// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/writeback.h> #include <linux/sched/mm.h> #include "messages.h" #include "misc.h" #include "ctree.h" #include "transaction.h" #include "btrfs_inode.h" #include "extent_io.h" #include "disk-io.h" #include "compression.h" #include "delalloc-space.h" #include "qgroup.h" #include "subpage.h" #include "file.h" #include "block-group.h" static struct kmem_cache *btrfs_ordered_extent_cache; static u64 entry_end(struct btrfs_ordered_extent *entry) { if (entry->file_offset + entry->num_bytes < entry->file_offset) return (u64)-1; return entry->file_offset + entry->num_bytes; } /* returns NULL if the insertion worked, or it returns the node it did find * in the tree */ static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_ordered_extent *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) p = &(*p)->rb_left; else if (file_offset >= entry_end(entry)) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } /* * look for a given offset in the tree, and if it can't be found return the * first lesser offset */ static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, struct rb_node **prev_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *test; struct btrfs_ordered_extent *entry; struct btrfs_ordered_extent *prev_entry = NULL; while (n) { entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); prev = n; prev_entry = entry; if (file_offset < entry->file_offset) n = n->rb_left; else if (file_offset >= entry_end(entry)) n = n->rb_right; else return n; } if (!prev_ret) return NULL; while (prev && file_offset >= entry_end(prev_entry)) { test = rb_next(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); if (file_offset < entry_end(prev_entry)) break; prev = test; } if (prev) prev_entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); while (prev && file_offset < entry_end(prev_entry)) { test = rb_prev(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); prev = test; } *prev_ret = prev; return NULL; } static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, u64 len) { if (file_offset + len <= entry->file_offset || entry->file_offset + entry->num_bytes <= file_offset) return 0; return 1; } /* * look find the first ordered struct that has this offset, otherwise * the first one less than this offset */ static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode, u64 file_offset) { struct rb_node *prev = NULL; struct rb_node *ret; struct btrfs_ordered_extent *entry; if (inode->ordered_tree_last) { entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent, rb_node); if (in_range(file_offset, entry->file_offset, entry->num_bytes)) return inode->ordered_tree_last; } ret = __tree_search(&inode->ordered_tree, file_offset, &prev); if (!ret) ret = prev; if (ret) inode->ordered_tree_last = ret; return ret; } static struct btrfs_ordered_extent *alloc_ordered_extent( struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, u64 offset, unsigned long flags, int compress_type) { struct btrfs_ordered_extent *entry; int ret; u64 qgroup_rsv = 0; if (flags & ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { /* For nocow write, we can release the qgroup rsv right now */ ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); if (ret < 0) return ERR_PTR(ret); } else { /* * The ordered extent has reserved qgroup space, release now * and pass the reserved number for qgroup_record to free. */ ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); if (ret < 0) return ERR_PTR(ret); } entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); if (!entry) return ERR_PTR(-ENOMEM); entry->file_offset = file_offset; entry->num_bytes = num_bytes; entry->ram_bytes = ram_bytes; entry->disk_bytenr = disk_bytenr; entry->disk_num_bytes = disk_num_bytes; entry->offset = offset; entry->bytes_left = num_bytes; entry->inode = BTRFS_I(igrab(&inode->vfs_inode)); entry->compress_type = compress_type; entry->truncated_len = (u64)-1; entry->qgroup_rsv = qgroup_rsv; entry->flags = flags; refcount_set(&entry->refs, 1); init_waitqueue_head(&entry->wait); INIT_LIST_HEAD(&entry->list); INIT_LIST_HEAD(&entry->log_list); INIT_LIST_HEAD(&entry->root_extent_list); INIT_LIST_HEAD(&entry->work_list); INIT_LIST_HEAD(&entry->bioc_list); init_completion(&entry->completion); /* * We don't need the count_max_extents here, we can assume that all of * that work has been