/* * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit) * * Copyright (C) 2014 Samsung Electronics * Bartlomiej Zolnierkiewicz * Lukasz Majewski * * Copyright (C) 2011 Samsung Electronics * Donggeun Kim * Amit Daniel Kachhap * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include "../thermal_core.h" /* Exynos generic registers */ #define EXYNOS_TMU_REG_TRIMINFO 0x0 #define EXYNOS_TMU_REG_CONTROL 0x20 #define EXYNOS_TMU_REG_STATUS 0x28 #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40 #define EXYNOS_TMU_REG_INTEN 0x70 #define EXYNOS_TMU_REG_INTSTAT 0x74 #define EXYNOS_TMU_REG_INTCLEAR 0x78 #define EXYNOS_TMU_TEMP_MASK 0xff #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24 #define EXYNOS_TMU_REF_VOLTAGE_MASK 0x1f #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK 0xf #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT 8 #define EXYNOS_TMU_CORE_EN_SHIFT 0 /* Exynos3250 specific registers */ #define EXYNOS_TMU_TRIMINFO_CON1 0x10 /* Exynos4210 specific registers */ #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50 /* Exynos5250, Exynos4412, Exynos3250 specific registers */ #define EXYNOS_TMU_TRIMINFO_CON2 0x14 #define EXYNOS_THD_TEMP_RISE 0x50 #define EXYNOS_THD_TEMP_FALL 0x54 #define EXYNOS_EMUL_CON 0x80 #define EXYNOS_TRIMINFO_RELOAD_ENABLE 1 #define EXYNOS_TRIMINFO_25_SHIFT 0 #define EXYNOS_TRIMINFO_85_SHIFT 8 #define EXYNOS_TMU_TRIP_MODE_SHIFT 13 #define EXYNOS_TMU_TRIP_MODE_MASK 0x7 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT 12 #define EXYNOS_TMU_INTEN_RISE0_SHIFT 0 #define EXYNOS_TMU_INTEN_RISE1_SHIFT 4 #define EXYNOS_TMU_INTEN_RISE2_SHIFT 8 #define EXYNOS_TMU_INTEN_RISE3_SHIFT 12 #define EXYNOS_TMU_INTEN_FALL0_SHIFT 16 #define EXYNOS_EMUL_TIME 0x57F0 #define EXYNOS_EMUL_TIME_MASK 0xffff #define EXYNOS_EMUL_TIME_SHIFT 16 #define EXYNOS_EMUL_DATA_SHIFT 8 #define EXYNOS_EMUL_DATA_MASK 0xFF #define EXYNOS_EMUL_ENABLE 0x1 /* Exynos5260 specific */ #define EXYNOS5260_TMU_REG_INTEN 0xC0 #define EXYNOS5260_TMU_REG_INTSTAT 0xC4 #define EXYNOS5260_TMU_REG_INTCLEAR 0xC8 #define EXYNOS5260_EMUL_CON 0x100 /* Exynos4412 specific */ #define EXYNOS4412_MUX_ADDR_VALUE 6 #define EXYNOS4412_MUX_ADDR_SHIFT 20 /* Exynos5433 specific registers */ #define EXYNOS5433_TMU_REG_CONTROL1 0x024 #define EXYNOS5433_TMU_SAMPLING_INTERVAL 0x02c #define EXYNOS5433_TMU_COUNTER_VALUE0 0x030 #define EXYNOS5433_TMU_COUNTER_VALUE1 0x034 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1 0x044 #define EXYNOS5433_THD_TEMP_RISE3_0 0x050 #define EXYNOS5433_THD_TEMP_RISE7_4 0x054 #define EXYNOS5433_THD_TEMP_FALL3_0 0x060 #define EXYNOS5433_THD_TEMP_FALL7_4 0x064 #define EXYNOS5433_TMU_REG_INTEN 0x0c0 #define EXYNOS5433_TMU_REG_INTPEND 0x0c8 #define EXYNOS5433_TMU_EMUL_CON 0x110 #define EXYNOS5433_TMU_PD_DET_EN 0x130 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT 16 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT 23 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK \ (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT) #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK BIT(23) #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING 0 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING 1 #define EXYNOS5433_PD_DET_EN 1 #define EXYNOS5433_G3D_BASE 0x10070000 /* Exynos7 specific registers */ #define EXYNOS7_THD_TEMP_RISE7_6 0x50 #define EXYNOS7_THD_TEMP_FALL7_6 0x60 #define EXYNOS7_TMU_REG_INTEN 0x110 #define EXYNOS7_TMU_REG_INTPEND 0x118 #define EXYNOS7_TMU_REG_EMUL_CON 0x160 #define EXYNOS7_TMU_TEMP_MASK 0x1ff #define EXYNOS7_PD_DET_EN_SHIFT 23 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT 0 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT 1 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT 2 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT 3 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT 4 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT 5 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT 6 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT 7 #define EXYNOS7_EMUL_DATA_SHIFT 7 #define EXYNOS7_EMUL_DATA_MASK 0x1ff #define EXYNOS_FIRST_POINT_TRIM 25 #define EXYNOS_SECOND_POINT_TRIM 85 #define EXYNOS_NOISE_CANCEL_MODE 4 #define MCELSIUS 1000 enum soc_type { SOC_ARCH_EXYNOS3250 = 