// SPDX-License-Identifier: GPL-2.0-only /* envctrl.c: Temperature and Fan monitoring on Machines providing it. * * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 2000 Vinh Truong (vinh.truong@eng.sun.com) * VT - The implementation is to support Sun Microelectronics (SME) platform * environment monitoring. SME platforms use pcf8584 as the i2c bus * controller to access pcf8591 (8-bit A/D and D/A converter) and * pcf8571 (256 x 8-bit static low-voltage RAM with I2C-bus interface). * At board level, it follows SME Firmware I2C Specification. Reference: * http://www-eu2.semiconductors.com/pip/PCF8584P * http://www-eu2.semiconductors.com/pip/PCF8574AP * http://www-eu2.semiconductors.com/pip/PCF8591P * * EB - Added support for CP1500 Global Address and PS/Voltage monitoring. * Eric Brower * * DB - Audit every copy_to_user in envctrl_read. * Daniele Bellucci */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "envctrl" #define PFX DRIVER_NAME ": " #define PCF8584_ADDRESS 0x55 #define CONTROL_PIN 0x80 #define CONTROL_ES0 0x40 #define CONTROL_ES1 0x20 #define CONTROL_ES2 0x10 #define CONTROL_ENI 0x08 #define CONTROL_STA 0x04 #define CONTROL_STO 0x02 #define CONTROL_ACK 0x01 #define STATUS_PIN 0x80 #define STATUS_STS 0x20 #define STATUS_BER 0x10 #define STATUS_LRB 0x08 #define STATUS_AD0 0x08 #define STATUS_AAB 0x04 #define STATUS_LAB 0x02 #define STATUS_BB 0x01 /* * CLK Mode Register. */ #define BUS_CLK_90 0x00 #define BUS_CLK_45 0x01 #define BUS_CLK_11 0x02 #define BUS_CLK_1_5 0x03 #define CLK_3 0x00 #define CLK_4_43 0x10 #define CLK_6 0x14 #define CLK_8 0x18 #define CLK_12 0x1c #define OBD_SEND_START 0xc5 /* value to generate I2c_bus START condition */ #define OBD_SEND_STOP 0xc3 /* value to generate I2c_bus STOP condition */ /* Monitor type of i2c child device. * Firmware definitions. */ #define PCF8584_MAX_CHANNELS 8 #define PCF8584_GLOBALADDR_TYPE 6 /* global address monitor */ #define PCF8584_FANSTAT_TYPE 3 /* fan status monitor */ #define PCF8584_VOLTAGE_TYPE 2 /* voltage monitor */ #define PCF8584_TEMP_TYPE 1 /* temperature monitor*/ /* Monitor type of i2c child device. * Driver definitions. */ #define ENVCTRL_NOMON 0 #define ENVCTRL_CPUTEMP_MON 1 /* cpu temperature monitor */ #define ENVCTRL_CPUVOLTAGE_MON 2 /* voltage monitor */ #define ENVCTRL_FANSTAT_MON 3 /* fan status monitor */ #define ENVCTRL_ETHERTEMP_MON 4 /* ethernet temperature */ /* monitor */ #define ENVCTRL_VOLTAGESTAT_MON 5 /* voltage status monitor */ #define ENVCTRL_MTHRBDTEMP_MON 6 /* motherboard temperature */ #define ENVCTRL_SCSITEMP_MON 7 /* scsi temperature */ #define ENVCTRL_GLOBALADDR_MON 8 /* global address */ /* Child device type. * Driver definitions. */ #define I2C_ADC 0 /* pcf8591 */ #define I2C_GPIO 1 /* pcf8571 */ /* Data read from child device may need to decode * through a data table and a scale. * Translation type as defined by firmware. */ #define ENVCTRL_TRANSLATE_NO 0 #define ENVCTRL_TRANSLATE_PARTIAL 1 #define ENVCTRL_TRANSLATE_COMBINED 2 #define ENVCTRL_TRANSLATE_FULL 3 /* table[data] */ #define ENVCTRL_TRANSLATE_SCALE 4 /* table[data]/scale */ /* Driver miscellaneous definitions. */ #define ENVCTRL_MAX_CPU 4 #define CHANNEL_DESC_SZ 256 /* Mask values for combined GlobalAddress/PowerStatus node */ #define ENVCTRL_GLOBALADDR_ADDR_MASK 0x1F #define ENVCTRL_GLOBALADDR_PSTAT_MASK 0x60 /* Node 0x70 ignored on CompactPCI CP1400/1500 platforms * (see envctrl_init_i2c_child) */ #define ENVCTRL_CPCI_IGNORED_NODE 0x70 #define PCF8584_DATA 0x00 #define PCF8584_CSR 0x01 /* Each