done at higher layers, so this is truly the * smallest the extent is going to get. */ spin_lock(&inode->lock); btrfs_mod_outstanding_extents(inode, 1); spin_unlock(&inode->lock); return entry; } static void insert_ordered_extent(struct btrfs_ordered_extent *entry) { struct btrfs_inode *inode = entry->inode; struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct rb_node *node; trace_btrfs_ordered_extent_add(inode, entry); percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, fs_info->delalloc_batch); /* One ref for the tree. */ refcount_inc(&entry->refs); spin_lock_irq(&inode->ordered_tree_lock); node = tree_insert(&inode->ordered_tree, entry->file_offset, &entry->rb_node); if (unlikely(node)) btrfs_panic(fs_info, -EEXIST, "inconsistency in ordered tree at offset %llu", entry->file_offset); spin_unlock_irq(&inode->ordered_tree_lock); spin_lock(&root->ordered_extent_lock); list_add_tail(&entry->root_extent_list, &root->ordered_extents); root->nr_ordered_extents++; if (root->nr_ordered_extents == 1) { spin_lock(&fs_info->ordered_root_lock); BUG_ON(!list_empty(&root->ordered_root)); list_add_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); } /* * Add an ordered extent to the per-inode tree. * * @inode: Inode that this extent is for. * @file_offset: Logical offset in file where the extent starts. * @num_bytes: Logical length of extent in file. * @ram_bytes: Full length of unencoded data. * @disk_bytenr: Offset of extent on disk. * @disk_num_bytes: Size of extent on disk. * @offset: Offset into unencoded data where file data starts. * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). * @compress_type: Compression algorithm used for data. * * Most of these parameters correspond to &struct btrfs_file_extent_item. The * tree is given a single reference on the ordered extent that was inserted, and * the returned pointer is given a second reference. * * Return: the new ordered extent or error pointer. */ struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( struct btrfs_inode *inode, u64 file_offset, const struct btrfs_file_extent *file_extent, unsigned long flags) { struct btrfs_ordered_extent *entry; ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); /* * For regular writes, we just use the members in @file_extent. * * For NOCOW, we don't really care about the numbers except @start and * file_extent->num_bytes, as we won't insert a file extent item at all. * * For PREALLOC, we do not use ordered extent members, but * btrfs_mark_extent_written() handles everything. * * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents, * or btrfs_split_ordered_extent() cannot handle it correctly. */ if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC))) entry = alloc_ordered_extent(inode, file_offset, file_extent->num_bytes, file_extent->num_bytes, file_extent->disk_bytenr + file_extent->offset, file_extent->num_bytes, 0, flags, file_extent->compression); else entry = alloc_ordered_extent(inode, file_offset, file_extent->num_bytes, file_extent->ram_bytes, file_extent->disk_bytenr, file_extent->disk_num_bytes, file_extent->offset, flags, file_extent->compression); if (!IS_ERR(entry)) insert_ordered_extent(entry); return entry; } /* * Add a struct btrfs_ordered_sum into the list of checksums to be inserted * when an ordered extent is finished. If the list covers more than one * ordered extent, it is split across multiples. */ void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, struct btrfs_ordered_sum *sum) { struct btrfs_inode *inode = entry->inode; spin_lock_irq(&inode->ordered_tree_lock); list_add_tail(&sum->list, &entry->list); spin_unlock_irq(&inode->ordered_tree_lock); } void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered) { if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO); } static void finish_ordered_fn(struct btrfs_work *work) { struct btrfs_ordered_extent *ordered_extent; ordered_extent = container_of(work, struct btrfs_ordered_extent, work); btrfs_finish_ordered_io(ordered_extent); } static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, struct page *page, u64 file_offset, u64 len, bool uptodate) { struct btrfs_inode *inode = ordered->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; lockdep_assert_held(&inode->ordered_tree_lock); if (page) { ASSERT(page->mapping); ASSERT(page_offset(page) <= file_offset); ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); /* * Ordered (Private2) bit indicates whether we still have * pending io unfinished for the ordered extent. * * If there's no such bit, we need to skip to next range. */ if (!btrfs_folio_test_ordered(fs_info, page_folio(page), file_offset, len)) return false; btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len); } /* Now we're fine to update the accounting. */ if (WARN_ON_ONCE(len > ordered->bytes_left)) { btrfs_crit(fs_info, "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", btrfs_root_id(inode->root), btrfs_ino(inode), ordered->file_offset, ordered->num_bytes, len, ordered->bytes_left); ordered->bytes_left = 0; } else { ordered->bytes_left -= len; } if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); if (ordered->bytes_left) return false; /* * All the IO of the ordered extent is finished, we need to queue * the finish_func to be executed. */ set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); cond_wake_up(&ordered->wait); refcount_inc(&ordered->refs); trace_btrfs_ordered_extent_mark_finished(inode, ordered); return true; } static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) { struct btrfs_inode *inode = ordered->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? fs_info->endio_freespace_worker : fs_info->endio_write_workers; btrfs_init_work(&ordered->work, finish_ordered_fn, NULL); btrfs_queue_work(wq, &ordered->work); } void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, struct page *page, u64 file_offset, u64 len, bool uptodate) { struct btrfs_inode *inode = ordered->inode; unsigned long flags; bool ret; trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); spin_lock_irqsave(&inode->ordered_tree_lock, flags); ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); /* * If this is a COW write it means we created new extent maps for the * range and they point to unwritten locations if we got an error either * before submitting a bio or during IO. * * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we * are queuing its completion below. During completion, at * btrfs_finish_one_ordered(), we will drop the extent maps for the * unwritten extents. * * However because completion runs in a work queue we can end up having * a fast fsync running before that. In the case of direct IO, once we * unlock the inode the fsync might start, and we queue the completion * before unlocking the inode. In the case of buffered IO when writeback * finishes (end_bbio_data_write()) we queue the completion, so if the * writeback was triggered by a fast fsync, the fsync might start * logging before ordered extent completion runs in the work queue. * * The fast fsync will log file extent items based on the extent maps it * finds, so if by the time it collects extent maps the ordered extent * completion didn't happen yet, it will log file extent items that * point to unwritten extents, resulting in a corruption if a crash * happens and the log tree is replayed. Note that a fast fsync does not * wait for completion of ordered extents in order to reduce latency. * * Set a flag in the inode so that the next fast fsync will wait for * ordered extents to complete before starting to log. */ if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); if (ret) btrfs_queue_ordered_fn(ordered); } /* * Mark all ordered extents io inside the specified range finished. * * @page: The involved page for the operation. * For uncompressed buffered IO, the page status also needs to be * updated to indicate whether the pending ordered io is finished. * Can be NULL for direct IO and compressed write. * For these cases, callers are ensured they won't execute the * endio function twice. * * This function is called for endio, thus the range must have ordered * extent(s) covering it. */ void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, struct page *page, u64 file_offset, u64 num_bytes, bool uptodate) { struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; unsigned long flags; u64 cur = file_offset; trace_btrfs_writepage_end_io_hook(inode, file_offset, file_offset + num_bytes - 1, uptodate); spin_lock_irqsave(&inode->ordered_tree_lock, flags); while (cur < file_offset + num_bytes) { u64 entry_end; u64 end; u32 len; node = ordered_tree_search(inode, cur); /* No ordered extents at all */ if (!node) break; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); entry_end = entry->file_offset + entry->num_bytes; /* * |<-- OE --->| | * cur * Go to next OE. */ if (cur >= entry_end) { node = rb_next(node); /* No more ordered extents, exit */ if (!node) break; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); /* Go to next ordered extent and continue */ cur = entry->file_offset; continue; } /* * | |<--- OE --->| * cur * Go to the start of OE. */ if (cur < entry->file_offset) { cur = entry->file_offset; continue; } /* * Now we are definitely inside one ordered extent. * * |<--- OE --->| * | * cur */ end = min(entry->file_offset + entry->num_bytes, file_offset + num_bytes) - 1; ASSERT(end + 1 - cur < U32_MAX); len = end + 1 - cur; if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); btrfs_queue_ordered_fn(entry); spin_lock_irqsave(&inode->ordered_tree_lock, flags); } cur += len; } spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); } /* * Finish IO for one ordered extent across a given range. The range can only * contain one ordered extent. * * @cached: The cached ordered extent. If not NULL, we can skip the tree * search and use the ordered extent directly. * Will be also used to store the finished ordered extent. * @file_offset: File offset for the finished IO * @io_size: Length of the finish IO range * * Return true if the ordered extent is finished in the range, and update * @cached. * Return false otherwise. * * NOTE: The range can NOT cross multiple ordered extents. * Thus caller should ensure the range doesn't cross ordered extents. */ bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, struct btrfs_ordered_extent **cached, u64 file_offset, u64 io_size) { struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; unsigned long flags; bool finished = false; spin_lock_irqsave(&inode->ordered_tree_lock, flags); if (cached && *cached) { entry = *cached; goto have_entry; } node = ordered_tree_search(inode, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); have_entry: if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) goto out; if (io_size > entry->bytes_left) btrfs_crit(inode->root->fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, io_size); entry->bytes_left -= io_size; if (entry->bytes_left == 0) { /* * Ensure only one caller can set the flag and finished_ret * accordingly */ finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); /* test_and_set_bit implies a barrier */ cond_wake_up_nomb(&entry->wait); } out: if (finished && cached && entry) { *cached = entry; refcount_inc(&entry->refs); trace_btrfs_ordered_extent_dec_test_pending(inode, entry); } spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); return finished; } /* * used to drop a reference on an ordered extent. This will free * the extent if the last reference is dropped */ void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) { struct list_head *cur; struct btrfs_ordered_sum *sum; trace_btrfs_ordered_extent_put(entry->inode, entry); if (refcount_dec_and_test(&entry->refs)) { ASSERT(list_empty(&entry->root_extent_list)); ASSERT(list_empty(&entry->log_list)); ASSERT(RB_EMPTY_NODE(&entry->rb_node)); if (entry->inode) btrfs_add_delayed_iput(entry->inode); while (!list_empty(&entry->list)) { cur = entry->list.next; sum = list_entry(cur, struct btrfs_ordered_sum, list); list_del(&sum->list); kvfree(sum); } kmem_cache_free(btrfs_ordered_extent_cache, entry); } } /* * remove an ordered extent from the tree. No references are dropped * and waiters are woken up. */ void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, struct btrfs_ordered_extent *entry) { struct btrfs_root *root = btrfs_inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct rb_node *node; bool pending; bool freespace_inode; /* * If this is a free space inode the thread has not acquired the ordered * extents lockdep map. */ freespace_inode = btrfs_is_free_space_inode(btrfs_inode); btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); /* This is paired with alloc_ordered_extent(). */ spin_lock(&btrfs_inode->lock); btrfs_mod_outstanding_extents(btrfs_inode, -1); spin_unlock(&btrfs_inode->lock); if (root != fs_info->tree_root) { u64 release; if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) release = entry->disk_num_bytes; else release = entry->num_bytes; btrfs_delalloc_release_metadata(btrfs_inode, release, test_bit(BTRFS_ORDERED_IOERR, &entry->flags)); } percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, fs_info->delalloc_batch); spin_lock_irq(&btrfs_inode->ordered_tree_lock); node = &entry->rb_node; rb_erase(node, &btrfs_inode->ordered_tree); RB_CLEAR_NODE(node); if (btrfs_inode->ordered_tree_last == node) btrfs_inode->ordered_tree_last = NULL; set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); spin_unlock_irq(&btrfs_inode->ordered_tree_lock); /* * The current running transaction is waiting on us, we need to let it * know that we're complete and wake it up. */ if (pending) { struct btrfs_transaction *trans; /* * The checks for trans are just a formality, it should be set, * but if it isn't we don't want to deref/assert under the spin * lock, so be nice and check if trans is set, but ASSERT() so * if it isn't set a developer will notice. */ spin_lock(&fs_info->trans_lock); trans = fs_info->running_transaction; if (trans) refcount_inc(&trans->use_count); spin_unlock(&fs_info->trans_lock); ASSERT(trans || BTRFS_FS_ERROR(fs_info)); if (trans) { if (atomic_dec_and_test(&trans->pending_ordered)) wake_up(&trans->pending_wait); btrfs_put_transaction(trans); } } btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); spin_lock(&root->ordered_extent_lock); list_del_init(&entry->root_extent_list); root->nr_ordered_extents--; trace_btrfs_ordered_extent_remove(btrfs_inode, entry); if (!root->nr_ordered_extents) { spin_lock(&fs_info->ordered_root_lock); BUG_ON(list_empty(&root->ordered_root)); list_del_init(&root->ordered_root); spin_unlock(&fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); wake_up(&entry->wait); if (!freespace_inode) btrfs_lockdep_release(fs_info, btrfs_ordered_extent); } static void btrfs_run_ordered_extent_work(struct btrfs_work *work) { struct btrfs_ordered_extent *ordered; ordered = container_of(work, struct btrfs_ordered_extent, flush_work); btrfs_start_ordered_extent(ordered); complete(&ordered->completion); } /* * Wait for all the ordered extents in a root. Use @bg as range or do whole * range if it's NULL. */ u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, const struct btrfs_block_group *bg) { struct btrfs_fs_info *fs_info = root->fs_info; LIST_HEAD(splice); LIST_HEAD(skipped); LIST_HEAD(works); struct btrfs_ordered_extent *ordered, *next; u64 count = 0; u64 range_start, range_len; u64 range_end; if (bg) { range_start = bg->start; range_len = bg->length; } else { range_start = 0; range_len = U64_MAX; } range_end = range_start + range_len; mutex_lock(&root->ordered_extent_mutex); spin_lock(&root->ordered_extent_lock); list_splice_init(&root->ordered_extents, &splice); while (!list_empty(&splice) && nr) { ordered = list_first_entry(&splice, struct btrfs_ordered_extent, root_extent_list); if (range_end <= ordered->disk_bytenr || ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { list_move_tail(&ordered->root_extent_list, &skipped); cond_resched_lock(&root->ordered_extent_lock); continue; } list_move_tail(&ordered->root_extent_list, &root->ordered_extents); refcount_inc(&ordered->refs); spin_unlock(&root->ordered_extent_lock); btrfs_init_work(&ordered->flush_work, btrfs_run_ordered_extent_work, NULL); list_add_tail(&ordered->work_list, &works); btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); cond_resched(); if (nr != U64_MAX) nr--; count++; spin_lock(&root->ordered_extent_lock); } list_splice_tail(&skipped, &root->ordered_extents); list_splice_tail(&splice, &root->ordered_extents); spin_unlock(&root->ordered_extent_lock); list_for_each_entry_safe(ordered, next, &works, work_list) { list_del_init(&ordered->work_list); wait_for_completion(&ordered->completion); btrfs_put_ordered_extent(ordered); cond_resched(); } mutex_unlock(&root->ordered_extent_mutex); return count; } /* * Wait for @nr ordered extents that intersect the @bg, or the whole range of * the filesystem if @bg is NULL. */ void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, const struct btrfs_block_group *bg) { struct btrfs_root *root; LIST_HEAD(splice); u64 done; mutex_lock(&fs_info->ordered_operations_mutex); spin_lock(&fs_info->ordered_root_lock); list_splice_init(&fs_info->ordered_roots, &splice); while (!list_empty(&splice) && nr) { root = list_first_entry(&splice, struct btrfs_root, ordered_root); root = btrfs_grab_root(root); BUG_ON(!root); list_move_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); done = btrfs_wait_ordered_extents(root, nr, bg); btrfs_put_root(root); if (nr != U64_MAX) nr -= done; spin_lock(&fs_info->ordered_root_lock); } list_splice_tail(&splice, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); mutex_unlock(&fs_info->ordered_operations_mutex); } /* * Start IO and wait for a given ordered extent to finish. * * Wait on page writeback for all the pages in the extent and the IO completion * code to insert metadata into the btree corresponding to the extent. */ void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) { u64 start = entry->file_offset; u64 end = start + entry->num_bytes - 1; struct btrfs_inode *inode = entry->inode; bool freespace_inode; trace_btrfs_ordered_extent_start(inode, entry); /* * If this is a free space inode do not take the ordered extents lockdep * map. */ freespace_inode = btrfs_is_free_space_inode(inode); /* * pages in the range can be dirty, clean or writeback. We * start IO on any dirty ones so the wait doesn't stall waiting * for the flusher thread to find them */ if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); if (!freespace_inode) btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } /* * Used to wait on ordered extents across a large range of bytes. */ int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len) { int ret = 0; int ret_wb = 0; u64 end; u64 orig_end; struct btrfs_ordered_extent *ordered; if (start + len < start) { orig_end = OFFSET_MAX; } else { orig_end = start + len - 1; if (orig_end > OFFSET_MAX) orig_end = OFFSET_MAX; } /* start IO across the range first to instantiate any delalloc * extents */ ret = btrfs_fdatawrite_range(inode, start, orig_end); if (ret) return ret; /* * If we have a writeback error don't return immediately. Wait first * for any ordered extents that haven't completed yet. This is to make * sure no one can dirty the same page ranges and call writepages() * before the ordered extents complete - to avoid failures (-EEXIST) * when adding the new ordered extents to the ordered tree. */ ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end); end = orig_end; while (1) { ordered = btrfs_lookup_first_ordered_extent(inode, end); if (!ordered) break; if (ordered->file_offset > orig_end) { btrfs_put_ordered_extent(ordered); break; } if (ordered->file_offset + ordered->num_bytes <= start) { btrfs_put_ordered_extent(ordered); break; } btrfs_start_ordered_extent(ordered); end = ordered->file_offset; /* * If the ordered extent had an error save the error but don't * exit without waiting first for all other ordered extents in * the range to complete. */ if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) ret = -EIO; btrfs_put_ordered_extent(ordered); if (end == 0 || end == start) break; end--; } return ret_wb ? ret_wb : ret; } /* * find an ordered extent corresponding to file_offset. return NULL if * nothing is found, otherwise take a reference on the extent and return it */ struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, u64 file_offset) { struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; unsigned long flags; spin_lock_irqsave(&inode->ordered_tree_lock, flags); node = ordered_tree_search(inode, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) entry = NULL; if (entry) { refcount_inc(&entry->refs); trace_btrfs_ordered_extent_lookup(inode, entry); } out: spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); return entry; } /* Since the DIO code tries to lock a wide area we need to look for any ordered * extents that exist in the range, rather than just the start of the range. */ struct btrfs_ordered_extent *btrfs_lookup_ordered_range( struct btrfs_inode *inode, u64 file_offset, u64 len) { struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; spin_lock_irq(&inode->ordered_tree_lock); node = ordered_tree_search(inode, file_offset); if (!node) { node = ordered_tree_search(inode, file_offset + len); if (!node) goto out; } while (1) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (range_overlaps(entry, file_offset, len)) break; if (entry->file_offset >= file_offset + len) { entry = NULL; break; } entry = NULL; node = rb_next(node); if (!node) break; } out: if (entry) { refcount_inc(&entry->refs); trace_btrfs_ordered_extent_lookup_range(inode, entry); } spin_unlock_irq(&inode->ordered_tree_lock); return