1, SOC_ARCH_EXYNOS4210, SOC_ARCH_EXYNOS4412, SOC_ARCH_EXYNOS5250, SOC_ARCH_EXYNOS5260, SOC_ARCH_EXYNOS5420, SOC_ARCH_EXYNOS5420_TRIMINFO, SOC_ARCH_EXYNOS5433, SOC_ARCH_EXYNOS7, }; /** * struct exynos_tmu_data : A structure to hold the private data of the TMU driver * @id: identifier of the one instance of the TMU controller. * @base: base address of the single instance of the TMU controller. * @base_second: base address of the common registers of the TMU controller. * @irq: irq number of the TMU controller. * @soc: id of the SOC type. * @irq_work: pointer to the irq work structure. * @lock: lock to implement synchronization. * @clk: pointer to the clock structure. * @clk_sec: pointer to the clock structure for accessing the base_second. * @sclk: pointer to the clock structure for accessing the tmu special clk. * @cal_type: calibration type for temperature * @efuse_value: SoC defined fuse value * @min_efuse_value: minimum valid trimming data * @max_efuse_value: maximum valid trimming data * @temp_error1: fused value of the first point trim. * @temp_error2: fused value of the second point trim. * @gain: gain of amplifier in the positive-TC generator block * 0 < gain <= 15 * @reference_voltage: reference voltage of amplifier * in the positive-TC generator block * 0 < reference_voltage <= 31 * @regulator: pointer to the TMU regulator structure. * @reg_conf: pointer to structure to register with core thermal. * @ntrip: number of supported trip points. * @enabled: current status of TMU device * @tmu_initialize: SoC specific TMU initialization method * @tmu_control: SoC specific TMU control method * @tmu_read: SoC specific TMU temperature read method * @tmu_set_emulation: SoC specific TMU emulation setting method * @tmu_clear_irqs: SoC specific TMU interrupts clearing method */ struct exynos_tmu_data { int id; void __iomem *base; void __iomem *base_second; int irq; enum soc_type soc; struct work_struct irq_work; struct mutex lock; struct clk *clk, *clk_sec, *sclk; u32 cal_type; u32 efuse_value; u32 min_efuse_value; u32 max_efuse_value; u16 temp_error1, temp_error2; u8 gain; u8 reference_voltage; struct regulator *regulator; struct thermal_zone_device *tzd; unsigned int ntrip; bool enabled; int (*tmu_initialize)(struct platform_device *pdev); void (*tmu_control)(struct platform_device *pdev, bool on); int (*tmu_read)(struct exynos_tmu_data *data); void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp); void (*tmu_clear_irqs)(struct exynos_tmu_data *data); }; static void exynos_report_trigger(struct exynos_tmu_data *p) { char data[10], *envp[] = { data, NULL }; struct thermal_zone_device *tz = p->tzd; int temp; unsigned int i; if (!tz) { pr_err("No thermal zone device defined\n"); return; } thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); mutex_lock(&tz->lock); /* Find the level for which trip happened */ for (i = 0; i < of_thermal_get_ntrips(tz); i++) { tz->ops->get_trip_temp(tz, i, &temp); if (tz->last_temperature < temp) break; } snprintf(data, sizeof(data), "%u", i); kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp); mutex_unlock(&tz->lock); } /* * TMU treats temperature as a mapped temperature code. * The temperature is converted differently depending on the calibration type. */ static int temp_to_code(struct exynos_tmu_data *data, u8 temp) { if (data->cal_type == TYPE_ONE_POINT_TRIMMING) return temp + data->temp_error1 - EXYNOS_FIRST_POINT_TRIM; return (temp - EXYNOS_FIRST_POINT_TRIM) * (data->temp_error2 - data->temp_error1) / (EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) + data->temp_error1; } /* * Calculate a temperature value from a temperature code. * The unit of the temperature is degree Celsius. */ static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code) { if (data->cal_type == TYPE_ONE_POINT_TRIMMING) return temp_code - data->temp_error1 + EXYNOS_FIRST_POINT_TRIM; return (temp_code - data->temp_error1) * (EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) / (data->temp_error2 - data->temp_error1) + EXYNOS_FIRST_POINT_TRIM; } static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info) { data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK; data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) & EXYNOS_TMU_TEMP_MASK); if (!data->temp_error1 || (data->min_efuse_value > data->temp_error1) || (data->temp_error1 > data->max_efuse_value)) data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK; if (!data->temp_error2) data->temp_error2 = (data->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) & EXYNOS_TMU_TEMP_MASK; } static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling) { struct thermal_zone_device *tz = data->tzd; const struct thermal_trip * const trips = of_thermal_get_trip_points(tz); unsigned long temp; int i; for (i = 0; i < of_thermal_get_ntrips(tz); i++) { if (trips[i].type == THERMAL_TRIP_CRITICAL) continue; temp = trips[i].temperature / MCELSIUS; if (falling) temp -= (trips[i].hysteresis / MCELSIUS); else threshold &= ~(0xff << 8 * i); threshold |= temp_to_code(data, temp) << 8 * i; } return threshold; } static int exynos_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tzd = data->tzd; const struct thermal_trip * const trips = of_thermal_get_trip_points(tzd); int ret = 0, temp; if (!trips) { dev_err(&pdev->dev, "Cannot get trip points from device tree!\n"); return -ENODEV; } if (data->soc != SOC_ARCH_EXYNOS5433) /* FIXME */ ret = tzd->ops->get_crit_temp(tzd, &temp); if (ret) { dev_err(&pdev->dev, "No CRITICAL trip point defined in device tree!\n"); goto out; } if (of_thermal_get_ntrips(tzd) > data->ntrip) { dev_info(&pdev->dev, "More trip points than supported by this TMU.\n"); dev_info(&pdev->dev, "%d trip points should be configured in polling mode.\n", (of_thermal_get_ntrips(tzd) - data->ntrip)); } mutex_lock(&data->lock); clk_enable(data->clk); if (!IS_ERR(data->clk_sec)) clk_enable(data->clk_sec); ret = data->tmu_initialize(pdev); clk_disable(data->clk); mutex_unlock(&data->lock); if (!IS_ERR(data->clk_sec)) clk_disable(data->clk_sec); out: return ret; } static u32 get_con_reg(struct exynos_tmu_data *data, u32 con) { if (data->soc == SOC_ARCH_EXYNOS4412 || data->soc == SOC_ARCH_EXYNOS3250) con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT); con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT); con |= data->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT; con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); con |= (data->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT); con |= (EXYNOS_NOISE_CANCEL_MODE << EXYNOS_TMU_TRIP_MODE_SHIFT); return con; } static void exynos_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); mutex_lock(&data->lock); clk_enable(data->clk); data->tmu_control(pdev, on); data->enabled = on; clk_disable(data->clk); mutex_unlock(&data->lock); } static int exynos4210_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tz = data->tzd; const struct thermal_trip * const trips = of_thermal_get_trip_points(tz); int ret = 0, threshold_code, i; unsigned long reference, temp; unsigned int status; status = readb(data->base + EXYNOS_TMU_REG_STATUS); if (!status) { ret = -EBUSY; goto out; } sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO)); /* Write temperature code for threshold */ reference = trips[0].temperature / MCELSIUS; threshold_code = temp_to_code(data, reference); if (threshold_code < 0) { ret = threshold_code; goto out; } writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP); for (i = 0; i < of_thermal_get_ntrips(tz); i++) { temp = trips[i].temperature / MCELSIUS; writeb(temp - reference, data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4); } data->tmu_clear_irqs(data); out: return ret; } static int exynos4412_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); const struct thermal_trip * const trips = of_thermal_get_trip_points(data->tzd); unsigned int status, trim_info, con, ctrl, rising_threshold; int ret = 0, threshold_code, i; unsigned long crit_temp = 0; status = readb(data->base + EXYNOS_TMU_REG_STATUS); if (!status) { ret = -EBUSY; goto out; } if (data->soc == SOC_ARCH_EXYNOS3250 || data->soc == SOC_ARCH_EXYNOS4412 || data->soc == SOC_ARCH_EXYNOS5250) { if (data->soc == SOC_ARCH_EXYNOS3250) { ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1); ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1); } ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2); ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2); } /* On exynos5420 the triminfo register is in the shared space */ if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO); else trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); sanitize_temp_error(data, trim_info); /* Write temperature code for