child device can be monitored by up to PCF8584_MAX_CHANNELS. * Property of a port or channel as defined by the firmware. */ struct pcf8584_channel { unsigned char chnl_no; unsigned char io_direction; unsigned char type; unsigned char last; }; /* Each child device may have one or more tables of bytes to help decode * data. Table property as defined by the firmware. */ struct pcf8584_tblprop { unsigned int type; unsigned int scale; unsigned int offset; /* offset from the beginning of the table */ unsigned int size; }; /* i2c child */ struct i2c_child_t { /* Either ADC or GPIO. */ unsigned char i2ctype; unsigned long addr; struct pcf8584_channel chnl_array[PCF8584_MAX_CHANNELS]; /* Channel info. */ unsigned int total_chnls; /* Number of monitor channels. */ unsigned char fan_mask; /* Byte mask for fan status channels. */ unsigned char voltage_mask; /* Byte mask for voltage status channels. */ struct pcf8584_tblprop tblprop_array[PCF8584_MAX_CHANNELS]; /* Properties of all monitor channels. */ unsigned int total_tbls; /* Number of monitor tables. */ char *tables; /* Pointer to table(s). */ char chnls_desc[CHANNEL_DESC_SZ]; /* Channel description. */ char mon_type[PCF8584_MAX_CHANNELS]; }; static void __iomem *i2c; static struct i2c_child_t i2c_childlist[ENVCTRL_MAX_CPU*2]; static unsigned char chnls_mask[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; static unsigned int warning_temperature = 0; static unsigned int shutdown_temperature = 0; static char read_cpu; /* Forward declarations. */ static struct i2c_child_t *envctrl_get_i2c_child(unsigned char); /* Function Description: Test the PIN bit (Pending Interrupt Not) * to test when serial transmission is completed . * Return : None. */ static void envtrl_i2c_test_pin(void) { int limit = 1000000; while (--limit > 0) { if (!(readb(i2c + PCF8584_CSR) & STATUS_PIN)) break; udelay(1); } if (limit <= 0) printk(KERN_INFO PFX "Pin status will not clear.\n"); } /* Function Description: Test busy bit. * Return : None. */ static void envctrl_i2c_test_bb(void) { int limit = 1000000; while (--limit > 0) { /* Busy bit 0 means busy. */ if (readb(i2c + PCF8584_CSR) & STATUS_BB) break; udelay(1); } if (limit <= 0) printk(KERN_INFO PFX "Busy bit will not clear.\n"); } /* Function Description: Send the address for a read access. * Return : 0 if not acknowledged, otherwise acknowledged. */ static int envctrl_i2c_read_addr(unsigned char addr) { envctrl_i2c_test_bb(); /* Load address. */ writeb(addr + 1, i2c + PCF8584_DATA); envctrl_i2c_test_bb(); writeb(OBD_SEND_START, i2c + PCF8584_CSR); /* Wait for PIN. */ envtrl_i2c_test_pin(); /* CSR 0 means acknowledged. */ if (!(readb(i2c + PCF8584_CSR) & STATUS_LRB)) { return readb(i2c + PCF8584_DATA); } else { writeb(OBD_SEND_STOP, i2c + PCF8584_CSR); return 0; } } /* Function Description: Send the address for write mode. * Return : None. */ static void envctrl_i2c_write_addr(unsigned char addr) { envctrl_i2c_test_bb(); writeb(addr, i2c + PCF8584_DATA); /* Generate Start condition. */ writeb(OBD_SEND_START, i2c + PCF8584_CSR); } /* Function Description: Read 1 byte of data from addr * set by envctrl_i2c_read_addr() * Return : Data from address set by envctrl_i2c_read_addr(). */ static unsigned char envctrl_i2c_read_data(void) { envtrl_i2c_test_pin(); writeb(CONTROL_ES0, i2c + PCF8584_CSR); /* Send neg ack. */ return readb(i2c + PCF8584_DATA); } /* Function Description: Instruct the device which port to read data from. * Return : None. */ static void envctrl_i2c_write_data(unsigned char