// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Kent Overstreet * Copyright (C) 2014 Datera Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "backpointers.h" #include "bkey_methods.h" #include "bkey_buf.h" #include "btree_journal_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_node_scan.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "ec.h" #include "error.h" #include "extents.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "recovery_passes.h" #include "reflink.h" #include "replicas.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include #include #define DROP_THIS_NODE 10 #define DROP_PREV_NODE 11 #define DID_FILL_FROM_SCAN 12 static struct bkey_s unsafe_bkey_s_c_to_s(struct bkey_s_c k) { return (struct bkey_s) {{{ (struct bkey *) k.k, (struct bch_val *) k.v }}}; } static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { preempt_disable(); write_seqcount_begin(&c->gc_pos_lock); c->gc_pos = new_pos; write_seqcount_end(&c->gc_pos_lock); preempt_enable(); } static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) < 0); __gc_pos_set(c, new_pos); } static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst) { switch (b->key.k.type) { case KEY_TYPE_btree_ptr: { struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key); dst->k.p = src->k.p; dst->v.mem_ptr = 0; dst->v.seq = b->data->keys.seq; dst->v.sectors_written = 0; dst->v.flags = 0; dst->v.min_key = b->data->min_key; set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k)); memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k)); break; } case KEY_TYPE_btree_ptr_v2: bkey_copy(&dst->k_i, &b->key); break; default: BUG(); } } static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min) { struct bkey_i_btree_ptr_v2 *new; int ret; if (c->opts.verbose) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, " -> "); bch2_bpos_to_text(&buf, new_min); bch_info(c, "%s(): %s", __func__, buf.buf); printbuf_exit(&buf); } new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); if (!new) return -BCH_ERR_ENOMEM_gc_repair_key; btree_ptr_to_v2(b, new); b->data->min_key = new_min; new->v.min_key = new_min; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); bkey_copy(&b->key, &new->k_i); return 0; } static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max) { struct bkey_i_btree_ptr_v2 *new; int ret; if (c->opts.verbose) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, " -> "); bch2_bpos_to_text(&buf, new_max); bch_info(c, "%s(): %s", __func__, buf.buf); printbuf_exit(&buf); } ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p); if (ret) return ret; new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); if (!new) return -BCH_ERR_ENOMEM_gc_repair_key; btree_ptr_to_v2(b, new); b->data->max_key = new_max; new->k.p = new_max; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, &new->k_i); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); return 0; } static int btree_check_node_boundaries(struct bch_fs *c, struct btree *b, struct btree *prev, struct btree *cur, struct bpos *pulled_from_scan) { struct bpos expected_start = !prev ? b->data->min_key : bpos_successor(prev->key.k.p); struct printbuf buf = PRINTBUF; int ret = 0; BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, b->data->min_key)); if (bpos_eq(expected_start, cur->data->min_key)) return 0; prt_printf(&buf, " at btree %s level %u:\n parent: ", bch2_btree_id_str(b->c.btree_id), b->c.level); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); if (prev) { prt_printf(&buf, "\n prev: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&prev->key)); } prt_str(&buf, "\n next: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&cur->key)); if (bpos_lt(expected_start, cur->data->min_key)) { /* gap */ if (b->c.level == 1 && bpos_lt(*pulled_from_scan, cur->data->min_key)) { ret = bch2_get_scanned_nodes(c, b->c.btree_id, 0, expected_start, bpos_predecessor(cur->data->min_key)); if (ret) goto