// SPDX-License-Identifier: GPL-2.0-or-later /* * Universal Flash Storage Host controller Platform bus based glue driver * Copyright (C) 2011-2013 Samsung India Software Operations * * Authors: * Santosh Yaraganavi * Vinayak Holikatti */ #include #include #include #include #include #include #include #include "ufshcd-pltfrm.h" #include #define UFSHCD_DEFAULT_LANES_PER_DIRECTION 2 static int ufshcd_parse_clock_info(struct ufs_hba *hba) { int ret = 0; int cnt; int i; struct device *dev = hba->dev; struct device_node *np = dev->of_node; const char *name; u32 *clkfreq = NULL; struct ufs_clk_info *clki; ssize_t sz = 0; if (!np) goto out; cnt = of_property_count_strings(np, "clock-names"); if (!cnt || (cnt == -EINVAL)) { dev_info(dev, "%s: Unable to find clocks, assuming enabled\n", __func__); } else if (cnt < 0) { dev_err(dev, "%s: count clock strings failed, err %d\n", __func__, cnt); ret = cnt; } if (cnt <= 0) goto out; sz = of_property_count_u32_elems(np, "freq-table-hz"); if (sz <= 0) { dev_info(dev, "freq-table-hz property not specified\n"); goto out; } if (sz != 2 * cnt) { dev_err(dev, "%s len mismatch\n", "freq-table-hz"); ret = -EINVAL; goto out; } clkfreq = devm_kcalloc(dev, sz, sizeof(*clkfreq), GFP_KERNEL); if (!clkfreq) { ret = -ENOMEM; goto out; } ret = of_property_read_u32_array(np, "freq-table-hz", clkfreq, sz); if (ret && (ret != -EINVAL)) { dev_err(dev, "%s: error reading array %d\n", "freq-table-hz", ret); return ret; } for (i = 0; i < sz; i += 2) { ret = of_property_read_string_index(np, "clock-names", i/2, &name); if (ret) goto out; clki = devm_kzalloc(dev, sizeof(*clki), GFP_KERNEL); if (!clki) { ret = -ENOMEM; goto out; } clki->min_freq = clkfreq[i]; clki->max_freq = clkfreq[i+1]; clki->name = devm_kstrdup(dev, name, GFP_KERNEL); if (!clki->name) { ret = -ENOMEM; goto out; } if (!strcmp(name, "ref_clk")) clki->keep_link_active = true; dev_dbg(dev, "%s: min %u max %u name %s\n", "freq-table-hz", clki->min_freq, clki->max_freq, clki->name); list_add_tail(&clki->list, &hba->clk_list_head); } out: return ret; } static bool phandle_exists(const struct device_node *np, const char *phandle_name, int index) { struct device_node *parse_np = of_parse_phandle(np, phandle_name, index); if (parse_np) of_node_put(parse_np); return parse_np != NULL; } #define MAX_PROP_SIZE 32 int ufshcd_populate_vreg(struct device *dev, const char *name, struct ufs_vreg **out_vreg, bool skip_current) { char prop_name[MAX_PROP_SIZE]; struct ufs_vreg *vreg = NULL; struct device_node *np = dev->of_node; if (!np) { dev_err(dev, "%s: non DT initialization\n", __func__); goto out; } snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", name); if (!phandle_exists(np, prop_name, 0)) { dev_info(dev, "%s: Unable to find %s regulator, assuming enabled\n", __func__, prop_name); goto out; } vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL); if (!vreg) return -ENOMEM; vreg->name = devm_kstrdup(dev, name, GFP_KERNEL); if (!vreg->name) return -ENOMEM; if (skip_current) { vreg->max_uA = 0; goto out; } snprintf(prop_name, MAX_PROP_SIZE, "%s-max-microamp", name); if (of_property_read_u32(np, prop_name, &vreg->max_uA)) { dev_info(dev, "%s: unable to find %s\n", __func__, prop_name); vreg->max_uA = 0; } out: *out_vreg = vreg; return 0; } EXPORT_SYMBOL_GPL(ufshcd_populate_vreg); /** * ufshcd_parse_regulator_info - get regulator info from device tree * @hba: per adapter instance * * Get regulator info from device tree for vcc, vccq, vccq2 power supplies. * If any of the supplies are not defined it is assumed that they are always-on * and hence return zero. If the property is defined but parsing is failed * then return corresponding error. * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_parse_regulator_info(struct ufs_hba *hba) { int err; struct device *dev = hba->dev; struct ufs_vreg_info *info = &hba->vreg_info; err = ufshcd_populate_vreg(dev, "vdd-hba", &info->vdd_hba, true); if (err) goto out; err = ufshcd_populate_vreg(dev, "vcc", &info->vcc, false); if (err) goto out; err = ufshcd_populate_vreg(dev, "vccq", &info->vccq, false); if (err) goto out; err = ufshcd_populate_vreg(dev, "vccq2", &info->vccq2, false); out: return err; } static void ufshcd_init_lanes_per_dir(struct ufs_hba *hba) { struct device *dev = hba->dev; int ret; ret = of_property_read_u32(dev->of_node, "lanes-per-direction", &hba->lanes_per_direction); if (ret) { dev_dbg(hba->dev, "%s: failed to read lanes-per-direction, ret=%d\n", __func__, ret); hba->lanes_per_direction = UFSHCD_DEFAULT_LANES_PER_DIRECTION; } } /** * ufshcd_parse_clock_min_max_freq - Parse MIN and MAX clocks freq * @hba: per adapter instance * * This function parses MIN and MAX frequencies of all clocks required * by the host drivers. * * Returns 0 for success and non-zero for failure */ static int ufshcd_parse_clock_min_max_freq(struct ufs_hba *hba) { struct list_head *head = &hba->clk_list_head; struct ufs_clk_info *clki; struct dev_pm_opp *opp; unsigned long freq; u8 idx = 0; list_for_each_entry(clki, head, list) { if (!clki->name) continue; clki->clk = devm_clk_get(hba->dev, clki->name); if (IS_ERR(clki->clk)) continue; /* Find Max Freq */ freq = ULONG_MAX; opp = dev_pm_opp_find_freq_floor_indexed(hba->dev, &freq, idx); if (IS_ERR(opp)) { dev_err(hba->dev, "Failed to find OPP for MAX frequency\n"); return PTR_ERR(opp); } clki->max_freq = dev_pm_opp_get_freq_indexed(opp, idx); dev_pm_opp_put(opp); /* Find Min Freq */ freq = 0; opp = dev_pm_opp_find_freq_ceil_indexed(hba->dev, &freq, idx); if (IS_ERR(opp)) { dev_err(hba->dev, "Failed to find OPP for MIN frequency\n"); return PTR_ERR(opp); } clki->min_freq = dev_pm_opp_get_freq_indexed(opp, idx++); dev_pm_opp_put(opp); } return 0; } static int ufshcd_parse_operating_points(struct ufs_hba *hba) { struct device *dev = hba->dev; struct device_node *np = dev->of_node; struct dev_pm_opp_config config = {}; struct ufs_clk_info *clki; const char **clk_names; int cnt, i, ret; if (!of_property_present(np, "operating-points-v2")) return 0; if (of_property_present(np, "freq-table-hz")) { dev_err(dev, "%s: operating-points and freq-table-hz are incompatible\n", __func__); return -EINVAL; } cnt = of_property_count_strings(np, "clock-names"); if (cnt <= 0) { dev_err(dev, "%s: Missing clock-names\n", __func__); return -ENODEV; } /* OPP expects clk_names to be NULL terminated */ clk_names = devm_kcalloc(dev, cnt + 1, sizeof(*clk_names), GFP_KERNEL); if (!clk_names) return -ENOMEM; /* * We still need to get reference to all clocks as the UFS core uses * them separately. */ for (i = 0; i < cnt; i++) { ret = of_property_read_string_index(np, "clock-names", i, &clk_names[i]); if (ret) return ret; clki = devm_kzalloc(dev, sizeof(*clki), GFP_KERNEL); if (!clki) return -ENOMEM; clki->name = devm_kstrdup(dev, clk_names[i], GFP_KERNEL); if (!clki->name) return -ENOMEM; if (!strcmp(clk_names[i], "ref_clk")) clki->keep_link_active = true; list_add_tail(&clki->list, &hba->clk_list_head); } config.clk_names = clk_names, config.config_clks = ufshcd_opp_config_clks; ret = devm_pm_opp_set_config(dev, &config); if (ret) return ret; ret = devm_pm_opp_of_add_table(dev); if (ret) { dev_err(dev, "Failed to add OPP table: %d\n", ret); return ret; } ret = ufshcd_parse_clock_min_max_freq(hba); if (ret) return ret; hba->use_pm_opp = true; return 0; } /** * ufshcd_negotiate_pwr_params - find power mode settings that are supported by * both the controller and the device * @host_params: pointer to host parameters * @dev_max: pointer to device attributes * @agreed_pwr: returned agreed attributes * * Return: 0 on success, non-zero value on failure. */ int ufshcd_negotiate_pwr_params(const struct ufs_host_params *host_params, const struct ufs_pa_layer_attr *dev_max, struct ufs_pa_layer_attr *agreed_pwr) { int min_host_gear; int min_dev_gear; bool is_dev_sup_hs = false; bool is_host_max_hs = false; if (dev_max->pwr_rx == FAST_MODE) is_dev_sup_hs = true; if (host_params->desired_working_mode == UFS_HS_MODE) { is_host_max_hs = true; min_host_gear = min_t(u32, host_params->hs_rx_gear, host_params->hs_tx_gear); } else { min_host_gear = min_t(u32, host_params->pwm_rx_gear, host_params->pwm_tx_gear); } /* * device