port) { envtrl_i2c_test_pin(); writeb(port, i2c + PCF8584_DATA); } /* Function Description: Generate Stop condition after last byte is sent. * Return : None. */ static void envctrl_i2c_stop(void) { envtrl_i2c_test_pin(); writeb(OBD_SEND_STOP, i2c + PCF8584_CSR); } /* Function Description: Read adc device. * Return : Data at address and port. */ static unsigned char envctrl_i2c_read_8591(unsigned char addr, unsigned char port) { /* Send address. */ envctrl_i2c_write_addr(addr); /* Setup port to read. */ envctrl_i2c_write_data(port); envctrl_i2c_stop(); /* Read port. */ envctrl_i2c_read_addr(addr); /* Do a single byte read and send stop. */ envctrl_i2c_read_data(); envctrl_i2c_stop(); return readb(i2c + PCF8584_DATA); } /* Function Description: Read gpio device. * Return : Data at address. */ static unsigned char envctrl_i2c_read_8574(unsigned char addr) { unsigned char rd; envctrl_i2c_read_addr(addr); /* Do a single byte read and send stop. */ rd = envctrl_i2c_read_data(); envctrl_i2c_stop(); return rd; } /* Function Description: Decode data read from an adc device using firmware * table. * Return: Number of read bytes. Data is stored in bufdata in ascii format. */ static int envctrl_i2c_data_translate(unsigned char data, int translate_type, int scale, char *tbl, char *bufdata) { int len = 0; switch (translate_type) { case ENVCTRL_TRANSLATE_NO: /* No decode necessary. */ len = 1; bufdata[0] = data; break; case ENVCTRL_TRANSLATE_FULL: /* Decode this way: data = table[data]. */ len = 1; bufdata[0] = tbl[data]; break; case ENVCTRL_TRANSLATE_SCALE: /* Decode this way: data = table[data]/scale */ sprintf(bufdata,"%d ", (tbl[data] * 10) / (scale)); len = strlen(bufdata); bufdata[len - 1] = bufdata[len - 2]; bufdata[len - 2] = '.'; break; default: break; } return len; } /* Function Description: Read cpu-related data such as cpu temperature, voltage. * Return: Number of read bytes. Data is stored in bufdata in ascii format. */ static int envctrl_read_cpu_info(int cpu, struct i2c_child_t *pchild, char mon_type, unsigned char *bufdata) { unsigned char data; int i, j = -1; char *tbl; /* Find the right monitor type and channel. */ for (i = 0; i < PCF8584_MAX_CHANNELS; i++) { if (pchild->mon_type[i] == mon_type) { if (++j == cpu) { break; } } } if (j != cpu) return 0; /* Read data from address and port. */ data = envctrl_i2c_read_8591((unsigned char)pchild->addr, (unsigned char)pchild->chnl_array[i].chnl_no); /* Find decoding table. */ tbl = pchild->tables + pchild->tblprop_array[i].offset; return envctrl_i2c_data_translate(data, pchild->tblprop_array[i].type, pchild->tblprop_array[i].scale, tbl, bufdata); } /* Function Description: Read noncpu-related data such as motherboard * temperature. * Return: Number of read bytes. Data is stored in bufdata in ascii format. */ static int envctrl_read_noncpu_info(struct i2c_child_t *pchild, char mon_type, unsigned char *bufdata) { unsigned char data; int i; char *tbl = NULL; for (i = 0; i < PCF8584_MAX_CHANNELS; i++) { if (pchild->mon_type[i] == mon_type) break; } if (i >= PCF8584_MAX_CHANNELS) return 0; /* Read data from address and port. */ data = envctrl_i2c_read_8591((unsigned char)pchild->addr, (unsigned char)pchild->chnl_array[i].chnl_no); /* Find decoding table. */ tbl = pchild->tables + pchild->tblprop_array[i].offset; return envctrl_i2c_data_translate(data, pchild->tblprop_array[i].type, pchild->tblprop_array[i].scale, tbl, bufdata); } /* Function Description: Read fan status. * Return : Always 1 byte. Status stored in bufdata. */ static int envctrl_i2c_fan_status(struct i2c_child_t *pchild, unsigned char data, char *bufdata) { unsigned char tmp, ret = 0; int i, j = 0; tmp = data & pchild->fan_mask; if (tmp == pchild->fan_mask) { /* All bits are on. All fans are functioning. */ ret = ENVCTRL_ALL_FANS_GOOD; } else if (tmp == 0) { /* No bits are on. No fans are functioning. */ ret = ENVCTRL_ALL_FANS_BAD; } else { /* Go through all channels, mark 'on' the matched bits. * Notice that fan_mask may have discontiguous bits but * return mask are always contiguous. For example if we * monitor 4 fans at channels 0,1,2,4, the return mask * should be 00010000 if only fan at channel 4 is working. */ for (i = 0; i < PCF8584_MAX_CHANNELS;i++) { if (pchild->fan_mask & chnls_mask[i]) { if (!(chnls_mask[i] & tmp)) ret |= chnls_mask[j]; j++; } } } bufdata[0] = ret; return 1; } /* Function Description: Read global addressing line. * Return : Always 1 byte. Status stored in bufdata. */ static int envctrl_i2c_globaladdr(struct i2c_child_t *pchild, unsigned char data, char *bufdata) { /* Translatation table is not necessary, as global * addr is the integer value of the GA# bits. * * NOTE: MSB is documented as zero, but I see it as '1' always.... * * ----------------------------------------------- * | 0 | FAL | DEG | GA4 | GA3 | GA2 | GA1 | GA0 | * ----------------------------------------------- * GA0 - GA4 integer value of Global Address (backplane slot#) * DEG 0 = cPCI Power supply output is starting to degrade * 1 = cPCI Power supply output is OK * FAL 0 = cPCI Power supply has failed * 1 = cPCI Power supply output is OK */ bufdata[0] = (data & ENVCTRL_GLOBALADDR_ADDR_MASK); return 1; } /* Function Description: Read standard voltage and power supply status. * Return : Always 1 byte. Status stored in bufdata. */ static unsigned char envctrl_i2c_voltage_status(struct i2c_child_t *pchild, unsigned char data, char *bufdata) { unsigned char tmp, ret = 0; int i, j = 0; tmp = data & pchild->voltage_mask; /* Two channels are used to monitor voltage and power supply. */ if (tmp == pchild->voltage_mask) { /* All bits are on. Voltage and power supply are okay. */ ret = ENVCTRL_VOLTAGE_POWERSUPPLY_GOOD; } else if (tmp == 0) { /* All bits are off. Voltage and power supply are bad */ ret = ENVCTRL_VOLTAGE_POWERSUPPLY_BAD; } else { /* Either voltage or power supply has problem. */ for (i = 0; i < PCF8584_MAX_CHANNELS; i++) { if (pchild->voltage_mask & chnls_mask[i]) { j++; /* Break out when there is a mismatch. */ if (!(chnls_mask[i] & tmp)) break; } } /* Make a wish that hardware will always use the * first channel for voltage and the second for * power supply. */ if (j == 1) ret = ENVCTRL_VOLTAGE_BAD; else ret = ENVCTRL_POWERSUPPLY_BAD; } bufdata[0] = ret; return 1; } /* Function Description: Read a byte from /dev/envctrl. Mapped to user read(). * Return: Number of read bytes. 0 for error. */ static ssize_t envctrl_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct i2c_child_t *pchild; unsigned char data[10]; int ret = 0; /* Get the type of read as decided in ioctl() call. * Find the appropriate i2c child. * Get the data and put back to the user buffer. */ switch ((int)(long)file->private_data) { case ENVCTRL_RD_WARNING_TEMPERATURE: if (warning_temperature == 0) return 0; data[0] = (unsigned char)(warning_temperature); ret = 1; if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_SHUTDOWN_TEMPERATURE: if (shutdown_temperature == 0) return 0; data[0] = (unsigned char)(shutdown_temperature); ret = 