// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2015-17 Intel Corporation. /* * Soundwire Intel Master Driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cadence_master.h" #include "bus.h" #include "intel.h" #define INTEL_MASTER_SUSPEND_DELAY_MS 3000 #define INTEL_MASTER_RESET_ITERATIONS 10 /* * debug/config flags for the Intel SoundWire Master. * * Since we may have multiple masters active, we can have up to 8 * flags reused in each byte, with master0 using the ls-byte, etc. */ #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0) #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1) #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2) #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3) static int md_flags; module_param_named(sdw_md_flags, md_flags, int, 0444); MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)"); enum intel_pdi_type { INTEL_PDI_IN = 0, INTEL_PDI_OUT = 1, INTEL_PDI_BD = 2, }; #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns) /* * Read, write helpers for HW registers */ static inline int intel_readl(void __iomem *base, int offset) { return readl(base + offset); } static inline void intel_writel(void __iomem *base, int offset, int value) { writel(value, base + offset); } static inline u16 intel_readw(void __iomem *base, int offset) { return readw(base + offset); } static inline void intel_writew(void __iomem *base, int offset, u16 value) { writew(value, base + offset); } static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target) { int timeout = 10; u32 reg_read; do { reg_read = readl(base + offset); if ((reg_read & mask) == target) return 0; timeout--; usleep_range(50, 100); } while (timeout != 0); return -EAGAIN; } static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask) { writel(value, base + offset); return intel_wait_bit(base, offset, mask, 0); } static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask) { writel(value, base + offset); return intel_wait_bit(base, offset, mask, mask); } /* * debugfs */ #ifdef CONFIG_DEBUG_FS #define RD_BUF (2 * PAGE_SIZE) static ssize_t intel_sprintf(void __iomem *mem, bool l, char *buf, size_t pos, unsigned int reg) { int value; if (l) value = intel_readl(mem, reg); else value = intel_readw(mem, reg); return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value); } static int intel_reg_show(struct seq_file *s_file, void *data) { struct sdw_intel *sdw = s_file->private; void __iomem *s = sdw->link_res->shim; void __iomem *a = sdw->link_res->alh; char *buf; ssize_t ret; int i, j; unsigned int links, reg; buf = kzalloc(RD_BUF, GFP_KERNEL); if (!buf) return -ENOMEM; links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0); ret = scnprintf(buf, RD_BUF, "Register Value\n"); ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n"); for (i = 0; i < links; i++) { reg = SDW_SHIM_LCAP + i * 4; ret += intel_sprintf(s, true, buf, ret, reg); } for (i = 0; i < links; i++) { ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i)); ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n"); /* * the value 10 is the number of PDIs. We will need a * cleanup to remove hard-coded Intel configurations * from cadence_master.c */ for (j = 0; j < 10; j++) { ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSYCHM(i, j)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSYCHC(i, j)); } ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n"); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i)); } ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n"); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS); ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n"); for (i = 0; i < SDW_ALH_NUM_STREAMS; i++) ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i)); seq_printf(s_file, "%s", buf); kfree(buf); return 0; } DEFINE_SHOW_ATTRIBUTE(intel_reg); static int intel_set_m_datamode(void *data, u64 value) { struct sdw_intel *sdw = data; struct sdw_bus *bus = &sdw->cdns.bus; if (value > SDW_PORT_DATA_MODE_STATIC_1) return -EINVAL; /* Userspace changed the hardware state behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_STILL_OK); bus->params.m_data_mode = value; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL, intel_set_m_datamode, "%llu\n"); static int intel_set_s_datamode(void *data, u64 value) { struct sdw_intel *sdw = data; struct sdw_bus *bus = &sdw->cdns.bus; if (value > SDW_PORT_DATA_MODE_STATIC_1) return -EINVAL; /* Userspace changed the hardware state behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_STILL_OK); bus->params.s_data_mode = value; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL, intel_set_s_datamode, "%llu\n"); static void intel_debugfs_init(struct sdw_intel *sdw) { struct dentry *root = sdw->cdns.bus.debugfs; if (!root) return; sdw->debugfs = debugfs_create_dir("intel-sdw", root); debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw, &intel_reg_fops); debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw, &intel_set_m_datamode_fops); debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw, &intel_set_s_datamode_fops); sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs); } static void intel_debugfs_exit(struct sdw_intel *sdw) { debugfs_remove_recursive(sdw->debugfs); } #else static void intel_debugfs_init(struct sdw_intel *sdw) {} static void intel_debugfs_exit(struct sdw_intel *sdw) {} #endif /* CONFIG_DEBUG_FS */ /* * shim ops */ static int intel_link_power_up(struct sdw_intel *sdw) { unsigned int link_id = sdw->instance; void __iomem *shim = sdw->link_res->shim; u32 *shim_mask = sdw->link_res->shim_mask; struct sdw_bus *bus = &sdw->cdns.bus; struct sdw_master_prop *prop = &bus->prop; u32 spa_mask, cpa_mask; u32 link_control; int ret = 0; u32 syncprd; u32 sync_reg; mutex_lock(sdw->link_res->shim_lock); /* * The hardware relies on an internal counter, typically 4kHz, * to generate the SoundWire SSP - which defines a 'safe' * synchronization point between commands and audio transport * and allows for multi link synchronization. The SYNCPRD value * is only dependent on the oscillator clock provided to * the IP, so adjust based on _DSD properties reported in DSDT * tables. The values reported are based on either 24MHz * (CNL/CML) or 38.4 MHz (ICL/TGL+). */ if (prop->mclk_freq % 6000000) syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4; else syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24; if (!*shim_mask) { dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__); /* we first need to program the SyncPRD/CPU registers */ dev_dbg(sdw->cdns.dev, "%s: first link up, programming SYNCPRD\n", __func__); /* set SyncPRD period */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD); /* Set SyncCPU bit */ sync_reg |= SDW_SHIM_SYNC_SYNCCPU; intel_writel(shim, SDW_SHIM_SYNC, sync_reg); /* Link power up sequence */ link_control = intel_readl(shim, SDW_SHIM_LCTL); /* only power-up enabled links */ spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask); cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); link_control |= spa_mask; ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); if (ret < 0) { dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret); goto out; } /* SyncCPU will change once link is active */ ret = intel_wait_bit(shim, SDW_SHIM_SYNC, SDW_SHIM_SYNC_SYNCCPU, 0); if (ret < 0) { dev_err(sdw->cdns.dev, "Failed to set SHIM_SYNC: %d\n", ret); goto out; } } *shim_mask |= BIT(link_id); sdw->cdns.link_up = true; out: mutex_unlock(sdw->link_res->shim_lock); return ret; } /* this needs to be called with shim_lock */ static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; u16 ioctl; /* Switch to MIP from Glue logic */ ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); ioctl &= ~(SDW_SHIM_IOCTL_DOE); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl &= ~(SDW_SHIM_IOCTL_DO); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= (SDW_SHIM_IOCTL_MIF); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl &= ~(SDW_SHIM_IOCTL_BKE); ioctl &= ~(SDW_SHIM_IOCTL_COE); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); /* at this point Master IP has full control of the I/Os */ } /* this needs to be called with shim_lock */ static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw) { unsigned int link_id = sdw->instance; void __iomem *shim = sdw->link_res->shim; u16 ioctl; /* Glue logic */ ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); ioctl |= SDW_SHIM_IOCTL_BKE; ioctl |= SDW_SHIM_IOCTL_COE; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl &= ~(SDW_SHIM_IOCTL_MIF); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); /* at this point Integration Glue has full control of the I/Os */ } static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int ret = 0; u16 ioctl = 0, act = 0; mutex_lock(sdw->link_res->shim_lock); /* Initialize Shim */ ioctl |= SDW_SHIM_IOCTL_BKE; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= SDW_SHIM_IOCTL_WPDD; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= SDW_SHIM_IOCTL_DO; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= SDW_SHIM_IOCTL_DOE; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); intel_shim_glue_to_master_ip(sdw); u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS); act |= SDW_SHIM_CTMCTL_DACTQE; act |= SDW_SHIM_CTMCTL_DODS; intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act); usleep_range(10, 15); mutex_unlock(sdw->link_res->shim_lock); return ret; } static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; u16 wake_en, wake_sts; mutex_lock(sdw->link_res->shim_lock); wake_en = intel_readw(shim, SDW_SHIM_WAKEEN); if (wake_enable) { /* Enable the wakeup */ wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id); intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); } else { /* Disable the wake up interrupt */ wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id); intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); /* Clear wake status */ wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id); intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts); } mutex_unlock(sdw->link_res->shim_lock); } static int intel_link_power_down(struct sdw_intel *sdw) { u32 link_control, spa_mask, cpa_mask; unsigned int link_id = sdw->instance; void __iomem *shim = sdw->link_res->shim; u32 *shim_mask = sdw->link_res->shim_mask; int ret = 0; mutex_lock(sdw->link_res->shim_lock); if (!(*shim_mask & BIT(link_id))) dev_err(sdw->cdns.dev, "%s: Unbalanced power-up/down calls\n", __func__); sdw->cdns.link_up = false; intel_shim_master_ip_to_glue(sdw); *shim_mask &= ~BIT(link_id); if (!