// SPDX-License-Identifier: GPL-2.0-only /* * Universal power supply monitor class * * Copyright © 2007 Anton Vorontsov * Copyright © 2004 Szabolcs Gyurko * Copyright © 2003 Ian Molton * * Modified: 2004, Oct Szabolcs Gyurko */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "power_supply.h" #include "samsung-sdi-battery.h" static const struct class power_supply_class = { .name = "power_supply", .dev_uevent = power_supply_uevent, }; static BLOCKING_NOTIFIER_HEAD(power_supply_notifier); static const struct device_type power_supply_dev_type = { .name = "power_supply", .groups = power_supply_attr_groups, }; #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) static bool __power_supply_is_supplied_by(struct power_supply *supplier, struct power_supply *supply) { int i; if (!supply->supplied_from && !supplier->supplied_to) return false; /* Support both supplied_to and supplied_from modes */ if (supply->supplied_from) { if (!supplier->desc->name) return false; for (i = 0; i < supply->num_supplies; i++) if (!strcmp(supplier->desc->name, supply->supplied_from[i])) return true; } else { if (!supply->desc->name) return false; for (i = 0; i < supplier->num_supplicants; i++) if (!strcmp(supplier->supplied_to[i], supply->desc->name)) return true; } return false; } static int __power_supply_changed_work(struct device *dev, void *data) { struct power_supply *psy = data; struct power_supply *pst = dev_get_drvdata(dev); if (__power_supply_is_supplied_by(psy, pst)) { if (pst->desc->external_power_changed) pst->desc->external_power_changed(pst); } return 0; } static void power_supply_changed_work(struct work_struct *work) { unsigned long flags; struct power_supply *psy = container_of(work, struct power_supply, changed_work); dev_dbg(&psy->dev, "%s\n", __func__); spin_lock_irqsave(&psy->changed_lock, flags); /* * Check 'changed' here to avoid issues due to race between * power_supply_changed() and this routine. In worst case * power_supply_changed() can be called again just before we take above * lock. During the first call of this routine we will mark 'changed' as * false and it will stay false for the next call as well. */ if (likely(psy->changed)) { psy->changed = false; spin_unlock_irqrestore(&psy->changed_lock, flags); power_supply_for_each_device(psy, __power_supply_changed_work); power_supply_update_leds(psy); blocking_notifier_call_chain(&power_supply_notifier, PSY_EVENT_PROP_CHANGED, psy); kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); spin_lock_irqsave(&psy->changed_lock, flags); } /* * Hold the wakeup_source until all events are processed. * power_supply_changed() might have called again and have set 'changed' * to true. */ if (likely(!psy->changed)) pm_relax(&psy->dev); spin_unlock_irqrestore(&psy->changed_lock, flags); } int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data)) { return class_for_each_device(&power_supply_class, NULL, data, fn); } EXPORT_SYMBOL_GPL(power_supply_for_each_device); void power_supply_changed(struct power_supply *psy) { unsigned long flags; dev_dbg(&psy->dev, "%s\n", __func__); spin_lock_irqsave(&psy->changed_lock, flags); psy->changed = true; pm_stay_awake(&psy->dev); spin_unlock_irqrestore(&psy->changed_lock, flags); schedule_work(&psy->changed_work); } EXPORT_SYMBOL_GPL(power_supply_changed); /* * Notify that power supply was registered after parent finished the probing. * * Often power supply is registered from driver's probe function. However * calling power_supply_changed() directly from power_supply_register() * would lead to execution of get_property() function provided by the driver * too early - before the probe ends. * * Avoid that by waiting on parent's mutex. */ static void power_supply_deferred_register_work(struct work_struct *work) { struct power_supply *psy = container_of(work, struct power_supply, deferred_register_work.work); if (psy->dev.parent) { while (!mutex_trylock(&psy->dev.parent->mutex)) { if (psy->removing) return; msleep(10); } } power_supply_changed(psy); if (psy->dev.parent) mutex_unlock(&psy->dev.parent->mutex); } #ifdef CONFIG_OF static int __power_supply_populate_supplied_from(struct device *dev, void *data) { struct power_supply *psy = data; struct power_supply *epsy = dev_get_drvdata(dev); struct device_node *np; int i = 0; do { np = of_parse_phandle(psy->of_node, "power-supplies", i++); if (!np) break; if (np == epsy->of_node) { dev_dbg(&psy->dev, "%s: Found supply : %s\n", psy->desc->name, epsy->desc->name); psy->supplied_from[i-1] = (char *)epsy->desc->name; psy->num_supplies++; of_node_put(np); break; } of_node_put(np); } while (np); return 0; } static int power_supply_populate_supplied_from(struct power_supply *psy) { int error; error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from); dev_dbg(&psy->dev, "%s %d\n", __func__, error); return error; } static int __power_supply_find_supply_from_node(struct device *dev, void *data) { struct device_node *np = data; struct power_supply *epsy = dev_get_drvdata(dev); /* returning