1; if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_MTHRBD_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_MTHRBDTEMP_MON))) return 0; ret = envctrl_read_noncpu_info(pchild, ENVCTRL_MTHRBDTEMP_MON, data); if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_CPU_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON))) return 0; ret = envctrl_read_cpu_info(read_cpu, pchild, ENVCTRL_CPUTEMP_MON, data); /* Reset cpu to the default cpu0. */ if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_CPU_VOLTAGE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUVOLTAGE_MON))) return 0; ret = envctrl_read_cpu_info(read_cpu, pchild, ENVCTRL_CPUVOLTAGE_MON, data); /* Reset cpu to the default cpu0. */ if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_SCSI_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_SCSITEMP_MON))) return 0; ret = envctrl_read_noncpu_info(pchild, ENVCTRL_SCSITEMP_MON, data); if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_ETHERNET_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_ETHERTEMP_MON))) return 0; ret = envctrl_read_noncpu_info(pchild, ENVCTRL_ETHERTEMP_MON, data); if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_FAN_STATUS: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_FANSTAT_MON))) return 0; data[0] = envctrl_i2c_read_8574(pchild->addr); ret = envctrl_i2c_fan_status(pchild,data[0], data); if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_GLOBALADDRESS: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON))) return 0; data[0] = envctrl_i2c_read_8574(pchild->addr); ret = envctrl_i2c_globaladdr(pchild, data[0], data); if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; case ENVCTRL_RD_VOLTAGE_STATUS: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_VOLTAGESTAT_MON))) /* If voltage monitor not present, check for CPCI equivalent */ if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON))) return 0; data[0] = envctrl_i2c_read_8574(pchild->addr); ret = envctrl_i2c_voltage_status(pchild, data[0], data); if (copy_to_user(buf, data, ret)) ret = -EFAULT; break; default: break; } return ret; } /* Function Description: Command what to read. Mapped to user ioctl(). * Return: Gives 0 for implemented commands, -EINVAL otherwise. */ static long envctrl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { char __user *infobuf; switch (cmd) { case ENVCTRL_RD_WARNING_TEMPERATURE: case ENVCTRL_RD_SHUTDOWN_TEMPERATURE: case ENVCTRL_RD_MTHRBD_TEMPERATURE: case ENVCTRL_RD_FAN_STATUS: case ENVCTRL_RD_VOLTAGE_STATUS: case ENVCTRL_RD_ETHERNET_TEMPERATURE: case ENVCTRL_RD_SCSI_TEMPERATURE: case ENVCTRL_RD_GLOBALADDRESS: file->private_data = (void *)(long)cmd; break; case ENVCTRL_RD_CPU_TEMPERATURE: case ENVCTRL_RD_CPU_VOLTAGE: /* Check to see if application passes in any cpu number, * the default is cpu0. */ infobuf = (char __user *) arg; if (infobuf == NULL) { read_cpu = 0; }else { get_user(read_cpu, infobuf); } /* Save the command for use when reading. */ file->private_data = (void *)(long)cmd; break; default: return -EINVAL; } return 0; } /* Function Description: open device. Mapped to user open(). * Return: Always 0. */ static int envctrl_open(struct inode *inode, struct file *file) { file->private_data = NULL; return 0; } /* Function Description: Open device. Mapped to user close(). * Return: Always 0. */ static int envctrl_release(struct inode *inode, struct file *file) { return 0; } static const struct file_operations envctrl_fops = { .owner = THIS_MODULE, .read = envctrl_read, .unlocked_ioctl = envctrl_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = envctrl_open, .release = envctrl_release, .llseek = noop_llseek, }; static struct miscdevice envctrl_dev = { ENVCTRL_MINOR, "envctrl", &envctrl_fops }; /* Function Description: Set monitor type based on firmware description. * Return: None. */ static void envctrl_set_mon(struct i2c_child_t *pchild, const char *chnl_desc, int chnl_no) { /* Firmware only has temperature type. It does not distinguish * different kinds of temperatures. We use channel description * to disinguish them. */ if (!(strcmp(chnl_desc,"temp,cpu")) || !(strcmp(chnl_desc,"temp,cpu0")) || !(strcmp(chnl_desc,"temp,cpu1")) || !(strcmp(chnl_desc,"temp,cpu2")) || !(strcmp(chnl_desc,"temp,cpu3"))) pchild->mon_type[chnl_no] = ENVCTRL_CPUTEMP_MON; if (!(strcmp(chnl_desc,"vddcore,cpu0")) || !(strcmp(chnl_desc,"vddcore,cpu1")) || !(strcmp(chnl_desc,"vddcore,cpu2")) || !(strcmp(chnl_desc,"vddcore,cpu3"))) pchild->mon_type[chnl_no] = ENVCTRL_CPUVOLTAGE_MON; if (!(strcmp(chnl_desc,"temp,motherboard"))) pchild->mon_type[chnl_no] = ENVCTRL_MTHRBDTEMP_MON; if (!(strcmp(chnl_desc,"temp,scsi"))) pchild->mon_type[chnl_no] = ENVCTRL_SCSITEMP_MON; if (!(strcmp(chnl_desc,"temp,ethernet"))) pchild->mon_type[chnl_no] = ENVCTRL_ETHERTEMP_MON; } /* Function Description: Initialize monitor channel with channel desc, * decoding tables, monitor type, optional properties. * Return: None. */ static void envctrl_init_adc(struct i2c_child_t *pchild, struct device_node *dp) { int i = 0, len; const char *pos; const unsigned int *pval; /* Firmware describe channels into a stream separated by a '\0'. */ pos = of_get_property(dp, "channels-description", &len); while (len > 0) { int l = strlen(pos) + 1; envctrl_set_mon(pchild, pos, i++); len -= l; pos += l; } /* Get optional properties. */ pval = of_get_property(dp, "warning-temp", NULL); if (pval) warning_temperature = *pval; pval = of_get_property(dp, "shutdown-temp", NULL); if (pval) shutdown_temperature = *pval; } /* Function Description: Initialize child device monitoring fan status. * Return: None. */ static void envctrl_init_fanstat(struct i2c_child_t *pchild) { int i; /* Go through all channels and set up the mask. */ for (i = 0; i < pchild->total_chnls; i++) pchild->fan_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no]; /* We only need to know if this child has fan status monitored. * We don't care which channels since we have the mask already. */ pchild->mon_type[0] = ENVCTRL_FANSTAT_MON; } /* Function Description: Initialize child device for global addressing line. * Return: None. */ static void envctrl_init_globaladdr(struct i2c_child_t *pchild) { int i; /* Voltage/PowerSupply monitoring is piggybacked * with Global Address on CompactPCI. See comments * within envctrl_i2c_globaladdr for bit assignments. * * The mask is created here by assigning mask bits to each * bit position that represents PCF8584_VOLTAGE_TYPE data. * Channel numbers are not consecutive within the globaladdr * node (why?), so we use the actual counter value as chnls_mask * index instead of the chnl_array[x].chnl_no value. * * NOTE: This loop could be replaced with a constant representing * a mask of bits 5&6 (ENVCTRL_GLOBALADDR_PSTAT_MASK). */ for (i = 0; i < pchild->total_chnls; i++) { if (PCF8584_VOLTAGE_TYPE == pchild->chnl_array[i].type) { pchild->voltage_mask |= chnls_mask[i]; } } /* We only need to know if this child has global addressing * line monitored. We don't care which channels since we know * the mask already (ENVCTRL_GLOBALADDR_ADDR_MASK). */ pchild->mon_type[0] = ENVCTRL_GLOBALADDR_MON; } /* Initialize child device monitoring voltage status. */ static void envctrl_init_voltage_status(struct i2c_child_t *pchild) { int i; /* Go through all channels and set up the mask. */ for (i = 0; i < pchild->total_chnls; i++) pchild->voltage_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no]; /* We only need to know if this child has voltage status monitored. * We don't care which channels since we have the mask already. */ pchild->mon_type[0] = ENVCTRL_VOLTAGESTAT_MON; } /* Function Description: Initialize i2c child device. * Return: None. */ static void envctrl_init_i2c_child(struct device_node *dp, struct i2c_child_t *pchild) { int len, i, tbls_size = 0; const void *pval; /* Get device address. */ pval = of_get_property(dp, "reg", &len); memcpy(&pchild->addr, pval, len); /* Get tables property. Read firmware temperature tables. */ pval = of_get_property(dp, "translation", &len); if (pval && len > 0) { memcpy(pchild->tblprop_array, pval, len); pchild->total_tbls = len / sizeof(struct pcf8584_tblprop); for (i = 0; i < pchild->total_tbls; i++) { if ((pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset) > tbls_size) { tbls_size = pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset; } } pchild->tables = kmalloc(tbls_size, GFP_KERNEL); if (pchild->tables == NULL){ printk(KERN_ERR PFX "Failed to allocate table.\n"); return; } pval = of_get_property(dp, "tables", &len); if (!pval || len <= 0) { printk(KERN_ERR PFX "Failed to get table.\n"); return; } memcpy(pchild->tables, pval, len); } /* SPARCengine ASM Reference Manual (ref. SMI doc 805-7581-04) * sections 2.5, 3.5, 4.5 state node 0x70 for CP1400/1500 is * "For Factory Use Only." * * We ignore the node on these platforms by assigning the * 'NULL' monitor type. */ if (ENVCTRL_CPCI_IGNORED_NODE == pchild->addr) { struct device_node *root_node; int len; root_node = of_find_node_by_path("/"); if (of_node_name_eq(root_node, "SUNW,UltraSPARC-IIi-cEngine")) { for (len = 0; len < PCF8584_MAX_CHANNELS; ++len) { pchild->mon_type[len] = ENVCTRL_NOMON; } of_node_put(root_node); return; } of_node_put(root_node); } /* Get the monitor channels. */ pval = of_get_property(dp, "channels-in-use", &len); memcpy(pchild->chnl_array, pval, len); pchild->total_chnls = len / sizeof(struct pcf8584_channel); for (i = 0; i < pchild->total_chnls; i++) { switch (pchild->chnl_array[i].type) { case PCF8584_TEMP_TYPE: envctrl_init_adc(pchild, dp); break; case PCF8584_GLOBALADDR_TYPE: envctrl_init_globaladdr(pchild); i = pchild->total_chnls; break; case PCF8584_FANSTAT_TYPE: envctrl_init_fanstat(pchild); i = pchild->total_chnls; break; case PCF8584_VOLTAGE_TYPE: if (pchild->i2ctype == I2C_ADC) { envctrl_init_adc(pchild,dp); } else { envctrl_init_voltage_status(pchild); } i = pchild->total_chnls; break; default: break; } } } /* Function Description: Search the child device list for a device. * Return : The i2c child if found. NULL otherwise. */ static struct i2c_child_t *envctrl_get_i2c_child(unsigned char mon_type) { int i, j; for (i = 0; i < ENVCTRL_MAX_CPU*2; i++) { for (j = 0; j < PCF8584_MAX_CHANNELS; j++) { if (i2c_childlist[i].mon_type[j] == mon_type) { return (struct i2c_child_t *)(&(i2c_childlist[i])); } } } return NULL; } static void envctrl_do_shutdown(void) { static int inprog = 0; if (inprog != 0) return; inprog = 1; printk(KERN_CRIT "kenvctrld: WARNING: Shutting down the system now.