*shim_mask) { dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__); /* Link power down sequence */ link_control = intel_readl(shim, SDW_SHIM_LCTL); /* only power-down enabled links */ spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask); cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); link_control &= spa_mask; ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); if (ret < 0) { dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__); /* * we leave the sdw->cdns.link_up flag as false since we've disabled * the link at this point and cannot handle interrupts any longer. */ } } mutex_unlock(sdw->link_res->shim_lock); return ret; } static void intel_shim_sync_arm(struct sdw_intel *sdw) { void __iomem *shim = sdw->link_res->shim; u32 sync_reg; mutex_lock(sdw->link_res->shim_lock); /* update SYNC register */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance); intel_writel(shim, SDW_SHIM_SYNC, sync_reg); mutex_unlock(sdw->link_res->shim_lock); } static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw) { void __iomem *shim = sdw->link_res->shim; u32 sync_reg; int ret; /* Read SYNC register */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); /* * Set SyncGO bit to synchronously trigger a bank switch for * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all * the Masters. */ sync_reg |= SDW_SHIM_SYNC_SYNCGO; ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg, SDW_SHIM_SYNC_SYNCGO); if (ret < 0) dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret); return ret; } static int intel_shim_sync_go(struct sdw_intel *sdw) { int ret; mutex_lock(sdw->link_res->shim_lock); ret = intel_shim_sync_go_unlocked(sdw); mutex_unlock(sdw->link_res->shim_lock); return ret; } /* * PDI routines */ static void intel_pdi_init(struct sdw_intel *sdw, struct sdw_cdns_stream_config *config) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int pcm_cap; /* PCM Stream Capability */ pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id)); config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap); config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap); config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap); dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n", config->pcm_bd, config->pcm_in, config->pcm_out); } static int intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int count; count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num)); /* * WORKAROUND: on all existing Intel controllers, pdi * number 2 reports channel count as 1 even though it * supports 8 channels. Performing hardcoding for pdi * number 2. */ if (pdi_num == 2) count = 7; /* zero based values for channel count in register */ count++; return count; } static int intel_pdi_get_ch_update(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi, unsigned int num_pdi, unsigned int *num_ch) { int i, ch_count = 0; for (i = 0; i < num_pdi; i++) { pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num); ch_count += pdi->ch_count; pdi++; } *num_ch = ch_count; return 0; } static int intel_pdi_stream_ch_update(struct sdw_intel *sdw, struct sdw_cdns_streams *stream) { intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd, &stream->num_ch_bd); intel_pdi_get_ch_update(sdw, stream->in, stream->num_in, &stream->num_ch_in); intel_pdi_get_ch_update(sdw, stream->out, stream->num_out, &stream->num_ch_out); return 0; } static int intel_pdi_ch_update(struct sdw_intel *sdw) { intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm); return 0; } static void intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int pdi_conf = 0; /* the Bulk and PCM streams are not contiguous */ pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; if (pdi->num >= 2) pdi->intel_alh_id += 2; /* * Program stream parameters to stream SHIM register * This is applicable for PCM stream only. */ if (pdi->type != SDW_STREAM_PCM) return; if (pdi->dir == SDW_DATA_DIR_RX) pdi_conf |= SDW_SHIM_PCMSYCM_DIR; else pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR); u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM); u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN); u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN); intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf); } static void intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) { void __iomem *alh = sdw->link_res->alh; unsigned int link_id = sdw->instance; unsigned int conf; /* the Bulk and PCM streams are not contiguous */ pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; if (pdi->num >= 2) pdi->intel_alh_id += 2; /* Program Stream config ALH register */ conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id)); u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT); u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN); intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf); } static int intel_params_stream(struct sdw_intel *sdw, int stream, struct snd_soc_dai *dai, struct snd_pcm_hw_params *hw_params, int link_id, int alh_stream_id) { struct sdw_intel_link_res *res = sdw->link_res; struct sdw_intel_stream_params_data params_data; params_data.stream = stream; /* direction */ params_data.dai = dai; params_data.hw_params = hw_params; params_data.link_id = link_id; params_data.alh_stream_id = alh_stream_id; if (res->ops && res->ops->params_stream && res->dev) return res->ops->params_stream(res->dev, ¶ms_data); return -EIO; } static int intel_free_stream(struct sdw_intel *sdw, int stream, struct snd_soc_dai *dai, int link_id) { struct sdw_intel_link_res *res = sdw->link_res; struct sdw_intel_stream_free_data free_data; free_data.stream = stream; /* direction */ free_data.dai = dai; free_data.link_id = link_id; if (res->ops && res->ops->free_stream && res->dev) return res->ops->free_stream(res->dev, &free_data); return 0; } /* * bank switch routines */ static int intel_pre_bank_switch(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); /* Write to register only for multi-link */ if (!bus->multi_link) return 0; intel_shim_sync_arm(sdw); return 0; } static int intel_post_bank_switch(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); void __iomem *shim = sdw->link_res->shim; int sync_reg, ret; /* Write to register only for multi-link */ if (!bus->multi_link) return 0; mutex_lock(sdw->link_res->shim_lock); /* Read SYNC register */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); /* * post_bank_switch() ops is called from the bus in loop for * all the Masters in the steam with the expectation that * we trigger the bankswitch for the only first Master in the list * and do nothing for the other Masters * * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master. */ if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) { ret = 0; goto unlock; } ret = intel_shim_sync_go_unlocked(sdw); unlock: mutex_unlock(sdw->link_res->shim_lock); if (ret < 0) dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret); return ret; } /* * DAI routines */ static int intel_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); int ret; ret = pm_runtime_resume_and_get(cdns->dev); if (ret < 0 && ret != -EACCES) { dev_err_ratelimited(cdns->dev, "pm_runtime_resume_and_get failed in %s, ret %d\n", __func__, ret); return ret; } return 0; } static int intel_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_cdns_dma_data *dma; struct sdw_cdns_pdi *pdi; struct sdw_stream_config sconfig; struct sdw_port_config *pconfig; int ch, dir; int ret; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) return -EIO; ch = params_channels(params); if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) dir = SDW_DATA_DIR_RX; else dir = SDW_DATA_DIR_TX; pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id); if (!pdi) { ret = -EINVAL; goto error; } /* do run-time configurations for SHIM, ALH and PDI/PORT */ intel_pdi_shim_configure(sdw, pdi); intel_pdi_alh_configure(sdw, pdi); sdw_cdns_config_stream(cdns, ch, dir, pdi); /* store pdi and hw_params, may be needed in prepare step */ dma->paused = false; dma->suspended = false; dma->pdi = pdi; dma->hw_params = params; /* Inform DSP about PDI stream number */ ret = intel_params_stream(sdw, substream->stream, dai, params, sdw->instance, pdi->intel_alh_id); if (ret) goto error; sconfig.direction = dir; sconfig.ch_count = ch; sconfig.frame_rate = params_rate(params); sconfig.type = dma->stream_type; sconfig.bps = snd_pcm_format_width(params_format(params)); /* Port configuration */ pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL); if (!pconfig) { ret = -ENOMEM; goto error; } pconfig->num = pdi->num; pconfig->ch_mask = (1 << ch) - 1; ret = sdw_stream_add_master(&cdns->bus, &sconfig, pconfig, 1, dma->stream); if (ret) dev_err(cdns->dev, "add master to stream failed:%d\n", ret); kfree(pconfig); error: return ret; } static int intel_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_cdns_dma_data *dma; int ch, dir; int ret = 0; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) { dev_err(dai->dev, "failed to get dma data in %s\n", __func__); return -EIO; } if (dma->suspended) { dma->suspended = false; /* * .prepare() is called after system resume, where we * need to reinitialize the SHIM/ALH/Cadence IP. * .prepare() is also called to deal with underflows, * but in those cases we cannot touch ALH/SHIM * registers */ /* configure stream */ ch = params_channels(dma->hw_params); if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) dir = SDW_DATA_DIR_RX; else dir = SDW_DATA_DIR_TX; intel_pdi_shim_configure(sdw, dma->pdi); intel_pdi_alh_configure(sdw, dma->pdi); sdw_cdns_config_stream(cdns, ch, dir, dma->pdi); /* Inform DSP about PDI stream number */ ret = intel_params_stream(sdw, substream->stream, dai, dma->hw_params, sdw->instance, dma->pdi->intel_alh_id); } return ret; } static int intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_cdns_dma_data *dma; int ret; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) return -EIO; /* * The sdw stream state will transition to RELEASED when stream-> * master_list is empty. So the stream state will transition to * DEPREPARED for the first cpu-dai and to RELEASED for the last * cpu-dai. */ ret = sdw_stream_remove_master(&cdns->bus, dma->stream); if (ret < 0) { dev_err(dai->dev, "remove master from stream %s failed: %d\n", dma->stream->name, ret); return ret; } ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); if (ret < 0) { dev_err(dai->dev, "intel_free_stream: failed %d\n", ret); return ret; } dma->hw_params = NULL; dma->pdi = NULL; return 0; } static void intel_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); pm_runtime_mark_last_busy(cdns->dev); pm_runtime_put_autosuspend(cdns->dev); } static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai, void *stream, int direction) { return cdns_set_sdw_stream(dai, stream, direction); } static void *intel_get_sdw_stream(struct snd_soc_dai *dai, int direction) { struct sdw_cdns_dma_data *dma; if (direction == SNDRV_PCM_STREAM_PLAYBACK) dma = dai->playback_dma_data; else dma = dai->capture_dma_data; if (!dma) return ERR_PTR(-EINVAL); return dma->stream; } static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_intel_link_res *res = sdw->link_res; struct sdw_cdns_dma_data *dma; int ret = 0; /* * The .trigger callback is used to send required IPC to audio * firmware. The .free_stream callback will still be called * by intel_free_stream() in the TRIGGER_SUSPEND case. */ if (res->ops && res->ops->trigger) res->ops->trigger(dai, cmd, substream->stream); dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) { dev_err(dai->dev, "failed to get dma data in %s\n", __func__); return -EIO; } switch (cmd) { case