// SPDX-License-Identifier: GPL-2.0 // // Copyright (c) 2011-2014 Samsung Electronics Co., Ltd. // http://www.samsung.com/ // // Exynos - CPU PMU(Power Management Unit) support #include #include #include #include #include #include #include #include #include #include #include #include "exynos-pmu.h" #define PMUALIVE_MASK GENMASK(13, 0) #define TENSOR_SET_BITS (BIT(15) | BIT(14)) #define TENSOR_CLR_BITS BIT(15) #define TENSOR_SMC_PMU_SEC_REG 0x82000504 #define TENSOR_PMUREG_READ 0 #define TENSOR_PMUREG_WRITE 1 #define TENSOR_PMUREG_RMW 2 struct exynos_pmu_context { struct device *dev; const struct exynos_pmu_data *pmu_data; struct regmap *pmureg; }; void __iomem *pmu_base_addr; static struct exynos_pmu_context *pmu_context; /* forward declaration */ static struct platform_driver exynos_pmu_driver; /* * Tensor SoCs are configured so that PMU_ALIVE registers can only be written * from EL3, but are still read accessible. As Linux needs to write some of * these registers, the following functions are provided and exposed via * regmap. * * Note: This SMC interface is known to be implemented on gs101 and derivative * SoCs. */ /* Write to a protected PMU register. */ static int tensor_sec_reg_write(void *context, unsigned int reg, unsigned int val) { struct arm_smccc_res res; unsigned long pmu_base = (unsigned long)context; arm_smccc_smc(TENSOR_SMC_PMU_SEC_REG, pmu_base + reg, TENSOR_PMUREG_WRITE, val, 0, 0, 0, 0, &res); /* returns -EINVAL if access isn't allowed or 0 */ if (res.a0) pr_warn("%s(): SMC failed: %d\n", __func__, (int)res.a0); return (int)res.a0; } /* Read/Modify/Write a protected PMU register. */ static int tensor_sec_reg_rmw(void *context, unsigned int reg, unsigned int mask, unsigned int val) { struct arm_smccc_res res; unsigned long pmu_base = (unsigned long)context; arm_smccc_smc(TENSOR_SMC_PMU_SEC_REG, pmu_base + reg, TENSOR_PMUREG_RMW, mask, val, 0, 0, 0, &res); /* returns -EINVAL if access isn't allowed or 0 */ if (res.a0) pr_warn("%s(): SMC failed: %d\n", __func__, (int)res.a0); return (int)res.a0; } /* * Read a protected PMU register. All PMU registers can be read by Linux. * Note: The SMC read register is not used, as only registers that can be * written are readable via SMC. */ static int tensor_sec_reg_read(void *context, unsigned int reg, unsigned int *val) { *val = pmu_raw_readl(reg); return 0; } /* * For SoCs that have set/clear bit hardware this function can be used when * the PMU register will be accessed by multiple masters. * * For example, to set bits 13:8 in PMU reg offset 0x3e80 * tensor_set_bits_atomic(ctx, 0x3e80, 0x3f00, 0x3f00); * * Set bit 8, and clear bits 13:9 PMU reg offset 0x3e80 * tensor_set_bits_atomic(0x3e80, 0x100, 0x3f00); */ static int tensor_set_bits_atomic(void *ctx, unsigned int offset, u32 val, u32 mask) { int ret; unsigned int i; for (i = 0; i < 32; i++) { if (!(mask & BIT(i))) continue; offset &= ~TENSOR_SET_BITS; if (val & BIT(i)) offset |= TENSOR_SET_BITS; else offset |= TENSOR_CLR_BITS; ret = tensor_sec_reg_write(ctx, offset, i); if (ret) return ret; } return ret; } static int tensor_sec_update_bits(void *ctx, unsigned int reg, unsigned int mask, unsigned int val) { /* * Use atomic operations for PMU_ALIVE registers (offset 0~0x3FFF) * as the target registers can be accessed by multiple masters. */ if (reg > PMUALIVE_MASK) return tensor_sec_reg_rmw(ctx, reg, mask, val); return tensor_set_bits_atomic(ctx, reg, val, mask); } void pmu_raw_writel(u32 val, u32 offset) { writel_relaxed(val, pmu_base_addr + offset); } u32 pmu_raw_readl(u32 offset) { return readl_relaxed(pmu_base_addr + offset); } void exynos_sys_powerdown_conf(enum sys_powerdown mode) { unsigned int i; const struct exynos_pmu_data *pmu_data; if (!pmu_context || !pmu_context->pmu_data) return; pmu_data = pmu_context->pmu_data; if (pmu_data->powerdown_conf) pmu_data->powerdown_conf(mode); if (pmu_data->pmu_config) { for (i = 0; (pmu_data->pmu_config[i].offset != PMU_TABLE_END); i++) pmu_raw_writel(pmu_data->pmu_config[i].val[mode], pmu_data->pmu_config[i].offset); } if (pmu_data->powerdown_conf_extra) pmu_data->powerdown_conf_extra(mode); if (pmu_data->pmu_config_extra) { for (i = 0; pmu_data->pmu_config_extra[i].offset != PMU_TABLE_END; i++) pmu_raw_writel(pmu_data->pmu_config_extra[i].val[mode], pmu_data->pmu_config_extra[i].offset); } } /* * Split the data between ARM architectures because it is relatively big * and useless on other arch. */ #ifdef CONFIG_EXYNOS_PMU_ARM_DRIVERS #define exynos_pmu_data_arm_ptr(data) (&data) #else #define exynos_pmu_data_arm_ptr(data) NULL #endif static const struct regmap_config regmap_smccfg = { .name = "pmu_regs", .