rising and falling threshold */ rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE); rising_threshold = get_th_reg(data, rising_threshold, false); writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL); data->tmu_clear_irqs(data); /* if last threshold limit is also present */ for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) { if (trips[i].type == THERMAL_TRIP_CRITICAL) { crit_temp = trips[i].temperature; break; } } threshold_code = temp_to_code(data, crit_temp / MCELSIUS); /* 1-4 level to be assigned in th0 reg */ rising_threshold &= ~(0xff << 8 * i); rising_threshold |= threshold_code << 8 * i; writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); con = readl(data->base + EXYNOS_TMU_REG_CONTROL); con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); out: return ret; } static int exynos5433_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tz = data->tzd; unsigned int status, trim_info; unsigned int rising_threshold = 0, falling_threshold = 0; int temp, temp_hist; int ret = 0, threshold_code, i, sensor_id, cal_type; status = readb(data->base + EXYNOS_TMU_REG_STATUS); if (!status) { ret = -EBUSY; goto out; } trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); sanitize_temp_error(data, trim_info); /* Read the temperature sensor id */ sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK) >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT; dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id); /* Read the calibration mode */ writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO); cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK) >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT; switch (cal_type) { case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING: data->cal_type = TYPE_TWO_POINT_TRIMMING; break; case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING: default: data->cal_type = TYPE_ONE_POINT_TRIMMING; break; } dev_info(&pdev->dev, "Calibration type is %d-point calibration\n", cal_type ? 2 : 1); /* Write temperature code for rising and falling threshold */ for (i = 0; i < of_thermal_get_ntrips(tz); i++) { int rising_reg_offset, falling_reg_offset; int j = 0; switch (i) { case 0: case 1: case 2: case 3: rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0; falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0; j = i; break; case 4: case 5: case 6: case 7: rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4; falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4; j = i - 4; break; default: continue; } /* Write temperature code for rising threshold */ tz->ops->get_trip_temp(tz, i, &temp); temp /= MCELSIUS; threshold_code = temp_to_code(data, temp); rising_threshold = readl(data->base + rising_reg_offset); rising_threshold &= ~(0xff << j * 8); rising_threshold |= (threshold_code << j * 8); writel(rising_threshold, data->base + rising_reg_offset); /* Write temperature code for falling threshold */ tz->ops->get_trip_hyst(tz, i, &temp_hist); temp_hist = temp - (temp_hist / MCELSIUS); threshold_code = temp_to_code(data, temp_hist); falling_threshold = readl(data->base + falling_reg_offset); falling_threshold &= ~(0xff << j * 8); falling_threshold |= (threshold_code << j * 8); writel(falling_threshold, data->base + falling_reg_offset); } data->tmu_clear_irqs(data); out: return ret; } static int exynos7_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tz = data->tzd; unsigned int status, trim_info; unsigned int rising_threshold = 0, falling_threshold = 0; int ret = 0, threshold_code, i; int temp, temp_hist; unsigned int reg_off, bit_off; status = readb(data->base + EXYNOS_TMU_REG_STATUS); if (!status) { ret = -EBUSY; goto out; } trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK; if (!data->temp_error1 || (data->min_efuse_value > data->temp_error1) || (data->temp_error1 > data->max_efuse_value)) data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK; /* Write temperature code for rising and falling threshold */ for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) { /* * On exynos7 there are 4 rising and 4 falling threshold * registers (0x50-0x5c and 0x60-0x6c respectively). Each * register holds the value of two threshold levels (at bit * offsets 0 and 16). Based on the fact that there are atmost * eight possible trigger levels, calculate the