non-zero breaks out of power_supply_for_each_device loop */ if (epsy->of_node == np) return 1; return 0; } static int power_supply_find_supply_from_node(struct device_node *supply_node) { int error; /* * power_supply_for_each_device() either returns its own errors or values * returned by __power_supply_find_supply_from_node(). * * __power_supply_find_supply_from_node() will return 0 (no match) * or 1 (match). * * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if * it returned 0, or error as returned by it. */ error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node); return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; } static int power_supply_check_supplies(struct power_supply *psy) { struct device_node *np; int cnt = 0; /* If there is already a list honor it */ if (psy->supplied_from && psy->num_supplies > 0) return 0; /* No device node found, nothing to do */ if (!psy->of_node) return 0; do { int ret; np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); if (!np) break; ret = power_supply_find_supply_from_node(np); of_node_put(np); if (ret) { dev_dbg(&psy->dev, "Failed to find supply!\n"); return ret; } } while (np); /* Missing valid "power-supplies" entries */ if (cnt == 1) return 0; /* All supplies found, allocate char ** array for filling */ psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), GFP_KERNEL); if (!psy->supplied_from) return -ENOMEM; *psy->supplied_from = devm_kcalloc(&psy->dev, cnt - 1, sizeof(**psy->supplied_from), GFP_KERNEL); if (!*psy->supplied_from) return -ENOMEM; return power_supply_populate_supplied_from(psy); } #else static int power_supply_check_supplies(struct power_supply *psy) { int nval, ret; if (!psy->dev.parent) return 0; nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); if (nval <= 0) return 0; psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, sizeof(char *), GFP_KERNEL); if (!psy->supplied_from) return -ENOMEM; ret = device_property_read_string_array(psy->dev.parent, "supplied-from", (const char **)psy->supplied_from, nval); if (ret < 0) return ret; psy->num_supplies = nval; return 0; } #endif struct psy_am_i_supplied_data { struct power_supply *psy; unsigned int count; }; static int __power_supply_am_i_supplied(struct device *dev, void *_data) { union power_supply_propval ret = {0,}; struct power_supply *epsy = dev_get_drvdata(dev); struct psy_am_i_supplied_data *data = _data; if (__power_supply_is_supplied_by(epsy, data->psy)) { data->count++; if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, &ret)) return ret.intval; } return 0; } int power_supply_am_i_supplied(struct power_supply *psy) { struct psy_am_i_supplied_data data = { psy, 0 }; int error; error = power_supply_for_each_device(&data, __power_supply_am_i_supplied); dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); if (data.count == 0) return -ENODEV; return error; } EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); static int __power_supply_is_system_supplied(struct device *dev, void *data) { union power_supply_propval ret = {0,}; struct power_supply *psy = dev_get_drvdata(dev); unsigned int *count = data; if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) return 0; (*count)++; if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, &ret)) return ret.intval; return 0; } int power_supply_is_system_supplied(void) { int error; unsigned int count = 0; error = power_supply_for_each_device(&count, __power_supply_is_system_supplied); /* * If no system scope power class device was found at all, most probably we * are running on a desktop system, so assume we are on mains power. */ if (count == 0) return 1; return error; } EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); struct psy_get_supplier_prop_data { struct power_supply *psy; enum power_supply_property psp; union power_supply_propval *val; }; static int __power_supply_get_supplier_property(struct device *dev, void *_data) { struct power_supply *epsy = dev_get_drvdata(dev); struct psy_get_supplier_prop_data *data = _data; if (__power_supply_is_supplied_by(epsy, data->psy)) if (!power_supply_get_property(epsy, data->psp, data->val)) return 1; /* Success */ return 0; /* Continue iterating */ } int power_supply_get_property_from_supplier(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct psy_get_supplier_prop_data data = { .psy = psy, .psp = psp, .val = val, }; int ret; /* * This function is not intended for use with a supply with multiple * suppliers, we simply pick the first supply to report the psp. */ ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property); if (ret < 0) return ret; if (ret == 0) return -ENODEV; return 0; } EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); int power_supply_set_battery_charged(struct power_supply *psy) { if (atomic_read(&psy->use_cnt) >= 0 && psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && psy->desc->set_charged) { psy->desc->set_charged(psy); return 0; } return -EINVAL; } EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); static