SNDRV_PCM_TRIGGER_SUSPEND: /* * The .prepare callback is used to deal with xruns and resume operations. * In the case of xruns, the DMAs and SHIM registers cannot be touched, * but for resume operations the DMAs and SHIM registers need to be initialized. * the .trigger callback is used to track the suspend case only. */ dma->suspended = true; ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: dma->paused = true; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: dma->paused = false; break; default: break; } return ret; } static int intel_component_probe(struct snd_soc_component *component) { int ret; /* * make sure the device is pm_runtime_active before initiating * bus transactions during the card registration. * We use pm_runtime_resume() here, without taking a reference * and releasing it immediately. */ ret = pm_runtime_resume(component->dev); if (ret < 0 && ret != -EACCES) return ret; return 0; } static int intel_component_dais_suspend(struct snd_soc_component *component) { struct snd_soc_dai *dai; /* * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state. * Since the component suspend is called last, we can trap this corner case * and force the DAIs to release their resources. */ for_each_component_dais(component, dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_cdns_dma_data *dma; int stream; int ret; dma = dai->playback_dma_data; stream = SNDRV_PCM_STREAM_PLAYBACK; if (!dma) { dma = dai->capture_dma_data; stream = SNDRV_PCM_STREAM_CAPTURE; } if (!dma) continue; if (dma->suspended) continue; if (dma->paused) { dma->suspended = true; ret = intel_free_stream(sdw, stream, dai, sdw->instance); if (ret < 0) return ret; } } return 0; } static const struct snd_soc_dai_ops intel_pcm_dai_ops = { .startup = intel_startup, .hw_params = intel_hw_params, .prepare = intel_prepare, .hw_free = intel_hw_free, .trigger = intel_trigger, .shutdown = intel_shutdown, .set_stream = intel_pcm_set_sdw_stream, .get_stream = intel_get_sdw_stream, }; static const struct snd_soc_component_driver dai_component = { .name = "soundwire", .probe = intel_component_probe, .suspend = intel_component_dais_suspend, .legacy_dai_naming = 1, }; static int intel_create_dai(struct sdw_cdns *cdns, struct snd_soc_dai_driver *dais, enum intel_pdi_type type, u32 num, u32 off, u32 max_ch) { int i; if (num == 0) return 0; /* TODO: Read supported rates/formats from hardware */ for (i = off; i < (off + num); i++) { dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL, "SDW%d Pin%d", cdns->instance, i); if (!dais[i].name) return -ENOMEM; if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) { dais[i].playback.channels_min = 1; dais[i].playback.channels_max = max_ch; dais[i].playback.rates = SNDRV_PCM_RATE_48000; dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE; } if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) { dais[i].capture.channels_min = 1; dais[i].capture.channels_max = max_ch; dais[i].capture.rates = SNDRV_PCM_RATE_48000; dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE; } dais[i].ops = &intel_pcm_dai_ops; } return 0; } static int intel_register_dai(struct sdw_intel *sdw) { struct sdw_cdns *cdns = &sdw->cdns; struct sdw_cdns_streams *stream; struct snd_soc_dai_driver *dais; int num_dai, ret, off = 0; /* DAIs are created based on total number of PDIs supported */ num_dai = cdns->pcm.num_pdi; dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL); if (!dais) return -ENOMEM; /* Create PCM DAIs */ stream = &cdns->pcm; ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in, off, stream->num_ch_in); if (ret) return ret; off += cdns->pcm.num_in; ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out, off, stream->num_ch_out); if (ret) return ret; off += cdns->pcm.num_out; ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd, off, stream->num_ch_bd); if (ret) return ret; return snd_soc_register_component(cdns->dev, &dai_component, dais, num_dai); } static int sdw_master_read_intel_prop(struct sdw_bus *bus) { struct sdw_master_prop *prop = &bus->prop; struct fwnode_handle *link; char name[32]; u32 quirk_mask; /* Find master handle */ snprintf(name, sizeof(name), "mipi-sdw-link-%d-subproperties", bus->link_id); link = device_get_named_child_node(bus->dev, name); if (!link) { dev_err(bus->dev, "Master node %s not found\n", name); return -EIO; } fwnode_property_read_u32(link, "intel-sdw-ip-clock", &prop->mclk_freq); /* the values reported by BIOS are the 2x clock, not the bus clock */ prop->mclk_freq /= 2; fwnode_property_read_u32(link, "intel-quirk-mask", &quirk_mask); if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) prop->hw_disabled = true; prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH | SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY; return 0; } static int intel_prop_read(struct sdw_bus *bus) { /* Initialize with default handler to read all DisCo properties */ sdw_master_read_prop(bus); /* read Intel-specific properties */ sdw_master_read_intel_prop(bus); return 0; } static struct sdw_master_ops sdw_intel_ops = { .read_prop = sdw_master_read_prop, .override_adr = sdw_dmi_override_adr, .xfer_msg = cdns_xfer_msg, .xfer_msg_defer = cdns_xfer_msg_defer, .reset_page_addr = cdns_reset_page_addr, .set_bus_conf = cdns_bus_conf, .pre_bank_switch = intel_pre_bank_switch, .post_bank_switch = intel_post_bank_switch, .read_ping_status = cdns_read_ping_status, }; static int intel_init(struct sdw_intel *sdw) { bool clock_stop; /* Initialize shim and controller */ intel_link_power_up(sdw); clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns); intel_shim_init(sdw, clock_stop); return 