entry; } /* * Adds all ordered extents to the given list. The list ends up sorted by the * file_offset of the ordered extents. */ void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, struct list_head *list) { struct rb_node *n; ASSERT(inode_is_locked(&inode->vfs_inode)); spin_lock_irq(&inode->ordered_tree_lock); for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) { struct btrfs_ordered_extent *ordered; ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) continue; ASSERT(list_empty(&ordered->log_list)); list_add_tail(&ordered->log_list, list); refcount_inc(&ordered->refs); trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); } spin_unlock_irq(&inode->ordered_tree_lock); } /* * lookup and return any extent before 'file_offset'. NULL is returned * if none is found */ struct btrfs_ordered_extent * btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) { struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; spin_lock_irq(&inode->ordered_tree_lock); node = ordered_tree_search(inode, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); refcount_inc(&entry->refs); trace_btrfs_ordered_extent_lookup_first(inode, entry); out: spin_unlock_irq(&inode->ordered_tree_lock); return entry; } /* * Lookup the first ordered extent that overlaps the range * [@file_offset, @file_offset + @len). * * The difference between this and btrfs_lookup_first_ordered_extent() is * that this one won't return any ordered extent that does not overlap the range. * And the difference against btrfs_lookup_ordered_extent() is, this function * ensures the first ordered extent gets returned. */ struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( struct btrfs_inode *inode, u64 file_offset, u64 len) { struct rb_node *node; struct rb_node *cur; struct rb_node *prev; struct rb_node *next; struct btrfs_ordered_extent *entry = NULL; spin_lock_irq(&inode->ordered_tree_lock); node = inode->ordered_tree.rb_node; /* * Here we don't want to use tree_search() which will use tree->last * and screw up the search order. * And __tree_search() can't return the adjacent ordered extents * either, thus here we do our own search. */ while (node) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) { node = node->rb_left; } else if (file_offset >= entry_end(entry)) { node = node->rb_right; } else { /* * Direct hit, got an ordered extent that starts at * @file_offset */ goto out; } } if (!entry) { /* Empty tree */ goto out; } cur = &entry->rb_node; /* We got an entry around @file_offset, check adjacent entries */ if (entry->file_offset < file_offset) { prev = cur; next = rb_next(cur); } else { prev = rb_prev(cur); next = cur; } if (prev) { entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); if (range_overlaps(entry, file_offset, len)) goto out; } if (next) { entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); if (range_overlaps(entry, file_offset, len)) goto out; } /* No ordered extent in the range */ entry = NULL; out: if (entry) { refcount_inc(&entry->refs); trace_btrfs_ordered_extent_lookup_first_range(inode, entry); } spin_unlock_irq(&inode->ordered_tree_lock); return entry; } /* * Lock the passed range and ensures all pending ordered extents in it are run * to completion. * * @inode: Inode whose ordered tree is to be searched * @start: Beginning of range to flush * @end: Last byte of range to lock * @cached_state: If passed, will return the extent state responsible for the * locked range. It's the caller's responsibility to free the * cached state. * * Always return with the given range locked, ensuring after it's called no * order extent can be pending. */ void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, struct extent_state **cached_state) { struct btrfs_ordered_extent *ordered; struct extent_state *cache = NULL; struct extent_state **cachedp = &cache; if (cached_state) cachedp = cached_state; while (1) { lock_extent(&inode->io_tree, start, end, cachedp); ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); if (!ordered) { /* * If no external cached_state has been passed then * decrement the extra ref taken for cachedp since we * aren't exposing it outside of this function */ if (!cached_state) refcount_dec(&cache->refs); break; } unlock_extent(&inode->io_tree, start, end, cachedp); btrfs_start_ordered_extent(ordered); btrfs_put_ordered_extent(ordered); } } /* * Lock