int power_supply_match_device_by_name(struct device *dev, const void *data) { const char *name = data; struct power_supply *psy = dev_get_drvdata(dev); return strcmp(psy->desc->name, name) == 0; } /** * power_supply_get_by_name() - Search for a power supply and returns its ref * @name: Power supply name to fetch * * If power supply was found, it increases reference count for the * internal power supply's device. The user should power_supply_put() * after usage. * * Return: On success returns a reference to a power supply with * matching name equals to @name, a NULL otherwise. */ struct power_supply *power_supply_get_by_name(const char *name) { struct power_supply *psy = NULL; struct device *dev = class_find_device(&power_supply_class, NULL, name, power_supply_match_device_by_name); if (dev) { psy = dev_get_drvdata(dev); atomic_inc(&psy->use_cnt); } return psy; } EXPORT_SYMBOL_GPL(power_supply_get_by_name); /** * power_supply_put() - Drop reference obtained with power_supply_get_by_name * @psy: Reference to put * * The reference to power supply should be put before unregistering * the power supply. */ void power_supply_put(struct power_supply *psy) { might_sleep(); atomic_dec(&psy->use_cnt); put_device(&psy->dev); } EXPORT_SYMBOL_GPL(power_supply_put); #ifdef CONFIG_OF static int power_supply_match_device_node(struct device *dev, const void *data) { return dev->parent && dev->parent->of_node == data; } /** * power_supply_get_by_phandle() - Search for a power supply and returns its ref * @np: Pointer to device node holding phandle property * @property: Name of property holding a power supply name * * If power supply was found, it increases reference count for the * internal power supply's device. The user should power_supply_put() * after usage. * * Return: On success returns a reference to a power supply with * matching name equals to value under @property, NULL or ERR_PTR otherwise. */ struct power_supply *power_supply_get_by_phandle(struct device_node *np, const char *property) { struct device_node *power_supply_np; struct power_supply *psy = NULL; struct device *dev; power_supply_np = of_parse_phandle(np, property, 0); if (!power_supply_np) return ERR_PTR(-ENODEV); dev = class_find_device(&power_supply_class, NULL, power_supply_np, power_supply_match_device_node); of_node_put(power_supply_np); if (dev) { psy = dev_get_drvdata(dev); atomic_inc(&psy->use_cnt); } return psy; } EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); static void devm_power_supply_put(struct device *dev, void *res) { struct power_supply **psy = res; power_supply_put(*psy); } /** * devm_power_supply_get_by_phandle() - Resource managed version of * power_supply_get_by_phandle() * @dev: Pointer to device holding phandle property * @property: Name of property holding a power supply phandle * * Return: On success returns a reference to a power supply with * matching name equals to value under @property, NULL or ERR_PTR otherwise. */ struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, const char *property) { struct power_supply **ptr, *psy; if (!dev->of_node) return ERR_PTR(-ENODEV); ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); psy = power_supply_get_by_phandle(dev->of_node, property); if (IS_ERR_OR_NULL(psy)) { devres_free(ptr); } else { *ptr = psy; devres_add(dev, ptr); } return psy; } EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); #endif /* CONFIG_OF */ int power_supply_get_battery_info(struct power_supply *psy, struct power_supply_battery_info **info_out) { struct power_supply_resistance_temp_table *resist_table; struct power_supply_battery_info *info; struct device_node *battery_np = NULL; struct fwnode_reference_args args; struct fwnode_handle *fwnode = NULL; const char *value; int err, len, index; const __be32 *list; u32 min_max[2]; if (psy->of_node) { battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); if (!battery_np) return -ENODEV; fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); } else if (psy->dev.parent) { err = fwnode_property_get_reference_args( dev_fwnode(psy->dev.parent), "monitored-battery", NULL, 0, 0, &args); if (err) return err; fwnode = args.fwnode; } if (!fwnode) return -ENOENT; err = fwnode_property_read_string(fwnode, "compatible", &value); if (err) goto out_put_node; /* Try static batteries first */ err = samsung_sdi_battery_get_info(&psy->dev, value, &info); if (!err) goto out_ret_pointer; else if (err == -ENODEV) /* * Device does not have a static battery. * Proceed to look for a simple battery. */ err = 0; if (strcmp("simple-battery", value)) { err = -ENODEV; goto out_put_node; } info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); if (!info) { err = -ENOMEM; goto out_put_node; } info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; info->energy_full_design_uwh = -EINVAL; info->charge_full_design_uah = -EINVAL; info->voltage_min_design_uv = -EINVAL; info->voltage_max_design_uv = -EINVAL; info->precharge_current_ua = -EINVAL; info->charge_term_current_ua = -EINVAL; info->constant_charge_current_max_ua = -EINVAL; info->constant_charge_voltage_max_uv = -EINVAL; info->tricklecharge_current_ua = -EINVAL; info->precharge_voltage_max_uv = -EINVAL; info->charge_restart_voltage_uv = -EINVAL; info->overvoltage_limit_uv = -EINVAL; info->maintenance_charge = NULL; info->alert_low_temp_charge_current_ua = -EINVAL; info->alert_low_temp_charge_voltage_uv = -EINVAL; info->alert_high_temp_charge_current_ua = -EINVAL; info->alert_high_temp_charge_voltage_uv = -EINVAL; info->temp_ambient_alert_min = INT_MIN; info->temp_ambient_alert_max = INT_MAX; info->temp_alert_min = INT_MIN; info->temp_alert_max = INT_MAX; info->temp_min = INT_MIN; info->temp_max = INT_MAX; info->factory_internal_resistance_uohm = -EINVAL; info->resist_table = NULL; info->bti_resistance_ohm = -EINVAL; info->bti_resistance_tolerance = -EINVAL; for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { info->ocv_table[index] = NULL; info->ocv_temp[index] = -EINVAL; info->ocv_table_size[index] = -EINVAL; } /* The property and field names below must correspond to elements * in enum power_supply_property. For reasoning, see * Documentation/power/power_supply_class.rst. */ if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { if (!strcmp("nickel-cadmium", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; else if (!strcmp("nickel-metal-hydride", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; else if (!strcmp("lithium-ion", value)) /* Imprecise lithium-ion type */ info->technology = POWER_SUPPLY_TECHNOLOGY_LION; else if (!strcmp("lithium-ion-polymer", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; else if (!strcmp("lithium-ion-iron-phosphate", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; else if (!strcmp("lithium-ion-manganese-oxide", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; else dev_warn(&psy->dev, "%s unknown battery type\n", value); } fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", &info->energy_full_design_uwh); fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", &info->charge_full_design_uah); fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", &info->voltage_min_design_uv); fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", &info->voltage_max_design_uv); fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", &info->tricklecharge_current_ua); fwnode_property_read_u32(fwnode, "precharge-current-microamp", &info->precharge_current_ua); fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", &info->precharge_voltage_max_uv); fwnode_property_read_u32(fwnode, "charge-term-current-microamp", &info->charge_term_current_ua); fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", &info->charge_restart_voltage_uv); fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", &info->overvoltage_limit_uv); fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", &info->constant_charge_current_max_ua); fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", &info->constant_charge_voltage_max_uv); fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", &info->factory_internal_resistance_uohm); if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", min_max, ARRAY_SIZE(min_max))) { info->temp_ambient_alert_min = min_max[0]; info->temp_ambient_alert_max = min_max[1]; } if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", min_max, ARRAY_SIZE(min_max))) { info->temp_alert_min = min_max[0]; info->temp_alert_max = min_max[1]; } if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", min_max, ARRAY_SIZE(min_max))) { info->temp_min = min_max[0]; info->temp_max = min_max[1]; } /* * The below code uses raw of-data parsing to parse * /schemas/types.yaml#/definitions/uint32-matrix * data, so for now this is only support with of. */ if (!battery_np) goto out_ret_pointer; len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); if (len < 0 && len != -EINVAL) { err = len; goto out_put_node; } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { dev_err(&psy->dev, "Too many temperature values\n"); err = -EINVAL; goto out_put_node; } else if (len > 0) { of_property_read_u32_array(battery_np, "ocv-capacity-celsius", info->ocv_temp, len); } for (index = 0; index < len; index++) { struct power_supply_battery_ocv_table *table; int i, tab_len, size; char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index); if (!propname) { power_supply_put_battery_info(psy, info); err = -ENOMEM; goto out_put_node; } list = of_get_property(battery_np, propname, &size); if (!list || !size) { dev_err(&psy->dev, "failed to get %s\n", propname); power_supply_put_battery_info(psy, info); err = -EINVAL; goto out_put_node; } tab_len = size / (2 * sizeof(__be32)); info->ocv_table_size[index] = tab_len; table = info->ocv_table[index] = devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); if (!info->ocv_table[index]) { power_supply_put_battery_info(psy, info); err = -ENOMEM; goto out_put_node; } for (i = 0; i < tab_len; i++) { table[i].ocv = be32_to_cpu(*list); list++; table[i].capacity = be32_to_cpu(*list); list++; } } list = of_get_property(battery_np, "resistance-temp-table", &len); if (!list || !len) goto out_ret_pointer; info->resist_table_size = len / (2 * sizeof(__be32)); resist_table = info->resist_table = devm_kcalloc(&psy->dev, info->resist_table_size, sizeof(*resist_table), GFP_KERNEL); if (!info->resist_table) { power_supply_put_battery_info(psy, info); err = -ENOMEM; goto out_put_node; } for (index = 0; index < info->resist_table_size; index++) { resist_table[index].temp = be32_to_cpu(*list++); resist_table[index].resistance = be32_to_cpu(*list++); } out_ret_pointer: /* Finally return the whole thing */ *info_out = info; out_put_node: fwnode_handle_put(fwnode); of_node_put(battery_np); return err; } EXPORT_SYMBOL_GPL(power_supply_get_battery_info); void power_supply_put_battery_info(struct power_supply *psy, struct power_supply_battery_info *info) { int i; for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { if (info->ocv_table[i]) devm_kfree(&psy->dev, info->ocv_table[i]); } if (info->resist_table) devm_kfree(&psy->dev, info->resist_table); devm_kfree(&psy->dev, info); } EXPORT_SYMBOL_GPL(power_supply_put_battery_info); const enum power_supply_property power_supply_battery_info_properties[] = { POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, POWER_SUPPLY_PROP_TEMP_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_TEMP_MIN, POWER_SUPPLY_PROP_TEMP_MAX, }; EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, enum power_supply_property psp) { if (!info) return false; switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: return info->energy_full_design_uwh >= 0; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: return info->charge_full_design_uah >= 0; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: return info->voltage_min_design_uv >= 0; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: return info->voltage_max_design_uv >= 0; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return info->precharge_current_ua >= 0; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return info->charge_term_current_ua >= 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return info->constant_charge_current_max_ua >= 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return info->constant_charge_voltage_max_uv >= 0; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: return info->temp_ambient_alert_min > INT_MIN; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: return info->temp_ambient_alert_max < INT_MAX; case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: return info->temp_alert_min > INT_MIN; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: return info->temp_alert_max < INT_MAX; case POWER_SUPPLY_PROP_TEMP_MIN: return info->temp_min > INT_MIN; case POWER_SUPPLY_PROP_TEMP_MAX: return info->temp_max < INT_MAX; default: return false; } } EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, enum power_supply_property psp, union power_supply_propval *val) { if (!info) return -EINVAL; if (!power_supply_battery_info_has_prop(info, psp)) return -EINVAL; switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = info->technology; return 0; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = info->energy_full_design_uwh; return 0; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = info->charge_full_design_uah; return 0; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = info->voltage_min_design_uv; return 0; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = info->voltage_max_design_uv; return 0; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: val->intval = info->precharge_current_ua; return 0; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: val->intval = info->charge_term_current_ua; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = info->constant_charge_current_max_ua; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = info->constant_charge_voltage_max_uv; return 0; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: val->intval = info->temp_ambient_alert_min; return 0; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: val->intval = info->temp_ambient_alert_max; return 0; case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: val->intval = info->temp_alert_min; return 0; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: val->intval = info->temp_alert_max; return 0; case POWER_SUPPLY_PROP_TEMP_MIN: val->intval = info->temp_min; return 0; case POWER_SUPPLY_PROP_TEMP_MAX: val->intval = info->temp_max; return 0; default: return -EINVAL; } } EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); /** * power_supply_temp2resist_simple() - find the battery internal resistance * percent from temperature * @table: Pointer to battery resistance temperature table * @table_len: The table length * @temp: Current temperature * * This helper function is used to look up battery internal resistance percent * according to current