// SPDX-License-Identifier: GPL-2.0-only /* * VDPA device simulator core. * * Copyright (c) 2020, Red Hat Inc. All rights reserved. * Author: Jason Wang * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "vdpa_sim.h" #define DRV_VERSION "0.1" #define DRV_AUTHOR "Jason Wang " #define DRV_DESC "vDPA Device Simulator core" #define DRV_LICENSE "GPL v2" static int batch_mapping = 1; module_param(batch_mapping, int, 0444); MODULE_PARM_DESC(batch_mapping, "Batched mapping 1 -Enable; 0 - Disable"); static int max_iotlb_entries = 2048; module_param(max_iotlb_entries, int, 0444); MODULE_PARM_DESC(max_iotlb_entries, "Maximum number of iotlb entries for each address space. 0 means unlimited. (default: 2048)"); #define VDPASIM_QUEUE_ALIGN PAGE_SIZE #define VDPASIM_QUEUE_MAX 256 #define VDPASIM_VENDOR_ID 0 static struct vdpasim *vdpa_to_sim(struct vdpa_device *vdpa) { return container_of(vdpa, struct vdpasim, vdpa); } static struct vdpasim *dev_to_sim(struct device *dev) { struct vdpa_device *vdpa = dev_to_vdpa(dev); return vdpa_to_sim(vdpa); } static void vdpasim_vq_notify(struct vringh *vring) { struct vdpasim_virtqueue *vq = container_of(vring, struct vdpasim_virtqueue, vring); if (!vq->cb) return; vq->cb(vq->private); } static void vdpasim_queue_ready(struct vdpasim *vdpasim, unsigned int idx) { struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; uint16_t last_avail_idx = vq->vring.last_avail_idx; vringh_init_iotlb(&vq->vring, vdpasim->features, vq->num, false, (struct vring_desc *)(uintptr_t)vq->desc_addr, (struct vring_avail *) (uintptr_t)vq->driver_addr, (struct vring_used *) (uintptr_t)vq->device_addr); vq->vring.last_avail_idx = last_avail_idx; vq->vring.notify = vdpasim_vq_notify; } static void vdpasim_vq_reset(struct vdpasim *vdpasim, struct vdpasim_virtqueue *vq) { vq->ready = false; vq->desc_addr = 0; vq->driver_addr = 0; vq->device_addr = 0; vq->cb = NULL; vq->private = NULL; vringh_init_iotlb(&vq->vring, vdpasim->dev_attr.supported_features, VDPASIM_QUEUE_MAX, false, NULL, NULL, NULL); vq->vring.notify = NULL; } static void vdpasim_do_reset(struct vdpasim *vdpasim) { int i; spin_lock(&vdpasim->iommu_lock); for (i = 0; i < vdpasim->dev_attr.nvqs; i++) { vdpasim_vq_reset(vdpasim, &vdpasim->vqs[i]); vringh_set_iotlb(&vdpasim->vqs[i].vring, &vdpasim->iommu[0], &vdpasim->iommu_lock); } for (i = 0; i < vdpasim->dev_attr.nas; i++) vhost_iotlb_reset(&vdpasim->iommu[i]); vdpasim->running = true; spin_unlock(&vdpasim->iommu_lock); vdpasim->features = 0; vdpasim->status = 0; ++vdpasim->generation; } static int dir_to_perm(enum dma_data_direction dir) { int perm = -EFAULT; switch (dir) { case DMA_FROM_DEVICE: perm = VHOST_MAP_WO; break; case DMA_TO_DEVICE: perm = VHOST_MAP_RO; break; case DMA_BIDIRECTIONAL: perm = VHOST_MAP_RW; break; default: break; } return perm; } static dma_addr_t vdpasim_map_range(struct vdpasim *vdpasim, phys_addr_t paddr, size_t size, unsigned int perm) { struct iova *iova; dma_addr_t dma_addr; int ret; /* We set the limit_pfn to the maximum (ULONG_MAX - 1) */ iova = alloc_iova(&vdpasim->iova, size >> iova_shift(&vdpasim->iova), ULONG_MAX - 1, true); if (!iova) return DMA_MAPPING_ERROR; dma_addr = iova_dma_addr(&vdpasim->iova, iova); spin_lock(&vdpasim->iommu_lock); ret = vhost_iotlb_add_range(&vdpasim->iommu[0], (u64)dma_addr, (u64)dma_addr + size - 1, (u64)paddr, perm); spin_unlock(&vdpasim->iommu_lock); if (ret) { __free_iova(&vdpasim->iova, iova); return