err; *pulled_from_scan = cur->data->min_key; ret = DID_FILL_FROM_SCAN; } else { if (mustfix_fsck_err(c, btree_node_topology_bad_min_key, "btree node with incorrect min_key%s", buf.buf)) ret = set_node_min(c, cur, expected_start); } } else { /* overlap */ if (prev && BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) { /* cur overwrites prev */ if (bpos_ge(prev->data->min_key, cur->data->min_key)) { /* fully? */ if (mustfix_fsck_err(c, btree_node_topology_overwritten_by_next_node, "btree node overwritten by next node%s", buf.buf)) ret = DROP_PREV_NODE; } else { if (mustfix_fsck_err(c, btree_node_topology_bad_max_key, "btree node with incorrect max_key%s", buf.buf)) ret = set_node_max(c, prev, bpos_predecessor(cur->data->min_key)); } } else { if (bpos_ge(expected_start, cur->data->max_key)) { /* fully? */ if (mustfix_fsck_err(c, btree_node_topology_overwritten_by_prev_node, "btree node overwritten by prev node%s", buf.buf)) ret = DROP_THIS_NODE; } else { if (mustfix_fsck_err(c, btree_node_topology_bad_min_key, "btree node with incorrect min_key%s", buf.buf)) ret = set_node_min(c, cur, expected_start); } } } err: fsck_err: printbuf_exit(&buf); return ret; } static int btree_repair_node_end(struct bch_fs *c, struct btree *b, struct btree *child, struct bpos *pulled_from_scan) { struct printbuf buf = PRINTBUF; int ret = 0; if (bpos_eq(child->key.k.p, b->key.k.p)) return 0; prt_printf(&buf, "at btree %s level %u:\n parent: ", bch2_btree_id_str(b->c.btree_id), b->c.level); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, "\n child: "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&child->key)); if (mustfix_fsck_err(c, btree_node_topology_bad_max_key, "btree node with incorrect max_key%s", buf.buf)) { if (b->c.level == 1 && bpos_lt(*pulled_from_scan, b->key.k.p)) { ret = bch2_get_scanned_nodes(c, b->c.btree_id, 0, bpos_successor(child->key.k.p), b->key.k.p); if (ret) goto err; *pulled_from_scan = b->key.k.p; ret = DID_FILL_FROM_SCAN; } else { ret = set_node_max(c, child, b->key.k.p); } } err: fsck_err: printbuf_exit(&buf); return ret; } static int bch2_btree_repair_topology_recurse(struct btree_trans *trans, struct btree *b, struct bpos *pulled_from_scan) { struct bch_fs *c = trans->c; struct btree_and_journal_iter iter; struct bkey_s_c k; struct bkey_buf prev_k, cur_k; struct btree *prev = NULL, *cur = NULL; bool have_child, new_pass = false; struct printbuf buf = PRINTBUF; int ret = 0; if (!b->c.level) return 0; bch2_bkey_buf_init(&prev_k); bch2_bkey_buf_init(&cur_k); again: cur = prev = NULL; have_child = new_pass = false; bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); iter.prefetch = true; while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { BUG_ON(bpos_lt(k.k->p, b->data->min_key)); BUG_ON(bpos_gt(k.k->p, b->data->max_key)); bch2_btree_and_journal_iter_advance(&iter); bch2_bkey_buf_reassemble(&cur_k, c, k); cur = bch2_btree_node_get_noiter(trans, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur_k.k)); if (mustfix_fsck_err_on(bch2_err_matches(ret, EIO), c, btree_node_unreadable, "Topology repair: unreadable btree node at btree %s level %u:\n" " %s", bch2_btree_id_str(b->c.btree_id), b->c.level - 1, buf.buf)) { bch2_btree_node_evict(trans, cur_k.k); cur = NULL; ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); if (ret) break; if (!btree_id_is_alloc(b->c.btree_id)) { ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_scan_for_btree_nodes); if (ret) break; } continue; } bch_err_msg(c, ret, "getting btree node"); if (ret) break; if (bch2_btree_node_is_stale(c, cur)) { bch_info(c, "btree node %s older than nodes found by scanning", buf.buf); six_unlock_read(&cur->c.lock); bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); cur = NULL; if (ret) break; continue; } ret = btree_check_node_boundaries(c, b, prev, cur, pulled_from_scan); if (ret == DID_FILL_FROM_SCAN) { new_pass = true; ret = 0; } if (ret == DROP_THIS_NODE) { six_unlock_read(&cur->c.lock); bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); cur = NULL; if (ret) break; continue; } if (prev) six_unlock_read(&prev->c.lock); prev = NULL; if (ret == DROP_PREV_NODE) { bch_info(c, "dropped prev node"); bch2_btree_node_evict(trans, prev_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, prev_k.k->k.p); if (ret) break; bch2_btree_and_journal_iter_exit(&iter); goto again; } else if (ret) break; prev = cur; cur = NULL; bch2_bkey_buf_copy(&prev_k, c, cur_k.k); } if (!ret && !IS_ERR_OR_NULL(prev)) { BUG_ON(cur); ret = btree_repair_node_end(c, b, prev, pulled_from_scan); if (ret == DID_FILL_FROM_SCAN) { new_pass = true; ret = 0; } } if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); prev = NULL; if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); cur = NULL; if (ret) goto err; bch2_btree_and_journal_iter_exit(&iter); if (new_pass) goto again; bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); iter.prefetch = true; while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { bch2_bkey_buf_reassemble(&cur_k, c, k); bch2_btree_and_journal_iter_advance(&iter); cur = bch2_btree_node_get_noiter(trans, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); bch_err_msg(c, ret, "getting btree node"); if (ret) goto err; ret = bch2_btree_repair_topology_recurse(trans, cur, pulled_from_scan); six_unlock_read(&cur->c.lock); cur = NULL; if (ret == DROP_THIS_NODE) { bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); new_pass = true; } if (ret) goto err; have_child = true; } printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); if (mustfix_fsck_err_on(!have_child, c, btree_node_topology_interior_node_empty, "empty interior btree node at btree %s level %u\n" " %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf.buf)) ret = DROP_THIS_NODE; err: fsck_err: if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); bch2_btree_and_journal_iter_exit(&iter); if (!ret && new_pass) goto again; BUG_ON(!ret && bch2_btree_node_check_topology(trans, b)); bch2_bkey_buf_exit(&prev_k, c); bch2_bkey_buf_exit(&cur_k, c); printbuf_exit(&buf); return ret; } int bch2_check_topology(struct bch_fs *c) { struct btree_trans *trans = bch2_trans_get(c); struct bpos pulled_from_scan = POS_MIN; int ret = 0; for (unsigned i = 0; i < btree_id_nr_alive(c) && !ret; i++) { struct btree_root *r = bch2_btree_id_root(c, i); bool reconstructed_root = false; if (r->error) { ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_scan_for_btree_nodes); if (ret) break; reconstruct_root: bch_info(c, "btree root %s unreadable, must recover from scan", bch2_btree_id_str(i)); r->alive = false; r->error = 0; if (!bch2_btree_has_scanned_nodes(c, i)) { mustfix_fsck_err(c, btree_root_unreadable_and_scan_found_nothing, "no nodes found for btree %s, continue?", bch2_btree_id_str(i)); bch2_btree_root_alloc_fake_trans(trans, i, 0); } else { bch2_btree_root_alloc_fake_trans(trans, i, 1); bch2_shoot_down_journal_keys(c, i, 1, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); ret = bch2_get_scanned_nodes(c, i, 0, POS_MIN, SPOS_MAX); if (ret) break; } reconstructed_root = true; } struct btree *b = r->b; btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ret = bch2_btree_repair_topology_recurse(trans, b, &pulled_from_scan); six_unlock_read(&b->c.lock); if (ret == DROP_THIS_NODE) { bch2_btree_node_hash_remove(&c->btree_cache, b); mutex_lock(&c->btree_cache.lock); list_move(&b->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); r->b = NULL; if (!reconstructed_root) goto reconstruct_root; bch_err(c, "empty btree root %s", bch2_btree_id_str(i)); bch2_btree_root_alloc_fake_trans(trans, i, 0); r->alive = false; ret = 0; } } fsck_err: bch2_trans_put(trans); return ret; } /* marking of btree keys/nodes: */ static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct btree **prev, struct btree_iter *iter, struct bkey_s_c k, bool initial) { struct