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .fast_io = true, .use_single_read = true, .use_single_write = true, .reg_read = tensor_sec_reg_read, .reg_write = tensor_sec_reg_write, .reg_update_bits = tensor_sec_update_bits, }; static const struct exynos_pmu_data gs101_pmu_data = { .pmu_secure = true }; /* * PMU platform driver and devicetree bindings. */ static const struct of_device_id exynos_pmu_of_device_ids[] = { { .compatible = "google,gs101-pmu", .data = &gs101_pmu_data, }, { .compatible = "samsung,exynos3250-pmu", .data = exynos_pmu_data_arm_ptr(exynos3250_pmu_data), }, { .compatible = "samsung,exynos4210-pmu", .data = exynos_pmu_data_arm_ptr(exynos4210_pmu_data), }, { .compatible = "samsung,exynos4212-pmu", .data = exynos_pmu_data_arm_ptr(exynos4212_pmu_data), }, { .compatible = "samsung,exynos4412-pmu", .data = exynos_pmu_data_arm_ptr(exynos4412_pmu_data), }, { .compatible = "samsung,exynos5250-pmu", .data = exynos_pmu_data_arm_ptr(exynos5250_pmu_data), }, { .compatible = "samsung,exynos5410-pmu", }, { .compatible = "samsung,exynos5420-pmu", .data = exynos_pmu_data_arm_ptr(exynos5420_pmu_data), }, { .compatible = "samsung,exynos5433-pmu", }, { .compatible = "samsung,exynos7-pmu", }, { .compatible = "samsung,exynos850-pmu", }, { /*sentinel*/ }, }; static const struct mfd_cell exynos_pmu_devs[] = { { .name = "exynos-clkout", }, }; /** * exynos_get_pmu_regmap() - Obtain pmureg regmap * * Find the pmureg regmap previously configured in probe() and return regmap * pointer. * * Return: A pointer to regmap if found or ERR_PTR error value. */ struct regmap *exynos_get_pmu_regmap(void) { struct device_node *np = of_find_matching_node(NULL, exynos_pmu_of_device_ids); if (np) return exynos_get_pmu_regmap_by_phandle(np, NULL); return ERR_PTR(-ENODEV); } EXPORT_SYMBOL_GPL(exynos_get_pmu_regmap); /** * exynos_get_pmu_regmap_by_phandle() - Obtain pmureg regmap via phandle * @np: Device node holding PMU phandle property * @propname: Name of property holding phandle value * * Find the pmureg regmap previously configured in probe() and return regmap * pointer. * * Return: A pointer to regmap if found or ERR_PTR error value. */ struct regmap *exynos_get_pmu_regmap_by_phandle(struct device_node *np, const char *propname) { struct device_node *pmu_np; struct device *dev; if (propname) pmu_np = of_parse_phandle(np, propname, 0); else pmu_np = np; if (!pmu_np) return ERR_PTR(-ENODEV); /* * Determine if exynos-pmu device has probed and therefore regmap * has been created and can be returned to the caller. Otherwise we * return -EPROBE_DEFER. */ dev = driver_find_device_by_of_node(&exynos_pmu_driver.driver, (void *)pmu_np); if (propname) of_node_put(pmu_np); if (!dev) return ERR_PTR(-EPROBE_DEFER); return syscon_node_to_regmap(pmu_np); } EXPORT_SYMBOL_GPL(exynos_get_pmu_regmap_by_phandle); static int exynos_pmu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct regmap_config pmu_regmcfg; struct regmap *regmap; struct resource *res; int ret; pmu_base_addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pmu_base_addr)) return PTR_ERR(pmu_base_addr); pmu_context = devm_kzalloc(&pdev->dev, sizeof(struct exynos_pmu_context), GFP_KERNEL); if (!pmu_context) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; pmu_context->pmu_data = of_device_get_match_data(dev); /* For SoCs that secure PMU register writes use custom regmap */ if (pmu_context->pmu_data && pmu_context->pmu_data->pmu_secure) { pmu_regmcfg = regmap_smccfg; pmu_regmcfg.max_register = resource_size(res) - pmu_regmcfg.reg_stride; /* Need physical address for SMC call */ regmap = devm_regmap_init(dev, NULL, (void *)(uintptr_t)res->start, &pmu_regmcfg); if (IS_ERR(regmap)) return dev_err_probe(&pdev->dev, PTR_ERR(regmap), "regmap init failed\n"); ret = of_syscon_register_regmap(dev->of_node, regmap); if (ret) return ret; } else { /* let syscon create mmio regmap */ regmap = syscon_node_to_regmap(dev->of_node); if (IS_ERR(regmap)) return dev_err_probe(&pdev->dev, PTR_ERR(regmap), "syscon_node_to_regmap failed\n"); } pmu_context->pmureg = regmap; pmu_context->dev = dev; if (pmu_context->pmu_data && pmu_context->pmu_data->pmu_init) pmu_context->pmu_data->pmu_init(); platform_set_drvdata(pdev, pmu_context); ret = devm_mfd_add_devices(dev, PLATFORM_DEVID_NONE, exynos_pmu_devs, ARRAY_SIZE(exynos_pmu_devs), NULL, 0, NULL); if (ret) return ret; if (devm_of_platform_populate(dev)) dev_err(dev, "Error populating children, reboot and poweroff might not work properly\n"); dev_dbg(dev, "Exynos PMU Driver probe done\n"); return 0; } static struct platform_driver exynos_pmu_driver = { .driver = { .name = "exynos-pmu", .of_match_table = exynos_pmu_of_device_ids, }, .probe = exynos_pmu_probe, }; static int __init exynos_pmu_init(void) { return platform_driver_register(&exynos_pmu_driver); } postcore_initcall(exynos_pmu_init);