// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2025 Arm Ltd. #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mpam_internal.h" /* * mpam_list_lock protects the SRCU lists when writing. Once the * mpam_enabled key is enabled these lists are read-only, * unless the error interrupt disables the driver. */ static DEFINE_MUTEX(mpam_list_lock); static LIST_HEAD(mpam_all_msc); struct srcu_struct mpam_srcu; /* * Number of MSCs that have been probed. Once all MSCs have been probed MPAM * can be enabled. */ static atomic_t mpam_num_msc; static int mpam_cpuhp_state; static DEFINE_MUTEX(mpam_cpuhp_state_lock); /* * The smallest common values for any CPU or MSC in the system. * Generating traffic outside this range will result in screaming interrupts. */ u16 mpam_partid_max; u8 mpam_pmg_max; static bool partid_max_init, partid_max_published; static DEFINE_SPINLOCK(partid_max_lock); /* * mpam is enabled once all devices have been probed from CPU online callbacks, * scheduled via this work_struct. If access to an MSC depends on a CPU that * was not brought online at boot, this can happen surprisingly late. */ static DECLARE_WORK(mpam_enable_work, &mpam_enable); /* * All mpam error interrupts indicate a software bug. On receipt, disable the * driver. */ static DECLARE_WORK(mpam_broken_work, &mpam_disable); /* When mpam is disabled, the printed reason to aid debugging */ static char *mpam_disable_reason; /* * An MSC is a physical container for controls and monitors, each identified by * their RIS index. These share a base-address, interrupts and some MMIO * registers. A vMSC is a virtual container for RIS in an MSC that control or * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but * not all RIS in an MSC share a vMSC. * * Components are a group of vMSC that control or monitor the same thing but * are from different MSC, so have different base-address, interrupts etc. * Classes are the set components of the same type. * * The features of a vMSC is the union of the RIS it contains. * The features of a Class and Component are the common subset of the vMSC * they contain. * * e.g. The system cache may have bandwidth controls on multiple interfaces, * for regulating traffic from devices independently of traffic from CPUs. * If these are two RIS in one MSC, they will be treated as controlling * different things, and will not share a vMSC/component/class. * * e.g. The L2 may have one MSC and two RIS, one for cache-controls another * for bandwidth. These two RIS are members of the same vMSC. * * e.g. The set of RIS that make up the L2 are grouped as a component. These * are sometimes termed slices. They should be configured the same, as if there * were only one. * * e.g. The SoC probably has more than one L2, each attached to a distinct set * of CPUs. All the L2 components are grouped as a class. * * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list, * then linked via struct mpam_ris to a vmsc, component and class. * The same MSC may exist under different class->component->vmsc paths, but the * RIS index will be unique. */ LIST_HEAD(mpam_classes); /* List of all objects that can be free()d after synchronise_srcu() */ static LLIST_HEAD(mpam_garbage); static inline void init_garbage(struct mpam_garbage *garbage) { init_llist_node(&garbage->llist); } #define add_to_garbage(x) \ do { \ __typeof__(x) _x = (x); \ _x->garbage.to_free = _x; \ llist_add(&_x->garbage.llist, &mpam_garbage); \ } while (0) static void mpam_free_garbage(void) { struct mpam_garbage *iter, *tmp; struct llist_node *to_free = llist_del_all(&mpam_garbage); if (!to_free) return; synchronize_srcu(&mpam_srcu); llist_for_each_entry_safe(iter, tmp, to_free, llist) { if (iter->pdev) devm_kfree(&iter->pdev->dev, iter->to_free); else kfree(iter->to_free); } } static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg) { WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); return readl_relaxed(msc->mapped_hwpage + reg); } static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg) { lockdep_assert_held_once(&msc->part_sel_lock); return __mpam_read_reg(msc, reg); } #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg) static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val) { WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz); WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); writel_relaxed(val, msc->mapped_hwpage + reg); } static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val) { lockdep_assert_held_once(&msc->part_sel_lock); __mpam_write_reg(msc, reg, val); } #define mpam_write_partsel_reg(msc, reg, val) _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val) static u64 mpam_msc_read_idr(struct mpam_msc *msc) { u64 idr_high = 0, idr_low; lockdep_assert_held(&msc->part_sel_lock); idr_low = mpam_read_partsel_reg(msc, IDR); if (FIELD_GET(MPAMF_IDR_EXT, idr_low)) idr_high = mpam_read_partsel_reg(msc, IDR + 4); return (idr_high << 32) | idr_low; } static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc) { lockdep_assert_held(&msc->part_sel_lock); mpam_write_partsel_reg(msc, PART_SEL, partsel); } static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc) { u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid); __mpam_part_sel_raw(partsel, msc); } int mpam_register_requestor(u16 partid_max, u8 pmg_max) { guard(spinlock)(&partid_max_lock); if (!partid_max_init) { mpam_partid_max = partid_max; mpam_pmg_max = pmg_max; partid_max_init = true; } else if (!partid_max_published) { mpam_partid_max = min(mpam_partid_max, partid_max); mpam_pmg_max = min(mpam_pmg_max, pmg_max); } else { /* New requestors can't lower the values */ if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max) return -EBUSY; } return 0; } EXPORT_SYMBOL(mpam_register_requestor); static struct mpam_class * mpam_class_alloc(u8 level_idx, enum mpam_class_types type) { struct mpam_class *class; lockdep_assert_held(&mpam_list_lock); class = kzalloc(sizeof(*class), GFP_KERNEL); if (!class) return ERR_PTR(-ENOMEM); init_garbage(&class->garbage); INIT_LIST_HEAD_RCU(&class->components); /* Affinity is updated when ris are added */ class->level = level_idx; class->type = type; INIT_LIST_HEAD_RCU(&class->classes_list); list_add_rcu(&class->classes_list, &mpam_classes); return class; } static void mpam_class_destroy(struct mpam_class *class) { lockdep_assert_held(&mpam_list_lock); list_del_rcu(&class->classes_list); add_to_garbage(class); } static struct mpam_class * mpam_class_find(u8 level_idx, enum mpam_class_types type) { struct mpam_class *class; lockdep_assert_held(&mpam_list_lock); list_for_each_entry(class, &mpam_classes, classes_list) { if (class->type == type && class->level == level_idx) return class; } return mpam_class_alloc(level_idx, type); } static struct mpam_component * mpam_component_alloc(struct mpam_class *class, int id) { struct mpam_component *comp; lockdep_assert_held(&mpam_list_lock); comp = kzalloc(sizeof(*comp), GFP_KERNEL); if (!comp) return ERR_PTR(-ENOMEM); init_garbage(&comp->garbage); comp->comp_id = id; INIT_LIST_HEAD_RCU(&comp->vmsc); /* Affinity is updated when RIS are added */ INIT_LIST_HEAD_RCU(&comp->class_list); comp->class = class; list_add_rcu(&comp->class_list, &class->components); return comp; } static void mpam_component_destroy(struct mpam_component *comp) { struct mpam_class *class = comp->class; lockdep_assert_held(&mpam_list_lock); list_del_rcu(&comp->class_list); add_to_garbage(comp); if (list_empty(&class->components)) mpam_class_destroy(class); } static struct mpam_component * mpam_component_find(struct mpam_class *class, int id) { struct mpam_component *comp; lockdep_assert_held(&mpam_list_lock); list_for_each_entry(comp, &class->components, class_list) { if (comp->comp_id == id) return comp; } return mpam_component_alloc(class, id); } static struct mpam_vmsc * mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc) { struct mpam_vmsc *vmsc; lockdep_assert_held(&mpam_list_lock); vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL); if (!vmsc) return ERR_PTR(-ENOMEM); init_garbage(&vmsc->garbage); INIT_LIST_HEAD_RCU(&vmsc->ris); INIT_LIST_HEAD_RCU(&vmsc->comp_list); vmsc->comp = comp; vmsc->msc = msc; list_add_rcu(&vmsc->comp_list, &comp->vmsc); return vmsc; } static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc) { struct mpam_component *comp = vmsc->comp; lockdep_assert_held(&mpam_list_lock); list_del_rcu(&vmsc->comp_list); add_to_garbage(vmsc); if (list_empty(&comp->vmsc)) mpam_component_destroy(comp); } static struct mpam_vmsc * mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc) { struct mpam_vmsc *vmsc; lockdep_assert_held(&mpam_list_lock); list_for_each_entry(vmsc, &comp->vmsc, comp_list) { if (vmsc->msc->id == msc->id) return vmsc; } return mpam_vmsc_alloc(comp, msc); } /* * The cacheinfo structures are only populated when CPUs are online. * This helper walks the acpi tables to include offline CPUs too. */ int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level, cpumask_t *affinity) { return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity); } /* * cpumask_of_node() only knows about online CPUs. This can't tell us whether * a class is represented on all possible CPUs. */ static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity) { int cpu; for_each_possible_cpu(cpu) { if (node_id == cpu_to_node(cpu)) cpumask_set_cpu(cpu, affinity); } } static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity, enum mpam_class_types type, struct mpam_class *class, struct mpam_component *comp) { int err; switch (type) { case MPAM_CLASS_CACHE: err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level, affinity); if (err) { dev_warn_once(&msc->pdev->dev, "Failed to determine CPU affinity\n"); return err; } if (cpumask_empty(affinity)) dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n"); break; case MPAM_CLASS_MEMORY: get_cpumask_from_node_id(comp->comp_id, affinity); /* affinity may be empty for CPU-less memory nodes */ break; case MPAM_CLASS_UNKNOWN: return 0; } cpumask_and(affinity, affinity, &msc->accessibility); return 0; } static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx, enum mpam_class_types type, u8 class_id, int component_id) { int err; struct mpam_vmsc *vmsc; struct mpam_msc_ris *ris; struct mpam_class *class; struct mpam_component *comp; struct platform_device *pdev = msc->pdev; lockdep_assert_held(&mpam_list_lock); if (ris_idx > MPAM_MSC_MAX_NUM_RIS) return -EINVAL; if (test_and_set_bit(ris_idx, &msc->ris_idxs)) return -EBUSY; ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL); if (!ris) return -ENOMEM; init_garbage(&ris->garbage); ris->garbage.pdev = pdev; class = mpam_class_find(class_id, type); if (IS_ERR(class)) return PTR_ERR(class); comp = mpam_component_find(class, component_id); if (IS_ERR(comp)) { if (list_empty(&class->components)) mpam_class_destroy(class); return PTR_ERR(comp); } vmsc = mpam_vmsc_find(comp, msc); if (IS_ERR(vmsc)) { if (list_empty(&comp->vmsc)) mpam_component_destroy(comp); return PTR_ERR(vmsc); } err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp); if (err) { if (list_empty(&vmsc->ris)) mpam_vmsc_destroy(vmsc); return err; } ris->ris_idx = ris_idx; INIT_LIST_HEAD_RCU(&ris->msc_list); INIT_LIST_HEAD_RCU(&ris->vmsc_list); ris->vmsc = vmsc; cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity); cpumask_or(&class->affinity, &class->affinity, &ris->affinity); list_add_rcu(&ris->vmsc_list, &vmsc->ris); list_add_rcu(&ris->msc_list, &msc->ris); return 0; } static void mpam_ris_destroy(struct mpam_msc_ris *ris) { struct mpam_vmsc *vmsc = ris->vmsc; struct mpam_msc *msc = vmsc->msc; struct mpam_component *comp = vmsc->comp; struct mpam_class *class = comp->class; lockdep_assert_held(&mpam_list_lock); /* * It is assumed affinities don't overlap. If they do the class becomes * unusable immediately. */ cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity); cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity); clear_bit(ris->ris_idx, &msc->ris_idxs); list_del_rcu(&ris->msc_list); list_del_rcu(&ris->vmsc_list); add_to_garbage(ris); if (list_empty(&vmsc->ris)) mpam_vmsc_destroy(vmsc); } int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx, enum mpam_class_types type, u8 class_id, int component_id) { int err; mutex_lock(&mpam_list_lock); err = mpam_ris_create_locked(msc, ris_idx, type, class_id, component_id); mutex_unlock(&mpam_list_lock); if (err) mpam_free_garbage(); return err; } static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc, u8 ris_idx) { int err; struct mpam_msc_ris *ris; lockdep_assert_held(&mpam_list_lock); if (!test_bit(ris_idx, &msc->ris_idxs)) { err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN, 0, 0); if (err) return ERR_PTR(err); } list_for_each_entry(ris, &msc->ris, msc_list) { if (ris->ris_idx == ris_idx) return ris; } return ERR_PTR(-ENOENT); } static int mpam_msc_hw_probe(struct mpam_msc *msc) { u64 idr; u16 partid_max; u8 ris_idx, pmg_max; struct mpam_msc_ris *ris; struct device *dev = &msc->pdev->dev; lockdep_assert_held(&msc->probe_lock); idr = __mpam_read_reg(msc, MPAMF_AIDR); if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) { dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n"); return -EIO; } /* Grab an IDR value to find out how many RIS there are */ mutex_lock(&msc->part_sel_lock); idr = mpam_msc_read_idr(msc); mutex_unlock(&msc->part_sel_lock); msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr); /* Use these values so partid/pmg always starts with a valid value */ msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) { mutex_lock(&msc->part_sel_lock); __mpam_part_sel(ris_idx, 0, msc); idr = mpam_msc_read_idr(msc); mutex_unlock(&msc->part_sel_lock); partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); msc->partid_max = min(msc->partid_max, partid_max); msc->pmg_max = min(msc->pmg_max, pmg_max); mutex_lock(&mpam_list_lock); ris = mpam_get_or_create_ris(msc, ris_idx); mutex_unlock(&mpam_list_lock); if (IS_ERR(ris)) return PTR_ERR(ris); } spin_lock(&partid_max_lock); mpam_partid_max = min(mpam_partid_max, msc->partid_max); mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max); spin_unlock(&partid_max_lock); msc->probed = true; return 0; } static int mpam_cpu_online(unsigned int cpu) { return 0; } /* Before mpam is enabled, try to probe new MSC */ static int mpam_discovery_cpu_online(unsigned int cpu) { int err = 0; struct mpam_msc *msc; bool new_device_probed = false; guard(srcu)(&mpam_srcu); list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, srcu_read_lock_held(&mpam_srcu)) { if (!cpumask_test_cpu(cpu, &msc->accessibility)) continue; mutex_lock(&msc->probe_lock); if (!msc->probed) err = mpam_msc_hw_probe(msc); mutex_unlock(&msc->probe_lock); if (err) break; new_device_probed = true; } if (new_device_probed && !err) schedule_work(&mpam_enable_work); if (err) { mpam_disable_reason = "error during probing"; schedule_work(&mpam_broken_work); } return err; } static int mpam_cpu_offline(unsigned int cpu) { return 0; } static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online), int (*offline)(unsigned int offline), char *name) { mutex_lock(&mpam_cpuhp_state_lock); if (mpam_cpuhp_state) { cpuhp_remove_state(mpam_cpuhp_state); mpam_cpuhp_state = 0; } mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online, offline); if (mpam_cpuhp_state <= 0) { pr_err("Failed to register cpuhp callbacks"); mpam_cpuhp_state = 0; } mutex_unlock(&mpam_cpuhp_state_lock); } /* * An MSC can control traffic from a set of CPUs, but may only be accessible * from a (hopefully wider) set of CPUs. The common reason for this is power * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the * corresponding cache may also be powered off. By making accesses from * one of those CPUs, we ensure we don't access a cache that's powered off. */ static void update_msc_accessibility(struct mpam_msc *msc) { u32 affinity_id; int err; err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity", &affinity_id); if (err) cpumask_copy(&msc->accessibility, cpu_possible_mask); else acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility); } /* * There are two ways of reaching a struct mpam_msc_ris. Via the * class->component->vmsc->ris, or via the msc. * When destroying the msc, the other side needs unlinking and cleaning up too. */ static void mpam_msc_destroy(struct mpam_msc *msc) { struct platform_device *pdev = msc->pdev; struct mpam_msc_ris *ris, *tmp; lockdep_assert_held(&mpam_list_lock); list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list) mpam_ris_destroy(ris); list_del_rcu(&msc->all_msc_list); platform_set_drvdata(pdev, NULL); add_to_garbage(msc); } static void mpam_msc_drv_remove(struct platform_device *pdev) { struct mpam_msc *msc = platform_get_drvdata(pdev); mutex_lock(&mpam_list_lock); mpam_msc_destroy(msc); mutex_unlock(&mpam_list_lock); mpam_free_garbage(); } static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev) { int err; u32 tmp; struct mpam_msc *msc; struct resource *msc_res; struct device *dev = &pdev->dev; lockdep_assert_held(&mpam_list_lock); msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL); if (!msc) return ERR_PTR(-ENOMEM); init_garbage(&msc->garbage); msc->garbage.pdev = pdev; err = devm_mutex_init(dev, &msc->probe_lock); if (err) return ERR_PTR(err); err = devm_mutex_init(dev, &msc->part_sel_lock); if (err) return ERR_PTR(err); mpam_mon_sel_lock_init(msc); msc->id = pdev->id; msc->pdev = pdev; INIT_LIST_HEAD_RCU(&msc->all_msc_list); INIT_LIST_HEAD_RCU(&msc->ris); update_msc_accessibility(msc); if (cpumask_empty(&msc->accessibility)) { dev_err_once(dev, "MSC is not accessible from any CPU!"); return ERR_PTR(-EINVAL); } if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp)) msc->iface = MPAM_IFACE_MMIO; else msc->iface = MPAM_IFACE_PCC; if (msc->iface == MPAM_IFACE_MMIO) { void __iomem *io; io = devm_platform_get_and_ioremap_resource(pdev, 0, &msc_res); if (IS_ERR(io)) { dev_err_once(dev, "Failed to map MSC base address\n"); return ERR_CAST(io); } msc->mapped_hwpage_sz = msc_res->end - msc_res->start; msc->mapped_hwpage = io; } else { return ERR_PTR(-EINVAL); } list_add_rcu(&msc->all_msc_list, &mpam_all_msc); platform_set_drvdata(pdev, msc); return msc; } static int fw_num_msc; static int mpam_msc_drv_probe(struct platform_device *pdev) { int err; struct mpam_msc *msc = NULL; void *plat_data = pdev->dev.platform_data; mutex_lock(&mpam_list_lock); msc = do_mpam_msc_drv_probe(pdev); mutex_unlock(&mpam_list_lock); if (IS_ERR(msc)) return PTR_ERR(msc); /* Create RIS entries described by firmware */ err = acpi_mpam_parse_resources(msc, plat_data); if (err) { mpam_msc_drv_remove(pdev); return err; } if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc) mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL, "mpam:drv_probe"); return 0; } static struct platform_driver mpam_msc_driver = { .driver = { .name = "mpam_msc", }, .probe = mpam_msc_drv_probe, .remove = mpam_msc_drv_remove, }; static void mpam_enable_once(void) { /* * Once the cpuhp callbacks have been changed, mpam_partid_max can no * longer change. */ spin_lock(&partid_max_lock); partid_max_published = true; spin_unlock(&partid_max_lock); mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline, "mpam:online"); /* Use printk() to avoid the pr_fmt adding the function name. */ printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n", mpam_partid_max + 1, mpam_pmg_max + 1); } void mpam_disable(struct work_struct *ignored) { struct mpam_msc *msc, *tmp; mutex_lock(&mpam_cpuhp_state_lock); if (mpam_cpuhp_state) { cpuhp_remove_state(mpam_cpuhp_state); mpam_cpuhp_state = 0; } mutex_unlock(&mpam_cpuhp_state_lock); mutex_lock(&mpam_list_lock); list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list) mpam_msc_destroy(msc); mutex_unlock(&mpam_list_lock); mpam_free_garbage(); pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason); } /* * Enable mpam once all devices have been probed. * Scheduled by mpam_discovery_cpu_online() once all devices have been created. * Also scheduled when new devices are probed when new CPUs come online. */ void mpam_enable(struct work_struct *work) { static atomic_t once; struct mpam_msc *msc; bool all_devices_probed = true; /* Have we probed all the hw devices? */ guard(srcu)(&mpam_srcu); list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, srcu_read_lock_held(&mpam_srcu)) { mutex_lock(&msc->probe_lock); if (!msc->probed) all_devices_probed = false; mutex_unlock(&msc->probe_lock); if (!all_devices_probed) break; } if (all_devices_probed && !atomic_fetch_inc(&once)) mpam_enable_once(); } static int __init mpam_msc_driver_init(void) { if (!system_supports_mpam()) return -EOPNOTSUPP; init_srcu_struct(&mpam_srcu); fw_num_msc = acpi_mpam_count_msc(); if (fw_num_msc <= 0) { pr_err("No MSC devices found in firmware\n"); return -EINVAL; } return platform_driver_register(&mpam_msc_driver); } /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */ subsys_initcall(mpam_msc_driver_init);