */ static int __f2fs_setup_filename(const struct inode *dir, const struct fscrypt_name *crypt_name, struct f2fs_filename *fname) { int err; memset(fname, 0, sizeof(*fname)); fname->usr_fname = crypt_name->usr_fname; fname->disk_name = crypt_name->disk_name; #ifdef CONFIG_FS_ENCRYPTION fname->crypto_buf = crypt_name->crypto_buf; #endif if (crypt_name->is_nokey_name) { /* hash was decoded from the no-key name */ fname->hash = cpu_to_le32(crypt_name->hash); } else { err = f2fs_init_casefolded_name(dir, fname); if (err) { f2fs_free_filename(fname); return err; } f2fs_hash_filename(dir, fname); } return 0; } /* * Prepare to search for @iname in @dir. This is similar to * fscrypt_setup_filename(), but this also handles computing the casefolded name * and the f2fs dirhash if needed, then packing all the information about this * filename up into a 'struct f2fs_filename'. */ int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct f2fs_filename *fname) { struct fscrypt_name crypt_name; int err; err = fscrypt_setup_filename(dir, iname, lookup, &crypt_name); if (err) return err; return __f2fs_setup_filename(dir, &crypt_name, fname); } /* * Prepare to look up @dentry in @dir. This is similar to * fscrypt_prepare_lookup(), but this also handles computing the casefolded name * and the f2fs dirhash if needed, then packing all the information about this * filename up into a 'struct f2fs_filename'. */ int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, struct f2fs_filename *fname) { struct fscrypt_name crypt_name; int err; err = fscrypt_prepare_lookup(dir, dentry, &crypt_name); if (err) return err; return __f2fs_setup_filename(dir, &crypt_name, fname); } void f2fs_free_filename(struct f2fs_filename *fname) { #ifdef CONFIG_FS_ENCRYPTION kfree(fname->crypto_buf.name); fname->crypto_buf.name = NULL; #endif f2fs_free_casefolded_name(fname); } static unsigned long dir_block_index(unsigned int level, int dir_level, unsigned int idx) { unsigned long i; unsigned long bidx = 0; for (i = 0; i < level; i++) bidx += mul_u32_u32(dir_buckets(i, dir_level), bucket_blocks(i)); bidx += idx * bucket_blocks(level); return bidx; } static struct f2fs_dir_entry *find_in_block(struct inode *dir, struct page *dentry_page, const struct f2fs_filename *fname, int *max_slots) { struct f2fs_dentry_block *dentry_blk; struct f2fs_dentry_ptr d; dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page); make_dentry_ptr_block(dir, &d, dentry_blk); return f2fs_find_target_dentry(&d, fname, max_slots); } static inline int f2fs_match_name(const struct inode *dir, const struct f2fs_filename *fname, const u8 *de_name, u32 de_name_len) { struct fscrypt_name f; #if IS_ENABLED(CONFIG_UNICODE) if (fname->cf_name.name) return generic_ci_match(dir, fname->usr_fname, &fname->cf_name, de_name, de_name_len); #endif f.usr_fname = fname->usr_fname; f.disk_name = fname->disk_name; #ifdef CONFIG_FS_ENCRYPTION f.crypto_buf = fname->crypto_buf; #endif return fscrypt_match_name(&f, de_name, de_name_len); } struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, const struct f2fs_filename *fname, int *max_slots) { struct f2fs_dir_entry *de; unsigned long bit_pos = 0; int max_len = 0; int res = 0; if (max_slots) *max_slots = 0; while (bit_pos < d->max) { if (!test_bit_le(bit_pos, d->bitmap)) { bit_pos++; max_len++; continue; } de = &d->dentry[bit_pos]; if (unlikely(!de->name_len)) { bit_pos++; continue; } if (de->hash_code == fname->hash) { res = f2fs_match_name(d->inode, fname, d->filename[bit_pos], le16_to_cpu(de->name_len)); if (res < 0) return ERR_PTR(res); if (res) goto found; } if (max_slots && max_len > *max_slots) *max_slots = max_len; max_len = 0; bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); } de = NULL; found: if (max_slots && max_len > *max_slots) *max_slots = max_len; return de; } static struct f2fs_dir_entry *find_in_level(struct inode *dir, unsigned int level, const struct f2fs_filename *fname, struct page **res_page) { int s = GET_DENTRY_SLOTS(fname->disk_name.len); unsigned int nbucket, nblock; unsigned int bidx, end_block; struct page *dentry_page; struct f2fs_dir_entry *de = NULL; pgoff_t next_pgofs; bool room = false; int max_slots; nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level); nblock = bucket_blocks(level); bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level, le32_to_cpu(fname->hash) % nbucket); end_block = bidx + nblock; while (bidx < end_block) { /* no need to allocate new dentry pages to all the indices */ dentry_page = f2fs_find_data_page(dir, bidx, &next_pgofs); if (IS_ERR(dentry_page)) { if (PTR_ERR(dentry_page) == -ENOENT) { room = true; bidx = next_pgofs; continue; } else { *res_page = dentry_page; break; } } de = find_in_block(dir, dentry_page, fname, &max_slots); if (IS_ERR(de)) { *res_page = ERR_CAST(de); de = NULL; break; } else if (de) { *res_page = dentry_page; break; } if (max_slots >= s) room = true; f2fs_put_page(dentry_page, 0); bidx++; } if (!de && room && F2FS_I(dir)->chash != fname->hash) { F2FS_I(dir)->chash = fname->hash; F2FS_I(dir)->clevel = level; } return de; } struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, const struct f2fs_filename *fname, struct page **res_page) { unsigned long npages = dir_blocks(dir); struct f2fs_dir_entry *de = NULL; unsigned int max_depth; unsigned int level; *res_page = NULL; if (f2fs_has_inline_dentry(dir)) { de = f2fs_find_in_inline_dir(dir, fname, res_page); goto out; } if (npages == 0) goto out; max_depth = F2FS_I(dir)->i_current_depth; if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) { f2fs_warn(F2FS_I_SB(dir), "Corrupted max_depth of %lu: %u", dir->i_ino, max_depth); max_depth = MAX_DIR_HASH_DEPTH; f2fs_i_depth_write(dir, max_depth); } for (level = 0; level < max_depth; level++) { de = find_in_level(dir, level, fname, res_page); if (de || IS_ERR(*res_page)) break; } out: /* This is to increase the speed of f2fs_create */ if (!de) F2FS_I(dir)->task = current; return de; } /* * Find an entry in the specified directory with the wanted name. * It returns the page where the entry was found (as a parameter - res_page), * and the entry itself. Page is returned mapped and unlocked. * Entry is guaranteed to be valid. */ struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, const struct qstr *child, struct page **res_page) { struct f2fs_dir_entry *de = NULL; struct f2fs_filename fname; int err; err = f2fs_setup_filename(dir, child, 1, &fname); if (err) { if (err == -ENOENT) *res_page = NULL; else *res_page = ERR_PTR(err); return NULL; } de = __f2fs_find_entry(dir, &fname, res_page); f2fs_free_filename(&fname); return de; } struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p) { return f2fs_find_entry(dir, &dotdot_name, p); } ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, struct page **page) { ino_t res = 0; struct f2fs_dir_entry *de; de = f2fs_find_entry(dir, qstr, page); if (de) { res = le32_to_cpu(de->ino); f2fs_put_page(*page, 0); } return res; } void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, struct page *page, struct inode *inode) { enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA; lock_page(page); f2fs_wait_on_page_writeback(page, type, true, true); de->ino = cpu_to_le32(inode->i_ino); de->file_type = fs_umode_to_ftype(inode->i_mode); set_page_dirty(page); inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); f2fs_mark_inode_dirty_sync(dir, false); f2fs_put_page(page, 1); } static void init_dent_inode(struct inode *dir, struct inode *inode, const struct f2fs_filename *fname, struct page *ipage) { struct f2fs_inode *ri; if (!fname) /* tmpfile case? */ return; f2fs_wait_on_page_writeback(ipage, NODE, true, true); /* copy name info. to this inode page */ ri = F2FS_INODE(ipage); ri->i_namelen = cpu_to_le32(fname->disk_name.len); memcpy(ri->i_name, fname->disk_name.name, fname->disk_name.len); if (IS_ENCRYPTED(dir)) { file_set_enc_name(inode); /* * Roll-forward recovery doesn't have encryption keys available, * so it can't compute the dirhash for encrypted+casefolded * filenames. Append it to i_name if possible. Else, disable * roll-forward recovery of the dentry (i.e., make fsync'ing the * file force a checkpoint) by setting LOST_PINO. */ if (IS_CASEFOLDED(dir)) { if (fname->disk_name.len + sizeof(f2fs_hash_t) <= F2FS_NAME_LEN) put_unaligned(fname->hash, (f2fs_hash_t *) &ri->i_name[fname->disk_name.len]); else file_lost_pino(inode); } } set_page_dirty(ipage); } void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, struct f2fs_dentry_ptr *d) { struct fscrypt_str dot = FSTR_INIT(".", 1); struct fscrypt_str dotdot = FSTR_INIT("..", 2); /* update dirent of "." */ f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0); /* update dirent of ".." */ f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1); } static int make_empty_dir(struct inode *inode, struct inode *parent, struct page *page) { struct page *dentry_page; struct f2fs_dentry_block *dentry_blk; struct f2fs_dentry_ptr d; if (f2fs_has_inline_dentry(inode)) return f2fs_make_empty_inline_dir(inode, parent, page); dentry_page = f2fs_get_new_data_page(inode, page, 0, true); if (IS_ERR(dentry_page)) return PTR_ERR(dentry_page); dentry_blk = page_address(dentry_page); make_dentry_ptr_block(NULL, &d, dentry_blk); f2fs_do_make_empty_dir(inode, parent, &d); set_page_dirty(dentry_page); f2fs_put_page(dentry_page, 1); return 0; } struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, const struct f2fs_filename *fname, struct page *dpage) { struct page *page; int err; if (is_inode_flag_set(inode, FI_NEW_INODE)) { page = f2fs_new_inode_page(inode); if (IS_ERR(page)) return page; if (S_ISDIR(inode->i_mode)) { /* in order to handle error case */ get_page(page); err = make_empty_dir(inode, dir, page); if (err) { lock_page(page); goto put_error; } put_page(page); } err = f2fs_init_acl(inode, dir, page, dpage); if (err) goto put_error; err = f2fs_init_security(inode, dir, fname ? fname->usr_fname : NULL, page); if (err) goto put_error; if (IS_ENCRYPTED(inode)) { err = fscrypt_set_context(inode, page); if (err) goto put_error; } } else { page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino); if (IS_ERR(page)) return page; } init_dent_inode(dir, inode, fname, page); /* * This file should be checkpointed during fsync. * We lost i_pino from now on. */ if (is_inode_flag_set(inode, FI_INC_LINK)) { if (!S_ISDIR(inode->i_mode)) file_lost_pino(inode); /* * If link the tmpfile to alias through linkat path, * we should remove this inode from orphan list. */ if (inode->i_nlink == 0) f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino); f2fs_i_links_write(inode, true); } return page; put_error: clear_nlink(inode); f2fs_update_inode(inode, page); f2fs_put_page(page, 1); return ERR_PTR(err); } void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, unsigned int current_depth) { if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) { if (S_ISDIR(inode->i_mode)) f2fs_i_links_write(dir, true); clear_inode_flag(inode, FI_NEW_INODE); } inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); f2fs_mark_inode_dirty_sync(dir, false); if (F2FS_I(dir)->i_current_depth != current_depth) f2fs_i_depth_write(dir, current_depth); if (inode && is_inode_flag_set(inode, FI_INC_LINK)) clear_inode_flag(inode, FI_INC_LINK); } int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots) { int bit_start = 0; int zero_start, zero_end; next: zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start); if (zero_start >= max_slots) return max_slots; zero_end = find_next_bit_le(bitmap, max_slots, zero_start); if (zero_end - zero_start >= slots) return zero_start; bit_start = zero_end + 1; if (zero_end + 1 >= max_slots) return max_slots; goto next; } bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, const struct f2fs_filename *fname) { struct f2fs_dentry_ptr d; unsigned int bit_pos; int slots = GET_DENTRY_SLOTS(fname->disk_name.len); make_dentry_ptr_inline(dir, &d, inline_data_addr(dir, ipage)); bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); return bit_pos < d.max; } void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, const struct fscrypt_str *name, f2fs_hash_t name_hash, unsigned int bit_pos) { struct f2fs_dir_entry *de; int slots = GET_DENTRY_SLOTS(name->len); int i; de = &d->dentry[bit_pos]; de->hash_code = name_hash; de->name_len = cpu_to_le16(name->len); memcpy(d->filename[bit_pos], name->name, name->len); de->ino = cpu_to_le32(ino); de->file_type = fs_umode_to_ftype(mode); for (i = 0; i < slots; i++) { __set_bit_le(bit_pos + i, (void *)d->bitmap); /* avoid wrong garbage data for readdir */ if (i) (de + i)->name_len = 0; } } int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, struct inode *inode, nid_t ino, umode_t mode) { unsigned int bit_pos; unsigned int level; unsigned int current_depth; unsigned long bidx, block; unsigned int nbucket, nblock; struct page *dentry_page = NULL; struct f2fs_dentry_block *dentry_blk = NULL; struct f2fs_dentry_ptr d; struct page *page = NULL; int slots, err = 0; level = 0; slots = GET_DENTRY_SLOTS(fname->disk_name.len); current_depth = F2FS_I(dir)->i_current_depth; if (F2FS_I(dir)->chash == fname->hash) { level = F2FS_I(dir)->clevel; F2FS_I(dir)->chash = 0; } start: if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) return -ENOSPC; if (unlikely(current_depth == MAX_DIR_HASH_DEPTH)) return -ENOSPC; /* Increase the depth, if required */ if (level == current_depth) ++current_depth; nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level); nblock = bucket_blocks(level); bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level, (le32_to_cpu(fname->hash) % nbucket)); for (block = bidx; block <= (bidx + nblock - 1); block++) { dentry_page = f2fs_get_new_data_page(dir, NULL, block, true); if (IS_ERR(dentry_page)) return PTR_ERR(dentry_page); dentry_blk = page_address(dentry_page); bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap, slots, NR_DENTRY_IN_BLOCK); if (bit_pos < NR_DENTRY_IN_BLOCK) goto add_dentry; f2fs_put_page(dentry_page, 1); } /* Move to next level to find the empty slot for new dentry */ ++level; goto start; add_dentry: f2fs_wait_on_page_writeback(dentry_page, DATA, true, true); if (inode) { f2fs_down_write(&F2FS_I(inode)->i_sem); page = f2fs_init_inode_metadata(inode, dir, fname, NULL); if (IS_ERR(page)) { err = PTR_ERR(page); goto fail; } } make_dentry_ptr_block(NULL, &d, dentry_blk); f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, bit_pos); set_page_dirty(dentry_page); if (inode) { f2fs_i_pino_write(inode, dir->i_ino); /* synchronize inode page's data from inode cache */ if (is_inode_flag_set(inode, FI_NEW_INODE)) f2fs_update_inode(inode, page); f2fs_put_page(page, 1); } f2fs_update_parent_metadata(dir, inode, current_depth); fail: if (inode) f2fs_up_write(&F2FS_I(inode)->i_sem); f2fs_put_page(dentry_page, 1); return err; } int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, struct inode *inode, nid_t ino, umode_t mode) { int err = -EAGAIN; if (f2fs_has_inline_dentry(dir)) { /* * Should get i_xattr_sem to keep the lock order: * i_xattr_sem -> inode_page lock used by f2fs_setxattr. */ f2fs_down_read(&F2FS_I(dir)->i_xattr_sem); err = f2fs_add_inline_entry(dir, fname, inode, ino, mode); f2fs_up_read(&F2FS_I(dir)->i_xattr_sem); } if (err == -EAGAIN) err = f2fs_add_regular_entry(dir, fname, inode, ino, mode); f2fs_update_time(F2FS_I_SB(dir), REQ_TIME); return err; } /* * Caller should grab and release a rwsem by calling f2fs_lock_op() and * f2fs_unlock_op(). */ int f2fs_do_add_link(struct inode *dir, const struct qstr *name, struct inode *inode, nid_t ino, umode_t mode) { struct f2fs_filename fname; struct page *page = NULL; struct f2fs_dir_entry *de = NULL; int err; err = f2fs_setup_filename(dir, name, 0, &fname); if (err) return err; /* * An immature stackable filesystem shows a race condition between lookup * and create. If we have same task when doing lookup and create, it's * definitely fine as expected by VFS normally. Otherwise, let's just * verify on-disk dentry one more time, which guarantees filesystem * consistency more. */ if (current != F2FS_I(dir)->task) { de = __f2fs_find_entry(dir, &fname, &page); F2FS_I(dir)->task = NULL; } if (de) { f2fs_put_page(page, 0); err = -EEXIST; } else if (IS_ERR(page)) { err = PTR_ERR(page); } else { err = f2fs_add_dentry(dir, &fname, inode, ino, mode); } f2fs_free_filename(&fname); return err; } int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, struct f2fs_filename *fname) { struct page *page; int err = 0; f2fs_down_write(&F2FS_I(inode)->i_sem); page = f2fs_init_inode_metadata(inode, dir, fname, NULL); if (IS_ERR(page)) { err = PTR_ERR(page); goto fail; } f2fs_put_page(page, 1); clear_inode_flag(inode, FI_NEW_INODE); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); fail: f2fs_up_write(&F2FS_I(inode)->i_sem); return err; } void f2fs_drop_nlink(struct inode *dir, struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); f2fs_down_write(&F2FS_I(inode)->i_sem); if (S_ISDIR(inode->i_mode)) f2fs_i_links_write(dir, false); inode_set_ctime_current(inode); f2fs_i_links_write(inode, false); if (S_ISDIR(inode->i_mode)) { f2fs_i_links_write(inode, false); f2fs_i_size_write(inode, 0); } f2fs_up_write(&F2FS_I(inode)->i_sem); if (inode->i_nlink == 0) f2fs_add_orphan_inode(inode); else f2fs_release_orphan_inode(sbi); } /* * It only removes the dentry from the dentry page, corresponding name * entry in name page does not need to be touched during deletion. */ void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode) { struct f2fs_dentry_block *dentry_blk; unsigned int bit_pos; int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); pgoff_t index = page_folio(page)->index; int i; f2fs_update_time(F2FS_I_SB(dir), REQ_TIME); if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT) f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO); if (f2fs_has_inline_dentry(dir)) return f2fs_delete_inline_entry(dentry, page, dir, inode); lock_page(page); f2fs_wait_on_page_writeback(page, DATA, true, true); dentry_blk = page_address(page); bit_pos = dentry - dentry_blk->dentry; for (i = 0; i < slots; i++) __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap); /* Let's check and deallocate this dentry page */ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, 0); set_page_dirty(page); if (bit_pos == NR_DENTRY_IN_BLOCK && !f2fs_truncate_hole(dir, index, index + 1)) { f2fs_clear_page_cache_dirty_tag(page_folio(page)); clear_page_dirty_for_io(page); ClearPageUptodate(page); clear_page_private_all(page); inode_dec_dirty_pages(dir); f2fs_remove_dirty_inode(dir); } f2fs_put_page(page, 1); inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); f2fs_mark_inode_dirty_sync(dir, false); if (inode) f2fs_drop_nlink(dir, inode); } bool f2fs_empty_dir(struct inode *dir) { unsigned long bidx = 0; struct page *dentry_page; unsigned int bit_pos; struct f2fs_dentry_block *dentry_blk; unsigned long nblock = dir_blocks(dir); if (f2fs_has_inline_dentry(dir)) return f2fs_empty_inline_dir(dir); while (bidx < nblock) { pgoff_t next_pgofs; dentry_page = f2fs_find_data_page(dir, bidx, &next_pgofs); if (IS_ERR(dentry_page)) { if (PTR_ERR(dentry_page) == -ENOENT) { bidx = next_pgofs; continue; } else { return false; } } dentry_blk = page_address(dentry_page); if (bidx == 0) bit_pos = 2; else bit_pos = 0; bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap, NR_DENTRY_IN_BLOCK, bit_pos); f2fs_put_page(dentry_page, 0); if (bit_pos < NR_DENTRY_IN_BLOCK) return false; bidx++; } return true; } int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, unsigned int start_pos, struct fscrypt_str *fstr) { unsigned char d_type = DT_UNKNOWN; unsigned int bit_pos; struct f2fs_dir_entry *de = NULL; struct fscrypt_str de_name = FSTR_INIT(NULL, 0); struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode); struct blk_plug plug; bool readdir_ra = sbi->readdir_ra; bool found_valid_dirent = false; int err = 0; bit_pos = ((unsigned long)ctx->pos % d->max); if (readdir_ra) blk_start_plug(&plug); while (bit_pos < d->max) { bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos); if (bit_pos >= d->max) break; de = &d->dentry[bit_pos]; if (de->name_len == 0) { if (found_valid_dirent || !bit_pos) { f2fs_warn_ratelimited(sbi, "invalid namelen(0), ino:%u, run fsck to fix.", le32_to_cpu(de->ino)); set_sbi_flag(sbi, SBI_NEED_FSCK); } bit_pos++; ctx->pos = start_pos + bit_pos; continue; } d_type = fs_ftype_to_dtype(de->file_type); de_name.name = d->filename[bit_pos]; de_name.len = le16_to_cpu(de->name_len); /* check memory boundary before moving forward */ bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); if (unlikely(bit_pos > d->max || le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) { f2fs_warn(sbi, "%s: corrupted namelen=%d, run fsck to fix.", __func__, le16_to_cpu(de->name_len)); set_sbi_flag(sbi, SBI_NEED_FSCK); err = -EFSCORRUPTED; f2fs_handle_error(sbi, ERROR_CORRUPTED_DIRENT); goto out; } if (IS_ENCRYPTED(d->inode)) { int save_len = fstr->len; err = fscrypt_fname_disk_to_usr(d->inode, (u32)le32_to_cpu(de->hash_code), 0, &de_name, fstr); if (err) goto out; de_name = *fstr; fstr->len = save_len; } if (!dir_emit(ctx, de_name.name, de_name.len, le32_to_cpu(de->ino), d_type)) { err = 1; goto out; } if (readdir_ra) f2fs_ra_node_page(sbi, le32_to_cpu(de->ino)); ctx->pos = start_pos + bit_pos; found_valid_dirent = true; } out: if (readdir_ra) blk_finish_plug(&plug); return err; } static int f2fs_readdir(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); unsigned long npages = dir_blocks(inode); struct f2fs_dentry_block *dentry_blk = NULL; struct page *dentry_page = NULL; struct file_ra_state *ra = &file->f_ra; loff_t start_pos = ctx->pos; unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK); struct f2fs_dentry_ptr d; struct fscrypt_str fstr = FSTR_INIT(NULL, 0); int err = 0; if (IS_ENCRYPTED(inode)) { err = fscrypt_prepare_readdir(inode); if (err) goto out; err = fscrypt_fname_alloc_buffer(F2FS_NAME_LEN, &fstr); if (err < 0) goto out; } if (f2fs_has_inline_dentry(inode)) { err = f2fs_read_inline_dir(file, ctx, &fstr); goto out_free; } for (; n < npages; ctx->pos = n * NR_DENTRY_IN_BLOCK) { pgoff_t next_pgofs; /* allow readdir() to be interrupted */ if (fatal_signal_pending(current)) { err = -ERESTARTSYS; goto out_free; } cond_resched(); /* readahead for multi pages of dir */ if (npages - n > 1 && !ra_has_index(ra, n)) page_cache_sync_readahead(inode->i_mapping, ra, file, n, min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES)); dentry_page = f2fs_find_data_page(inode, n, &next_pgofs); if (IS_ERR(dentry_page)) { err = PTR_ERR(dentry_page); if (err == -ENOENT) { err = 0; n = next_pgofs; continue; } else { goto out_free; } } dentry_blk = page_address(dentry_page); make_dentry_ptr_block(inode, &d, dentry_blk); err = f2fs_fill_dentries(ctx, &d, n * NR_DENTRY_IN_BLOCK, &fstr); if (err) { f2fs_put_page(dentry_page, 0); break; } f2fs_put_page(dentry_page, 0); n++; } out_free: fscrypt_fname_free_buffer(&fstr); out: trace_f2fs_readdir(inode, start_pos, ctx->pos, err); return err < 0 ? err : 0; } const struct file_operations f2fs_dir_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = f2fs_readdir, .fsync = f2fs_sync_file, .unlocked_ioctl = f2fs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = f2fs_compat_ioctl, #endif };