temperature value from the resistance temperature table, * and the table must be ordered descending. Then the actual battery internal * resistance = the ideal battery internal resistance * percent / 100. * * Return: the battery internal resistance percent */ int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, int table_len, int temp) { int i, high, low; for (i = 0; i < table_len; i++) if (temp > table[i].temp) break; /* The library function will deal with high == low */ if (i == 0) high = low = i; else if (i == table_len) high = low = i - 1; else high = (low = i) - 1; return fixp_linear_interpolate(table[low].temp, table[low].resistance, table[high].temp, table[high].resistance, temp); } EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); /** * power_supply_vbat2ri() - find the battery internal resistance * from the battery voltage * @info: The battery information container * @vbat_uv: The battery voltage in microvolt * @charging: If we are charging (true) or not (false) * * This helper function is used to look up battery internal resistance * according to current battery voltage. Depending on whether the battery * is currently charging or not, different resistance will be returned. * * Returns the internal resistance in microohm or negative error code. */ int power_supply_vbat2ri(struct power_supply_battery_info *info, int vbat_uv, bool charging) { const struct power_supply_vbat_ri_table *vbat2ri; int table_len; int i, high, low; /* * If we are charging, and the battery supplies a separate table * for this state, we use that in order to compensate for the * charging voltage. Otherwise we use the main table. */ if (charging && info->vbat2ri_charging) { vbat2ri = info->vbat2ri_charging; table_len = info->vbat2ri_charging_size; } else { vbat2ri = info->vbat2ri_discharging; table_len = info->vbat2ri_discharging_size; } /* * If no tables are specified, or if we are above the highest voltage in * the voltage table, just return the factory specified internal resistance. */ if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { if (charging && (info->factory_internal_resistance_charging_uohm > 0)) return info->factory_internal_resistance_charging_uohm; else return info->factory_internal_resistance_uohm; } /* Break loop at table_len - 1 because that is the highest index */ for (i = 0; i < table_len - 1; i++) if (vbat_uv > vbat2ri[i].vbat_uv) break; /* The library function will deal with high == low */ if ((i == 0) || (i == (table_len - 1))) high = i; else high = i - 1; low = i; return fixp_linear_interpolate(vbat2ri[low].vbat_uv, vbat2ri[low].ri_uohm, vbat2ri[high].vbat_uv, vbat2ri[high].ri_uohm, vbat_uv); } EXPORT_SYMBOL_GPL(power_supply_vbat2ri); const struct power_supply_maintenance_charge_table * power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index) { if (index >= info->maintenance_charge_size) return NULL; return &info->maintenance_charge[index]; } EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); /** * power_supply_ocv2cap_simple() - find the battery capacity * @table: Pointer to battery OCV lookup table * @table_len: OCV table length * @ocv: Current OCV value * * This helper function is used to look up battery capacity according to * current OCV value from one OCV table, and the OCV table must be ordered * descending. * * Return: the battery capacity. */ int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, int table_len, int ocv) { int i, high, low; for (i = 0; i < table_len; i++) if (ocv > table[i].ocv) break; /* The library function will deal with high == low */ if (i == 0) high = low = i; else if (i == table_len) high = low = i - 1; else high = (low = i) - 1; return fixp_linear_interpolate(table[low].ocv, table[low].capacity, table[high].ocv, table[high].capacity, ocv); } EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); struct power_supply_battery_ocv_table * power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, int temp, int *table_len) { int best_temp_diff = INT_MAX, temp_diff; u8 i, best_index = 0; if (!info->ocv_table[0]) return NULL; for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { /* Out of capacity tables */ if (!info->ocv_table[i]) break; temp_diff = abs(info->ocv_temp[i] - temp); if (temp_diff < best_temp_diff) { best_temp_diff = temp_diff; best_index = i; } } *table_len = info->ocv_table_size[best_index]; return info->ocv_table[best_index]; } EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, int ocv, int temp) { struct power_supply_battery_ocv_table *table; int table_len; table = power_supply_find_ocv2cap_table(info, temp, &table_len); if (!table) return -EINVAL; return power_supply_ocv2cap_simple(table, table_len, ocv); } EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, int resistance) { int low, high; /* Nothing like this can be checked */ if (info->bti_resistance_ohm <= 0) return false; /* This will be extremely strict and unlikely to work */ if (info->bti_resistance_tolerance <= 0) return (info->bti_resistance_ohm == resistance); low = info->bti_resistance_ohm - (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; high = info->bti_resistance_ohm + (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; return ((resistance >= low) && (resistance <= high)); } EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); static bool psy_has_property(const struct power_supply_desc *psy_desc, enum power_supply_property psp) { bool found = false; int i; for (i = 0; i < psy_desc->num_properties; i++) { if (psy_desc->properties[i] == psp) { found = true; break; } } return found; } int power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { if (atomic_read(&psy->use_cnt) <= 0) { if (!psy->initialized) return -EAGAIN; return -ENODEV; } if (psy_has_property(psy->desc, psp)) return psy->desc->get_property(psy, psp, val); else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) return power_supply_battery_info_get_prop(psy->battery_info, psp, val); else return -EINVAL; } EXPORT_SYMBOL_GPL(power_supply_get_property); int power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) return -ENODEV; return psy->desc->set_property(psy, psp, val); } EXPORT_SYMBOL_GPL(power_supply_set_property); int power_supply_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp); } EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); void power_supply_external_power_changed(struct power_supply *psy) { if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->external_power_changed) return; psy->desc->external_power_changed(psy); } EXPORT_SYMBOL_GPL(power_supply_external_power_changed); int power_supply_powers(struct power_supply *psy, struct device *dev) { return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); } EXPORT_SYMBOL_GPL(power_supply_powers); static void power_supply_dev_release(struct device *dev) { struct power_supply *psy = to_power_supply(dev); dev_dbg(dev, "%s\n", __func__); kfree(psy); } int power_supply_reg_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&power_supply_notifier, nb); } EXPORT_SYMBOL_GPL(power_supply_reg_notifier); void power_supply_unreg_notifier(struct notifier_block *nb) { blocking_notifier_chain_unregister(&power_supply_notifier, nb); } EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); #ifdef CONFIG_THERMAL static int power_supply_read_temp(struct thermal_zone_device *tzd, int *temp) { struct power_supply *psy; union power_supply_propval val; int ret; WARN_ON(tzd == NULL); psy = thermal_zone_device_priv(tzd); ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); if (ret) return ret; /* Convert tenths of degree Celsius to milli degree Celsius. */ *temp = val.intval * 100; return ret; } static const struct thermal_zone_device_ops psy_tzd_ops = { .get_temp = power_supply_read_temp, }; static int psy_register_thermal(struct power_supply *psy) { int ret; if (psy->desc->no_thermal) return 0; /* Register battery zone device psy reports temperature */ if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { /* Prefer our hwmon device and avoid duplicates */ struct thermal_zone_params tzp = { .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) }; psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, psy, &psy_tzd_ops, &tzp); if (IS_ERR(psy->tzd)) return PTR_ERR(psy->tzd); ret = thermal_zone_device_enable(psy->tzd); if (ret) thermal_zone_device_unregister(psy->tzd); return ret; } return 0; } static void psy_unregister_thermal(struct power_supply *psy) { if (IS_ERR_OR_NULL(psy->tzd)) return; thermal_zone_device_unregister(psy->tzd); } #else static int psy_register_thermal(struct power_supply *psy) { return 0; } static void psy_unregister_thermal(struct power_supply *psy) { } #endif static struct power_supply *__must_check __power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg, bool ws) { struct device *dev; struct power_supply *psy; int rc; if (!desc || !desc->name || !desc->properties || !desc->num_properties) return ERR_PTR(-EINVAL); if (!parent) pr_warn("%s: Expected proper parent device for '%s'\n", __func__, desc->name); psy = kzalloc(sizeof(*psy), GFP_KERNEL); if (!psy) return ERR_PTR(-ENOMEM); dev = &psy->dev; device_initialize(dev); dev->class = &power_supply_class; dev->type = &power_supply_dev_type; dev->parent = parent; dev->release = power_supply_dev_release; dev_set_drvdata(dev, psy); psy->desc = desc; if (cfg) { dev->groups = cfg->attr_grp; psy->drv_data = cfg->drv_data; psy->of_node = cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; dev->of_node = psy->of_node; psy->supplied_to = cfg->supplied_to; psy->num_supplicants = cfg->num_supplicants; } rc = dev_set_name(dev, "%s", desc->name); if (rc) goto dev_set_name_failed; INIT_WORK(&psy->changed_work, power_supply_changed_work); INIT_DELAYED_WORK(&psy->deferred_register_work, power_supply_deferred_register_work); rc = power_supply_check_supplies(psy); if (rc) { dev_dbg(dev, "Not all required supplies found, defer probe\n"); goto check_supplies_failed; } /* * Expose constant battery info, if it is