register and * bit offsets where the threshold levels are to be written. * * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50) * [24:16] - Threshold level 7 * [8:0] - Threshold level 6 * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54) * [24:16] - Threshold level 5 * [8:0] - Threshold level 4 * * and similarly for falling thresholds. * * Based on the above, calculate the register and bit offsets * for rising/falling threshold levels and populate them. */ reg_off = ((7 - i) / 2) * 4; bit_off = ((8 - i) % 2); tz->ops->get_trip_temp(tz, i, &temp); temp /= MCELSIUS; tz->ops->get_trip_hyst(tz, i, &temp_hist); temp_hist = temp - (temp_hist / MCELSIUS); /* Set 9-bit temperature code for rising threshold levels */ threshold_code = temp_to_code(data, temp); rising_threshold = readl(data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off); rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off)); rising_threshold |= threshold_code << (16 * bit_off); writel(rising_threshold, data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off); /* Set 9-bit temperature code for falling threshold levels */ threshold_code = temp_to_code(data, temp_hist); falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off)); falling_threshold |= threshold_code << (16 * bit_off); writel(falling_threshold, data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off); } data->tmu_clear_irqs(data); out: return ret; } static void exynos4210_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tz = data->tzd; unsigned int con, interrupt_en; con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); if (on) { con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); interrupt_en = (of_thermal_is_trip_valid(tz, 3) << EXYNOS_TMU_INTEN_RISE3_SHIFT) | (of_thermal_is_trip_valid(tz, 2) << EXYNOS_TMU_INTEN_RISE2_SHIFT) | (of_thermal_is_trip_valid(tz, 1) << EXYNOS_TMU_INTEN_RISE1_SHIFT) | (of_thermal_is_trip_valid(tz, 0) << EXYNOS_TMU_INTEN_RISE0_SHIFT); if (data->soc != SOC_ARCH_EXYNOS4210) interrupt_en |= interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; } else { con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); interrupt_en = 0; /* Disable all interrupts */ } writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); } static void exynos5433_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tz = data->tzd; unsigned int con, interrupt_en, pd_det_en; con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); if (on) { con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); interrupt_en = (of_thermal_is_trip_valid(tz, 7) << EXYNOS7_TMU_INTEN_RISE7_SHIFT) | (of_thermal_is_trip_valid(tz, 6) << EXYNOS7_TMU_INTEN_RISE6_SHIFT) | (of_thermal_is_trip_valid(tz, 5) << EXYNOS7_TMU_INTEN_RISE5_SHIFT) | (of_thermal_is_trip_valid(tz, 4) << EXYNOS7_TMU_INTEN_RISE4_SHIFT) | (of_thermal_is_trip_valid(tz, 3) << EXYNOS7_TMU_INTEN_RISE3_SHIFT) | (of_thermal_is_trip_valid(tz, 2) << EXYNOS7_TMU_INTEN_RISE2_SHIFT) | (of_thermal_is_trip_valid(tz, 1) << EXYNOS7_TMU_INTEN_RISE1_SHIFT) | (of_thermal_is_trip_valid(tz, 0) << EXYNOS7_TMU_INTEN_RISE0_SHIFT); interrupt_en |= interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; } else { con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); interrupt_en = 0; /* Disable all interrupts */ } pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0; writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN); writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); } static void exynos7_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tz = data->tzd; unsigned int con, interrupt_en; con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); if (on) { con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); con |= (1 << EXYNOS7_PD_DET_EN_SHIFT); interrupt_en = (of_thermal_is_trip_valid(tz, 7) << EXYNOS7_TMU_INTEN_RISE7_SHIFT) | (of_thermal_is_trip_valid(tz, 6) << EXYNOS7_TMU_INTEN_RISE6_SHIFT) | (of_thermal_is_trip_valid(tz, 5) << EXYNOS7_TMU_INTEN_RISE5_SHIFT) | (of_thermal_is_trip_valid(tz, 4) << EXYNOS7_TMU_INTEN_RISE4_SHIFT) | (of_thermal_is_trip_valid(tz, 3) << EXYNOS7_TMU_INTEN_RISE3_SHIFT) | (of_thermal_is_trip_valid(tz, 2) << EXYNOS7_TMU_INTEN_RISE2_SHIFT) | (of_thermal_is_trip_valid(tz, 1) << EXYNOS7_TMU_INTEN_RISE1_SHIFT) | (of_thermal_is_trip_valid(tz, 0) << EXYNOS7_TMU_INTEN_RISE0_SHIFT); interrupt_en |= interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; } else { con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT); interrupt_en = 0; /* Disable all interrupts */ } writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); } static int exynos_get_temp(void *p, int *temp) { struct exynos_tmu_data *data = p; int value, ret = 0; if (!data || !data->tmu_read || !data->enabled) return -EINVAL; mutex_lock(&data->lock); clk_enable(data->clk); value = data->tmu_read(data); if (value < 0) ret = value; else *temp = code_to_temp(data, value) * MCELSIUS; clk_disable(data->clk); mutex_unlock(&data->lock); return ret; } #ifdef CONFIG_THERMAL_EMULATION static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val, int temp) { if (temp) { temp /= MCELSIUS; val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT); val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT); if (data->soc == SOC_ARCH_EXYNOS7) { val &= ~(EXYNOS7_EMUL_DATA_MASK << EXYNOS7_EMUL_DATA_SHIFT); val |= (temp_to_code(data, temp) << EXYNOS7_EMUL_DATA_SHIFT) | EXYNOS_EMUL_ENABLE; } else { val &= ~(EXYNOS_EMUL_DATA_MASK << EXYNOS_EMUL_DATA_SHIFT); val |= (temp_to_code(data, temp) << EXYNOS_EMUL_DATA_SHIFT) | EXYNOS_EMUL_ENABLE; } } else { val &= ~EXYNOS_EMUL_ENABLE; } return val; } static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data, int temp) { unsigned int val; u32 emul_con; if (data->soc == SOC_ARCH_EXYNOS5260) emul_con = EXYNOS5260_EMUL_CON; else if (data->soc == SOC_ARCH_EXYNOS5433) emul_con = EXYNOS5433_TMU_EMUL_CON; else if (data->soc == SOC_ARCH_EXYNOS7) emul_con = EXYNOS7_TMU_REG_EMUL_CON; else emul_con = EXYNOS_EMUL_CON; val = readl(data->base + emul_con); val = get_emul_con_reg(data, val, temp); writel(val, data->base + emul_con); } static int exynos_tmu_set_emulation(void *drv_data, int temp) { struct exynos_tmu_data *data = drv_data; int ret = -EINVAL; if (data->soc == SOC_ARCH_EXYNOS4210) goto out; if (temp && temp < MCELSIUS) goto out; mutex_lock(&data->lock); clk_enable(data->clk); data->tmu_set_emulation(data, temp); clk_disable(data->clk); mutex_unlock(&data->lock); return 0; out: return ret; } #else #define exynos4412_tmu_set_emulation NULL static int exynos_tmu_set_emulation(void *drv_data, int temp) { return -EINVAL; } #endif /* CONFIG_THERMAL_EMULATION */ static int exynos4210_tmu_read(struct exynos_tmu_data *data) { int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); /* "temp_code" should range between 75 and 175 */ return (ret < 75 || ret > 175) ? -ENODATA : ret; } static int exynos4412_tmu_read(struct exynos_tmu_data *data) { return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); } static int exynos7_tmu_read(struct exynos_tmu_data *data) { return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) & EXYNOS7_TMU_TEMP_MASK; } static void exynos_tmu_work(struct work_struct *work) { struct exynos_tmu_data *data = container_of(work, struct exynos_tmu_data, irq_work); if (!IS_ERR(data->clk_sec)) clk_enable(data->clk_sec); if (!IS_ERR(data->clk_sec)) clk_disable(data->clk_sec); exynos_report_trigger(data); mutex_lock(&data->lock); clk_enable(data->clk); /* TODO: take action based on particular interrupt */ data->tmu_clear_irqs(data); clk_disable(data->clk); mutex_unlock(&data->lock); enable_irq(data->irq); } static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data) { unsigned int val_irq; u32 tmu_intstat, tmu_intclear; if (data->soc == SOC_ARCH_EXYNOS5260) { tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT; tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR; } else if (data->soc == SOC_ARCH_EXYNOS7) { tmu_intstat = EXYNOS7_TMU_REG_INTPEND; tmu_intclear = EXYNOS7_TMU_REG_INTPEND; } else if (data->soc == SOC_ARCH_EXYNOS5433) { tmu_intstat = EXYNOS5433_TMU_REG_INTPEND; tmu_intclear = EXYNOS5433_TMU_REG_INTPEND; } else { tmu_intstat = EXYNOS_TMU_REG_INTSTAT; tmu_intclear = EXYNOS_TMU_REG_INTCLEAR; } val_irq = readl(data->base + tmu_intstat); /* * Clear the interrupts. Please note that the documentation for * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly * states that INTCLEAR register has a different placing of bits * responsible for FALL IRQs than INTSTAT register. Exynos5420 * and Exynos5440 documentation is correct (Exynos4210 doesn't * support FALL IRQs at all). */ writel(val_irq, data->base + tmu_intclear); } static irqreturn_t exynos_tmu_irq(int irq, void *id) { struct exynos_tmu_data *data = id; disable_irq_nosync(irq); schedule_work(&data->irq_work); return IRQ_HANDLED; } static const struct of_device_id exynos_tmu_match[] = { { .compatible = "samsung,exynos3250-tmu", .data = (const void *)SOC_ARCH_EXYNOS3250, }, { .compatible = "samsung,exynos4210-tmu", .data = (const void *)SOC_ARCH_EXYNOS4210, }, { .compatible = "samsung,exynos4412-tmu", .data = (const void *)SOC_ARCH_EXYNOS4412, }, { .compatible = "samsung,exynos5250-tmu", .data = (const void *)SOC_ARCH_EXYNOS5250, }, { .compatible = "samsung,exynos5260-tmu", .data = (const void *)SOC_ARCH_EXYNOS5260, }, { .compatible = "samsung,exynos5420-tmu", .data = (const void *)SOC_ARCH_EXYNOS5420, }, { .compatible = "samsung,exynos5420-tmu-ext-triminfo", .data = (const void *)SOC_ARCH_EXYNOS5420_TRIMINFO, }, { .compatible = "samsung,exynos5433-tmu", .data = (const void *)SOC_ARCH_EXYNOS5433, }, { .compatible = "samsung,exynos7-tmu", .data = (const void *)SOC_ARCH_EXYNOS7, }, { }, }; MODULE_DEVICE_TABLE(of, exynos_tmu_match); static int exynos_map_dt_data(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct resource res; if (!data || !pdev->dev.of_node) return -ENODEV; data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl"); if (data->id < 0) data->id = 0; data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); if (data->irq <= 0) { dev_err(&pdev->dev, "failed to get IRQ\n"); return -ENODEV; } if (of_address_to_resource(pdev->dev.of_node, 0, &res)) { dev_err(&pdev->dev, "failed to get Resource 0\n"); return -ENODEV; } data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); if (!data->base) { dev_err(&pdev->dev, "Failed to ioremap memory\n"); return -EADDRNOTAVAIL; } data->soc = (enum soc_type)of_device_get_match_data(&pdev->dev); switch (data->soc) { case SOC_ARCH_EXYNOS4210: data->tmu_initialize = exynos4210_tmu_initialize; data->tmu_control = exynos4210_tmu_control; data->tmu_read = exynos4210_tmu_read; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->ntrip = 4; data->gain = 15; data->reference_voltage = 7; data->efuse_value = 55; data->min_efuse_value = 40; data->max_efuse_value = 100; break; case SOC_ARCH_EXYNOS3250: case SOC_ARCH_EXYNOS4412: case SOC_ARCH_EXYNOS5250: case SOC_ARCH_EXYNOS5260: case SOC_ARCH_EXYNOS5420: case SOC_ARCH_EXYNOS5420_TRIMINFO: data->tmu_initialize = exynos4412_tmu_initialize; data->tmu_control = exynos4210_tmu_control; data->tmu_read = exynos4412_tmu_read; data->tmu_set_emulation = exynos4412_tmu_set_emulation; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->ntrip = 4; data->gain = 8; data->reference_voltage = 16; data->efuse_value = 55; if (data->soc != SOC_ARCH_EXYNOS5420 && data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO) data->min_efuse_value = 40; else data->min_efuse_value = 0; data->max_efuse_value = 100; break; case SOC_ARCH_EXYNOS5433: data->tmu_initialize = exynos5433_tmu_initialize; data->tmu_control = exynos5433_tmu_control; data->tmu_read = exynos4412_tmu_read; data->tmu_set_emulation = exynos4412_tmu_set_emulation; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->ntrip = 8; data->gain = 8; if (res.start == EXYNOS5433_G3D_BASE) data->reference_voltage = 23; else data->reference_voltage = 16; data->efuse_value = 75; data->min_efuse_value = 40; data->max_efuse_value = 150; break; case SOC_ARCH_EXYNOS7: data->tmu_initialize = exynos7_tmu_initialize; data->tmu_control = exynos7_tmu_control; data->tmu_read = exynos7_tmu_read; data->tmu_set_emulation = exynos4412_tmu_set_emulation; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->ntrip = 8; data->gain = 9; data->reference_voltage = 17; data->efuse_value = 75; data->min_efuse_value = 15; data->max_efuse_value = 100; break; default: dev_err(&pdev->dev, "Platform not supported\n"); return -EINVAL; } data->cal_type = TYPE_ONE_POINT_TRIMMING; /* * Check if the TMU shares some registers and then try to map the * memory of common registers. */ if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO) return 0; if (of_address_to_resource(pdev->dev.of_node, 1, &res)) { dev_err(&pdev->dev, "failed to get Resource 1\n"); return -ENODEV; } data->base_second = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); if (!data->base_second) { dev_err(&pdev->dev, "Failed