// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 Macronix International Co., Ltd. // // Authors: // Mason Yang // zhengxunli // Boris Brezillon // #include #include #include #include #include #include #include #include #include #include #define HC_CFG 0x0 #define HC_CFG_IF_CFG(x) ((x) << 27) #define HC_CFG_DUAL_SLAVE BIT(31) #define HC_CFG_INDIVIDUAL BIT(30) #define HC_CFG_NIO(x) (((x) / 4) << 27) #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) #define HC_CFG_TYPE_SPI_NOR 0 #define HC_CFG_TYPE_SPI_NAND 1 #define HC_CFG_TYPE_SPI_RAM 2 #define HC_CFG_TYPE_RAW_NAND 3 #define HC_CFG_SLV_ACT(x) ((x) << 21) #define HC_CFG_CLK_PH_EN BIT(20) #define HC_CFG_CLK_POL_INV BIT(19) #define HC_CFG_BIG_ENDIAN BIT(18) #define HC_CFG_DATA_PASS BIT(17) #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) #define HC_CFG_MAN_START_EN BIT(3) #define HC_CFG_MAN_START BIT(2) #define HC_CFG_MAN_CS_EN BIT(1) #define HC_CFG_MAN_CS_ASSERT BIT(0) #define INT_STS 0x4 #define INT_STS_EN 0x8 #define INT_SIG_EN 0xc #define INT_STS_ALL GENMASK(31, 0) #define INT_RDY_PIN BIT(26) #define INT_RDY_SR BIT(25) #define INT_LNR_SUSP BIT(24) #define INT_ECC_ERR BIT(17) #define INT_CRC_ERR BIT(16) #define INT_LWR_DIS BIT(12) #define INT_LRD_DIS BIT(11) #define INT_SDMA_INT BIT(10) #define INT_DMA_FINISH BIT(9) #define INT_RX_NOT_FULL BIT(3) #define INT_RX_NOT_EMPTY BIT(2) #define INT_TX_NOT_FULL BIT(1) #define INT_TX_EMPTY BIT(0) #define HC_EN 0x10 #define HC_EN_BIT BIT(0) #define TXD(x) (0x14 + ((x) * 4)) #define RXD 0x24 #define SS_CTRL(s) (0x30 + ((s) * 4)) #define LRD_CFG 0x44 #define LWR_CFG 0x80 #define RWW_CFG 0x70 #define OP_READ BIT(23) #define OP_DUMMY_CYC(x) ((x) << 17) #define OP_ADDR_BYTES(x) ((x) << 14) #define OP_CMD_BYTES(x) (((x) - 1) << 13) #define OP_OCTA_CRC_EN BIT(12) #define OP_DQS_EN BIT(11) #define OP_ENHC_EN BIT(10) #define OP_PREAMBLE_EN BIT(9) #define OP_DATA_DDR BIT(8) #define OP_DATA_BUSW(x) ((x) << 6) #define OP_ADDR_DDR BIT(5) #define OP_ADDR_BUSW(x) ((x) << 3) #define OP_CMD_DDR BIT(2) #define OP_CMD_BUSW(x) (x) #define OP_BUSW_1 0 #define OP_BUSW_2 1 #define OP_BUSW_4 2 #define OP_BUSW_8 3 #define OCTA_CRC 0x38 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) #define ONFI_DIN_CNT(s) (0x3c + (s)) #define LRD_CTRL 0x48 #define RWW_CTRL 0x74 #define LWR_CTRL 0x84 #define LMODE_EN BIT(31) #define LMODE_SLV_ACT(x) ((x) << 21) #define LMODE_CMD1(x) ((x) << 8) #define LMODE_CMD0(x) (x) #define LRD_ADDR 0x4c #define LWR_ADDR 0x88 #define LRD_RANGE 0x50 #define LWR_RANGE 0x8c #define AXI_SLV_ADDR 0x54 #define DMAC_RD_CFG 0x58 #define DMAC_WR_CFG 0x94 #define DMAC_CFG_PERIPH_EN BIT(31) #define DMAC_CFG_ALLFLUSH_EN BIT(30) #define DMAC_CFG_LASTFLUSH_EN BIT(29) #define DMAC_CFG_QE(x) (((x) + 1) << 16) #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) #define DMAC_CFG_BURST_SZ(x) ((x) << 8) #define DMAC_CFG_DIR_READ BIT(1) #define DMAC_CFG_START BIT(0) #define DMAC_RD_CNT 0x5c #define DMAC_WR_CNT 0x98 #define SDMA_ADDR 0x60 #define DMAM_CFG 0x64 #define DMAM_CFG_START BIT(31) #define DMAM_CFG_CONT BIT(30) #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) #define DMAM_CFG_DIR_READ BIT(1) #define DMAM_CFG_EN BIT(0) #define DMAM_CNT 0x68 #define LNR_TIMER_TH 0x6c #define RDM_CFG0 0x78 #define RDM_CFG0_POLY(x) (x) #define RDM_CFG1 0x7c #define RDM_CFG1_RDM_EN BIT(31) #define RDM_CFG1_SEED(x) (x) #define LWR_SUSP_CTRL 0x90 #define LWR_SUSP_CTRL_EN BIT(31) #define DMAS_CTRL 0x9c #define DMAS_CTRL_EN BIT(31) #define DMAS_CTRL_DIR_READ BIT(30) #define DATA_STROB 0xa0 #define DATA_STROB_EDO_EN BIT(2) #define DATA_STROB_INV_POL BIT(1) #define DATA_STROB_DELAY_2CYC BIT(0) #define IDLY_CODE(x) (0xa4 + ((x) * 