bch_fs *c = trans->c; if (iter) { struct btree_path *path = btree_iter_path(trans, iter); struct btree *b = path_l(path)->b; if (*prev != b) { int ret = bch2_btree_node_check_topology(trans, b); if (ret) return ret; } *prev = b; } struct bkey deleted = KEY(0, 0, 0); struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL }; struct printbuf buf = PRINTBUF; int ret = 0; deleted.p = k.k->p; if (initial) { BUG_ON(bch2_journal_seq_verify && k.k->version.lo > atomic64_read(&c->journal.seq)); if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c, bkey_version_in_future, "key version number higher than recorded %llu\n %s", atomic64_read(&c->key_version), (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) atomic64_set(&c->key_version, k.k->version.lo); } if (mustfix_fsck_err_on(level && !bch2_dev_btree_bitmap_marked(c, k), c, btree_bitmap_not_marked, "btree ptr not marked in member info btree allocated bitmap\n %s", (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { mutex_lock(&c->sb_lock); bch2_dev_btree_bitmap_mark(c, k); bch2_write_super(c); mutex_unlock(&c->sb_lock); } /* * We require a commit before key_trigger() because * key_trigger(BTREE_TRIGGER_GC) is not idempotant; we'll calculate the * wrong result if we run it multiple times. */ unsigned flags = !iter ? BTREE_TRIGGER_is_root : 0; ret = bch2_key_trigger(trans, btree_id, level, old, unsafe_bkey_s_c_to_s(k), BTREE_TRIGGER_check_repair|flags); if (ret) goto out; if (trans->nr_updates) { ret = bch2_trans_commit(trans, NULL, NULL, 0) ?: -BCH_ERR_transaction_restart_nested; goto out; } ret = bch2_key_trigger(trans, btree_id, level, old, unsafe_bkey_s_c_to_s(k), BTREE_TRIGGER_gc|flags); out: fsck_err: printbuf_exit(&buf); bch_err_fn(c, ret); return ret; } static int bch2_gc_btree(struct btree_trans *trans, enum btree_id btree, bool initial) { struct bch_fs *c = trans->c; int level = 0, target_depth = btree_node_type_needs_gc(__btree_node_type(0, btree)) ? 0 : 1; int ret = 0; /* We need to make sure every leaf node is readable before going RW */ if (initial) target_depth = 0; /* root */ mutex_lock(&c->btree_root_lock); struct btree *b = bch2_btree_id_root(c, btree)->b; if (!btree_node_fake(b)) { gc_pos_set(c, gc_pos_btree(btree, b->c.level + 1, SPOS_MAX)); ret = lockrestart_do(trans, bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, NULL, NULL, bkey_i_to_s_c(&b->key), initial)); level = b->c.level; } mutex_unlock(&c->btree_root_lock); if (ret) return ret; for (; level >= target_depth; --level) { struct btree *prev = NULL; struct btree_iter iter; bch2_trans_node_iter_init(trans, &iter, btree, POS_MIN, 0, level, BTREE_ITER_prefetch); ret = for_each_btree_key_continue(trans, iter, 0, k, ({ gc_pos_set(c, gc_pos_btree(btree, level, k.k->p)); bch2_gc_mark_key(trans, btree, level, &prev, &iter, k, initial); })); if (ret) break; } return ret; } static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) { return cmp_int(gc_btree_order(l), gc_btree_order(r)); } static int bch2_gc_btrees(struct bch_fs *c) { struct btree_trans *trans = bch2_trans_get(c); enum btree_id ids[BTREE_ID_NR]; unsigned i; int ret = 0; for (i = 0; i < BTREE_ID_NR; i++) ids[i] = i; bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); for (i = 0; i < btree_id_nr_alive(c) && !ret; i++) { unsigned btree = i < BTREE_ID_NR ? ids[i] : i; if (IS_ERR_OR_NULL(bch2_btree_id_root(c, btree)->b)) continue; ret = bch2_gc_btree(trans, btree, true); if (mustfix_fsck_err_on(bch2_err_matches(ret, EIO), c, btree_node_read_error, "btree node read error for %s", bch2_btree_id_str(btree))) ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); } fsck_err: bch2_trans_put(trans); bch_err_fn(c, ret); return ret; } static int bch2_mark_superblocks(struct bch_fs *c) { mutex_lock(&c->sb_lock); gc_pos_set(c, gc_phase(GC_PHASE_sb)); int ret = bch2_trans_mark_dev_sbs_flags(c, BTREE_TRIGGER_gc); mutex_unlock(&c->sb_lock); return ret; } static void