to ioremap memory\n"); return -ENOMEM; } return 0; } static const struct thermal_zone_of_device_ops exynos_sensor_ops = { .get_temp = exynos_get_temp, .set_emul_temp = exynos_tmu_set_emulation, }; static int exynos_tmu_probe(struct platform_device *pdev) { struct exynos_tmu_data *data; int ret; data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data), GFP_KERNEL); if (!data) return -ENOMEM; platform_set_drvdata(pdev, data); mutex_init(&data->lock); /* * Try enabling the regulator if found * TODO: Add regulator as an SOC feature, so that regulator enable * is a compulsory call. */ data->regulator = devm_regulator_get_optional(&pdev->dev, "vtmu"); if (!IS_ERR(data->regulator)) { ret = regulator_enable(data->regulator); if (ret) { dev_err(&pdev->dev, "failed to enable vtmu\n"); return ret; } } else { if (PTR_ERR(data->regulator) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(&pdev->dev, "Regulator node (vtmu) not found\n"); } ret = exynos_map_dt_data(pdev); if (ret) goto err_sensor; INIT_WORK(&data->irq_work, exynos_tmu_work); data->clk = devm_clk_get(&pdev->dev, "tmu_apbif"); if (IS_ERR(data->clk)) { dev_err(&pdev->dev, "Failed to get clock\n"); ret = PTR_ERR(data->clk); goto err_sensor; } data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif"); if (IS_ERR(data->clk_sec)) { if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) { dev_err(&pdev->dev, "Failed to get triminfo clock\n"); ret = PTR_ERR(data->clk_sec); goto err_sensor; } } else { ret = clk_prepare(data->clk_sec); if (ret) { dev_err(&pdev->dev, "Failed to get clock\n"); goto err_sensor; } } ret = clk_prepare(data->clk); if (ret) { dev_err(&pdev->dev, "Failed to get clock\n"); goto err_clk_sec; } switch (data->soc) { case SOC_ARCH_EXYNOS5433: case SOC_ARCH_EXYNOS7: data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk"); if (IS_ERR(data->sclk)) { dev_err(&pdev->dev, "Failed to get sclk\n"); goto err_clk; } else { ret = clk_prepare_enable(data->sclk); if (ret) { dev_err(&pdev->dev, "Failed to enable sclk\n"); goto err_clk; } } break; default: break; } /* * data->tzd must be registered before calling exynos_tmu_initialize(), * requesting irq and calling exynos_tmu_control(). */ data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data, &exynos_sensor_ops); if (IS_ERR(data->tzd)) { ret = PTR_ERR(data->tzd); dev_err(&pdev->dev, "Failed to register sensor: %d\n", ret); goto err_sclk; } ret = exynos_tmu_initialize(pdev); if (ret) { dev_err(&pdev->dev, "Failed to initialize TMU\n"); goto err_thermal; } ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq, IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data); if (ret) { dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); goto err_thermal; } exynos_tmu_control(pdev, true); return 0; err_thermal: thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd); err_sclk: clk_disable_unprepare(data->sclk); err_clk: clk_unprepare(data->clk); err_clk_sec: if (!IS_ERR(data->clk_sec)) clk_unprepare(data->clk_sec); err_sensor: if (!IS_ERR(data->regulator)) regulator_disable(data->regulator); return ret; } static int exynos_tmu_remove(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tzd = data->tzd; thermal_zone_of_sensor_unregister(&pdev->dev, tzd); exynos_tmu_control(pdev, false); clk_disable_unprepare(data->sclk); clk_unprepare(data->clk); if (!IS_ERR(data->clk_sec)) clk_unprepare(data->clk_sec); if (!IS_ERR(data->regulator)) regulator_disable(data->regulator); return 0; } #ifdef CONFIG_PM_SLEEP static int exynos_tmu_suspend(struct device *dev) { exynos_tmu_control(to_platform_device(dev), false); return 0; } static int exynos_tmu_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); exynos_tmu_initialize(pdev); exynos_tmu_control(pdev, true); return 0; } static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, exynos_tmu_suspend, exynos_tmu_resume); #define EXYNOS_TMU_PM (&exynos_tmu_pm) #else #define EXYNOS_TMU_PM NULL #endif static struct platform_driver exynos_tmu_driver = { .driver = { .name = "exynos-tmu", .pm = EXYNOS_TMU_PM, .of_match_table = exynos_tmu_match, }, .probe = exynos_tmu_probe, .remove = exynos_tmu_remove, }; module_platform_driver(exynos_tmu_driver); MODULE_DESCRIPTION("EXYNOS TMU Driver"); MODULE_AUTHOR("Donggeun Kim "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:exynos-tmu");