DMA_MAPPING_ERROR; } return dma_addr; } static void vdpasim_unmap_range(struct vdpasim *vdpasim, dma_addr_t dma_addr, size_t size) { spin_lock(&vdpasim->iommu_lock); vhost_iotlb_del_range(&vdpasim->iommu[0], (u64)dma_addr, (u64)dma_addr + size - 1); spin_unlock(&vdpasim->iommu_lock); free_iova(&vdpasim->iova, iova_pfn(&vdpasim->iova, dma_addr)); } static dma_addr_t vdpasim_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct vdpasim *vdpasim = dev_to_sim(dev); phys_addr_t paddr = page_to_phys(page) + offset; int perm = dir_to_perm(dir); if (perm < 0) return DMA_MAPPING_ERROR; return vdpasim_map_range(vdpasim, paddr, size, perm); } static void vdpasim_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct vdpasim *vdpasim = dev_to_sim(dev); vdpasim_unmap_range(vdpasim, dma_addr, size); } static void *vdpasim_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t flag, unsigned long attrs) { struct vdpasim *vdpasim = dev_to_sim(dev); phys_addr_t paddr; void *addr; addr = kmalloc(size, flag); if (!addr) { *dma_addr = DMA_MAPPING_ERROR; return NULL; } paddr = virt_to_phys(addr); *dma_addr = vdpasim_map_range(vdpasim, paddr, size, VHOST_MAP_RW); if (*dma_addr == DMA_MAPPING_ERROR) { kfree(addr); return NULL; } return addr; } static void vdpasim_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr, unsigned long attrs) { struct vdpasim *vdpasim = dev_to_sim(dev); vdpasim_unmap_range(vdpasim, dma_addr, size); kfree(vaddr); } static const struct dma_map_ops vdpasim_dma_ops = { .map_page = vdpasim_map_page, .unmap_page = vdpasim_unmap_page, .alloc = vdpasim_alloc_coherent, .free = vdpasim_free_coherent, }; static const struct vdpa_config_ops vdpasim_config_ops; static const struct vdpa_config_ops vdpasim_batch_config_ops; struct vdpasim *vdpasim_create(struct vdpasim_dev_attr *dev_attr, const struct vdpa_dev_set_config *config) { const struct vdpa_config_ops *ops; struct vdpasim *vdpasim; struct device *dev; int i, ret = -ENOMEM; if (config->mask & BIT_ULL(VDPA_ATTR_DEV_FEATURES)) { if (config->device_features & ~dev_attr->supported_features) return ERR_PTR(-EINVAL); dev_attr->supported_features = config->device_features; } if (batch_mapping) ops = &vdpasim_batch_config_ops; else ops = &vdpasim_config_ops; vdpasim = vdpa_alloc_device(struct vdpasim, vdpa, NULL, ops, dev_attr->ngroups, dev_attr->nas, dev_attr->name, false); if (IS_ERR(vdpasim)) { ret = PTR_ERR(vdpasim); goto err_alloc; } vdpasim->dev_attr = *dev_attr; INIT_WORK(&vdpasim->work, dev_attr->work_fn); spin_lock_init(&vdpasim->lock); spin_lock_init(&vdpasim->iommu_lock); dev = &vdpasim->vdpa.dev; dev->dma_mask = &dev->coherent_dma_mask; if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) goto err_iommu; set_dma_ops(dev, &vdpasim_dma_ops); vdpasim->vdpa.mdev = dev_attr->mgmt_dev; vdpasim->config = kzalloc(dev_attr->config_size, GFP_KERNEL); if (!vdpasim->config) goto err_iommu; vdpasim->vqs = kcalloc(dev_attr->nvqs, sizeof(struct vdpasim_virtqueue), GFP_KERNEL); if (!vdpasim->vqs) goto err_iommu; vdpasim->iommu = kmalloc_array(vdpasim->dev_attr.nas, sizeof(*vdpasim->iommu), GFP_KERNEL); if (!vdpasim->iommu) goto err_iommu; for (i = 0; i < vdpasim->dev_attr.nas; i++) vhost_iotlb_init(&vdpasim->iommu[i], max_iotlb_entries, 0); vdpasim->buffer = kvmalloc(dev_attr->buffer_size, GFP_KERNEL); if (!vdpasim->buffer) goto err_iommu; for (i = 0; i < dev_attr->nvqs; i++) vringh_set_iotlb(&vdpasim->vqs[i].vring, &vdpasim->iommu[0], &vdpasim->iommu_lock); ret = iova_cache_get(); if (ret) goto err_iommu; /* For simplicity we use an IOVA allocator with byte granularity */ init_iova_domain(&vdpasim->iova, 1, 0); vdpasim->vdpa.dma_dev = dev; return vdpasim; err_iommu: put_device(dev); err_alloc: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(vdpasim_create); static int vdpasim_set_vq_address(struct vdpa_device *vdpa, u16 idx, u64 desc_area, u64 driver_area, u64 device_area) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; vq->desc_addr = desc_area; vq->driver_addr = driver_area; vq->device_addr = device_area; return 0; } static void vdpasim_set_vq_num(struct vdpa_device *vdpa, u16 idx, u32 num) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; vq->num = num; } static void vdpasim_kick_vq(struct vdpa_device *vdpa, u16 idx) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; if (vq->ready) schedule_work(&vdpasim->work); } static void vdpasim_set_vq_cb(struct vdpa_device *vdpa, u16 idx, struct vdpa_callback *cb) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; vq->cb = cb->callback; vq->private = cb->private; } static void vdpasim_set_vq_ready(struct vdpa_device *vdpa, u16 idx, bool ready) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; bool old_ready; spin_lock(&vdpasim->lock); old_ready = vq->ready; vq->ready = ready; if (vq->ready && !old_ready) { vdpasim_queue_ready(vdpasim, idx); } spin_unlock(&vdpasim->lock); } static bool vdpasim_get_vq_ready(struct vdpa_device *vdpa, u16 idx) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; return vq->ready; } static int vdpasim_set_vq_state(struct vdpa_device *vdpa, u16 idx, const struct vdpa_vq_state *state) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; struct vringh *vrh = &vq->vring; spin_lock(&vdpasim->lock); vrh->last_avail_idx = state->split.avail_index; spin_unlock(&vdpasim->lock); return 0; } static int vdpasim_get_vq_state(struct vdpa_device *vdpa, u16 idx, struct vdpa_vq_state *state) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vdpasim_virtqueue *vq = &vdpasim->vqs[idx]; struct vringh *vrh = &vq->vring; state->split.avail_index = vrh->last_avail_idx; return 0; } static u32 vdpasim_get_vq_align(struct vdpa_device *vdpa) { return VDPASIM_QUEUE_ALIGN; } static u32 vdpasim_get_vq_group(struct vdpa_device *vdpa, u16 idx) { /* RX and TX belongs to group 0, CVQ belongs to group 1 */ if (idx == 2) return 1; else return 0; } static u64 vdpasim_get_device_features(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->dev_attr.supported_features; } static int vdpasim_set_driver_features(struct vdpa_device *vdpa, u64 features) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); /* DMA mapping must be done by driver */ if (!(features & (1ULL << VIRTIO_F_ACCESS_PLATFORM))) return -EINVAL; vdpasim->features = features & vdpasim->dev_attr.supported_features; return 0; } static u64 vdpasim_get_driver_features(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->features; } static void vdpasim_set_config_cb(struct vdpa_device *vdpa, struct vdpa_callback *cb) { /* We don't support config interrupt */ } static u16 vdpasim_get_vq_num_max(struct vdpa_device *vdpa) { return VDPASIM_QUEUE_MAX; } static u32 vdpasim_get_device_id(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->dev_attr.id; } static u32 vdpasim_get_vendor_id(struct vdpa_device *vdpa) { return VDPASIM_VENDOR_ID; } static u8 