0; } /* * probe and init (aux_dev_id argument is required by function prototype but not used) */ static int intel_link_probe(struct auxiliary_device *auxdev, const struct auxiliary_device_id *aux_dev_id) { struct device *dev = &auxdev->dev; struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev); struct sdw_intel *sdw; struct sdw_cdns *cdns; struct sdw_bus *bus; int ret; sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL); if (!sdw) return -ENOMEM; cdns = &sdw->cdns; bus = &cdns->bus; sdw->instance = auxdev->id; sdw->link_res = &ldev->link_res; cdns->dev = dev; cdns->registers = sdw->link_res->registers; cdns->instance = sdw->instance; cdns->msg_count = 0; bus->link_id = auxdev->id; sdw_cdns_probe(cdns); /* Set property read ops */ sdw_intel_ops.read_prop = intel_prop_read; bus->ops = &sdw_intel_ops; /* set driver data, accessed by snd_soc_dai_get_drvdata() */ auxiliary_set_drvdata(auxdev, cdns); /* use generic bandwidth allocation algorithm */ sdw->cdns.bus.compute_params = sdw_compute_params; /* avoid resuming from pm_runtime suspend if it's not required */ dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND); ret = sdw_bus_master_add(bus, dev, dev->fwnode); if (ret) { dev_err(dev, "sdw_bus_master_add fail: %d\n", ret); return ret; } if (bus->prop.hw_disabled) dev_info(dev, "SoundWire master %d is disabled, will be ignored\n", bus->link_id); /* * Ignore BIOS err_threshold, it's a really bad idea when dealing * with multiple hardware synchronized links */ bus->prop.err_threshold = 0; return 0; } int intel_link_startup(struct auxiliary_device *auxdev) { struct sdw_cdns_stream_config config; struct device *dev = &auxdev->dev; struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; int link_flags; bool multi_link; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled) { dev_info(dev, "SoundWire master %d is disabled, ignoring\n", sdw->instance); return 0; } link_flags = md_flags >> (bus->link_id * 8); multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); if (!multi_link) { dev_dbg(dev, "Multi-link is disabled\n"); bus->multi_link = false; } else { /* * hardware-based synchronization is required regardless * of the number of segments used by a stream: SSP-based * synchronization is gated by gsync when the multi-master * mode is set. */ bus->multi_link = true; bus->hw_sync_min_links = 1; } /* Initialize shim, controller */ ret = intel_init(sdw); if (ret) goto err_init; /* Read the PDI config and initialize cadence PDI */ intel_pdi_init(sdw, &config); ret = sdw_cdns_pdi_init(cdns, config); if (ret) goto err_init; intel_pdi_ch_update(sdw); ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts\n"); goto err_init; } /* * follow recommended programming flows to avoid timeouts when * gsync is enabled */ if (multi_link) intel_shim_sync_arm(sdw); ret = sdw_cdns_init(cdns); if (ret < 0) { dev_err(dev, "unable to initialize Cadence IP\n"); goto err_interrupt; } ret = sdw_cdns_exit_reset(cdns); if (ret < 0) { dev_err(dev, "unable to exit bus reset sequence\n"); goto err_interrupt; } if (multi_link) { ret = intel_shim_sync_go(sdw); if (ret < 0) { dev_err(dev, "sync go failed: %d\n", ret); goto err_interrupt; } } sdw_cdns_check_self_clearing_bits(cdns, __func__, true, INTEL_MASTER_RESET_ITERATIONS); /* Register DAIs */ ret = intel_register_dai(sdw); if (ret) { dev_err(dev, "DAI registration failed: %d\n", ret); snd_soc_unregister_component(dev); goto err_interrupt; } intel_debugfs_init(sdw); /* Enable runtime PM */ if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) { pm_runtime_set_autosuspend_delay(dev, INTEL_MASTER_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_mark_last_busy(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); } clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) { /* * To keep the clock running we need to prevent * pm_runtime suspend from happening by increasing the * reference count. * This quirk is specified by the parent PCI device in * case of specific latency requirements. It will have * no effect if pm_runtime is disabled by the user via * a module parameter for testing purposes. */ pm_runtime_get_noresume(dev); } /* * The runtime PM status of Slave devices is "Unsupported" * until they report as ATTACHED. If they don't, e.g. because * there are no Slave devices populated or if the power-on is * delayed or dependent on a power switch, the Master will * remain active and prevent its parent from suspending. * * Conditionally force the pm_runtime core to re-evaluate the * Master status in the absence of any Slave activity. A quirk * is provided to e.g. deal with Slaves that may be powered on * with a delay. A more complete solution would require the * definition of Master properties. */ if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) pm_runtime_idle(dev); sdw->startup_done = true; return 0; err_interrupt: sdw_cdns_enable_interrupt(cdns, false); err_init: return ret; } static void intel_link_remove(struct auxiliary_device *auxdev) { struct device *dev = &auxdev->dev; struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; /* * Since pm_runtime is already disabled, we don't decrease * the refcount when the clock_stop_quirk is * SDW_INTEL_CLK_STOP_NOT_ALLOWED */ if (!bus->prop.hw_disabled) { intel_debugfs_exit(sdw); sdw_cdns_enable_interrupt(cdns, false); snd_soc_unregister_component(dev); } sdw_bus_master_delete(bus); } int intel_link_process_wakeen_event(struct auxiliary_device *auxdev) { struct device *dev = &auxdev->dev; struct sdw_intel *sdw; struct sdw_bus *bus; void __iomem *shim; u16 wake_sts; sdw = auxiliary_get_drvdata(auxdev); bus = &sdw->cdns.bus; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } shim = sdw->link_res->shim; wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); if (!