doesn't support HS but host_params->desired_working_mode is HS, * thus device and host_params don't agree */ if (!is_dev_sup_hs && is_host_max_hs) { pr_info("%s: device doesn't support HS\n", __func__); return -ENOTSUPP; } else if (is_dev_sup_hs && is_host_max_hs) { /* * since device supports HS, it supports FAST_MODE. * since host_params->desired_working_mode is also HS * then final decision (FAST/FASTAUTO) is done according * to pltfrm_params as it is the restricting factor */ agreed_pwr->pwr_rx = host_params->rx_pwr_hs; agreed_pwr->pwr_tx = agreed_pwr->pwr_rx; } else { /* * here host_params->desired_working_mode is PWM. * it doesn't matter whether device supports HS or PWM, * in both cases host_params->desired_working_mode will * determine the mode */ agreed_pwr->pwr_rx = host_params->rx_pwr_pwm; agreed_pwr->pwr_tx = agreed_pwr->pwr_rx; } /* * we would like tx to work in the minimum number of lanes * between device capability and vendor preferences. * the same decision will be made for rx */ agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx, host_params->tx_lanes); agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx, host_params->rx_lanes); /* device maximum gear is the minimum between device rx and tx gears */ min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx); /* * if both device capabilities and vendor pre-defined preferences are * both HS or both PWM then set the minimum gear to be the chosen * working gear. * if one is PWM and one is HS then the one that is PWM get to decide * what is the gear, as it is the one that also decided previously what * pwr the device will be configured to. */ if ((is_dev_sup_hs && is_host_max_hs) || (!is_dev_sup_hs && !is_host_max_hs)) { agreed_pwr->gear_rx = min_t(u32, min_dev_gear, min_host_gear); } else if (!is_dev_sup_hs) { agreed_pwr->gear_rx = min_dev_gear; } else { agreed_pwr->gear_rx = min_host_gear; } agreed_pwr->gear_tx = agreed_pwr->gear_rx; agreed_pwr->hs_rate = host_params->hs_rate; return 0; } EXPORT_SYMBOL_GPL(ufshcd_negotiate_pwr_params); void ufshcd_init_host_params(struct ufs_host_params *host_params) { *host_params = (struct ufs_host_params){ .tx_lanes = UFS_LANE_2, .rx_lanes = UFS_LANE_2, .hs_rx_gear = UFS_HS_G3, .hs_tx_gear = UFS_HS_G3, .pwm_rx_gear = UFS_PWM_G4, .pwm_tx_gear = UFS_PWM_G4, .rx_pwr_pwm = SLOW_MODE, .tx_pwr_pwm = SLOW_MODE, .rx_pwr_hs = FAST_MODE, .tx_pwr_hs = FAST_MODE, .hs_rate = PA_HS_MODE_B, .desired_working_mode = UFS_HS_MODE, }; } EXPORT_SYMBOL_GPL(ufshcd_init_host_params); /** * ufshcd_pltfrm_init - probe routine of the driver * @pdev: pointer to Platform device handle * @vops: pointer to variant ops * * Return: 0 on success, non-zero value on failure. */ int ufshcd_pltfrm_init(struct platform_device *pdev, const struct ufs_hba_variant_ops *vops) { struct ufs_hba *hba; void __iomem *mmio_base; int irq, err; struct device *dev = &pdev->dev; mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mmio_base)) { err = PTR_ERR(mmio_base); goto out; } irq = platform_get_irq(pdev, 0); if (irq < 0) { err = irq; goto out; } err = ufshcd_alloc_host(dev, &hba); if (err) { dev_err(dev, "Allocation failed\n"); goto out; } hba->vops = vops; err = ufshcd_parse_clock_info(hba); if (err) { dev_err(dev, "%s: clock parse failed %d\n", __func__, err); goto dealloc_host; } err = ufshcd_parse_regulator_info(hba); if (err) { dev_err(dev, "%s: regulator init failed %d\n", __func__, err); goto dealloc_host; } ufshcd_init_lanes_per_dir(hba); err = ufshcd_parse_operating_points(hba); if (err) { dev_err(dev, "%s: OPP parse failed %d\n", __func__, err); goto dealloc_host; } err = ufshcd_init(hba, mmio_base, irq); if (err) { dev_err_probe(dev, err, "Initialization failed with error %d\n", err); goto dealloc_host; } pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; dealloc_host: ufshcd_dealloc_host(hba); out: return err; } EXPORT_SYMBOL_GPL(ufshcd_pltfrm_init); MODULE_AUTHOR("Santosh Yaragnavi "); MODULE_AUTHOR("Vinayak Holikatti "); MODULE_DESCRIPTION("UFS host controller Platform bus based glue driver"); MODULE_LICENSE("GPL");