the passed range and ensure all pending ordered extents in it are run * to completion in nowait mode. * * Return true if btrfs_lock_ordered_range does not return any extents, * otherwise false. */ bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, struct extent_state **cached_state) { struct btrfs_ordered_extent *ordered; if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) return false; ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); if (!ordered) return true; btrfs_put_ordered_extent(ordered); unlock_extent(&inode->io_tree, start, end, cached_state); return false; } /* Split out a new ordered extent for this first @len bytes of @ordered. */ struct btrfs_ordered_extent *btrfs_split_ordered_extent( struct btrfs_ordered_extent *ordered, u64 len) { struct btrfs_inode *inode = ordered->inode; struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; u64 file_offset = ordered->file_offset; u64 disk_bytenr = ordered->disk_bytenr; unsigned long flags = ordered->flags; struct btrfs_ordered_sum *sum, *tmpsum; struct btrfs_ordered_extent *new; struct rb_node *node; u64 offset = 0; trace_btrfs_ordered_extent_split(inode, ordered); ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); /* * The entire bio must be covered by the ordered extent, but we can't * reduce the original extent to a zero length either. */ if (WARN_ON_ONCE(len >= ordered->num_bytes)) return ERR_PTR(-EINVAL); /* We cannot split partially completed ordered extents. */ if (ordered->bytes_left) { ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) return ERR_PTR(-EINVAL); } /* We cannot split a compressed ordered extent. */ if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) return ERR_PTR(-EINVAL); new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, len, 0, flags, ordered->compress_type); if (IS_ERR(new)) return new; /* One ref for the tree. */ refcount_inc(&new->refs); /* * Take the root's ordered_extent_lock to avoid a race with * btrfs_wait_ordered_extents() when updating the disk_bytenr and * disk_num_bytes fields of the ordered extent below. And we disable * IRQs because the inode's ordered_tree_lock is used in IRQ context * elsewhere. * * There's no concern about a previous caller of * btrfs_wait_ordered_extents() getting the trimmed ordered extent * before we insert the new one, because even if it gets the ordered * extent before it's trimmed and the new one inserted, right before it * uses it or during its use, the ordered extent might have been * trimmed in the meanwhile, and it missed the new ordered extent. * There's no way around this and it's harmless for current use cases, * so we take the root's ordered_extent_lock to fix that race during * trimming and silence tools like KCSAN. */ spin_lock_irq(&root->ordered_extent_lock); spin_lock(&inode->ordered_tree_lock); /* * We don't have overlapping ordered extents (that would imply double * allocation of extents) and we checked above that the split length * does not cross the ordered extent's num_bytes field, so there's * no need to remove it and re-insert it in the tree. */ ordered->file_offset += len; ordered->disk_bytenr += len; ordered->num_bytes -= len; ordered->disk_num_bytes -= len; ordered->ram_bytes -= len; if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { ASSERT(ordered->bytes_left == 0); new->bytes_left = 0; } else { ordered->bytes_left -= len; } if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { if (ordered->truncated_len > len) { ordered->truncated_len -= len; } else { new->truncated_len = ordered->truncated_len; ordered->truncated_len = 0; } } list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { if (offset == len) break; list_move_tail(&sum->list, &new->list); offset += sum->len; } node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node); if (unlikely(node)) btrfs_panic(fs_info, -EEXIST, "inconsistency in ordered tree at offset %llu after split", new->file_offset); spin_unlock(&inode->ordered_tree_lock); list_add_tail(&new->root_extent_list, &root->ordered_extents); root->nr_ordered_extents++; spin_unlock_irq(&root->ordered_extent_lock); return new; } int __init ordered_data_init(void) { btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0); if (!btrfs_ordered_extent_cache) return -ENOMEM; return 0; } void __cold ordered_data_exit(void) { kmem_cache_destroy(btrfs_ordered_extent_cache); }