// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011-2017, The Linux Foundation */ #ifndef _DRIVERS_SLIMBUS_H #define _DRIVERS_SLIMBUS_H #include #include #include #include #include /* Standard values per SLIMbus spec needed by controllers and devices */ #define SLIM_CL_PER_SUPERFRAME 6144 #define SLIM_CL_PER_SUPERFRAME_DIV8 (SLIM_CL_PER_SUPERFRAME >> 3) /* SLIMbus message types. Related to interpretation of message code. */ #define SLIM_MSG_MT_CORE 0x0 /* * SLIM Broadcast header format * BYTE 0: MT[7:5] RL[4:0] * BYTE 1: RSVD[7] MC[6:0] * BYTE 2: RSVD[7:6] DT[5:4] PI[3:0] */ #define SLIM_MSG_MT_MASK GENMASK(2, 0) #define SLIM_MSG_MT_SHIFT 5 #define SLIM_MSG_RL_MASK GENMASK(4, 0) #define SLIM_MSG_RL_SHIFT 0 #define SLIM_MSG_MC_MASK GENMASK(6, 0) #define SLIM_MSG_MC_SHIFT 0 #define SLIM_MSG_DT_MASK GENMASK(1, 0) #define SLIM_MSG_DT_SHIFT 4 #define SLIM_HEADER_GET_MT(b) ((b >> SLIM_MSG_MT_SHIFT) & SLIM_MSG_MT_MASK) #define SLIM_HEADER_GET_RL(b) ((b >> SLIM_MSG_RL_SHIFT) & SLIM_MSG_RL_MASK) #define SLIM_HEADER_GET_MC(b) ((b >> SLIM_MSG_MC_SHIFT) & SLIM_MSG_MC_MASK) #define SLIM_HEADER_GET_DT(b) ((b >> SLIM_MSG_DT_SHIFT) & SLIM_MSG_DT_MASK) /* Device management messages used by this framework */ #define SLIM_MSG_MC_REPORT_PRESENT 0x1 #define SLIM_MSG_MC_ASSIGN_LOGICAL_ADDRESS 0x2 #define SLIM_MSG_MC_REPORT_ABSENT 0xF /* Clock pause Reconfiguration messages */ #define SLIM_MSG_MC_BEGIN_RECONFIGURATION 0x40 #define SLIM_MSG_MC_NEXT_PAUSE_CLOCK 0x4A #define SLIM_MSG_MC_RECONFIGURE_NOW 0x5F /* Clock pause values per SLIMbus spec */ #define SLIM_CLK_FAST 0 #define SLIM_CLK_CONST_PHASE 1 #define SLIM_CLK_UNSPECIFIED 2 /* Destination type Values */ #define SLIM_MSG_DEST_LOGICALADDR 0 #define SLIM_MSG_DEST_ENUMADDR 1 #define SLIM_MSG_DEST_BROADCAST 3 /* Standard values per SLIMbus spec needed by controllers and devices */ #define SLIM_MAX_CLK_GEAR 10 #define SLIM_MIN_CLK_GEAR 1 /* Manager's logical address is set to 0xFF per spec */ #define SLIM_LA_MANAGER 0xFF #define SLIM_MAX_TIDS 256 /** * struct slim_framer - Represents SLIMbus framer. * Every controller may have multiple framers. There is 1 active framer device * responsible for clocking the bus. * Manager is responsible for framer hand-over. * @dev: Driver model representation of the device. * @e_addr: Enumeration address of the framer. * @rootfreq: Root Frequency at which the framer can run. This is maximum * frequency ('clock gear 10') at which the bus can operate. * @superfreq: Superframes per root frequency. Every frame is 6144 bits. */ struct slim_framer { struct device dev; struct slim_eaddr e_addr; int rootfreq; int superfreq; }; #define to_slim_framer(d) container_of(d, struct slim_framer, dev) /** * struct slim_msg_txn - Message to be sent by the controller. * This structure has packet header, * payload and buffer to be filled (if any) * @rl: Header field. remaining length. * @mt: Header field. Message type. * @mc: Header field. LSB is message code for type mt. * @dt: Header field. Destination type. * @ec: Element code. Used for elemental access APIs. * @tid: Transaction ID. Used for messages expecting response. * (relevant for message-codes involving read operation) * @la: Logical address of the device this message is going to. * (Not used when destination type is broadcast.) * @msg: Elemental access message to be read/written * @comp: completion if read/write is synchronous, used internally * for tid based transactions. */ struct slim_msg_txn { u8 rl; u8 mt; u8 mc; u8 dt; u16 ec; u8 tid; u8 la; struct slim_val_inf *msg; struct completion *comp; }; /* Frequently used message transaction structures */ #define DEFINE_SLIM_LDEST_TXN(name, mc, rl, la, msg) \ struct slim_msg_txn name = { rl, 0, mc, SLIM_MSG_DEST_LOGICALADDR, 0,\ 0, la, msg, } #define DEFINE_SLIM_BCAST_TXN(name, mc, rl, la, msg) \ struct slim_msg_txn name = { rl, 0, mc, SLIM_MSG_DEST_BROADCAST, 0,\ 0, la, msg, } #define DEFINE_SLIM_EDEST_TXN(name, mc, rl, la, msg) \ struct slim_msg_txn name = { rl, 0, mc, SLIM_MSG_DEST_ENUMADDR, 0,\ 0, la, msg, } /** * enum slim_clk_state: SLIMbus controller's clock state used internally for * maintaining current clock state. * @SLIM_CLK_ACTIVE: SLIMbus clock is active * @SLIM_CLK_ENTERING_PAUSE: SLIMbus clock pause sequence is being sent on the * bus. If this succeeds, state changes to SLIM_CLK_PAUSED. If the * transition fails, state changes back to SLIM_CLK_ACTIVE * @SLIM_CLK_PAUSED: SLIMbus controller clock has paused. */ enum slim_clk_state { SLIM_CLK_ACTIVE, SLIM_CLK_ENTERING_PAUSE, SLIM_CLK_PAUSED, }; /** * struct slim_sched: Framework uses this structure internally for scheduling. * @clk_state: Controller's clock state from enum slim_clk_state * @pause_comp: Signals completion of clock pause sequence. This is useful when * client tries to call SLIMbus transaction when controller is entering * clock pause. * @m_reconf: This mutex is held