4)) #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) #define GPIO 0xc4 #define GPIO_PT(x) BIT(3 + ((x) * 16)) #define GPIO_RESET(x) BIT(2 + ((x) * 16)) #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) #define GPIO_WPB(x) BIT((x) * 16) #define HC_VER 0xd0 #define HW_TEST(x) (0xe0 + ((x) * 4)) struct mxic_spi { struct device *dev; struct clk *ps_clk; struct clk *send_clk; struct clk *send_dly_clk; void __iomem *regs; u32 cur_speed_hz; struct { void __iomem *map; dma_addr_t dma; size_t size; } linear; struct { bool use_pipelined_conf; struct nand_ecc_engine *pipelined_engine; void *ctx; } ecc; }; static int mxic_spi_clk_enable(struct mxic_spi *mxic) { int ret; ret = clk_prepare_enable(mxic->send_clk); if (ret) return ret; ret = clk_prepare_enable(mxic->send_dly_clk); if (ret) goto err_send_dly_clk; return ret; err_send_dly_clk: clk_disable_unprepare(mxic->send_clk); return ret; } static void mxic_spi_clk_disable(struct mxic_spi *mxic) { clk_disable_unprepare(mxic->send_clk); clk_disable_unprepare(mxic->send_dly_clk); } static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) { writel(IDLY_CODE_VAL(0, idly_code) | IDLY_CODE_VAL(1, idly_code) | IDLY_CODE_VAL(2, idly_code) | IDLY_CODE_VAL(3, idly_code), mxic->regs + IDLY_CODE(0)); writel(IDLY_CODE_VAL(4, idly_code) | IDLY_CODE_VAL(5, idly_code) | IDLY_CODE_VAL(6, idly_code) | IDLY_CODE_VAL(7, idly_code), mxic->regs + IDLY_CODE(1)); } static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) { int ret; ret = clk_set_rate(mxic->send_clk, freq); if (ret) return ret; ret = clk_set_rate(mxic->send_dly_clk, freq); if (ret) return ret; /* * A constant delay range from 0x0 ~ 0x1F for input delay, * the unit is 78 ps, the max input delay is 2.418 ns. */ mxic_spi_set_input_delay_dqs(mxic, 0xf); /* * Phase degree = 360 * freq * output-delay * where output-delay is a constant value 1 ns in FPGA. * * Get Phase degree = 360 * freq * 1 ns * = 360 * freq * 1 sec / 1000000000 * = 9 * freq / 25000000 */ ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); if (ret) return ret; return 0; } static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) { int ret; if (mxic->cur_speed_hz == freq) return 0; mxic_spi_clk_disable(mxic); ret = mxic_spi_clk_setup(mxic, freq); if (ret) return ret; ret = mxic_spi_clk_enable(mxic); if (ret) return ret; mxic->cur_speed_hz = freq; return 0; } static void mxic_spi_hw_init(struct mxic_spi *mxic) { writel(0, mxic->regs + DATA_STROB); writel(INT_STS_ALL, mxic->regs + INT_STS_EN); writel(0, mxic->regs + HC_EN); writel(0, mxic->regs + LRD_CFG); writel(0, mxic->regs + LRD_CTRL); writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) | HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), mxic->regs + HC_CFG); } static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags) { int nio = 1; if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL)) nio = 8; else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) nio = 4; else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) nio = 2; return flags | HC_CFG_NIO(nio) | HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) | HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1); } static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op, unsigned int data_len) { u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) | (op->cmd.dtr ? OP_CMD_DDR : 0); if (op->addr.nbytes) cfg |= OP_ADDR_BYTES(op->addr.nbytes) | OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) | (op->addr.dtr ? OP_ADDR_DDR : 0); if (op->dummy.nbytes) cfg |= OP_DUMMY_CYC(op->dummy.nbytes); /* Direct mapping data.nbytes field is not populated */ if (data_len) { cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) | (op->data.dtr ? OP_DATA_DDR : 0); if (op->data.dir == SPI_MEM_DATA_IN) { cfg |= OP_READ; if (op->data.dtr) cfg |= OP_DQS_EN; } } return cfg; } static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, void *rxbuf, unsigned int len) { unsigned int pos = 0; while (pos < len) { unsigned int nbytes = len - pos; u32 data = 0xffffffff; u32 sts; int ret; if (nbytes > 4) nbytes = 4; if (txbuf) memcpy(&data, txbuf + pos, nbytes); ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_TX_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; writel(data, mxic->regs + TXD(nbytes % 4)); ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_TX_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_RX_NOT_EMPTY, 0, USEC_PER_SEC); if (ret) return ret; data = readl(mxic->regs + RXD); if (rxbuf) { data >>= (8 * (4 - nbytes)); memcpy(rxbuf + pos, &data, nbytes); } WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); pos += nbytes; } return 0; } static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller); int ret; u32 sts; if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) return -EINVAL; writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG); writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), mxic->regs + LRD_CFG); writel(desc->info.offset + offs, mxic->regs + LRD_ADDR); len = min_t(size_t, len, mxic->linear.size); writel(len, mxic->regs + LRD_RANGE); writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) | LMODE_EN, mxic->regs + LRD_CTRL); if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, NAND_PAGE_READ, mxic->linear.dma + offs); if (ret) return ret; } else { memcpy_fromio(buf, mxic->linear.map, len); } writel(INT_LRD_DIS, mxic->regs + INT_STS); writel(0, mxic->regs + LRD_CTRL); ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_LRD_DIS, 0, USEC_PER_SEC); if (ret) return ret; return len; } static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, const void *buf) { struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller); u32 sts; int ret; if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) return -EINVAL; writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG); writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), mxic->regs + LWR_CFG); writel(desc->info.offset + offs, mxic->regs + LWR_ADDR); len = min_t(size_t, len, mxic->linear.size); writel(len, mxic->regs + LWR_RANGE); writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) | LMODE_EN, mxic->regs + LWR_CTRL); if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, NAND_PAGE_WRITE, mxic->linear.dma + offs); if (ret) return ret; } else { memcpy_toio(mxic->linear.map, buf, len); } writel(INT_LWR_DIS, mxic->regs + INT_STS); writel(0, mxic->regs + LWR_CTRL); ret = readl_poll_timeout(mxic->regs + INT_STS, sts, sts & INT_LWR_DIS, 0, USEC_PER_SEC); if (ret) return ret; return len; } static bool mxic_spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (op->data.buswidth > 8 || op->addr.buswidth > 8 || op->dummy.buswidth > 8 || op->cmd.buswidth > 8) return false; if (op->data.nbytes && op->dummy.nbytes && op->data.buswidth != op->dummy.buswidth) return false; if (op->addr.nbytes > 7) return false; return spi_mem_default_supports_op(mem, op); } static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller); if (!mxic->linear.map) return -EOPNOTSUPP; if (desc->info.offset + desc->info.length > U32_MAX) return -EINVAL; if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) return -EOPNOTSUPP; return 0; } static int mxic_spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct mxic_spi *mxic = spi_controller_get_devdata(mem->spi->controller); int i, ret; u8 addr[8], cmd[2]; ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); if (ret) return ret; writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN), mxic->regs + HC_CFG); writel(HC_EN_BIT, mxic->regs + HC_EN); writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes), mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0))); writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); for (i = 0; i < op->cmd.nbytes; i++) cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1)); ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes); if (ret) goto out; for (i = 0; i < op->addr.nbytes; i++) addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); if (ret) goto out; ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); if (ret) goto out; ret = mxic_spi_data_xfer(mxic, op->data.dir == SPI_MEM_DATA_OUT ? op->data.buf.out : NULL, op->data.dir == SPI_MEM_DATA_IN ? op->data.buf.in : NULL, op->data.nbytes); out: writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); writel(0, mxic->regs + HC_EN); return ret; } static const struct spi_controller_mem_ops mxic_spi_mem_ops = { .supports_op = mxic_spi_mem_supports_op, .exec_op = mxic_spi_mem_exec_op, .dirmap_create = mxic_spi_mem_dirmap_create, .dirmap_read = mxic_spi_mem_dirmap_read, .dirmap_write = mxic_spi_mem_dirmap_write, }; static const struct spi_controller_mem_caps mxic_spi_mem_caps = { .dtr = true, .ecc = true, }; static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) { struct mxic_spi *mxic = spi_controller_get_devdata(spi->controller); if (!lvl) { writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, mxic->regs + HC_CFG); writel(HC_EN_BIT, mxic->regs + HC_EN); writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); } else { writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, mxic->regs + HC_CFG); writel(0, mxic->regs + HC_EN); } } static int mxic_spi_transfer_one(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *t) { struct mxic_spi *mxic = spi_controller_get_devdata(host); unsigned int busw = OP_BUSW_1; int ret; if (t->rx_buf && t->tx_buf) { if (((spi->mode & SPI_TX_QUAD) && !(spi->mode & SPI_RX_QUAD)) || ((spi->mode & SPI_TX_DUAL) && !(spi->mode & SPI_RX_DUAL))) return -ENOTSUPP; } ret = mxic_spi_set_freq(mxic, t->speed_hz); if (ret) return ret; if (t->tx_buf) { if (spi->mode & SPI_TX_QUAD) busw = OP_BUSW_4; else if (spi->mode & SPI_TX_DUAL) busw = OP_BUSW_2; } else if (t->rx_buf) { if (spi->mode & SPI_RX_QUAD) busw = OP_BUSW_4; else if (spi->mode & SPI_RX_DUAL) busw = OP_BUSW_2; } writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), mxic->regs + SS_CTRL(0)); ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); if (ret) return ret; spi_finalize_current_transfer(host); return 0; } /* ECC wrapper */ static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand) { struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); struct mxic_spi *mxic = nand->ecc.engine->priv; mxic->ecc.use_pipelined_conf = true; return ops->init_ctx(nand); } static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand) { struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); struct mxic_spi *mxic = nand->ecc.engine->priv; mxic->ecc.use_pipelined_conf = false; ops->cleanup_ctx(nand); } static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); return ops->prepare_io_req(nand, req); } static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); return ops->finish_io_req(nand, req); } static struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = { .init_ctx = mxic_spi_mem_ecc_init_ctx, .cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx, .prepare_io_req = mxic_spi_mem_ecc_prepare_io_req, .finish_io_req = mxic_spi_mem_ecc_finish_io_req, }; static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic) { if (mxic->ecc.pipelined_engine) { mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine); nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine); } } static int mxic_spi_mem_ecc_probe(struct platform_device *pdev, struct mxic_spi *mxic) { struct nand_ecc_engine *eng; if (!mxic_ecc_get_pipelined_ops()) return -EOPNOTSUPP; eng = mxic_ecc_get_pipelined_engine(pdev); if (IS_ERR(eng)) return PTR_ERR(eng); eng->dev = &pdev->dev; eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops; eng->priv = mxic; mxic->ecc.pipelined_engine = eng; nand_ecc_register_on_host_hw_engine(eng); return 0; } static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mxic_spi *mxic = spi_controller_get_devdata(host); mxic_spi_clk_disable(mxic); clk_disable_unprepare(mxic->ps_clk); return 0; } static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct mxic_spi *mxic = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(mxic->ps_clk); if (ret) { dev_err(dev, "Cannot enable ps_clock.\n"); return ret; } return mxic_spi_clk_enable(mxic); } static const struct dev_pm_ops mxic_spi_dev_pm_ops = { SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, mxic_spi_runtime_resume, NULL) }; static int mxic_spi_probe(struct platform_device *pdev) { struct spi_controller *host; struct resource *res; struct mxic_spi *mxic; int ret; host = devm_spi_alloc_host(&pdev->dev, sizeof(struct mxic_spi)); if (!host) return -ENOMEM; platform_set_drvdata(pdev, host); mxic = spi_controller_get_devdata(host); mxic->dev = &pdev->dev; host->dev.of_node = pdev->dev.of_node; mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); if (IS_ERR(mxic->ps_clk)) return PTR_ERR(mxic->ps_clk); mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); if (IS_ERR(mxic->send_clk)) return PTR_ERR(mxic->send_clk); mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); if (IS_ERR(mxic->send_dly_clk)) return PTR_ERR(mxic->send_dly_clk); mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs"); if (IS_ERR(mxic->regs)) return PTR_ERR(mxic->regs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap"); mxic->linear.map = devm_ioremap_resource(&pdev->dev, res); if (!IS_ERR(mxic->linear.map)) { mxic->linear.dma = res->start; mxic->linear.size = resource_size(res); } else { mxic->linear.map = NULL; } pm_runtime_enable(&pdev->dev); host->auto_runtime_pm = true; host->num_chipselect = 1; host->mem_ops = &mxic_spi_mem_ops; host->mem_caps = &mxic_spi_mem_caps; host->set_cs = mxic_spi_set_cs; host->transfer_one = mxic_spi_transfer_one; host->bits_per_word_mask = SPI_BPW_MASK(8); host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD | SPI_RX_OCTAL | SPI_TX_OCTAL; mxic_spi_hw_init(mxic); ret = mxic_spi_mem_ecc_probe(pdev, mxic); if (ret == -EPROBE_DEFER) { pm_runtime_disable(&pdev->dev); return ret; } ret = spi_register_controller(host); if (ret) { dev_err(&pdev->dev, "spi_register_controller failed\n"); pm_runtime_disable(&pdev->dev); mxic_spi_mem_ecc_remove(mxic); } return ret; } static void mxic_spi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct mxic_spi *mxic = spi_controller_get_devdata(host); pm_runtime_disable(&pdev->dev); mxic_spi_mem_ecc_remove(mxic); spi_unregister_controller(host); } static const struct of_device_id mxic_spi_of_ids[] = { { .compatible = "mxicy,mx25f0a-spi", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); static struct platform_driver mxic_spi_driver = { .probe = mxic_spi_probe, .remove = mxic_spi_remove, .driver = { .name = "mxic-spi", .of_match_table = mxic_spi_of_ids, .pm = &mxic_spi_dev_pm_ops, }, }; module_platform_driver(mxic_spi_driver); MODULE_AUTHOR("Mason Yang "); MODULE_DESCRIPTION("MX25F0A SPI controller driver"); MODULE_LICENSE("GPL v2");