\n"); orderly_poweroff(true); } static struct task_struct *kenvctrld_task; static int kenvctrld(void *__unused) { int poll_interval; int whichcpu; char tempbuf[10]; struct i2c_child_t *cputemp; if (NULL == (cputemp = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON))) { printk(KERN_ERR PFX "kenvctrld unable to monitor CPU temp-- exiting\n"); return -ENODEV; } poll_interval = 5000; /* TODO env_mon_interval */ printk(KERN_INFO PFX "%s starting...\n", current->comm); for (;;) { msleep_interruptible(poll_interval); if (kthread_should_stop()) break; for (whichcpu = 0; whichcpu < ENVCTRL_MAX_CPU; ++whichcpu) { if (0 < envctrl_read_cpu_info(whichcpu, cputemp, ENVCTRL_CPUTEMP_MON, tempbuf)) { if (tempbuf[0] >= shutdown_temperature) { printk(KERN_CRIT "%s: WARNING: CPU%i temperature %i C meets or exceeds "\ "shutdown threshold %i C\n", current->comm, whichcpu, tempbuf[0], shutdown_temperature); envctrl_do_shutdown(); } } } } printk(KERN_INFO PFX "%s exiting...\n", current->comm); return 0; } static int envctrl_probe(struct platform_device *op) { struct device_node *dp; int index, err; if (i2c) return -EINVAL; i2c = of_ioremap(&op->resource[0], 0, 0x2, DRIVER_NAME); if (!i2c) return -ENOMEM; index = 0; dp = op->dev.of_node->child; while (dp) { if (of_node_name_eq(dp, "gpio")) { i2c_childlist[index].i2ctype = I2C_GPIO; envctrl_init_i2c_child(dp, &(i2c_childlist[index++])); } else if (of_node_name_eq(dp, "adc")) { i2c_childlist[index].i2ctype = I2C_ADC; envctrl_init_i2c_child(dp, &(i2c_childlist[index++])); } dp = dp->sibling; } /* Set device address. */ writeb(CONTROL_PIN, i2c + PCF8584_CSR); writeb(PCF8584_ADDRESS, i2c + PCF8584_DATA); /* Set system clock and SCL frequencies. */ writeb(CONTROL_PIN | CONTROL_ES1, i2c + PCF8584_CSR); writeb(CLK_4_43 | BUS_CLK_90, i2c + PCF8584_DATA); /* Enable serial interface. */ writeb(CONTROL_PIN | CONTROL_ES0 | CONTROL_ACK, i2c + PCF8584_CSR); udelay(200); /* Register the device as a minor miscellaneous device. */ err = misc_register(&envctrl_dev); if (err) { printk(KERN_ERR PFX "Unable to get misc minor %d\n", envctrl_dev.minor); goto out_iounmap; } /* Note above traversal routine post-incremented 'i' to accommodate * a next child device, so we decrement before reverse-traversal of * child devices. */ printk(KERN_INFO PFX "Initialized "); for (--index; index >= 0; --index) { printk("[%s 0x%lx]%s", (I2C_ADC == i2c_childlist[index].i2ctype) ? "adc" : ((I2C_GPIO == i2c_childlist[index].i2ctype) ? "gpio" : "unknown"), i2c_childlist[index].addr, (0 == index) ? "\n" : " "); } kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld"); if (IS_ERR(kenvctrld_task)) { err = PTR_ERR(kenvctrld_task); goto out_deregister; } return 0; out_deregister: misc_deregister(&envctrl_dev); out_iounmap: of_iounmap(&op->resource[0], i2c, 0x2); for (index = 0; index < ENVCTRL_MAX_CPU * 2; index++) kfree(i2c_childlist[index].tables); return err; } static void envctrl_remove(struct platform_device *op) { int index; kthread_stop(kenvctrld_task); of_iounmap(&op->resource[0], i2c, 0x2); misc_deregister(&envctrl_dev); for (index = 0; index < ENVCTRL_MAX_CPU * 2; index++) kfree(i2c_childlist[index].tables); } static const struct of_device_id envctrl_match[] = { { .name = "i2c", .compatible = "i2cpcf,8584", }, {}, }; MODULE_DEVICE_TABLE(of, envctrl_match); static struct platform_driver envctrl_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = envctrl_match, }, .probe = envctrl_probe, .remove_new = envctrl_remove, }; module_platform_driver(envctrl_driver); MODULE_DESCRIPTION("SUN environment monitoring device driver"); MODULE_LICENSE("GPL");