until current reconfiguration (data channel * scheduling, message bandwidth reservation) is done. Message APIs can * use the bus concurrently when this mutex is held since elemental access * messages can be sent on the bus when reconfiguration is in progress. */ struct slim_sched { enum slim_clk_state clk_state; struct completion pause_comp; struct mutex m_reconf; }; /** * struct slim_controller - Controls every instance of SLIMbus * (similar to 'master' on SPI) * @dev: Device interface to this driver * @id: Board-specific number identifier for this controller/bus * @name: Name for this controller * @min_cg: Minimum clock gear supported by this controller (default value: 1) * @max_cg: Maximum clock gear supported by this controller (default value: 10) * @clkgear: Current clock gear in which this bus is running * @laddr_ida: logical address id allocator * @a_framer: Active framer which is clocking the bus managed by this controller * @lock: Mutex protecting controller data structures * @devices: Slim device list * @tid_idr: tid id allocator * @txn_lock: Lock to protect table of transactions * @sched: scheduler structure used by the controller * @xfer_msg: Transfer a message on this controller (this can be a broadcast * control/status message like data channel setup, or a unicast message * like value element read/write. * @set_laddr: Setup logical address at laddr for the slave with elemental * address e_addr. Drivers implementing controller will be expected to * send unicast message to this device with its logical address. * @get_laddr: It is possible that controller needs to set fixed logical * address table and get_laddr can be used in that case so that controller * can do this assignment. Use case is when the master is on the remote * processor side, who is resposible for allocating laddr. * @wakeup: This function pointer implements controller-specific procedure * to wake it up from clock-pause. Framework will call this to bring * the controller out of clock pause. * * 'Manager device' is responsible for device management, bandwidth * allocation, channel setup, and port associations per channel. * Device management means Logical address assignment/removal based on * enumeration (report-present, report-absent) of a device. * Bandwidth allocation is done dynamically by the manager based on active * channels on the bus, message-bandwidth requests made by SLIMbus devices. * Based on current bandwidth usage, manager chooses a frequency to run * the bus at (in steps of 'clock-gear', 1 through 10, each clock gear * representing twice the frequency than the previous gear). * Manager is also responsible for entering (and exiting) low-power-mode * (known as 'clock pause'). * Manager can do handover of framer if there are multiple framers on the * bus and a certain usecase warrants using certain framer to avoid keeping * previous framer being powered-on. * * Controller here performs duties of the manager device, and 'interface * device'. Interface device is responsible for monitoring the bus and * reporting information such as loss-of-synchronization, data * slot-collision. */ struct slim_controller { struct device *dev; unsigned int id; char name[SLIMBUS_NAME_SIZE]; int min_cg; int max_cg; int clkgear; struct ida laddr_ida; struct slim_framer *a_framer; struct mutex lock; struct list_head devices; struct idr tid_idr; spinlock_t txn_lock; struct slim_sched sched; int (*xfer_msg)(struct slim_controller *ctrl, struct slim_msg_txn *tx); int (*set_laddr)(struct slim_controller *ctrl, struct slim_eaddr *ea, u8 laddr); int (*get_laddr)(struct slim_controller *ctrl, struct slim_eaddr *ea, u8 *laddr); int (*wakeup)(struct slim_controller *ctrl); }; int slim_device_report_present(struct slim_controller *ctrl, struct slim_eaddr *e_addr, u8 *laddr); void slim_report_absent(struct slim_device *sbdev); int slim_register_controller(struct slim_controller *ctrl); int slim_unregister_controller(struct slim_controller *ctrl); void slim_msg_response(struct slim_controller *ctrl, u8 *reply, u8 tid, u8 l); int slim_do_transfer(struct slim_controller *ctrl, struct slim_msg_txn *txn); int slim_ctrl_clk_pause(struct slim_controller *ctrl, bool wakeup, u8 restart); int slim_alloc_txn_tid(struct slim_controller *ctrl, struct slim_msg_txn *txn); void slim_free_txn_tid(struct slim_controller *ctrl, struct slim_msg_txn *txn); static inline bool slim_tid_txn(u8 mt, u8 mc) { return (mt == SLIM_MSG_MT_CORE && (mc == SLIM_MSG_MC_REQUEST_INFORMATION || mc == SLIM_MSG_MC_REQUEST_CLEAR_INFORMATION || mc == SLIM_MSG_MC_REQUEST_VALUE || mc == SLIM_MSG_MC_REQUEST_CLEAR_INFORMATION)); } static inline bool slim_ec_txn(u8 mt, u8 mc) { return (mt == SLIM_MSG_MT_CORE && ((mc >= SLIM_MSG_MC_REQUEST_INFORMATION && mc <= SLIM_MSG_MC_REPORT_INFORMATION) || (mc >= SLIM_MSG_MC_REQUEST_VALUE && mc <= SLIM_MSG_MC_CHANGE_VALUE))); } #endif /* _LINUX_SLIMBUS_H */