(wake_sts & BIT(sdw->instance))) return 0; /* disable WAKEEN interrupt ASAP to prevent interrupt flood */ intel_shim_wake(sdw, false); /* * resume the Master, which will generate a bus reset and result in * Slaves re-attaching and be re-enumerated. The SoundWire physical * device which generated the wake will trigger an interrupt, which * will in turn cause the corresponding Linux Slave device to be * resumed and the Slave codec driver to check the status. */ pm_request_resume(dev); return 0; } /* * PM calls */ static int intel_resume_child_device(struct device *dev, void *data) { int ret; struct sdw_slave *slave = dev_to_sdw_dev(dev); if (!slave->probed) { dev_dbg(dev, "%s: skipping device, no probed driver\n", __func__); return 0; } if (!slave->dev_num_sticky) { dev_dbg(dev, "%s: skipping device, never detected on bus\n", __func__); return 0; } ret = pm_request_resume(dev); if (ret < 0) dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); return ret; } static int __maybe_unused intel_pm_prepare(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (pm_runtime_suspended(dev) && pm_runtime_suspended(dev->parent) && ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || !clock_stop_quirks)) { /* * if we've enabled clock stop, and the parent is suspended, the SHIM registers * are not accessible and the shim wake cannot be disabled. * The only solution is to resume the entire bus to full power */ /* * If any operation in this block fails, we keep going since we don't want * to prevent system suspend from happening and errors should be recoverable * on resume. */ /* * first resume the device for this link. This will also by construction * resume the PCI parent device. */ ret = pm_request_resume(dev); if (ret < 0) { dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); return 0; } /* * Continue resuming the entire bus (parent + child devices) to exit * the clock stop mode. If there are no devices connected on this link * this is a no-op. * The resume to full power could have been implemented with a .prepare * step in SoundWire codec drivers. This would however require a lot * of code to handle an Intel-specific corner case. It is simpler in * practice to add a loop at the link level. */ ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device); if (ret < 0) dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret); } return 0; } static int __maybe_unused intel_suspend(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } if (pm_runtime_suspended(dev)) { dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__); clock_stop_quirks = sdw->link_res->clock_stop_quirks; if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || !clock_stop_quirks) { if (pm_runtime_suspended(dev->parent)) { /* * paranoia check: this should not happen with the .prepare * resume to full power */ dev_err(dev, "%s: invalid config: parent is suspended\n", __func__); } else { intel_shim_wake(sdw, false); } } return 0; } ret = sdw_cdns_enable_interrupt(cdns, false); if (ret < 0) { dev_err(dev, "cannot disable interrupts on suspend\n"); return ret; } ret = intel_link_power_down(sdw); if (ret) { dev_err(dev, "Link power down failed: %d\n", ret); return ret; } intel_shim_wake(sdw, false); return 0; } static int __maybe_unused intel_suspend_runtime(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { ret = sdw_cdns_enable_interrupt(cdns, false); if (ret < 0) { dev_err(dev, "cannot disable interrupts on suspend\n"); return ret; } ret = intel_link_power_down(sdw); if (ret) { dev_err(dev, "Link power down failed: %d\n", ret); return ret; } intel_shim_wake(sdw, false); } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || !clock_stop_quirks) { bool wake_enable = true; ret = sdw_cdns_clock_stop(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable clock stop on suspend\n"); wake_enable = false; } ret = sdw_cdns_enable_interrupt(cdns, false); if (ret < 0) { dev_err(dev, "cannot disable interrupts on suspend\n"); return ret; } ret = intel_link_power_down(sdw); if (ret) { dev_err(dev, "Link power down failed: %d\n", ret); return ret; } intel_shim_wake(sdw, wake_enable); } else { dev_err(dev, "%s clock_stop_quirks %x unsupported\n", __func__, clock_stop_quirks); ret = -EINVAL; } return ret; } static int __maybe_unused intel_resume(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; int link_flags; bool multi_link; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } link_flags = md_flags >> (bus->link_id * 8); multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); if (pm_runtime_suspended(dev)) { dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__); /* follow required sequence from runtime_pm.rst */ pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_mark_last_busy(dev); pm_runtime_enable(dev); link_flags = md_flags >> (bus->link_id * 8); if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) pm_runtime_idle(dev); } ret = intel_init(sdw); if (ret) { dev_err(dev, "%s failed: %d\n", __func__, ret); return ret; } /* * make sure all Slaves are tagged as UNATTACHED and provide * reason for reinitialization */ sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts during resume\n"); return ret; } /* * follow recommended programming flows to avoid timeouts when * gsync is enabled */ if (multi_link) intel_shim_sync_arm(sdw); ret = sdw_cdns_init(&sdw->cdns); if (ret < 0) { dev_err(dev, "unable to initialize Cadence IP during resume\n"); return ret; } ret = sdw_cdns_exit_reset(cdns); if (ret < 0) { dev_err(dev, "unable to exit bus reset sequence during resume\n"); return ret; } if (multi_link) { ret = intel_shim_sync_go(sdw); if (ret < 0) { dev_err(dev, "sync go failed during resume\n"); return ret; } } sdw_cdns_check_self_clearing_bits(cdns, __func__, true, INTEL_MASTER_RESET_ITERATIONS); /* * after system resume, the pm_runtime suspend() may kick in * during the enumeration, before any children device force the * master device to remain active. Using pm_runtime_get() * routines is not really possible, since it'd prevent the * master from suspending. * A reasonable compromise is to update the pm_runtime * counters and delay the pm_runtime suspend by several * seconds, by when all enumeration should be complete. */ pm_runtime_mark_last_busy(dev); return ret; } static int __maybe_unused intel_resume_runtime(struct device *dev) { struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; u32 clock_stop_quirks; bool clock_stop0; int link_flags; bool multi_link; int status; int ret; if (bus->prop.hw_disabled || !sdw->startup_done) { dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", bus->link_id); return 0; } /* unconditionally disable WAKEEN interrupt */ intel_shim_wake(sdw, false); link_flags = md_flags >> (bus->link_id * 8); multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); clock_stop_quirks = sdw->link_res->clock_stop_quirks; if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { ret = intel_init(sdw); if (ret) { dev_err(dev, "%s failed: %d\n", __func__, ret); return ret; } /* * make sure all Slaves are tagged as UNATTACHED and provide * reason for reinitialization */ sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts during resume\n"); return ret; } /* * follow recommended programming flows to avoid * timeouts when gsync is enabled */ if (multi_link) intel_shim_sync_arm(sdw); ret = sdw_cdns_init(&sdw->cdns); if (ret < 0) { dev_err(dev, "unable to initialize Cadence IP during resume\n"); return ret; } ret = sdw_cdns_exit_reset(cdns); if (ret < 0) { dev_err(dev, "unable to exit bus reset sequence during resume\n"); return ret; } if (multi_link) { ret = intel_shim_sync_go(sdw); if (ret < 0) { dev_err(dev, "sync go failed during resume\n"); return ret; } } sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime TEARDOWN", true, INTEL_MASTER_RESET_ITERATIONS); } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) { ret = intel_init(sdw); if (ret) { dev_err(dev, "%s failed: %d\n", __func__, ret); return ret; } /* * An exception condition occurs for the CLK_STOP_BUS_RESET * case if one or more masters remain active. In this condition, * all the masters are powered on for they are in the same power * domain. Master can preserve its context for clock stop0, so * there is no need to clear slave status and reset bus. */ clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); if (!clock_stop0) { /* * make sure all Slaves are tagged as UNATTACHED and * provide reason for reinitialization */ status = SDW_UNATTACH_REQUEST_MASTER_RESET; sdw_clear_slave_status(bus, status); ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts during resume\n"); return ret; } /* * follow recommended programming flows to avoid * timeouts when gsync is enabled */ if (multi_link) intel_shim_sync_arm(sdw); /* * Re-initialize the IP since it was powered-off */ sdw_cdns_init(&sdw->cdns); } else { ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts during resume\n"); return ret; } } ret = sdw_cdns_clock_restart(cdns, !clock_stop0); if (ret < 0) { dev_err(dev, "unable to restart clock during resume\n"); return ret; } if (!clock_stop0) { ret = sdw_cdns_exit_reset(cdns); if (ret < 0) { dev_err(dev, "unable to exit bus reset sequence during resume\n"); return ret; } if (multi_link) { ret = intel_shim_sync_go(sdw); if (ret < 0) { dev_err(sdw->cdns.dev, "sync go failed during resume\n"); return ret; } } } sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime BUS_RESET", true, INTEL_MASTER_RESET_ITERATIONS); } else if (!clock_stop_quirks) { clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); if (!clock_stop0) dev_err(dev, "%s invalid configuration, clock was not stopped", __func__); ret = intel_init(sdw); if (ret) { dev_err(dev, "%s failed: %d\n", __func__, ret); return ret; } ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts during resume\n"); return ret; } ret = sdw_cdns_clock_restart(cdns, false); if (ret < 0) { dev_err(dev, "unable to resume master during resume\n"); return ret; } sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks", true, INTEL_MASTER_RESET_ITERATIONS); } else { dev_err(dev, "%s clock_stop_quirks %x unsupported\n", __func__, clock_stop_quirks); ret = -EINVAL; } return ret; } static const struct dev_pm_ops intel_pm = { .prepare = intel_pm_prepare, SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL) }; static const struct auxiliary_device_id intel_link_id_table[] = { { .name = "soundwire_intel.link" }, {}, }; MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table); static struct auxiliary_driver sdw_intel_drv = { .probe = intel_link_probe, .remove = intel_link_remove, .driver = { /* auxiliary_driver_register() sets .name to be the modname */ .pm = &intel_pm, }, .id_table = intel_link_id_table }; module_auxiliary_driver(sdw_intel_drv); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Intel Soundwire Link Driver");