bch2_gc_free(struct bch_fs *c) { genradix_free(&c->reflink_gc_table); genradix_free(&c->gc_stripes); for_each_member_device(c, ca) { kvfree(rcu_dereference_protected(ca->buckets_gc, 1)); ca->buckets_gc = NULL; free_percpu(ca->usage_gc); ca->usage_gc = NULL; } free_percpu(c->usage_gc); c->usage_gc = NULL; } static int bch2_gc_done(struct bch_fs *c) { struct bch_dev *ca = NULL; struct printbuf buf = PRINTBUF; unsigned i; int ret = 0; percpu_down_write(&c->mark_lock); #define copy_field(_err, _f, _msg, ...) \ if (fsck_err_on(dst->_f != src->_f, c, _err, \ _msg ": got %llu, should be %llu" , ##__VA_ARGS__, \ dst->_f, src->_f)) \ dst->_f = src->_f #define copy_dev_field(_err, _f, _msg, ...) \ copy_field(_err, _f, "dev %u has wrong " _msg, ca->dev_idx, ##__VA_ARGS__) #define copy_fs_field(_err, _f, _msg, ...) \ copy_field(_err, _f, "fs has wrong " _msg, ##__VA_ARGS__) for (i = 0; i < ARRAY_SIZE(c->usage); i++) bch2_fs_usage_acc_to_base(c, i); __for_each_member_device(c, ca) { struct bch_dev_usage *dst = ca->usage_base; struct bch_dev_usage *src = (void *) bch2_acc_percpu_u64s((u64 __percpu *) ca->usage_gc, dev_usage_u64s()); for (i = 0; i < BCH_DATA_NR; i++) { copy_dev_field(dev_usage_buckets_wrong, d[i].buckets, "%s buckets", bch2_data_type_str(i)); copy_dev_field(dev_usage_sectors_wrong, d[i].sectors, "%s sectors", bch2_data_type_str(i)); copy_dev_field(dev_usage_fragmented_wrong, d[i].fragmented, "%s fragmented", bch2_data_type_str(i)); } } { unsigned nr = fs_usage_u64s(c); struct bch_fs_usage *dst = c->usage_base; struct bch_fs_usage *src = (void *) bch2_acc_percpu_u64s((u64 __percpu *) c->usage_gc, nr); copy_fs_field(fs_usage_hidden_wrong, b.hidden, "hidden"); copy_fs_field(fs_usage_btree_wrong, b.btree, "btree"); copy_fs_field(fs_usage_data_wrong, b.data, "data"); copy_fs_field(fs_usage_cached_wrong, b.cached, "cached"); copy_fs_field(fs_usage_reserved_wrong, b.reserved, "reserved"); copy_fs_field(fs_usage_nr_inodes_wrong, b.nr_inodes,"nr_inodes"); for (i = 0; i < BCH_REPLICAS_MAX; i++) copy_fs_field(fs_usage_persistent_reserved_wrong, persistent_reserved[i], "persistent_reserved[%i]", i); for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry_v1 *e = cpu_replicas_entry(&c->replicas, i); printbuf_reset(&buf); bch2_replicas_entry_to_text(&buf, e); copy_fs_field(fs_usage_replicas_wrong, replicas[i], "%s", buf.buf); } } #undef copy_fs_field #undef copy_dev_field #undef copy_stripe_field #undef copy_field fsck_err: bch2_dev_put(ca); bch_err_fn(c, ret); percpu_up_write(&c->mark_lock); printbuf_exit(&buf); return ret; } static int bch2_gc_start(struct bch_fs *c) { BUG_ON(c->usage_gc); c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!c->usage_gc) { bch_err(c, "error allocating c->usage_gc"); return -BCH_ERR_ENOMEM_gc_start; } for_each_member_device(c, ca) { BUG_ON(ca->usage_gc); ca->usage_gc = alloc_percpu(struct bch_dev_usage); if (!ca->usage_gc) { bch_err(c, "error allocating ca->usage_gc"); bch2_dev_put(ca); return -BCH_ERR_ENOMEM_gc_start; } this_cpu_write(ca->usage_gc->d[BCH_DATA_free].buckets, ca->mi.nbuckets - ca->mi.first_bucket); } return 0; } /* returns true if not equal */ static inline bool bch2_alloc_v4_cmp(struct bch_alloc_v4 l, struct bch_alloc_v4 r) { return l.gen != r.gen || l.oldest_gen != r.oldest_gen || l.data_type != r.data_type || l.dirty_sectors != r.dirty_sectors || l.cached_sectors != r.cached_sectors || l.stripe_redundancy != r.stripe_redundancy || l.stripe != r.stripe; } static int bch2_alloc_write_key(struct btree_trans *trans, struct btree_iter *iter, struct bch_dev *ca, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct bkey_i_alloc_v4 *a; struct bch_alloc_v4 old_gc, gc, old_convert, new; const struct bch_alloc_v4 *old; int ret; old = bch2_alloc_to_v4(k, &old_convert); gc = new = *old; percpu_down_read(&c->mark_lock); __bucket_m_to_alloc(&gc, *gc_bucket(ca, iter->pos.offset)); old_gc = gc; if ((old->data_type == BCH_DATA_sb || old->data_type == BCH_DATA_journal) && !bch2_dev_is_online(ca)) { gc.data_type = old->data_type; gc.dirty_sectors = old->dirty_sectors; } /* * gc.data_type doesn't yet include need_discard & need_gc_gen states - * fix that here: */ alloc_data_type_set(&gc, gc.data_type); if (gc.data_type != old_gc.data_type || gc.dirty_sectors != old_gc.dirty_sectors) bch2_dev_usage_update(c, ca, &old_gc, &gc, 0, true); percpu_up_read(&c->mark_lock); if (fsck_err_on(new.data_type != gc.data_type, c, alloc_key_data_type_wrong, "bucket %llu:%llu gen %u has wrong data_type" ": got %s, should be %s", iter->pos.inode, iter->pos.offset, gc.gen, bch2_data_type_str(new.data_type), bch2_data_type_str(gc.data_type))) new.data_type = gc.data_type; #define copy_bucket_field(_errtype, _f) \ if (fsck_err_on(new._f != gc._f, c, _errtype, \ "bucket %llu:%llu gen %u data type %s has wrong " #_f \ ": got %u, should be %u", \ iter->pos.inode, iter->pos.offset, \ gc.gen, \ bch2_data_type_str(gc.data_type), \ new._f, gc._f)) \ new._f = gc._f; \ copy_bucket_field(alloc_key_gen_wrong, gen); copy_bucket_field(alloc_key_dirty_sectors_wrong, dirty_sectors); copy_bucket_field(alloc_key_cached_sectors_wrong, cached_sectors); copy_bucket_field(alloc_key_stripe_wrong, stripe); copy_bucket_field(alloc_key_stripe_redundancy_wrong, stripe_redundancy); #undef copy_bucket_field if (!bch2_alloc_v4_cmp(*old, new)) return 0; a = bch2_alloc_to_v4_mut(trans, k); ret = PTR_ERR_OR_ZERO(a); if (ret) return ret; a->v = new; /* * The trigger normally makes sure this is set, but we're not running * triggers: */ if (a->v.data_type == BCH_DATA_cached && !a->v.io_time[READ]) a->v.io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); ret = bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_norun); fsck_err: return ret; } static int bch2_gc_alloc_done(struct bch_fs *c) { int ret = 0; for_each_member_device(c, ca) { ret = bch2_trans_run(c, for_each_btree_key_upto_commit(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, ca->mi.first_bucket), POS(ca->dev_idx, ca->mi.nbuckets - 1), BTREE_ITER_slots|BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_lazy_rw, bch2_alloc_write_key(trans, &iter, ca, k))); if (ret) { bch2_dev_put(ca); break; } } bch_err_fn(c, ret); return ret; } static int bch2_gc_alloc_start(struct bch_fs *c) { for_each_member_device(c, ca) { struct bucket_array *buckets = kvmalloc(sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket), GFP_KERNEL|__GFP_ZERO); if (!buckets) { bch2_dev_put(ca); bch_err(c, "error allocating ca->buckets[gc]"); return -BCH_ERR_ENOMEM_gc_alloc_start; } buckets->first_bucket = ca->mi.first_bucket; buckets->nbuckets = ca->mi.nbuckets; rcu_assign_pointer(ca->buckets_gc, buckets); } struct bch_dev *ca = NULL; int ret = bch2_trans_run(c, for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_prefetch, k, ({ ca = bch2_dev_iterate(c, ca, k.k->p.inode); if (!ca) { bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0)); continue; } struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); struct bucket *g = gc_bucket(ca, k.k->p.offset); g->gen_valid = 1; g->gen = a->gen; 0; }))); bch2_dev_put(ca); bch_err_fn(c, ret); return ret; } static int bch2_gc_write_reflink_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k, size_t *idx) { struct bch_fs *c = trans->c; const __le64 *refcount = bkey_refcount_c(k); struct printbuf buf = PRINTBUF; struct reflink_gc *r; int ret = 0; if (!refcount) return 0; while ((r = genradix_ptr(&c->reflink_gc_table, *idx)) && r->offset < k.k->p.offset) ++*idx; if (!r || r->offset != k.k->p.offset || r->size != k.k->size) { bch_err(c, "unexpected inconsistency walking reflink table at gc finish"); return -EINVAL; } if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c, reflink_v_refcount_wrong, "reflink key has wrong refcount:\n" " %s\n" " should be %u", (bch2_bkey_val_to_text(&buf, c, k), buf.buf), r->refcount)) { struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); ret = PTR_ERR_OR_ZERO(new); if (ret) goto out; if (!r->refcount) new->k.type = KEY_TYPE_deleted; else *bkey_refcount(bkey_i_to_s(new)) = cpu_to_le64(r->refcount); ret = bch2_trans_update(trans, iter, new, 0); } out: fsck_err: printbuf_exit(&buf); return ret; } static int bch2_gc_reflink_done(struct bch_fs *c) { size_t idx = 0; int ret = bch2_trans_run(c, for_each_btree_key_commit(trans, iter, BTREE_ID_reflink, POS_MIN, BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, bch2_gc_write_reflink_key(trans, &iter, k, &idx))); c->reflink_gc_nr = 0; return ret; } static int bch2_gc_reflink_start(struct bch_fs *c) { c->reflink_gc_nr = 0; int ret = bch2_trans_run(c, for_each_btree_key(trans, iter, BTREE_ID_reflink, POS_MIN, BTREE_ITER_prefetch, k, ({ const __le64 *refcount = bkey_refcount_c(k); if (!refcount) continue; struct reflink_gc *r = genradix_ptr_alloc(&c->reflink_gc_table, c->reflink_gc_nr++, GFP_KERNEL); if (!r) { ret = -BCH_ERR_ENOMEM_gc_reflink_start; break; } r->offset = k.k->p.offset; r->size = k.k->size; r->refcount = 0; 0; }))); bch_err_fn(c, ret); return ret; } static int bch2_gc_write_stripes_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct printbuf buf = PRINTBUF; const struct bch_stripe *s; struct gc_stripe *m; bool bad = false; unsigned i; int ret = 0; if (k.k->type != KEY_TYPE_stripe) return 0; s = bkey_s_c_to_stripe(k).v; m = genradix_ptr(&c->gc_stripes, k.k->p.offset); for (i = 0; i < s->nr_blocks; i++) { u32 old = stripe_blockcount_get(s, i); u32 new = (m ? m->block_sectors[i] : 0); if (old != new) { prt_printf(&buf, "stripe block %u has wrong sector count: got %u, should be %u\n", i, old, new); bad = true; } } if (bad) bch2_bkey_val_to_text(&buf, c, k); if (fsck_err_on(bad, c, stripe_sector_count_wrong, "%s", buf.buf)) { struct bkey_i_stripe *new; new = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ret = PTR_ERR_OR_ZERO(new); if (ret) return ret; bkey_reassemble(&new->k_i, k); for (i = 0; i < new->v.nr_blocks; i++) stripe_blockcount_set(&new->v, i, m ? m->block_sectors[i] : 0); ret = bch2_trans_update(trans, iter, &new->k_i, 0); } fsck_err: printbuf_exit(&buf); return ret; } static int bch2_gc_stripes_done(struct bch_fs *c) { return bch2_trans_run(c, for_each_btree_key_commit(trans, iter, BTREE_ID_stripes, POS_MIN, BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, bch2_gc_write_stripes_key(trans, &iter, k))); } /** * bch2_check_allocations - walk all references to buckets, and recompute them: * * @c: filesystem object * * Returns: 0 on success, or standard errcode on failure * * Order matters here: * - Concurrent GC relies on the fact that we have a total ordering for * everything that GC walks - see gc_will_visit_node(), * gc_will_visit_root() * * - also, references move around in the course of index updates and * various other crap: everything needs to agree on the ordering * references are allowed to move around in - e.g., we're allowed to * start with a reference owned by an open_bucket (the allocator) and * move it to the btree, but not the reverse. * * This is necessary to ensure that gc doesn't miss references that * move around - if references move backwards in the ordering GC * uses, GC could skip past them */ int bch2_check_allocations(struct bch_fs *c) { int ret; lockdep_assert_held(&c->state_lock); down_write(&c->gc_lock); bch2_btree_interior_updates_flush(c); ret = bch2_gc_start(c) ?: bch2_gc_alloc_start(c) ?: bch2_gc_reflink_start(c); if (ret) goto out; gc_pos_set(c, gc_phase(GC_PHASE_start)); ret = bch2_mark_superblocks(c); BUG_ON(ret); ret = bch2_gc_btrees(c); if (ret) goto out; c->gc_count++; bch2_journal_block(&c->journal); out: ret = bch2_gc_alloc_done(c) ?: bch2_gc_done(c) ?: bch2_gc_stripes_done(c) ?: bch2_gc_reflink_done(c); bch2_journal_unblock(&c->journal); percpu_down_write(&c->mark_lock); /* Indicates that gc is no longer in progress: */ __gc_pos_set(c, gc_phase(GC_PHASE_not_running)); bch2_gc_free(c); percpu_up_write(&c->mark_lock); up_write(&c->gc_lock); /* * At startup, allocations can happen directly instead of via the * allocator thread - issue wakeup in case they blocked on gc_lock: */ closure_wake_up(&c->freelist_wait); bch_err_fn(c, ret); return ret; } static int gc_btree_gens_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); struct bkey_i *u; int ret; if (unlikely(test_bit(BCH_FS_going_ro, &c->flags))) return -EROFS; percpu_down_read(&c->mark_lock); rcu_read_lock(); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev); if (!ca) continue; if (dev_ptr_stale(ca, ptr) > 16) { rcu_read_unlock(); percpu_up_read(&c->mark_lock); goto update; } } bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev); if (!ca) continue; u8 *gen = &ca->oldest_gen[PTR_BUCKET_NR(ca, ptr)]; if (gen_after(*gen, ptr->gen)) *gen = ptr->gen; } rcu_read_unlock(); percpu_up_read(&c->mark_lock); return 0; update: u = bch2_bkey_make_mut(trans, iter, &k, 0); ret = PTR_ERR_OR_ZERO(u); if (ret) return ret; bch2_extent_normalize(c, bkey_i_to_s(u)); return 0; } static int bch2_alloc_write_oldest_gen(struct btree_trans *trans, struct bch_dev *ca, struct btree_iter *iter, struct bkey_s_c k) { struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); struct bkey_i_alloc_v4 *a_mut; int ret; if (a->oldest_gen == ca->oldest_gen[iter->pos.offset]) return 0; a_mut = bch2_alloc_to_v4_mut(trans, k); ret = PTR_ERR_OR_ZERO(a_mut); if (ret) return ret; a_mut->v.oldest_gen = ca->oldest_gen[iter->pos.offset]; alloc_data_type_set(&a_mut->v, a_mut->v.data_type); return bch2_trans_update(trans, iter, &a_mut->k_i, 0); } int bch2_gc_gens(struct bch_fs *c) { u64 b, start_time = local_clock(); int ret; /* * Ideally we would be using state_lock and not gc_lock here, but that * introduces a deadlock in the RO path - we currently take the state * lock at the start of going RO, thus the gc thread may get stuck: */ if (!mutex_trylock(&c->gc_gens_lock)) return 0; trace_and_count(c, gc_gens_start, c); down_read(&c->gc_lock); for_each_member_device(c, ca) { struct bucket_gens *gens = bucket_gens(ca); BUG_ON(ca->oldest_gen); ca->oldest_gen = kvmalloc(gens->nbuckets, GFP_KERNEL); if (!ca->oldest_gen) { bch2_dev_put(ca); ret = -BCH_ERR_ENOMEM_gc_gens; goto err; } for (b = gens->first_bucket; b < gens->nbuckets; b++) ca->oldest_gen[b] = gens->b[b]; } for (unsigned i = 0; i < BTREE_ID_NR; i++) if (btree_type_has_ptrs(i)) { c->gc_gens_btree = i; c->gc_gens_pos = POS_MIN; ret = bch2_trans_run(c, for_each_btree_key_commit(trans, iter, i, POS_MIN, BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, gc_btree_gens_key(trans, &iter, k))); if (ret) goto err; } struct bch_dev *ca = NULL; ret = bch2_trans_run(c, for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_prefetch, k, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({ ca = bch2_dev_iterate(c, ca, k.k->p.inode); if (!ca) { bch2_btree_iter_set_pos(&iter, POS(k.k->p.inode + 1, 0)); continue; } bch2_alloc_write_oldest_gen(trans, ca, &iter, k); }))); bch2_dev_put(ca); if (ret) goto err; c->gc_gens_btree = 0; c->gc_gens_pos = POS_MIN; c->gc_count++; bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); trace_and_count(c, gc_gens_end, c); err: for_each_member_device(c, ca) { kvfree(ca->oldest_gen); ca->oldest_gen = NULL; } up_read(&c->gc_lock); mutex_unlock(&c->gc_gens_lock); if (!bch2_err_matches(ret, EROFS)) bch_err_fn(c, ret); return ret; } static void bch2_gc_gens_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, gc_gens_work); bch2_gc_gens(c); bch2_write_ref_put(c, BCH_WRITE_REF_gc_gens); } void bch2_gc_gens_async(struct bch_fs *c) { if (bch2_write_ref_tryget(c, BCH_WRITE_REF_gc_gens) && !queue_work(c->write_ref_wq, &c->gc_gens_work)) bch2_write_ref_put(c, BCH_WRITE_REF_gc_gens); } void bch2_fs_gc_init(struct bch_fs *c) { seqcount_init(&c->gc_pos_lock); INIT_WORK(&c->gc_gens_work, bch2_gc_gens_work); }