available. While there are * some chargers accessing constant battery data, we only want to * expose battery data to userspace for battery devices. */ if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { rc = power_supply_get_battery_info(psy, &psy->battery_info); if (rc && rc != -ENODEV && rc != -ENOENT) goto check_supplies_failed; } spin_lock_init(&psy->changed_lock); rc = device_add(dev); if (rc) goto device_add_failed; rc = device_init_wakeup(dev, ws); if (rc) goto wakeup_init_failed; rc = psy_register_thermal(psy); if (rc) goto register_thermal_failed; rc = power_supply_create_triggers(psy); if (rc) goto create_triggers_failed; rc = power_supply_add_hwmon_sysfs(psy); if (rc) goto add_hwmon_sysfs_failed; /* * Update use_cnt after any uevents (most notably from device_add()). * We are here still during driver's probe but * the power_supply_uevent() calls back driver's get_property * method so: * 1. Driver did not assigned the returned struct power_supply, * 2. Driver could not finish initialization (anything in its probe * after calling power_supply_register()). */ atomic_inc(&psy->use_cnt); psy->initialized = true; queue_delayed_work(system_power_efficient_wq, &psy->deferred_register_work, POWER_SUPPLY_DEFERRED_REGISTER_TIME); return psy; add_hwmon_sysfs_failed: power_supply_remove_triggers(psy); create_triggers_failed: psy_unregister_thermal(psy); register_thermal_failed: wakeup_init_failed: device_del(dev); device_add_failed: check_supplies_failed: dev_set_name_failed: put_device(dev); return ERR_PTR(rc); } /** * power_supply_register() - Register new power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * Use power_supply_unregister() on returned power_supply pointer to release * resources. */ struct power_supply *__must_check power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { return __power_supply_register(parent, desc, cfg, true); } EXPORT_SYMBOL_GPL(power_supply_register); /** * power_supply_register_no_ws() - Register new non-waking-source power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * Use power_supply_unregister() on returned power_supply pointer to release * resources. */ struct power_supply *__must_check power_supply_register_no_ws(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { return __power_supply_register(parent, desc, cfg, false); } EXPORT_SYMBOL_GPL(power_supply_register_no_ws); static void devm_power_supply_release(struct device *dev, void *res) { struct power_supply **psy = res; power_supply_unregister(*psy); } /** * devm_power_supply_register() - Register managed power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * The returned power_supply pointer will be automatically unregistered * on driver detach. */ struct power_supply *__must_check devm_power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { struct power_supply **ptr, *psy; ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); psy = __power_supply_register(parent, desc, cfg, true); if (IS_ERR(psy)) { devres_free(ptr); } else { *ptr = psy; devres_add(parent, ptr); } return psy; } EXPORT_SYMBOL_GPL(devm_power_supply_register); /** * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * The returned power_supply pointer will be automatically unregistered * on driver detach. */ struct power_supply *__must_check devm_power_supply_register_no_ws(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { struct power_supply **ptr, *psy; ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); psy = __power_supply_register(parent, desc, cfg, false); if (IS_ERR(psy)) { devres_free(ptr); } else { *ptr = psy; devres_add(parent, ptr); } return psy; } EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); /** * power_supply_unregister() - Remove this power supply from system * @psy: Pointer to power supply to unregister * * Remove this power supply from the system. The resources of power supply * will be freed here or on last power_supply_put() call. */ void power_supply_unregister(struct power_supply *psy) { WARN_ON(atomic_dec_return(&psy->use_cnt)); psy->removing = true; cancel_work_sync(&psy->changed_work); cancel_delayed_work_sync(&psy->deferred_register_work); sysfs_remove_link(&psy->dev.kobj, "powers"); power_supply_remove_hwmon_sysfs(psy); power_supply_remove_triggers(psy); psy_unregister_thermal(psy); device_init_wakeup(&psy->dev, false); device_unregister(&psy->dev); } EXPORT_SYMBOL_GPL(power_supply_unregister); void *power_supply_get_drvdata(struct power_supply *psy) { return psy->drv_data; } EXPORT_SYMBOL_GPL(power_supply_get_drvdata); static int __init power_supply_class_init(void) { power_supply_init_attrs(); return class_register(&power_supply_class); } static void __exit power_supply_class_exit(void) { class_unregister(&power_supply_class); } subsys_initcall(power_supply_class_init); module_exit(power_supply_class_exit); MODULE_DESCRIPTION("Universal power supply monitor class"); MODULE_AUTHOR("Ian Molton "); MODULE_AUTHOR("Szabolcs Gyurko"); MODULE_AUTHOR("Anton Vorontsov ");