vdpasim_get_status(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); u8 status; spin_lock(&vdpasim->lock); status = vdpasim->status; spin_unlock(&vdpasim->lock); return status; } static void vdpasim_set_status(struct vdpa_device *vdpa, u8 status) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); spin_lock(&vdpasim->lock); vdpasim->status = status; spin_unlock(&vdpasim->lock); } static int vdpasim_reset(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); spin_lock(&vdpasim->lock); vdpasim->status = 0; vdpasim_do_reset(vdpasim); spin_unlock(&vdpasim->lock); return 0; } static int vdpasim_suspend(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); spin_lock(&vdpasim->lock); vdpasim->running = false; spin_unlock(&vdpasim->lock); return 0; } static size_t vdpasim_get_config_size(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->dev_attr.config_size; } static void vdpasim_get_config(struct vdpa_device *vdpa, unsigned int offset, void *buf, unsigned int len) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (offset + len > vdpasim->dev_attr.config_size) return; if (vdpasim->dev_attr.get_config) vdpasim->dev_attr.get_config(vdpasim, vdpasim->config); memcpy(buf, vdpasim->config + offset, len); } static void vdpasim_set_config(struct vdpa_device *vdpa, unsigned int offset, const void *buf, unsigned int len) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (offset + len > vdpasim->dev_attr.config_size) return; memcpy(vdpasim->config + offset, buf, len); if (vdpasim->dev_attr.set_config) vdpasim->dev_attr.set_config(vdpasim, vdpasim->config); } static u32 vdpasim_get_generation(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); return vdpasim->generation; } static struct vdpa_iova_range vdpasim_get_iova_range(struct vdpa_device *vdpa) { struct vdpa_iova_range range = { .first = 0ULL, .last = ULLONG_MAX, }; return range; } static int vdpasim_set_group_asid(struct vdpa_device *vdpa, unsigned int group, unsigned int asid) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vhost_iotlb *iommu; int i; if (group > vdpasim->dev_attr.ngroups) return -EINVAL; if (asid >= vdpasim->dev_attr.nas) return -EINVAL; iommu = &vdpasim->iommu[asid]; spin_lock(&vdpasim->lock); for (i = 0; i < vdpasim->dev_attr.nvqs; i++) if (vdpasim_get_vq_group(vdpa, i) == group) vringh_set_iotlb(&vdpasim->vqs[i].vring, iommu, &vdpasim->iommu_lock); spin_unlock(&vdpasim->lock); return 0; } static int vdpasim_set_map(struct vdpa_device *vdpa, unsigned int asid, struct vhost_iotlb *iotlb) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); struct vhost_iotlb_map *map; struct vhost_iotlb *iommu; u64 start = 0ULL, last = 0ULL - 1; int ret; if (asid >= vdpasim->dev_attr.nas) return -EINVAL; spin_lock(&vdpasim->iommu_lock); iommu = &vdpasim->iommu[asid]; vhost_iotlb_reset(iommu); for (map = vhost_iotlb_itree_first(iotlb, start, last); map; map = vhost_iotlb_itree_next(map, start, last)) { ret = vhost_iotlb_add_range(iommu, map->start, map->last, map->addr, map->perm); if (ret) goto err; } spin_unlock(&vdpasim->iommu_lock); return 0; err: vhost_iotlb_reset(iommu); spin_unlock(&vdpasim->iommu_lock); return ret; } static int vdpasim_dma_map(struct vdpa_device *vdpa, unsigned int asid, u64 iova, u64 size, u64 pa, u32 perm, void *opaque) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); int ret; if (asid >= vdpasim->dev_attr.nas) return -EINVAL; spin_lock(&vdpasim->iommu_lock); ret = vhost_iotlb_add_range_ctx(&vdpasim->iommu[asid], iova, iova + size - 1, pa, perm, opaque); spin_unlock(&vdpasim->iommu_lock); return ret; } static int vdpasim_dma_unmap(struct vdpa_device *vdpa, unsigned int asid, u64 iova, u64 size) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); if (asid >= vdpasim->dev_attr.nas) return -EINVAL; spin_lock(&vdpasim->iommu_lock); vhost_iotlb_del_range(&vdpasim->iommu[asid], iova, iova + size - 1); spin_unlock(&vdpasim->iommu_lock); return 0; } static void vdpasim_free(struct vdpa_device *vdpa) { struct vdpasim *vdpasim = vdpa_to_sim(vdpa); int i; cancel_work_sync(&vdpasim->work); for (i = 0; i < vdpasim->dev_attr.nvqs; i++) { vringh_kiov_cleanup(&vdpasim->vqs[i].out_iov); vringh_kiov_cleanup(&vdpasim->vqs[i].in_iov); } if (vdpa_get_dma_dev(vdpa)) { put_iova_domain(&vdpasim->iova); iova_cache_put(); } kvfree(vdpasim->buffer); for (i = 0; i < vdpasim->dev_attr.nas; i++) vhost_iotlb_reset(&vdpasim->iommu[i]); kfree(vdpasim->iommu); kfree(vdpasim->vqs); kfree(vdpasim->config); } static const struct vdpa_config_ops vdpasim_config_ops = { .set_vq_address = vdpasim_set_vq_address, .set_vq_num = vdpasim_set_vq_num, .kick_vq = vdpasim_kick_vq, .set_vq_cb = vdpasim_set_vq_cb, .set_vq_ready = vdpasim_set_vq_ready, .get_vq_ready = vdpasim_get_vq_ready, .set_vq_state = vdpasim_set_vq_state, .get_vq_state = vdpasim_get_vq_state, .get_vq_align = vdpasim_get_vq_align, .get_vq_group = vdpasim_get_vq_group, .get_device_features = vdpasim_get_device_features, .set_driver_features = vdpasim_set_driver_features, .get_driver_features = vdpasim_get_driver_features, .set_config_cb = vdpasim_set_config_cb, .get_vq_num_max = vdpasim_get_vq_num_max, .get_device_id = vdpasim_get_device_id, .get_vendor_id = vdpasim_get_vendor_id, .get_status = vdpasim_get_status, .set_status = vdpasim_set_status, .reset = vdpasim_reset, .suspend = vdpasim_suspend, .get_config_size = vdpasim_get_config_size, .get_config = vdpasim_get_config, .set_config = vdpasim_set_config, .get_generation = vdpasim_get_generation, .get_iova_range = vdpasim_get_iova_range, .set_group_asid = vdpasim_set_group_asid, .dma_map = vdpasim_dma_map, .dma_unmap = vdpasim_dma_unmap, .free = vdpasim_free, }; static const struct vdpa_config_ops vdpasim_batch_config_ops = { .set_vq_address = vdpasim_set_vq_address, .set_vq_num = vdpasim_set_vq_num, .kick_vq = vdpasim_kick_vq, .set_vq_cb = vdpasim_set_vq_cb, .set_vq_ready = vdpasim_set_vq_ready, .get_vq_ready = vdpasim_get_vq_ready, .set_vq_state = vdpasim_set_vq_state, .get_vq_state = vdpasim_get_vq_state, .get_vq_align = vdpasim_get_vq_align, .get_vq_group = vdpasim_get_vq_group, .get_device_features = vdpasim_get_device_features, .set_driver_features = vdpasim_set_driver_features, .get_driver_features = vdpasim_get_driver_features, .set_config_cb = vdpasim_set_config_cb, .get_vq_num_max = vdpasim_get_vq_num_max, .get_device_id = vdpasim_get_device_id, .get_vendor_id = vdpasim_get_vendor_id, .get_status = vdpasim_get_status, .set_status = vdpasim_set_status, .reset = vdpasim_reset, .suspend = vdpasim_suspend, .get_config_size = vdpasim_get_config_size, .get_config = vdpasim_get_config, .set_config = vdpasim_set_config, .get_generation = vdpasim_get_generation, .get_iova_range = vdpasim_get_iova_range, .set_group_asid = vdpasim_set_group_asid, .set_map = vdpasim_set_map, .free = vdpasim_free, }; MODULE_VERSION(DRV_VERSION); MODULE_LICENSE(DRV_LICENSE); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC);