// SPDX-License-Identifier: GPL-2.0 /* * drivers/base/power/domain.c - Common code related to device power domains. * * Copyright (C) 2011 Rafael J. Wysocki , Renesas Electronics Corp. */ #define pr_fmt(fmt) "PM: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define GENPD_RETRY_MAX_MS 250 /* Approximate */ #define GENPD_DEV_CALLBACK(genpd, type, callback, dev) \ ({ \ type (*__routine)(struct device *__d); \ type __ret = (type)0; \ \ __routine = genpd->dev_ops.callback; \ if (__routine) { \ __ret = __routine(dev); \ } \ __ret; \ }) static LIST_HEAD(gpd_list); static DEFINE_MUTEX(gpd_list_lock); struct genpd_lock_ops { void (*lock)(struct generic_pm_domain *genpd); void (*lock_nested)(struct generic_pm_domain *genpd, int depth); int (*lock_interruptible)(struct generic_pm_domain *genpd); void (*unlock)(struct generic_pm_domain *genpd); }; static void genpd_lock_mtx(struct generic_pm_domain *genpd) { mutex_lock(&genpd->mlock); } static void genpd_lock_nested_mtx(struct generic_pm_domain *genpd, int depth) { mutex_lock_nested(&genpd->mlock, depth); } static int genpd_lock_interruptible_mtx(struct generic_pm_domain *genpd) { return mutex_lock_interruptible(&genpd->mlock); } static void genpd_unlock_mtx(struct generic_pm_domain *genpd) { return mutex_unlock(&genpd->mlock); } static const struct genpd_lock_ops genpd_mtx_ops = { .lock = genpd_lock_mtx, .lock_nested = genpd_lock_nested_mtx, .lock_interruptible = genpd_lock_interruptible_mtx, .unlock = genpd_unlock_mtx, }; static void genpd_lock_spin(struct generic_pm_domain *genpd) __acquires(&genpd->slock) { unsigned long flags; spin_lock_irqsave(&genpd->slock, flags); genpd->lock_flags = flags; } static void genpd_lock_nested_spin(struct generic_pm_domain *genpd, int depth) __acquires(&genpd->slock) { unsigned long flags; spin_lock_irqsave_nested(&genpd->slock, flags, depth); genpd->lock_flags = flags; } static int genpd_lock_interruptible_spin(struct generic_pm_domain *genpd) __acquires(&genpd->slock) { unsigned long flags; spin_lock_irqsave(&genpd->slock, flags); genpd->lock_flags = flags; return 0; } static void genpd_unlock_spin(struct generic_pm_domain *genpd) __releases(&genpd->slock) { spin_unlock_irqrestore(&genpd->slock, genpd->lock_flags); } static const struct genpd_lock_ops genpd_spin_ops = { .lock = genpd_lock_spin, .lock_nested = genpd_lock_nested_spin, .lock_interruptible = genpd_lock_interruptible_spin, .unlock = genpd_unlock_spin, }; static void genpd_lock_raw_spin(struct generic_pm_domain *genpd) __acquires(&genpd->raw_slock) { unsigned long flags; raw_spin_lock_irqsave(&genpd->raw_slock, flags); genpd->raw_lock_flags = flags; } static void genpd_lock_nested_raw_spin(struct generic_pm_domain *genpd, int depth) __acquires(&genpd->raw_slock) { unsigned long flags; raw_spin_lock_irqsave_nested(&genpd->raw_slock, flags, depth); genpd->raw_lock_flags = flags; } static int genpd_lock_interruptible_raw_spin(struct generic_pm_domain *genpd) __acquires(&genpd->raw_slock) { unsigned long flags; raw_spin_lock_irqsave(&genpd->raw_slock, flags); genpd->raw_lock_flags = flags; return 0; } static void genpd_unlock_raw_spin(struct generic_pm_domain *genpd) __releases(&genpd->raw_slock) { raw_spin_unlock_irqrestore(&genpd->raw_slock, genpd->raw_lock_flags); } static const struct genpd_lock_ops genpd_raw_spin_ops = { .lock = genpd_lock_raw_spin, .lock_nested = genpd_lock_nested_raw_spin, .lock_interruptible = genpd_lock_interruptible_raw_spin, .unlock = genpd_unlock_raw_spin, }; #define genpd_lock(p) p->lock_ops->lock(p) #define genpd_lock_nested(p, d) p->lock_ops->lock_nested(p, d) #define genpd_lock_interruptible(p) p->lock_ops->lock_interruptible(p) #define genpd_unlock(p) p->lock_ops->unlock(p) #define genpd_status_on(genpd) (genpd->status == GENPD_STATE_ON) #define genpd_is_irq_safe(genpd) (genpd->flags & GENPD_FLAG_IRQ_SAFE) #define genpd_is_always_on(genpd) (genpd->flags & GENPD_FLAG_ALWAYS_ON) #define genpd_is_active_wakeup(genpd) (genpd->flags & GENPD_FLAG_ACTIVE_WAKEUP) #define genpd_is_cpu_domain(genpd) (genpd->flags & GENPD_FLAG_CPU_DOMAIN) #define genpd_is_rpm_always_on(genpd) (genpd->flags & GENPD_FLAG_RPM_ALWAYS_ON) #define genpd_is_opp_table_fw(genpd) (genpd->flags & GENPD_FLAG_OPP_TABLE_FW) static inline bool irq_safe_dev_in_sleep_domain(struct device *dev, const struct generic_pm_domain *genpd) { bool ret; ret = pm_runtime_is_irq_safe(dev) && !genpd_is_irq_safe(genpd); /* * Warn once if an IRQ safe device is attached to a domain, which * callbacks are allowed to sleep. This indicates a suboptimal * configuration for PM, but it doesn't matter for an always on domain. */ if (genpd_is_always_on(genpd) || genpd_is_rpm_always_on(genpd)) return ret; if (ret) dev_warn_once(dev, "PM domain %s will not be powered off\n", genpd->name); return ret; } static int genpd_runtime_suspend(struct device *dev); /* * Get the generic PM domain for a particular struct device. * This validates the struct device pointer, the PM domain pointer, * and checks that the PM domain pointer is a real generic PM domain. * Any failure results in NULL being returned. */ static struct generic_pm_domain *dev_to_genpd_safe(struct device *dev) { if (IS_ERR_OR_NULL(dev) || IS_ERR_OR_NULL(dev->pm_domain)) return NULL; /* A genpd's always have its ->runtime_suspend() callback assigned. */ if (dev->pm_domain->ops.runtime_suspend == genpd_runtime_suspend) return pd_to_genpd(dev->pm_domain); return NULL; } /* * This should only be used where we are certain that the pm_domain * attached to the device is a genpd domain. */ static struct generic_pm_domain *dev_to_genpd(struct device *dev) { if (IS_ERR_OR_NULL(dev->pm_domain)) return ERR_PTR(-EINVAL); return pd_to_genpd(dev->pm_domain); } struct device *dev_to_genpd_dev(struct device *dev) { struct generic_pm_domain *genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return ERR_CAST(genpd); return &genpd->dev; } static int genpd_stop_dev(const struct generic_pm_domain *genpd, struct device *dev) { return GENPD_DEV_CALLBACK(genpd, int, stop, dev); } static int genpd_start_dev(const struct generic_pm_domain *genpd, struct device *dev) { return GENPD_DEV_CALLBACK(genpd, int, start, dev); } static bool genpd_sd_counter_dec(struct generic_pm_domain *genpd) { bool ret = false; if (!WARN_ON(atomic_read(&genpd->sd_count) == 0)) ret = !!atomic_dec_and_test(&genpd->sd_count); return ret; } static void genpd_sd_counter_inc(struct generic_pm_domain *genpd) { atomic_inc(&genpd->sd_count); smp_mb__after_atomic(); } #ifdef CONFIG_DEBUG_FS static struct dentry *genpd_debugfs_dir; static void genpd_debug_add(struct generic_pm_domain *genpd); static void genpd_debug_remove(struct generic_pm_domain *genpd) { if (!genpd_debugfs_dir) return; debugfs_lookup_and_remove(genpd->name, genpd_debugfs_dir); } static void genpd_update_accounting(struct generic_pm_domain *genpd) { u64 delta, now; now = ktime_get_mono_fast_ns(); if (now <= genpd->accounting_time) return; delta = now - genpd->accounting_time; /* * If genpd->status is active, it means we are just * out of off and so update the idle time and vice * versa. */ if (genpd->status == GENPD_STATE_ON) genpd->states[genpd->state_idx].idle_time += delta; else genpd->on_time += delta; genpd->accounting_time = now; } #else static inline void genpd_debug_add(struct generic_pm_domain *genpd) {} static inline void genpd_debug_remove(struct generic_pm_domain *genpd) {} static inline void genpd_update_accounting(struct generic_pm_domain *genpd) {} #endif static int _genpd_reeval_performance_state(struct generic_pm_domain *genpd, unsigned int state) { struct generic_pm_domain_data *pd_data; struct pm_domain_data *pdd; struct gpd_link *link; /* New requested state is same as Max requested state */ if (state == genpd->performance_state) return state; /* New requested state is higher than Max requested state */ if (state > genpd->performance_state) return state; /* Traverse all devices within the domain */ list_for_each_entry(pdd, &genpd->dev_list, list_node) { pd_data = to_gpd_data(pdd); if (pd_data->performance_state > state) state = pd_data->performance_state; } /* * Traverse all sub-domains within the domain. This can be * done without any additional locking as the link->performance_state * field is protected by the parent genpd->lock, which is already taken. * * Also note that link->performance_state (subdomain's performance state * requirement to parent domain) is different from * link->child->performance_state (current performance state requirement * of the devices/sub-domains of the subdomain) and so can have a * different value. * * Note that we also take vote from powered-off sub-domains into account * as the same is done for devices right now. */ list_for_each_entry(link, &genpd->parent_links, parent_node) { if (link->performance_state > state) state = link->performance_state; } return state; } static int genpd_xlate_performance_state(struct generic_pm_domain *genpd, struct generic_pm_domain *parent, unsigned int pstate) { if (!parent->set_performance_state) return pstate; return dev_pm_opp_xlate_performance_state(genpd->opp_table, parent->opp_table, pstate); } static int _genpd_set_performance_state(struct generic_pm_domain *genpd, unsigned int state, int depth); static void _genpd_rollback_parent_state(struct gpd_link *link, int depth) { struct generic_pm_domain *parent = link->parent; int parent_state; genpd_lock_nested(parent, depth + 1); parent_state = link->prev_performance_state; link->performance_state = parent_state; parent_state = _genpd_reeval_performance_state(parent, parent_state); if (_genpd_set_performance_state(parent, parent_state, depth + 1)) { pr_err("%s: Failed to roll back to %d performance state\n", parent->name, parent_state); } genpd_unlock(parent); } static int _genpd_set_parent_state(struct generic_pm_domain *genpd, struct gpd_link *link, unsigned int state, int depth) { struct generic_pm_domain *parent = link->parent; int parent_state, ret; /* Find parent's performance state */ ret = genpd_xlate_performance_state(genpd, parent, state); if (unlikely(ret < 0)) return ret; parent_state = ret; genpd_lock_nested(parent, depth + 1); link->prev_performance_state = link->performance_state; link->performance_state = parent_state; parent_state = _genpd_reeval_performance_state(parent, parent_state); ret = _genpd_set_performance_state(parent, parent_state, depth + 1); if (ret) link->performance_state = link->prev_performance_state; genpd_unlock(parent); return ret; } static int _genpd_set_performance_state(struct generic_pm_domain *genpd, unsigned int state, int depth) { struct gpd_link *link = NULL; int ret; if (state == genpd->performance_state) return 0; /* When scaling up, propagate to parents first in normal order */ if (state > genpd->performance_state) { list_for_each_entry(link, &genpd->child_links, child_node) { ret = _genpd_set_parent_state(genpd, link, state, depth); if (ret) goto rollback_parents_up; } } if (genpd->set_performance_state) { ret = genpd->set_performance_state(genpd, state); if (ret) { if (link) goto rollback_parents_up; return ret; } } /* When scaling down, propagate to parents last in reverse order */ if (state < genpd->performance_state) { list_for_each_entry_reverse(link, &genpd->child_links, child_node) { ret = _genpd_set_parent_state(genpd, link, state, depth); if (ret) goto rollback_parents_down; } } genpd->performance_state = state; return 0; rollback_parents_up: list_for_each_entry_continue_reverse(link, &genpd->child_links, child_node) _genpd_rollback_parent_state(link, depth); return ret; rollback_parents_down: list_for_each_entry_continue(link, &genpd->child_links, child_node) _genpd_rollback_parent_state(link, depth); return ret; } static int genpd_set_performance_state(struct device *dev, unsigned int state) { struct generic_pm_domain *genpd = dev_to_genpd(dev); struct generic_pm_domain_data *gpd_data = dev_gpd_data(dev); unsigned int prev_state; int ret; prev_state = gpd_data->performance_state; if (prev_state == state) return 0; gpd_data->performance_state = state; state = _genpd_reeval_performance_state(genpd, state); ret = _genpd_set_performance_state(genpd, state, 0); if (ret) gpd_data->performance_state = prev_state; return ret; } static int genpd_drop_performance_state(struct device *dev) { unsigned int prev_state = dev_gpd_data(dev)->performance_state; if (!genpd_set_performance_state(dev, 0)) return prev_state; return 0; } static void genpd_restore_performance_state(struct device *dev, unsigned int state) { if (state) genpd_set_performance_state(dev, state); } static int genpd_dev_pm_set_performance_state(struct device *dev, unsigned int state) { struct generic_pm_domain *genpd = dev_to_genpd(dev); int ret = 0; genpd_lock(genpd); if (pm_runtime_suspended(dev)) { dev_gpd_data(dev)->rpm_pstate = state; } else { ret = genpd_set_performance_state(dev, state); if (!ret) dev_gpd_data(dev)->rpm_pstate = 0; } genpd_unlock(genpd); return ret; } /** * dev_pm_genpd_set_performance_state- Set performance state of device's power * domain. * * @dev: Device for which the performance-state needs to be set. * @state: Target performance state of the device. This can be set as 0 when the * device doesn't have any performance state constraints left (And so * the device wouldn't participate anymore to find the target * performance state of the genpd). * * It is assumed that the users guarantee that the genpd wouldn't be detached * while this routine is getting called. * * Returns 0 on success and negative error values on failures. */ int dev_pm_genpd_set_performance_state(struct device *dev, unsigned int state) { struct generic_pm_domain *genpd; genpd = dev_to_genpd_safe(dev); if (!genpd) return -ENODEV; if (WARN_ON(!dev->power.subsys_data || !dev->power.subsys_data->domain_data)) return -EINVAL; return genpd_dev_pm_set_performance_state(dev, state); } EXPORT_SYMBOL_GPL(dev_pm_genpd_set_performance_state); /** * dev_pm_genpd_set_next_wakeup - Notify PM framework of an impending wakeup. * * @dev: Device to handle * @next: impending interrupt/wakeup for the device * * * Allow devices to inform of the next wakeup. It's assumed that the users * guarantee that the genpd wouldn't be detached while this routine is getting * called. Additionally, it's also assumed that @dev isn't runtime suspended * (RPM_SUSPENDED)." * Although devices are expected to update the next_wakeup after the end of * their usecase as well, it is possible the devices themselves may not know * about that, so stale @next will be ignored when powering off the domain. */ void dev_pm_genpd_set_next_wakeup(struct device *dev, ktime_t next) { struct generic_pm_domain *genpd; struct gpd_timing_data *td; genpd = dev_to_genpd_safe(dev); if (!genpd) return; td = to_gpd_data(dev->power.subsys_data->domain_data)->td; if (td) td->next_wakeup = next; } EXPORT_SYMBOL_GPL(dev_pm_genpd_set_next_wakeup); /** * dev_pm_genpd_get_next_hrtimer - Return the next_hrtimer for the genpd * @dev: A device that is attached to the genpd. * * This routine should typically be called for a device, at the point of when a * GENPD_NOTIFY_PRE_OFF notification has been sent for it. * * Returns the aggregated value of the genpd's next hrtimer or KTIME_MAX if no * valid value have been set. */ ktime_t dev_pm_genpd_get_next_hrtimer(struct device *dev) { struct generic_pm_domain *genpd; genpd = dev_to_genpd_safe(dev); if (!genpd) return KTIME_MAX; if (genpd->gd) return genpd->gd->next_hrtimer; return KTIME_MAX; } EXPORT_SYMBOL_GPL(dev_pm_genpd_get_next_hrtimer); /* * dev_pm_genpd_synced_poweroff - Next power off should be synchronous * * @dev: A device that is attached to the genpd. * * Allows a consumer of the genpd to notify the provider that the next power off * should be synchronous. * * It is assumed that the users guarantee that the genpd wouldn't be detached * while this routine is getting called. */ void dev_pm_genpd_synced_poweroff(struct device *dev) { struct generic_pm_domain *genpd; genpd = dev_to_genpd_safe(dev); if (!genpd) return; genpd_lock(genpd); genpd->synced_poweroff = true; genpd_unlock(genpd); } EXPORT_SYMBOL_GPL(dev_pm_genpd_synced_poweroff); /** * dev_pm_genpd_set_hwmode() - Set the HW mode for the device and its PM domain. * * @dev: Device for which the HW-mode should be changed. * @enable: Value to set or unset the HW-mode. * * Some PM domains can rely on HW signals to control the power for a device. To * allow a consumer driver to switch the behaviour for its device in runtime, * which may be beneficial from a latency or energy point of view, this function * may be called. * * It is assumed that the users guarantee that the genpd wouldn't be detached * while this routine is getting called. * * Return: Returns 0 on success and negative error values on failures. */ int dev_pm_genpd_set_hwmode(struct device *dev, bool enable) { struct generic_pm_domain *genpd; int ret = 0; genpd = dev_to_genpd_safe(dev); if (!genpd) return -ENODEV; if (!genpd->set_hwmode_dev) return -EOPNOTSUPP; genpd_lock(genpd); if (dev_gpd_data(dev)->hw_mode == enable) goto out; ret = genpd->set_hwmode_dev(genpd, dev, enable); if (!ret) dev_gpd_data(dev)->hw_mode = enable; out: genpd_unlock(genpd); return ret; } EXPORT_SYMBOL_GPL(dev_pm_genpd_set_hwmode); /** * dev_pm_genpd_get_hwmode() - Get the HW mode setting for the device. * * @dev: Device for which the current HW-mode setting should be fetched. * * This helper function allows consumer drivers to fetch the current HW mode * setting of its the device. * * It is assumed that the users guarantee that the genpd wouldn't be detached * while this routine is getting called. * * Return: Returns the HW mode setting of device from SW cached hw_mode. */ bool dev_pm_genpd_get_hwmode(struct device *dev) { return dev_gpd_data(dev)->hw_mode; } EXPORT_SYMBOL_GPL(dev_pm_genpd_get_hwmode); static int _genpd_power_on(struct generic_pm_domain *genpd, bool timed) { unsigned int state_idx = genpd->state_idx; ktime_t time_start; s64 elapsed_ns; int ret; /* Notify consumers that we are about to power on. */ ret = raw_notifier_call_chain_robust(&genpd->power_notifiers, GENPD_NOTIFY_PRE_ON, GENPD_NOTIFY_OFF, NULL); ret = notifier_to_errno(ret); if (ret) return ret; if (!genpd->power_on) goto out; timed = timed && genpd->gd && !genpd->states[state_idx].fwnode; if (!timed) { ret = genpd->power_on(genpd); if (ret) goto err; goto out; } time_start = ktime_get(); ret = genpd->power_on(genpd); if (ret) goto err; elapsed_ns = ktime_to_ns(ktime_sub(ktime_get(), time_start)); if (elapsed_ns <= genpd->states[state_idx].power_on_latency_ns) goto out; genpd->states[state_idx].power_on_latency_ns = elapsed_ns; genpd->gd->max_off_time_changed = true; pr_debug("%s: Power-%s latency exceeded, new value %lld ns\n", genpd->name, "on", elapsed_ns); out: raw_notifier_call_chain(&genpd->power_notifiers, GENPD_NOTIFY_ON, NULL); genpd->synced_poweroff = false; return 0; err: raw_notifier_call_chain(&genpd->power_notifiers, GENPD_NOTIFY_OFF, NULL); return ret; } static int _genpd_power_off(struct generic_pm_domain *genpd, bool timed) { unsigned int state_idx = genpd->state_idx; ktime_t time_start; s64 elapsed_ns; int ret; /* Notify consumers that we are about to power off. */ ret = raw_notifier_call_chain_robust(&genpd->power_notifiers, GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_ON, NULL); ret = notifier_to_errno(ret); if (ret) return ret; if (!genpd->power_off) goto out; timed = timed && genpd->gd && !genpd->states[state_idx].fwnode; if (!timed) { ret = genpd->power_off(genpd); if (ret) goto busy; goto out; } time_start = ktime_get(); ret = genpd->power_off(genpd); if (ret) goto busy; elapsed_ns = ktime_to_ns(ktime_sub(ktime_get(), time_start)); if (elapsed_ns <= genpd->states[state_idx].power_off_latency_ns) goto out; genpd->states[state_idx].power_off_latency_ns = elapsed_ns; genpd->gd->max_off_time_changed = true; pr_debug("%s: Power-%s latency exceeded, new value %lld ns\n", genpd->name, "off", elapsed_ns); out: raw_notifier_call_chain(&genpd->power_notifiers, GENPD_NOTIFY_OFF, NULL); return 0; busy: raw_notifier_call_chain(&genpd->power_notifiers, GENPD_NOTIFY_ON, NULL); return ret; } /** * genpd_queue_power_off_work - Queue up the execution of genpd_power_off(). * @genpd: PM domain to power off. * * Queue up the execution of genpd_power_off() unless it's already been done * before. */ static void genpd_queue_power_off_work(struct generic_pm_domain *genpd) { queue_work(pm_wq, &genpd->power_off_work); } /** * genpd_power_off - Remove power from a given PM domain. * @genpd: PM domain to power down. * @one_dev_on: If invoked from genpd's ->runtime_suspend|resume() callback, the * RPM status of the releated device is in an intermediate state, not yet turned * into RPM_SUSPENDED. This means genpd_power_off() must allow one device to not * be RPM_SUSPENDED, while it tries to power off the PM domain. * @depth: nesting count for lockdep. * * If all of the @genpd's devices have been suspended and all of its subdomains * have been powered down, remove power from @genpd. */ static int genpd_power_off(struct generic_pm_domain *genpd, bool one_dev_on, unsigned int depth) { struct pm_domain_data *pdd; struct gpd_link *link; unsigned int not_suspended = 0; int ret; /* * Do not try to power off the domain in the following situations: * (1) The domain is already in the "power off" state. * (2) System suspend is in progress. */ if (!genpd_status_on(genpd) || genpd->prepared_count > 0) return 0; /* * Abort power off for the PM domain in the following situations: * (1) The domain is configured as always on. * (2) When the domain has a subdomain being powered on. */ if (genpd_is_always_on(genpd) || genpd_is_rpm_always_on(genpd) || atomic_read(&genpd->sd_count) > 0) return -EBUSY; /* * The children must be in their deepest (powered-off) states to allow * the parent to be powered off. Note that, there's no need for * additional locking, as powering on a child, requires the parent's * lock to be acquired first. */ list_for_each_entry(link, &genpd->parent_links, parent_node) { struct generic_pm_domain *child = link->child; if (child->state_idx < child->state_count - 1) return -EBUSY; } list_for_each_entry(pdd, &genpd->dev_list, list_node) { /* * Do not allow PM domain to be powered off, when an IRQ safe * device is part of a non-IRQ safe domain. */ if (!pm_runtime_suspended(pdd->dev) || irq_safe_dev_in_sleep_domain(pdd->dev, genpd)) not_suspended++; } if (not_suspended > 1 || (not_suspended == 1 && !one_dev_on)) return -EBUSY; if (genpd->gov && genpd->gov->power_down_ok) { if (!genpd->gov->power_down_ok(&genpd->domain)) return -EAGAIN; } /* Default to shallowest state. */ if (!genpd->gov) genpd->state_idx = 0; /* Don't power off, if a child domain is waiting to power on. */ if (atomic_read(&genpd->sd_count) > 0) return -EBUSY; ret = _genpd_power_off(genpd, true); if (ret) { genpd->states[genpd->state_idx].rejected++; return ret; } genpd->status = GENPD_STATE_OFF; genpd_update_accounting(genpd); genpd->states[genpd->state_idx].usage++; list_for_each_entry(link, &genpd->child_links, child_node) { genpd_sd_counter_dec(link->parent); genpd_lock_nested(link->parent, depth + 1); genpd_power_off(link->parent, false, depth + 1); genpd_unlock(link->parent); } return 0; } /** * genpd_power_on - Restore power to a given PM domain and its parents. * @genpd: PM domain to power up. * @depth: nesting count for lockdep. * * Restore power to @genpd and all of its parents so that it is possible to * resume a device belonging to it. */ static int genpd_power_on(struct generic_pm_domain *genpd, unsigned int depth) { struct gpd_link *link; int ret = 0; if (genpd_status_on(genpd)) return 0; /* * The list is guaranteed not to change while the loop below is being * executed, unless one of the parents' .power_on() callbacks fiddles * with it. */ list_for_each_entry(link, &genpd->child_links, child_node) { struct generic_pm_domain *parent = link->parent; genpd_sd_counter_inc(parent); genpd_lock_nested(parent, depth + 1); ret = genpd_power_on(parent, depth + 1); genpd_unlock(parent); if (ret) { genpd_sd_counter_dec(parent); goto err; } } ret = _genpd_power_on(genpd, true); if (ret) goto err; genpd->status = GENPD_STATE_ON; genpd_update_accounting(genpd); return 0; err: list_for_each_entry_continue_reverse(link, &genpd->child_links, child_node) { genpd_sd_counter_dec(link->parent); genpd_lock_nested(link->parent, depth + 1); genpd_power_off(link->parent, false, depth + 1); genpd_unlock(link->parent); } return ret; } static int genpd_dev_pm_start(struct device *dev) { struct generic_pm_domain *genpd = dev_to_genpd(dev); return genpd_start_dev(genpd, dev); } static int genpd_dev_pm_qos_notifier(struct notifier_block *nb, unsigned long val, void *ptr) { struct generic_pm_domain_data *gpd_data; struct device *dev; gpd_data = container_of(nb, struct generic_pm_domain_data, nb); dev = gpd_data->base.dev; for (;;) { struct generic_pm_domain *genpd = ERR_PTR(-ENODATA); struct pm_domain_data *pdd; struct gpd_timing_data *td; spin_lock_irq(&dev->power.lock); pdd = dev->power.subsys_data ? dev->power.subsys_data->domain_data : NULL; if (pdd) { td = to_gpd_data(pdd)->td; if (td) { td->constraint_changed = true; genpd = dev_to_genpd(dev); } } spin_unlock_irq(&dev->power.lock); if (!IS_ERR(genpd)) { genpd_lock(genpd); genpd->gd->max_off_time_changed = true; genpd_unlock(genpd); } dev = dev->parent; if (!dev || dev->power.ignore_children) break; } return NOTIFY_DONE; } /** * genpd_power_off_work_fn - Power off PM domain whose subdomain count is 0. * @work: Work structure used for scheduling the execution of this function. */ static void genpd_power_off_work_fn(struct work_struct *work) { struct generic_pm_domain *genpd; genpd = container_of(work, struct generic_pm_domain, power_off_work); genpd_lock(genpd); genpd_power_off(genpd, false, 0); genpd_unlock(genpd); } /** * __genpd_runtime_suspend - walk the hierarchy of ->runtime_suspend() callbacks * @dev: Device to handle. */ static int __genpd_runtime_suspend(struct device *dev) { int (*cb)(struct device *__dev); if (dev->type && dev->type->pm) cb = dev->type->pm->runtime_suspend; else if (dev->class && dev->class->pm) cb = dev->class->pm->runtime_suspend; else if (dev->bus && dev->bus->pm) cb = dev->bus->pm->runtime_suspend; else cb = NULL; if (!cb && dev->driver && dev->driver->pm) cb = dev->driver->pm->runtime_suspend; return cb ? cb(dev) : 0; } /** * __genpd_runtime_resume - walk the hierarchy of ->runtime_resume() callbacks * @dev: Device to handle. */ static int __genpd_runtime_resume(struct device *dev) { int (*cb)(struct device *__dev); if (dev->type && dev->type->pm) cb = dev->type->pm->runtime_resume; else if (dev->class && dev->class->pm) cb = dev->class->pm->runtime_resume; else if (dev->bus && dev->bus->pm) cb = dev->bus->pm->runtime_resume; else cb = NULL; if (!cb && dev->driver && dev->driver->pm) cb = dev->driver->pm->runtime_resume; return cb ? cb(dev) : 0; } /** * genpd_runtime_suspend - Suspend a device belonging to I/O PM domain. * @dev: Device to suspend. * * Carry out a runtime suspend of a device under the assumption that its * pm_domain field points to the domain member of an object of type * struct generic_pm_domain representing a PM domain consisting of I/O devices. */ static int genpd_runtime_suspend(struct device *dev) { struct generic_pm_domain *genpd; bool (*suspend_ok)(struct device *__dev); struct generic_pm_domain_data *gpd_data = dev_gpd_data(dev); struct gpd_timing_data *td = gpd_data->td; bool runtime_pm = pm_runtime_enabled(dev); ktime_t time_start = 0; s64 elapsed_ns; int ret; dev_dbg(dev, "%s()\n", __func__); genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return -EINVAL; /* * A runtime PM centric subsystem/driver may re-use the runtime PM * callbacks for other purposes than runtime PM. In those scenarios * runtime PM is disabled. Under these circumstances, we shall skip * validating/measuring the PM QoS latency. */ suspend_ok = genpd->gov ? genpd->gov->suspend_ok : NULL; if (runtime_pm && suspend_ok && !suspend_ok(dev)) return -EBUSY; /* Measure suspend latency. */ if (td && runtime_pm) time_start = ktime_get(); ret = __genpd_runtime_suspend(dev); if (ret) return ret; ret = genpd_stop_dev(genpd, dev); if (ret) { __genpd_runtime_resume(dev); return ret; } /* Update suspend latency value if the measured time exceeds it. */ if (td && runtime_pm) { elapsed_ns = ktime_to_ns(ktime_sub(ktime_get(), time_start)); if (elapsed_ns > td->suspend_latency_ns) { td->suspend_latency_ns = elapsed_ns; dev_dbg(dev, "suspend latency exceeded, %lld ns\n", elapsed_ns); genpd->gd->max_off_time_changed = true; td->constraint_changed = true; } } /* * If power.irq_safe is set, this routine may be run with * IRQs disabled, so suspend only if the PM domain also is irq_safe. */ if (irq_safe_dev_in_sleep_domain(dev, genpd)) return 0; genpd_lock(genpd); genpd_power_off(genpd, true, 0); gpd_data->rpm_pstate = genpd_drop_performance_state(dev); genpd_unlock(genpd); return 0; } /** * genpd_runtime_resume - Resume a device belonging to I/O PM domain. * @dev: Device to resume. * * Carry out a runtime resume of a device under the assumption that its * pm_domain field points to the domain member of an object of type * struct generic_pm_domain representing a PM domain consisting of I/O devices. */ static int genpd_runtime_resume(struct device *dev) { struct generic_pm_domain *genpd; struct generic_pm_domain_data *gpd_data = dev_gpd_data(dev); struct gpd_timing_data *td = gpd_data->td; bool timed = td && pm_runtime_enabled(dev); ktime_t time_start = 0; s64 elapsed_ns; int ret; dev_dbg(dev, "%s()\n", __func__); genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return -EINVAL; /* * As we don't power off a non IRQ safe domain, which holds * an IRQ safe device, we don't need to restore power to it. */ if (irq_safe_dev_in_sleep_domain(dev, genpd)) goto out; genpd_lock(genpd); genpd_restore_performance_state(dev, gpd_data->rpm_pstate); ret = genpd_power_on(genpd, 0); genpd_unlock(genpd); if (ret) return ret; out: /* Measure resume latency. */ if (timed) time_start = ktime_get(); ret = genpd_start_dev(genpd, dev); if (ret) goto err_poweroff; ret = __genpd_runtime_resume(dev); if (ret) goto err_stop; /* Update resume latency value if the measured time exceeds it. */ if (timed) { elapsed_ns = ktime_to_ns(ktime_sub(ktime_get(), time_start)); if (elapsed_ns > td->resume_latency_ns) { td->resume_latency_ns = elapsed_ns; dev_dbg(dev, "resume latency exceeded, %lld ns\n", elapsed_ns); genpd->gd->max_off_time_changed = true; td->constraint_changed = true; } } return 0; err_stop: genpd_stop_dev(genpd, dev); err_poweroff: if (!pm_runtime_is_irq_safe(dev) || genpd_is_irq_safe(genpd)) { genpd_lock(genpd); genpd_power_off(genpd, true, 0); gpd_data->rpm_pstate = genpd_drop_performance_state(dev); genpd_unlock(genpd); } return ret; } static bool pd_ignore_unused; static int __init pd_ignore_unused_setup(char *__unused) { pd_ignore_unused = true; return 1; } __setup("pd_ignore_unused", pd_ignore_unused_setup); /** * genpd_power_off_unused - Power off all PM domains with no devices in use. */ static int __init genpd_power_off_unused(void) { struct generic_pm_domain *genpd; if (pd_ignore_unused) { pr_warn("genpd: Not disabling unused power domains\n"); return 0; } pr_info("genpd: Disabling unused power domains\n"); mutex_lock(&gpd_list_lock); list_for_each_entry(genpd, &gpd_list, gpd_list_node) genpd_queue_power_off_work(genpd); mutex_unlock(&gpd_list_lock); return 0; } late_initcall_sync(genpd_power_off_unused); #ifdef CONFIG_PM_SLEEP /** * genpd_sync_power_off - Synchronously power off a PM domain and its parents. * @genpd: PM domain to power off, if possible. * @use_lock: use the lock. * @depth: nesting count for lockdep. * * Check if the given PM domain can be powered off (during system suspend or * hibernation) and do that if so. Also, in that case propagate to its parents. * * This function is only called in "noirq" and "syscore" stages of system power * transitions. The "noirq" callbacks may be executed asynchronously, thus in * these cases the lock must be held. */ static void genpd_sync_power_off(struct generic_pm_domain *genpd, bool use_lock, unsigned int depth) { struct gpd_link *link; if (!genpd_status_on(genpd) || genpd_is_always_on(genpd)) return; if (genpd->suspended_count != genpd->device_count || atomic_read(&genpd->sd_count) > 0) return; /* Check that the children are in their deepest (powered-off) state. */ list_for_each_entry(link, &genpd->parent_links, parent_node) { struct generic_pm_domain *child = link->child; if (child->state_idx < child->state_count - 1) return; } /* Choose the deepest state when suspending */ genpd->state_idx = genpd->state_count - 1; if (_genpd_power_off(genpd, false)) { genpd->states[genpd->state_idx].rejected++; return; } else { genpd->states[genpd->state_idx].usage++; } genpd->status = GENPD_STATE_OFF; list_for_each_entry(link, &genpd->child_links, child_node) { genpd_sd_counter_dec(link->parent); if (use_lock) genpd_lock_nested(link->parent, depth + 1); genpd_sync_power_off(link->parent, use_lock, depth + 1); if (use_lock) genpd_unlock(link->parent); } } /** * genpd_sync_power_on - Synchronously power on a PM domain and its parents. * @genpd: PM domain to power on. * @use_lock: use the lock. * @depth: nesting count for lockdep. * * This function is only called in "noirq" and "syscore" stages of system power * transitions. The "noirq" callbacks may be executed asynchronously, thus in * these cases the lock must be held. */ static void genpd_sync_power_on(struct generic_pm_domain *genpd, bool use_lock, unsigned int depth) { struct gpd_link *link; if (genpd_status_on(genpd)) return; list_for_each_entry(link, &genpd->child_links, child_node) { genpd_sd_counter_inc(link->parent); if (use_lock) genpd_lock_nested(link->parent, depth + 1); genpd_sync_power_on(link->parent, use_lock, depth + 1); if (use_lock) genpd_unlock(link->parent); } _genpd_power_on(genpd, false); genpd->status = GENPD_STATE_ON; } /** * genpd_prepare - Start power transition of a device in a PM domain. * @dev: Device to start the transition of. * * Start a power transition of a device (during a system-wide power transition) * under the assumption that its pm_domain field points to the domain member of * an object of type struct generic_pm_domain representing a PM domain * consisting of I/O devices. */ static int genpd_prepare(struct device *dev) { struct generic_pm_domain *genpd; int ret; dev_dbg(dev, "%s()\n", __func__); genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return -EINVAL; genpd_lock(genpd); genpd->prepared_count++; genpd_unlock(genpd); ret = pm_generic_prepare(dev); if (ret < 0) { genpd_lock(genpd); genpd->prepared_count--; genpd_unlock(genpd); } /* Never return 1, as genpd don't cope with the direct_complete path. */ return ret >= 0 ? 0 : ret; } /** * genpd_finish_suspend - Completion of suspend or hibernation of device in an * I/O pm domain. * @dev: Device to suspend. * @suspend_noirq: Generic suspend_noirq callback. * @resume_noirq: Generic resume_noirq callback. * * Stop the device and remove power from the domain if all devices in it have * been stopped. */ static int genpd_finish_suspend(struct device *dev, int (*suspend_noirq)(struct device *dev), int (*resume_noirq)(struct device *dev)) { struct generic_pm_domain *genpd; int ret = 0; genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return -EINVAL; ret = suspend_noirq(dev); if (ret) return ret; if (device_wakeup_path(dev) && genpd_is_active_wakeup(genpd)) return 0; if (genpd->dev_ops.stop && genpd->dev_ops.start && !pm_runtime_status_suspended(dev)) { ret = genpd_stop_dev(genpd, dev); if (ret) { resume_noirq(dev); return ret; } } genpd_lock(genpd); genpd->suspended_count++; genpd_sync_power_off(genpd, true, 0); genpd_unlock(genpd); return 0; } /** * genpd_suspend_noirq - Completion of suspend of device in an I/O PM domain. * @dev: Device to suspend. * * Stop the device and remove power from the domain if all devices in it have * been stopped. */ static int genpd_suspend_noirq(struct device *dev) { dev_dbg(dev, "%s()\n", __func__); return genpd_finish_suspend(dev, pm_generic_suspend_noirq, pm_generic_resume_noirq); } /** * genpd_finish_resume - Completion of resume of device in an I/O PM domain. * @dev: Device to resume. * @resume_noirq: Generic resume_noirq callback. * * Restore power to the device's PM domain, if necessary, and start the device. */ static int genpd_finish_resume(struct device *dev, int (*resume_noirq)(struct device *dev)) { struct generic_pm_domain *genpd; int ret; dev_dbg(dev, "%s()\n", __func__); genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return -EINVAL; if (device_wakeup_path(dev) && genpd_is_active_wakeup(genpd)) return resume_noirq(dev); genpd_lock(genpd); genpd_sync_power_on(genpd, true, 0); genpd->suspended_count--; genpd_unlock(genpd); if (genpd->dev_ops.stop && genpd->dev_ops.start && !pm_runtime_status_suspended(dev)) { ret = genpd_start_dev(genpd, dev); if (ret) return ret; } return pm_generic_resume_noirq(dev); } /** * genpd_resume_noirq - Start of resume of device in an I/O PM domain. * @dev: Device to resume. * * Restore power to the device's PM domain, if necessary, and start the device. */ static int genpd_resume_noirq(struct device *dev) { dev_dbg(dev, "%s()\n", __func__); return genpd_finish_resume(dev, pm_generic_resume_noirq); } /** * genpd_freeze_noirq - Completion of freezing a device in an I/O PM domain. * @dev: Device to freeze. * * Carry out a late freeze of a device under the assumption that its * pm_domain field points to the domain member of an object of type * struct generic_pm_domain representing a power domain consisting of I/O * devices. */ static int genpd_freeze_noirq(struct device *dev) { dev_dbg(dev, "%s()\n", __func__); return genpd_finish_suspend(dev, pm_generic_freeze_noirq, pm_generic_thaw_noirq); } /** * genpd_thaw_noirq - Early thaw of device in an I/O PM domain. * @dev: Device to thaw. * * Start the device, unless power has been removed from the domain already * before the system transition. */ static int genpd_thaw_noirq(struct device *dev) { dev_dbg(dev, "%s()\n", __func__); return genpd_finish_resume(dev, pm_generic_thaw_noirq); } /** * genpd_poweroff_noirq - Completion of hibernation of device in an * I/O PM domain. * @dev: Device to poweroff. * * Stop the device and remove power from the domain if all devices in it have * been stopped. */ static int genpd_poweroff_noirq(struct device *dev) { dev_dbg(dev, "%s()\n", __func__); return genpd_finish_suspend(dev, pm_generic_poweroff_noirq, pm_generic_restore_noirq); } /** * genpd_restore_noirq - Start of restore of device in an I/O PM domain. * @dev: Device to resume. * * Make sure the domain will be in the same power state as before the * hibernation the system is resuming from and start the device if necessary. */ static int genpd_restore_noirq(struct device *dev) { dev_dbg(dev, "%s()\n", __func__); return genpd_finish_resume(dev, pm_generic_restore_noirq); } /** * genpd_complete - Complete power transition of a device in a power domain. * @dev: Device to complete the transition of. * * Complete a power transition of a device (during a system-wide power * transition) under the assumption that its pm_domain field points to the * domain member of an object of type struct generic_pm_domain representing * a power domain consisting of I/O devices. */ static void genpd_complete(struct device *dev) { struct generic_pm_domain *genpd; dev_dbg(dev, "%s()\n", __func__); genpd = dev_to_genpd(dev); if (IS_ERR(genpd)) return; pm_generic_complete(dev); genpd_lock(genpd); genpd->prepared_count--; if (!genpd->prepared_count) genpd_queue_power_off_work(genpd); genpd_unlock(genpd); } static void genpd_switch_state(struct device *dev, bool suspend) { struct generic_pm_domain *genpd; bool use_lock; genpd = dev_to_genpd_safe(dev); if (!genpd) return; use_lock = genpd_is_irq_safe(genpd); if (use_lock) genpd_lock(genpd); if (suspend) { genpd->suspended_count++; genpd_sync_power_off(genpd, use_lock, 0); } else { genpd_sync_power_on(genpd, use_lock, 0); genpd->suspended_count--; } if (use_lock) genpd_unlock(genpd); } /** * dev_pm_genpd_suspend - Synchronously try to suspend the genpd for @dev * @dev: The device that is attached to the genpd, that can be suspended. * * This routine should typically be called for a device that needs to be * suspended during the syscore suspend phase. It may also be called during * suspend-to-idle to suspend a corresponding CPU device that is attached to a * genpd. */ void dev_pm_genpd_suspend(struct device *dev) { genpd_switch_state(dev, true); } EXPORT_SYMBOL_GPL(dev_pm_genpd_suspend); /** * dev_pm_genpd_resume - Synchronously try to resume the genpd for @dev * @dev: The device that is attached to the genpd, which needs to be resumed. * * This routine should typically be called for a device that needs to be resumed * during the syscore resume phase. It may also be called during suspend-to-idle * to resume a corresponding CPU device that is attached to a genpd. */ void dev_pm_genpd_resume(struct device *dev) { genpd_switch_state(dev, false); } EXPORT_SYMBOL_GPL(dev_pm_genpd_resume); #else /* !CONFIG_PM_SLEEP */ #define genpd_prepare NULL #define genpd_suspend_noirq NULL #define genpd_resume_noirq NULL #define genpd_freeze_noirq NULL #define genpd_thaw_noirq NULL #define genpd_poweroff_noirq NULL #define genpd_restore_noirq NULL #define genpd_complete NULL #endif /* CONFIG_PM_SLEEP */ static struct generic_pm_domain_data *genpd_alloc_dev_data(struct device *dev, bool has_governor) { struct generic_pm_domain_data *gpd_data; struct gpd_timing_data *td; int ret; ret = dev_pm_get_subsys_data(dev); if (ret) return ERR_PTR(ret); gpd_data = kzalloc(sizeof(*gpd_data), GFP_KERNEL); if (!gpd_data) { ret = -ENOMEM; goto err_put; } gpd_data->base.dev = dev; gpd_data->nb.notifier_call = genpd_dev_pm_qos_notifier; /* Allocate data used by a governor. */ if (has_governor) { td = kzalloc(sizeof(*td), GFP_KERNEL); if (!td) { ret = -ENOMEM; goto err_free; } td->constraint_changed = true; td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; td->next_wakeup = KTIME_MAX; gpd_data->td = td; } spin_lock_irq(&dev->power.lock); if (dev->power.subsys_data->domain_data) ret = -EINVAL; else dev->power.subsys_data->domain_data = &gpd_data->base; spin_unlock_irq(&dev->power.lock); if (ret) goto err_free; return gpd_data; err_free: kfree(gpd_data->td); kfree(gpd_data); err_put: dev_pm_put_subsys_data(dev); return ERR_PTR(ret); } static void genpd_free_dev_data(struct device *dev, struct generic_pm_domain_data *gpd_data) { spin_lock_irq(&dev->power.lock); dev->power.subsys_data->domain_data = NULL; spin_unlock_irq(&dev->power.lock); kfree(gpd_data->td); kfree(gpd_data); dev_pm_put_subsys_data(dev); } static void genpd_update_cpumask(struct generic_pm_domain *genpd, int cpu, bool set, unsigned int depth) { struct gpd_link *link; if (!genpd_is_cpu_domain(genpd)) return; list_for_each_entry(link, &genpd->child_links, child_node) { struct generic_pm_domain *parent = link->parent; genpd_lock_nested(parent, depth + 1); genpd_update_cpumask(parent, cpu, set, depth + 1); genpd_unlock(parent); } if (set) cpumask_set_cpu(cpu, genpd->cpus); else cpumask_clear_cpu(cpu, genpd->cpus); } static void genpd_set_cpumask(struct generic_pm_domain *genpd, int cpu) { if (cpu >= 0) genpd_update_cpumask(genpd, cpu, true, 0); } static void genpd_clear_cpumask(struct generic_pm_domain *genpd, int cpu) { if (cpu >= 0) genpd_update_cpumask(genpd, cpu, false, 0); } static int genpd_get_cpu(struct generic_pm_domain *genpd, struct device *dev) { int cpu; if (!genpd_is_cpu_domain(genpd)) return -1; for_each_possible_cpu(cpu) { if (get_cpu_device(cpu) == dev) return cpu; } return -1; } static int genpd_add_device(struct generic_pm_domain *genpd, struct device *dev, struct device *base_dev) { struct genpd_governor_data *gd = genpd->gd; struct generic_pm_domain_data *gpd_data; int ret; dev_dbg(dev, "%s()\n", __func__); gpd_data = genpd_alloc_dev_data(dev, gd); if (IS_ERR(gpd_data)) return PTR_ERR(gpd_data); gpd_data->cpu = genpd_get_cpu(genpd, base_dev); gpd_data->hw_mode = genpd->get_hwmode_dev ? genpd->get_hwmode_dev(genpd, dev) : false; ret = genpd->attach_dev ? genpd->attach_dev(genpd, dev) : 0; if (ret) goto out; genpd_lock(genpd); genpd_set_cpumask(genpd, gpd_data->cpu); genpd->device_count++; if (gd) gd->max_off_time_changed = true; list_add_tail(&gpd_data->base.list_node, &genpd->dev_list); genpd_unlock(genpd); dev_pm_domain_set(dev, &genpd->domain); out: if (ret) genpd_free_dev_data(dev, gpd_data); else dev_pm_qos_add_notifier(dev, &gpd_data->nb, DEV_PM_QOS_RESUME_LATENCY); return ret; } /** * pm_genpd_add_device - Add a device to an I/O PM domain. * @genpd: PM domain to add the device to. * @dev: Device to be added. */ int pm_genpd_add_device(struct generic_pm_domain *genpd, struct device *dev) { int ret; if (!genpd || !dev) return -EINVAL; mutex_lock(&gpd_list_lock); ret = genpd_add_device(genpd, dev, dev); mutex_unlock(&gpd_list_lock); return ret; } EXPORT_SYMBOL_GPL(pm_genpd_add_device); static int genpd_remove_device(struct generic_pm_domain *genpd, struct device *dev) { struct generic_pm_domain_data *gpd_data; struct pm_domain_data *pdd; int ret = 0; dev_dbg(dev, "%s()\n", __func__); pdd = dev->power.subsys_data->domain_data; gpd_data = to_gpd_data(pdd); dev_pm_qos_remove_notifier(dev, &gpd_data->nb, DEV_PM_QOS_RESUME_LATENCY); genpd_lock(genpd); if (genpd->prepared_count > 0) { ret = -EAGAIN; goto out; } genpd->device_count--; if (genpd->gd) genpd->gd->max_off_time_changed = true; genpd_clear_cpumask(genpd, gpd_data->cpu); list_del_init(&pdd->list_node); genpd_unlock(genpd); dev_pm_domain_set(dev, NULL); if (genpd->detach_dev) genpd->detach_dev(genpd, dev); genpd_free_dev_data(dev, gpd_data); return 0; out: genpd_unlock(genpd); dev_pm_qos_add_notifier(dev, &gpd_data->nb, DEV_PM_QOS_RESUME_LATENCY); return ret; } /** * pm_genpd_remove_device - Remove a device from an I/O PM domain. * @dev: Device to be removed. */ int pm_genpd_remove_device(struct device *dev) { struct generic_pm_domain *genpd = dev_to_genpd_safe(dev); if (!genpd) return -EINVAL; return genpd_remove_device(genpd, dev); } EXPORT_SYMBOL_GPL(pm_genpd_remove_device); /** * dev_pm_genpd_add_notifier - Add a genpd power on/off notifier for @dev * * @dev: Device that should be associated with the notifier * @nb: The notifier block to register * * Users may call this function to add a genpd power on/off notifier for an * attached @dev. Only one notifier per device is allowed. The notifier is * sent when genpd is powering on/off the PM domain. * * It is assumed that the user guarantee that the genpd wouldn't be detached * while this routine is getting called. * * Returns 0 on success and negative error values on failures. */ int dev_pm_genpd_add_notifier(struct device *dev, struct notifier_block *nb) { struct generic_pm_domain *genpd; struct generic_pm_domain_data *gpd_data; int ret; genpd = dev_to_genpd_safe(dev); if (!genpd) return -ENODEV; if (WARN_ON(!dev->power.subsys_data || !dev->power.subsys_data->domain_data)) return -EINVAL; gpd_data = to_gpd_data(dev->power.subsys_data->domain_data); if (gpd_data->power_nb) return -EEXIST; genpd_lock(genpd); ret = raw_notifier_chain_register(&genpd->power_notifiers, nb); genpd_unlock(genpd); if (ret) { dev_warn(dev, "failed to add notifier for PM domain %s\n", genpd->name); return ret; } gpd_data->power_nb = nb; return 0; } EXPORT_SYMBOL_GPL(dev_pm_genpd_add_notifier); /** * dev_pm_genpd_remove_notifier - Remove a genpd power on/off notifier for @dev * * @dev: Device that is associated with the notifier * * Users may call this function to remove a genpd power on/off notifier for an * attached @dev. * * It is assumed that the user guarantee that the genpd wouldn't be detached * while this routine is getting called. * * Returns 0 on success and negative error values on failures. */ int dev_pm_genpd_remove_notifier(struct device *dev) { struct generic_pm_domain *genpd; struct generic_pm_domain_data *gpd_data; int ret; genpd = dev_to_genpd_safe(dev); if (!genpd) return -ENODEV; if (WARN_ON(!dev->power.subsys_data || !dev->power.subsys_data->domain_data)) return -EINVAL; gpd_data = to_gpd_data(dev->power.subsys_data->domain_data); if (!gpd_data->power_nb) return -ENODEV; genpd_lock(genpd); ret = raw_notifier_chain_unregister(&genpd->power_notifiers, gpd_data->power_nb); genpd_unlock(genpd); if (ret) { dev_warn(dev, "failed to remove notifier for PM domain %s\n", genpd->name); return ret; } gpd_data->power_nb = NULL; return 0; } EXPORT_SYMBOL_GPL(dev_pm_genpd_remove_notifier); static int genpd_add_subdomain(struct generic_pm_domain *genpd, struct generic_pm_domain *subdomain) { struct gpd_link *link, *itr; int ret = 0; if (IS_ERR_OR_NULL(genpd) || IS_ERR_OR_NULL(subdomain) || genpd == subdomain) return -EINVAL; /* * If the domain can be powered on/off in an IRQ safe * context, ensure that the subdomain can also be * powered on/off in that context. */ if (!genpd_is_irq_safe(genpd) && genpd_is_irq_safe(subdomain)) { WARN(1, "Parent %s of subdomain %s must be IRQ safe\n", genpd->name, subdomain->name); return -EINVAL; } link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) return -ENOMEM; genpd_lock(subdomain); genpd_lock_nested(genpd, SINGLE_DEPTH_NESTING); if (!genpd_status_on(genpd) && genpd_status_on(subdomain)) { ret = -EINVAL; goto out; } list_for_each_entry(itr, &genpd->parent_links, parent_node) { if (itr->child == subdomain && itr->parent == genpd) { ret = -EINVAL; goto out; } } link->parent = genpd; list_add_tail(&link->parent_node, &genpd->parent_links); link->child = subdomain; list_add_tail(&link->child_node, &subdomain->child_links); if (genpd_status_on(subdomain)) genpd_sd_counter_inc(genpd); out: genpd_unlock(genpd); genpd_unlock(subdomain); if (ret) kfree(link); return ret; } /** * pm_genpd_add_subdomain - Add a subdomain to an I/O PM domain. * @genpd: Leader PM domain to add the subdomain to. * @subdomain: Subdomain to be added. */ int pm_genpd_add_subdomain(struct generic_pm_domain *genpd, struct generic_pm_domain *subdomain) { int ret; mutex_lock(&gpd_list_lock); ret = genpd_add_subdomain(genpd, subdomain); mutex_unlock(&gpd_list_lock); return ret; } EXPORT_SYMBOL_GPL(pm_genpd_add_subdomain); /** * pm_genpd_remove_subdomain - Remove a subdomain from an I/O PM domain. * @genpd: Leader PM domain to remove the subdomain from. * @subdomain: Subdomain to be removed. */ int pm_genpd_remove_subdomain(struct generic_pm_domain *genpd, struct generic_pm_domain *subdomain) { struct gpd_link *l, *link; int ret = -EINVAL; if (IS_ERR_OR_NULL(genpd) || IS_ERR_OR_NULL(subdomain)) return -EINVAL; genpd_lock(subdomain); genpd_lock_nested(genpd, SINGLE_DEPTH_NESTING); if (!list_empty(&subdomain->parent_links) || subdomain->device_count) { pr_warn("%s: unable to remove subdomain %s\n", genpd->name, subdomain->name); ret = -EBUSY; goto out; } list_for_each_entry_safe(link, l, &genpd->parent_links, parent_node) { if (link->child != subdomain) continue; list_del(&link->parent_node); list_del(&link->child_node); kfree(link); if (genpd_status_on(subdomain)) genpd_sd_counter_dec(genpd); ret = 0; break; } out: genpd_unlock(genpd); genpd_unlock(subdomain); return ret; } EXPORT_SYMBOL_GPL(pm_genpd_remove_subdomain); static void genpd_free_default_power_state(struct genpd_power_state *states, unsigned int state_count) { kfree(states); } static int genpd_set_default_power_state(struct generic_pm_domain *genpd) { struct genpd_power_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; genpd->states = state; genpd->state_count = 1; genpd->free_states = genpd_free_default_power_state; return 0; } static int genpd_alloc_data(struct generic_pm_domain *genpd) { struct genpd_governor_data *gd = NULL; int ret; if (genpd_is_cpu_domain(genpd) && !zalloc_cpumask_var(&genpd->cpus, GFP_KERNEL)) return -ENOMEM; if (genpd->gov) { gd = kzalloc(sizeof(*gd), GFP_KERNEL); if (!gd) { ret = -ENOMEM; goto free; } gd->max_off_time_ns = -1; gd->max_off_time_changed = true; gd->next_wakeup = KTIME_MAX; gd->next_hrtimer = KTIME_MAX; } /* Use only one "off" state if there were no states declared */ if (genpd->state_count == 0) { ret = genpd_set_default_power_state(genpd); if (ret) goto free; } genpd->gd = gd; return 0; free: if (genpd_is_cpu_domain(genpd)) free_cpumask_var(genpd->cpus); kfree(gd); return ret; } static void genpd_free_data(struct generic_pm_domain *genpd) { if (genpd_is_cpu_domain(genpd)) free_cpumask_var(genpd->cpus); if (genpd->free_states) genpd->free_states(genpd->states, genpd->state_count); kfree(genpd->gd); } static void genpd_lock_init(struct generic_pm_domain *genpd) { if (genpd_is_cpu_domain(genpd)) { raw_spin_lock_init(&genpd->raw_slock); genpd->lock_ops = &genpd_raw_spin_ops; } else if (genpd_is_irq_safe(genpd)) { spin_lock_init(&genpd->slock); genpd->lock_ops = &genpd_spin_ops; } else { mutex_init(&genpd->mlock); genpd->lock_ops = &genpd_mtx_ops; } } /** * pm_genpd_init - Initialize a generic I/O PM domain object. * @genpd: PM domain object to initialize. * @gov: PM domain governor to associate with the domain (may be NULL). * @is_off: Initial value of the domain's power_is_off field. * * Returns 0 on successful initialization, else a negative error code. */ int pm_genpd_init(struct generic_pm_domain *genpd, struct dev_power_governor *gov, bool is_off) { int ret; if (IS_ERR_OR_NULL(genpd)) return -EINVAL; INIT_LIST_HEAD(&genpd->parent_links); INIT_LIST_HEAD(&genpd->child_links); INIT_LIST_HEAD(&genpd->dev_list); RAW_INIT_NOTIFIER_HEAD(&genpd->power_notifiers); genpd_lock_init(genpd); genpd->gov = gov; INIT_WORK(&genpd->power_off_work, genpd_power_off_work_fn); atomic_set(&genpd->sd_count, 0); genpd->status = is_off ? GENPD_STATE_OFF : GENPD_STATE_ON; genpd->device_count = 0; genpd->provider = NULL; genpd->has_provider = false; genpd->accounting_time = ktime_get_mono_fast_ns(); genpd->domain.ops.runtime_suspend = genpd_runtime_suspend; genpd->domain.ops.runtime_resume = genpd_runtime_resume; genpd->domain.ops.prepare = genpd_prepare; genpd->domain.ops.suspend_noirq = genpd_suspend_noirq; genpd->domain.ops.resume_noirq = genpd_resume_noirq; genpd->domain.ops.freeze_noirq = genpd_freeze_noirq; genpd->domain.ops.thaw_noirq = genpd_thaw_noirq; genpd->domain.ops.poweroff_noirq = genpd_poweroff_noirq; genpd->domain.ops.restore_noirq = genpd_restore_noirq; genpd->domain.ops.complete = genpd_complete; genpd->domain.start = genpd_dev_pm_start; genpd->domain.set_performance_state = genpd_dev_pm_set_performance_state; if (genpd->flags & GENPD_FLAG_PM_CLK) { genpd->dev_ops.stop = pm_clk_suspend; genpd->dev_ops.start = pm_clk_resume; } /* The always-on governor works better with the corresponding flag. */ if (gov == &pm_domain_always_on_gov) genpd->flags |= GENPD_FLAG_RPM_ALWAYS_ON; /* Always-on domains must be powered on at initialization. */ if ((genpd_is_always_on(genpd) || genpd_is_rpm_always_on(genpd)) && !genpd_status_on(genpd)) { pr_err("always-on PM domain %s is not on\n", genpd->name); return -EINVAL; } /* Multiple states but no governor doesn't make sense. */ if (!gov && genpd->state_count > 1) pr_warn("%s: no governor for states\n", genpd->name); ret = genpd_alloc_data(genpd); if (ret) return ret; device_initialize(&genpd->dev); dev_set_name(&genpd->dev, "%s", genpd->name); mutex_lock(&gpd_list_lock); list_add(&genpd->gpd_list_node, &gpd_list); mutex_unlock(&gpd_list_lock); genpd_debug_add(genpd); return 0; } EXPORT_SYMBOL_GPL(pm_genpd_init); static int genpd_remove(struct generic_pm_domain *genpd) { struct gpd_link *l, *link; if (IS_ERR_OR_NULL(genpd)) return -EINVAL; genpd_lock(genpd); if (genpd->has_provider) { genpd_unlock(genpd); pr_err("Provider present, unable to remove %s\n", genpd->name); return -EBUSY; } if (!list_empty(&genpd->parent_links) || genpd->device_count) { genpd_unlock(genpd); pr_err("%s: unable to remove %s\n", __func__, genpd->name); return -EBUSY; } list_for_each_entry_safe(link, l, &genpd->child_links, child_node) { list_del(&link->parent_node); list_del(&link->child_node); kfree(link); } list_del(&genpd->gpd_list_node); genpd_unlock(genpd); genpd_debug_remove(genpd); cancel_work_sync(&genpd->power_off_work); genpd_free_data(genpd); pr_debug("%s: removed %s\n", __func__, genpd->name); return 0; } /** * pm_genpd_remove - Remove a generic I/O PM domain * @genpd: Pointer to PM domain that is to be removed. * * To remove the PM domain, this function: * - Removes the PM domain as a subdomain to any parent domains, * if it was added. * - Removes the PM domain from the list of registered PM domains. * * The PM domain will only be removed, if the associated provider has * been removed, it is not a parent to any other PM domain and has no * devices associated with it. */ int pm_genpd_remove(struct generic_pm_domain *genpd) { int ret; mutex_lock(&gpd_list_lock); ret = genpd_remove(genpd); mutex_unlock(&gpd_list_lock); return ret; } EXPORT_SYMBOL_GPL(pm_genpd_remove); #ifdef CONFIG_PM_GENERIC_DOMAINS_OF /* * Device Tree based PM domain providers. * * The code below implements generic device tree based PM domain providers that * bind device tree nodes with generic PM domains registered in the system. * * Any driver that registers generic PM domains and needs to support binding of * devices to these domains is supposed to register a PM domain provider, which * maps a PM domain specifier retrieved from the device tree to a PM domain. * * Two simple mapping functions have been provided for convenience: * - genpd_xlate_simple() for 1:1 device tree node to PM domain mapping. * - genpd_xlate_onecell() for mapping of multiple PM domains per node by * index. */ /** * struct of_genpd_provider - PM domain provider registration structure * @link: Entry in global list of PM domain providers * @node: Pointer to device tree node of PM domain provider * @xlate: Provider-specific xlate callback mapping a set of specifier cells * into a PM domain. * @data: context pointer to be passed into @xlate callback */ struct of_genpd_provider { struct list_head link; struct device_node *node; genpd_xlate_t xlate; void *data; }; /* List of registered PM domain providers. */ static LIST_HEAD(of_genpd_providers); /* Mutex to protect the list above. */ static DEFINE_MUTEX(of_genpd_mutex); /** * genpd_xlate_simple() - Xlate function for direct node-domain mapping * @genpdspec: OF phandle args to map into a PM domain * @data: xlate function private data - pointer to struct generic_pm_domain * * This is a generic xlate function that can be used to model PM domains that * have their own device tree nodes. The private data of xlate function needs * to be a valid pointer to struct generic_pm_domain. */ static struct generic_pm_domain *genpd_xlate_simple( const struct of_phandle_args *genpdspec, void *data) { return data; } /** * genpd_xlate_onecell() - Xlate function using a single index. * @genpdspec: OF phandle args to map into a PM domain * @data: xlate function private data - pointer to struct genpd_onecell_data * * This is a generic xlate function that can be used to model simple PM domain * controllers that have one device tree node and provide multiple PM domains. * A single cell is used as an index into an array of PM domains specified in * the genpd_onecell_data struct when registering the provider. */ static struct generic_pm_domain *genpd_xlate_onecell( const struct of_phandle_args *genpdspec, void *data) { struct genpd_onecell_data *genpd_data = data; unsigned int idx = genpdspec->args[0]; if (genpdspec->args_count != 1) return ERR_PTR(-EINVAL); if (idx >= genpd_data->num_domains) { pr_err("%s: invalid domain index %u\n", __func__, idx); return ERR_PTR(-EINVAL); } if (!genpd_data->domains[idx]) return ERR_PTR(-ENOENT); return genpd_data->domains[idx]; } /** * genpd_add_provider() - Register a PM domain provider for a node * @np: Device node pointer associated with the PM domain provider. * @xlate: Callback for decoding PM domain from phandle arguments. * @data: Context pointer for @xlate callback. */ static int genpd_add_provider(struct device_node *np, genpd_xlate_t xlate, void *data) { struct of_genpd_provider *cp; cp = kzalloc(sizeof(*cp), GFP_KERNEL); if (!cp) return -ENOMEM; cp->node = of_node_get(np); cp->data = data; cp->xlate = xlate; fwnode_dev_initialized(&np->fwnode, true); mutex_lock(&of_genpd_mutex); list_add(&cp->link, &of_genpd_providers); mutex_unlock(&of_genpd_mutex); pr_debug("Added domain provider from %pOF\n", np); return 0; } static bool genpd_present(const struct generic_pm_domain *genpd) { bool ret = false; const struct generic_pm_domain *gpd; mutex_lock(&gpd_list_lock); list_for_each_entry(gpd, &gpd_list, gpd_list_node) { if (gpd == genpd) { ret = true; break; } } mutex_unlock(&gpd_list_lock); return ret; } /** * of_genpd_add_provider_simple() - Register a simple PM domain provider * @np: Device node pointer associated with the PM domain provider. * @genpd: Pointer to PM domain associated with the PM domain provider. */ int of_genpd_add_provider_simple(struct device_node *np, struct generic_pm_domain *genpd) { int ret; if (!np || !genpd) return -EINVAL; if (!genpd_present(genpd)) return -EINVAL; genpd->dev.of_node = np; /* Parse genpd OPP table */ if (!genpd_is_opp_table_fw(genpd) && genpd->set_performance_state) { ret = dev_pm_opp_of_add_table(&genpd->dev); if (ret) return dev_err_probe(&genpd->dev, ret, "Failed to add OPP table\n"); /* * Save table for faster processing while setting performance * state. */ genpd->opp_table = dev_pm_opp_get_opp_table(&genpd->dev); WARN_ON(IS_ERR(genpd->opp_table)); } ret = genpd_add_provider(np, genpd_xlate_simple, genpd); if (ret) { if (!genpd_is_opp_table_fw(genpd) && genpd->set_performance_state) { dev_pm_opp_put_opp_table(genpd->opp_table); dev_pm_opp_of_remove_table(&genpd->dev); } return ret; } genpd->provider = &np->fwnode; genpd->has_provider = true; return 0; } EXPORT_SYMBOL_GPL(of_genpd_add_provider_simple); /** * of_genpd_add_provider_onecell() - Register a onecell PM domain provider * @np: Device node pointer associated with the PM domain provider. * @data: Pointer to the data associated with the PM domain provider. */ int of_genpd_add_provider_onecell(struct device_node *np, struct genpd_onecell_data *data) { struct generic_pm_domain *genpd; unsigned int i; int ret = -EINVAL; if (!np || !data) return -EINVAL; if (!data->xlate) data->xlate = genpd_xlate_onecell; for (i = 0; i < data->num_domains; i++) { genpd = data->domains[i]; if (!genpd) continue; if (!genpd_present(genpd)) goto error; genpd->dev.of_node = np; /* Parse genpd OPP table */ if (!genpd_is_opp_table_fw(genpd) && genpd->set_performance_state) { ret = dev_pm_opp_of_add_table_indexed(&genpd->dev, i); if (ret) { dev_err_probe(&genpd->dev, ret, "Failed to add OPP table for index %d\n", i); goto error; } /* * Save table for faster processing while setting * performance state. */ genpd->opp_table = dev_pm_opp_get_opp_table(&genpd->dev); WARN_ON(IS_ERR(genpd->opp_table)); } genpd->provider = &np->fwnode; genpd->has_provider = true; } ret = genpd_add_provider(np, data->xlate, data); if (ret < 0) goto error; return 0; error: while (i--) { genpd = data->domains[i]; if (!genpd) continue; genpd->provider = NULL; genpd->has_provider = false; if (!genpd_is_opp_table_fw(genpd) && genpd->set_performance_state) { dev_pm_opp_put_opp_table(genpd->opp_table); dev_pm_opp_of_remove_table(&genpd->dev); } } return ret; } EXPORT_SYMBOL_GPL(of_genpd_add_provider_onecell); /** * of_genpd_del_provider() - Remove a previously registered PM domain provider * @np: Device node pointer associated with the PM domain provider */ void of_genpd_del_provider(struct device_node *np) { struct of_genpd_provider *cp, *tmp; struct generic_pm_domain *gpd; mutex_lock(&gpd_list_lock); mutex_lock(&of_genpd_mutex); list_for_each_entry_safe(cp, tmp, &of_genpd_providers, link) { if (cp->node == np) { /* * For each PM domain associated with the * provider, set the 'has_provider' to false * so that the PM domain can be safely removed. */ list_for_each_entry(gpd, &gpd_list, gpd_list_node) { if (gpd->provider == &np->fwnode) { gpd->has_provider = false; if (genpd_is_opp_table_fw(gpd) || !gpd->set_performance_state) continue; dev_pm_opp_put_opp_table(gpd->opp_table); dev_pm_opp_of_remove_table(&gpd->dev); } } fwnode_dev_initialized(&cp->node->fwnode, false); list_del(&cp->link); of_node_put(cp->node); kfree(cp); break; } } mutex_unlock(&of_genpd_mutex); mutex_unlock(&gpd_list_lock); } EXPORT_SYMBOL_GPL(of_genpd_del_provider); /** * genpd_get_from_provider() - Look-up PM domain * @genpdspec: OF phandle args to use for look-up * * Looks for a PM domain provider under the node specified by @genpdspec and if * found, uses xlate function of the provider to map phandle args to a PM * domain. * * Returns a valid pointer to struct generic_pm_domain on success or ERR_PTR() * on failure. */ static struct generic_pm_domain *genpd_get_from_provider( const struct of_phandle_args *genpdspec) { struct generic_pm_domain *genpd = ERR_PTR(-ENOENT); struct of_genpd_provider *provider; if (!genpdspec) return ERR_PTR(-EINVAL); mutex_lock(&of_genpd_mutex); /* Check if we have such a provider in our array */ list_for_each_entry(provider, &of_genpd_providers, link) { if (provider->node == genpdspec->np) genpd = provider->xlate(genpdspec, provider->data); if (!IS_ERR(genpd)) break; } mutex_unlock(&of_genpd_mutex); return genpd; } /** * of_genpd_add_device() - Add a device to an I/O PM domain * @genpdspec: OF phandle args to use for look-up PM domain * @dev: Device to be added. * * Looks-up an I/O PM domain based upon phandle args provided and adds * the device to the PM domain. Returns a negative error code on failure. */ int of_genpd_add_device(const struct of_phandle_args *genpdspec, struct device *dev) { struct generic_pm_domain *genpd; int ret; if (!dev) return -EINVAL; mutex_lock(&gpd_list_lock); genpd = genpd_get_from_provider(genpdspec); if (IS_ERR(genpd)) { ret = PTR_ERR(genpd); goto out; } ret = genpd_add_device(genpd, dev, dev); out: mutex_unlock(&gpd_list_lock); return ret; } EXPORT_SYMBOL_GPL(of_genpd_add_device); /** * of_genpd_add_subdomain - Add a subdomain to an I/O PM domain. * @parent_spec: OF phandle args to use for parent PM domain look-up * @subdomain_spec: OF phandle args to use for subdomain look-up * * Looks-up a parent PM domain and subdomain based upon phandle args * provided and adds the subdomain to the parent PM domain. Returns a * negative error code on failure. */ int of_genpd_add_subdomain(const struct of_phandle_args *parent_spec, const struct of_phandle_args *subdomain_spec) { struct generic_pm_domain *parent, *subdomain; int ret; mutex_lock(&gpd_list_lock); parent = genpd_get_from_provider(parent_spec); if (IS_ERR(parent)) { ret = PTR_ERR(parent); goto out; } subdomain = genpd_get_from_provider(subdomain_spec); if (IS_ERR(subdomain)) { ret = PTR_ERR(subdomain); goto out; } ret = genpd_add_subdomain(parent, subdomain); out: mutex_unlock(&gpd_list_lock); return ret == -ENOENT ? -EPROBE_DEFER : ret; } EXPORT_SYMBOL_GPL(of_genpd_add_subdomain); /** * of_genpd_remove_subdomain - Remove a subdomain from an I/O PM domain. * @parent_spec: OF phandle args to use for parent PM domain look-up * @subdomain_spec: OF phandle args to use for subdomain look-up * * Looks-up a parent PM domain and subdomain based upon phandle args * provided and removes the subdomain from the parent PM domain. Returns a * negative error code on failure. */ int of_genpd_remove_subdomain(const struct of_phandle_args *parent_spec, const struct of_phandle_args *subdomain_spec) { struct generic_pm_domain *parent, *subdomain; int ret; mutex_lock(&gpd_list_lock); parent = genpd_get_from_provider(parent_spec); if (IS_ERR(parent)) { ret = PTR_ERR(parent); goto out; } subdomain = genpd_get_from_provider(subdomain_spec); if (IS_ERR(subdomain)) { ret = PTR_ERR(subdomain); goto out; } ret = pm_genpd_remove_subdomain(parent, subdomain); out: mutex_unlock(&gpd_list_lock); return ret; } EXPORT_SYMBOL_GPL(of_genpd_remove_subdomain); /** * of_genpd_remove_last - Remove the last PM domain registered for a provider * @np: Pointer to device node associated with provider * * Find the last PM domain that was added by a particular provider and * remove this PM domain from the list of PM domains. The provider is * identified by the 'provider' device structure that is passed. The PM * domain will only be removed, if the provider associated with domain * has been removed. * * Returns a valid pointer to struct generic_pm_domain on success or * ERR_PTR() on failure. */ struct generic_pm_domain *of_genpd_remove_last(struct device_node *np) { struct generic_pm_domain *gpd, *tmp, *genpd = ERR_PTR(-ENOENT); int ret; if (IS_ERR_OR_NULL(np)) return ERR_PTR(-EINVAL); mutex_lock(&gpd_list_lock); list_for_each_entry_safe(gpd, tmp, &gpd_list, gpd_list_node) { if (gpd->provider == &np->fwnode) { ret = genpd_remove(gpd); genpd = ret ? ERR_PTR(ret) : gpd; break; } } mutex_unlock(&gpd_list_lock); return genpd; } EXPORT_SYMBOL_GPL(of_genpd_remove_last); static void genpd_release_dev(struct device *dev) { of_node_put(dev->of_node); kfree(dev); } static const struct bus_type genpd_bus_type = { .name = "genpd", }; /** * genpd_dev_pm_detach - Detach a device from its PM domain. * @dev: Device to detach. * @power_off: Currently not used * * Try to locate a corresponding generic PM domain, which the device was * attached to previously. If such is found, the device is detached from it. */ static void genpd_dev_pm_detach(struct device *dev, bool power_off) { struct generic_pm_domain *pd; unsigned int i; int ret = 0; pd = dev_to_genpd(dev); if (IS_ERR(pd)) return; dev_dbg(dev, "removing from PM domain %s\n", pd->name); /* Drop the default performance state */ if (dev_gpd_data(dev)->default_pstate) { dev_pm_genpd_set_performance_state(dev, 0); dev_gpd_data(dev)->default_pstate = 0; } for (i = 1; i < GENPD_RETRY_MAX_MS; i <<= 1) { ret = genpd_remove_device(pd, dev); if (ret != -EAGAIN) break; mdelay(i); cond_resched(); } if (ret < 0) { dev_err(dev, "failed to remove from PM domain %s: %d", pd->name, ret); return; } /* Check if PM domain can be powered off after removing this device. */ genpd_queue_power_off_work(pd); /* Unregister the device if it was created by genpd. */ if (dev->bus == &genpd_bus_type) device_unregister(dev); } static void genpd_dev_pm_sync(struct device *dev) { struct generic_pm_domain *pd; pd = dev_to_genpd(dev); if (IS_ERR(pd)) return; genpd_queue_power_off_work(pd); } static int __genpd_dev_pm_attach(struct device *dev, struct device *base_dev, unsigned int index, bool power_on) { struct of_phandle_args pd_args; struct generic_pm_domain *pd; int pstate; int ret; ret = of_parse_phandle_with_args(dev->of_node, "power-domains", "#power-domain-cells", index, &pd_args); if (ret < 0) return ret; mutex_lock(&gpd_list_lock); pd = genpd_get_from_provider(&pd_args); of_node_put(pd_args.np); if (IS_ERR(pd)) { mutex_unlock(&gpd_list_lock); dev_dbg(dev, "%s() failed to find PM domain: %ld\n", __func__, PTR_ERR(pd)); return driver_deferred_probe_check_state(base_dev); } dev_dbg(dev, "adding to PM domain %s\n", pd->name); ret = genpd_add_device(pd, dev, base_dev); mutex_unlock(&gpd_list_lock); if (ret < 0) return dev_err_probe(dev, ret, "failed to add to PM domain %s\n", pd->name); dev->pm_domain->detach = genpd_dev_pm_detach; dev->pm_domain->sync = genpd_dev_pm_sync; /* Set the default performance state */ pstate = of_get_required_opp_performance_state(dev->of_node, index); if (pstate < 0 && pstate != -ENODEV && pstate != -EOPNOTSUPP) { ret = pstate; goto err; } else if (pstate > 0) { ret = dev_pm_genpd_set_performance_state(dev, pstate); if (ret) goto err; dev_gpd_data(dev)->default_pstate = pstate; } if (power_on) { genpd_lock(pd); ret = genpd_power_on(pd, 0); genpd_unlock(pd); } if (ret) { /* Drop the default performance state */ if (dev_gpd_data(dev)->default_pstate) { dev_pm_genpd_set_performance_state(dev, 0); dev_gpd_data(dev)->default_pstate = 0; } genpd_remove_device(pd, dev); return -EPROBE_DEFER; } return 1; err: dev_err(dev, "failed to set required performance state for power-domain %s: %d\n", pd->name, ret); genpd_remove_device(pd, dev); return ret; } /** * genpd_dev_pm_attach - Attach a device to its PM domain using DT. * @dev: Device to attach. * * Parse device's OF node to find a PM domain specifier. If such is found, * attaches the device to retrieved pm_domain ops. * * Returns 1 on successfully attached PM domain, 0 when the device don't need a * PM domain or when multiple power-domains exists for it, else a negative error * code. Note that if a power-domain exists for the device, but it cannot be * found or turned on, then return -EPROBE_DEFER to ensure that the device is * not probed and to re-try again later. */ int genpd_dev_pm_attach(struct device *dev) { if (!dev->of_node) return 0; /* * Devices with multiple PM domains must be attached separately, as we * can only attach one PM domain per device. */ if (of_count_phandle_with_args(dev->of_node, "power-domains", "#power-domain-cells") != 1) return 0; return __genpd_dev_pm_attach(dev, dev, 0, true); } EXPORT_SYMBOL_GPL(genpd_dev_pm_attach); /** * genpd_dev_pm_attach_by_id - Associate a device with one of its PM domains. * @dev: The device used to lookup the PM domain. * @index: The index of the PM domain. * * Parse device's OF node to find a PM domain specifier at the provided @index. * If such is found, creates a virtual device and attaches it to the retrieved * pm_domain ops. To deal with detaching of the virtual device, the ->detach() * callback in the struct dev_pm_domain are assigned to genpd_dev_pm_detach(). * * Returns the created virtual device if successfully attached PM domain, NULL * when the device don't need a PM domain, else an ERR_PTR() in case of * failures. If a power-domain exists for the device, but cannot be found or * turned on, then ERR_PTR(-EPROBE_DEFER) is returned to ensure that the device * is not probed and to re-try again later. */ struct device *genpd_dev_pm_attach_by_id(struct device *dev, unsigned int index) { struct device *virt_dev; int num_domains; int ret; if (!dev->of_node) return NULL; /* Verify that the index is within a valid range. */ num_domains = of_count_phandle_with_args(dev->of_node, "power-domains", "#power-domain-cells"); if (index >= num_domains) return NULL; /* Allocate and register device on the genpd bus. */ virt_dev = kzalloc(sizeof(*virt_dev), GFP_KERNEL); if (!virt_dev) return ERR_PTR(-ENOMEM); dev_set_name(virt_dev, "genpd:%u:%s", index, dev_name(dev)); virt_dev->bus = &genpd_bus_type; virt_dev->release = genpd_release_dev; virt_dev->of_node = of_node_get(dev->of_node); ret = device_register(virt_dev); if (ret) { put_device(virt_dev); return ERR_PTR(ret); } /* Try to attach the device to the PM domain at the specified index. */ ret = __genpd_dev_pm_attach(virt_dev, dev, index, false); if (ret < 1) { device_unregister(virt_dev); return ret ? ERR_PTR(ret) : NULL; } pm_runtime_enable(virt_dev); genpd_queue_power_off_work(dev_to_genpd(virt_dev)); return virt_dev; } EXPORT_SYMBOL_GPL(genpd_dev_pm_attach_by_id); /** * genpd_dev_pm_attach_by_name - Associate a device with one of its PM domains. * @dev: The device used to lookup the PM domain. * @name: The name of the PM domain. * * Parse device's OF node to find a PM domain specifier using the * power-domain-names DT property. For further description see * genpd_dev_pm_attach_by_id(). */ struct device *genpd_dev_pm_attach_by_name(struct device *dev, const char *name) { int index; if (!dev->of_node) return NULL; index = of_property_match_string(dev->of_node, "power-domain-names", name); if (index < 0) return NULL; return genpd_dev_pm_attach_by_id(dev, index); } static const struct of_device_id idle_state_match[] = { { .compatible = "domain-idle-state", }, { } }; static int genpd_parse_state(struct genpd_power_state *genpd_state, struct device_node *state_node) { int err; u32 residency; u32 entry_latency, exit_latency; err = of_property_read_u32(state_node, "entry-latency-us", &entry_latency); if (err) { pr_debug(" * %pOF missing entry-latency-us property\n", state_node); return -EINVAL; } err = of_property_read_u32(state_node, "exit-latency-us", &exit_latency); if (err) { pr_debug(" * %pOF missing exit-latency-us property\n", state_node); return -EINVAL; } err = of_property_read_u32(state_node, "min-residency-us", &residency); if (!err) genpd_state->residency_ns = 1000LL * residency; genpd_state->power_on_latency_ns = 1000LL * exit_latency; genpd_state->power_off_latency_ns = 1000LL * entry_latency; genpd_state->fwnode = &state_node->fwnode; return 0; } static int genpd_iterate_idle_states(struct device_node *dn, struct genpd_power_state *states) { int ret; struct of_phandle_iterator it; struct device_node *np; int i = 0; ret = of_count_phandle_with_args(dn, "domain-idle-states", NULL); if (ret <= 0) return ret == -ENOENT ? 0 : ret; /* Loop over the phandles until all the requested entry is found */ of_for_each_phandle(&it, ret, dn, "domain-idle-states", NULL, 0) { np = it.node; if (!of_match_node(idle_state_match, np)) continue; if (!of_device_is_available(np)) continue; if (states) { ret = genpd_parse_state(&states[i], np); if (ret) { pr_err("Parsing idle state node %pOF failed with err %d\n", np, ret); of_node_put(np); return ret; } } i++; } return i; } /** * of_genpd_parse_idle_states: Return array of idle states for the genpd. * * @dn: The genpd device node * @states: The pointer to which the state array will be saved. * @n: The count of elements in the array returned from this function. * * Returns the device states parsed from the OF node. The memory for the states * is allocated by this function and is the responsibility of the caller to * free the memory after use. If any or zero compatible domain idle states is * found it returns 0 and in case of errors, a negative error code is returned. */ int of_genpd_parse_idle_states(struct device_node *dn, struct genpd_power_state **states, int *n) { struct genpd_power_state *st; int ret; ret = genpd_iterate_idle_states(dn, NULL); if (ret < 0) return ret; if (!ret) { *states = NULL; *n = 0; return 0; } st = kcalloc(ret, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; ret = genpd_iterate_idle_states(dn, st); if (ret <= 0) { kfree(st); return ret < 0 ? ret : -EINVAL; } *states = st; *n = ret; return 0; } EXPORT_SYMBOL_GPL(of_genpd_parse_idle_states); static int __init genpd_bus_init(void) { return bus_register(&genpd_bus_type); } core_initcall(genpd_bus_init); #endif /* CONFIG_PM_GENERIC_DOMAINS_OF */ /*** debugfs support ***/ #ifdef CONFIG_DEBUG_FS /* * TODO: This function is a slightly modified version of rtpm_status_show * from sysfs.c, so generalize it. */ static void rtpm_status_str(struct seq_file *s, struct device *dev) { static const char * const status_lookup[] = { [RPM_ACTIVE] = "active", [RPM_RESUMING] = "resuming", [RPM_SUSPENDED] = "suspended", [RPM_SUSPENDING] = "suspending" }; const char *p = ""; if (dev->power.runtime_error) p = "error"; else if (dev->power.disable_depth) p = "unsupported"; else if (dev->power.runtime_status < ARRAY_SIZE(status_lookup)) p = status_lookup[dev->power.runtime_status]; else WARN_ON(1); seq_printf(s, "%-26s ", p); } static void perf_status_str(struct seq_file *s, struct device *dev) { struct generic_pm_domain_data *gpd_data; gpd_data = to_gpd_data(dev->power.subsys_data->domain_data); seq_printf(s, "%-10u ", gpd_data->performance_state); } static void mode_status_str(struct seq_file *s, struct device *dev) { struct generic_pm_domain_data *gpd_data; gpd_data = to_gpd_data(dev->power.subsys_data->domain_data); seq_printf(s, "%2s", gpd_data->hw_mode ? "HW" : "SW"); } static int genpd_summary_one(struct seq_file *s, struct generic_pm_domain *genpd) { static const char * const status_lookup[] = { [GENPD_STATE_ON] = "on", [GENPD_STATE_OFF] = "off" }; struct pm_domain_data *pm_data; struct gpd_link *link; char state[16]; int ret; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; if (WARN_ON(genpd->status >= ARRAY_SIZE(status_lookup))) goto exit; if (!genpd_status_on(genpd)) snprintf(state, sizeof(state), "%s-%u", status_lookup[genpd->status], genpd->state_idx); else snprintf(state, sizeof(state), "%s", status_lookup[genpd->status]); seq_printf(s, "%-30s %-30s %u", genpd->name, state, genpd->performance_state); /* * Modifications on the list require holding locks on both * parent and child, so we are safe. * Also genpd->name is immutable. */ list_for_each_entry(link, &genpd->parent_links, parent_node) { if (list_is_first(&link->parent_node, &genpd->parent_links)) seq_printf(s, "\n%48s", " "); seq_printf(s, "%s", link->child->name); if (!list_is_last(&link->parent_node, &genpd->parent_links)) seq_puts(s, ", "); } list_for_each_entry(pm_data, &genpd->dev_list, list_node) { seq_printf(s, "\n %-30s ", dev_name(pm_data->dev)); rtpm_status_str(s, pm_data->dev); perf_status_str(s, pm_data->dev); mode_status_str(s, pm_data->dev); } seq_puts(s, "\n"); exit: genpd_unlock(genpd); return 0; } static int summary_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd; int ret = 0; seq_puts(s, "domain status children performance\n"); seq_puts(s, " /device runtime status managed by\n"); seq_puts(s, "------------------------------------------------------------------------------\n"); ret = mutex_lock_interruptible(&gpd_list_lock); if (ret) return -ERESTARTSYS; list_for_each_entry(genpd, &gpd_list, gpd_list_node) { ret = genpd_summary_one(s, genpd); if (ret) break; } mutex_unlock(&gpd_list_lock); return ret; } static int status_show(struct seq_file *s, void *data) { static const char * const status_lookup[] = { [GENPD_STATE_ON] = "on", [GENPD_STATE_OFF] = "off" }; struct generic_pm_domain *genpd = s->private; int ret = 0; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; if (WARN_ON_ONCE(genpd->status >= ARRAY_SIZE(status_lookup))) goto exit; if (genpd->status == GENPD_STATE_OFF) seq_printf(s, "%s-%u\n", status_lookup[genpd->status], genpd->state_idx); else seq_printf(s, "%s\n", status_lookup[genpd->status]); exit: genpd_unlock(genpd); return ret; } static int sub_domains_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd = s->private; struct gpd_link *link; int ret = 0; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; list_for_each_entry(link, &genpd->parent_links, parent_node) seq_printf(s, "%s\n", link->child->name); genpd_unlock(genpd); return ret; } static int idle_states_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd = s->private; u64 now, delta, idle_time = 0; unsigned int i; int ret = 0; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; seq_puts(s, "State Time Spent(ms) Usage Rejected\n"); for (i = 0; i < genpd->state_count; i++) { idle_time += genpd->states[i].idle_time; if (genpd->status == GENPD_STATE_OFF && genpd->state_idx == i) { now = ktime_get_mono_fast_ns(); if (now > genpd->accounting_time) { delta = now - genpd->accounting_time; idle_time += delta; } } do_div(idle_time, NSEC_PER_MSEC); seq_printf(s, "S%-13i %-14llu %-14llu %llu\n", i, idle_time, genpd->states[i].usage, genpd->states[i].rejected); } genpd_unlock(genpd); return ret; } static int active_time_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd = s->private; u64 now, on_time, delta = 0; int ret = 0; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; if (genpd->status == GENPD_STATE_ON) { now = ktime_get_mono_fast_ns(); if (now > genpd->accounting_time) delta = now - genpd->accounting_time; } on_time = genpd->on_time + delta; do_div(on_time, NSEC_PER_MSEC); seq_printf(s, "%llu ms\n", on_time); genpd_unlock(genpd); return ret; } static int total_idle_time_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd = s->private; u64 now, delta, total = 0; unsigned int i; int ret = 0; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; for (i = 0; i < genpd->state_count; i++) { total += genpd->states[i].idle_time; if (genpd->status == GENPD_STATE_OFF && genpd->state_idx == i) { now = ktime_get_mono_fast_ns(); if (now > genpd->accounting_time) { delta = now - genpd->accounting_time; total += delta; } } } do_div(total, NSEC_PER_MSEC); seq_printf(s, "%llu ms\n", total); genpd_unlock(genpd); return ret; } static int devices_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd = s->private; struct pm_domain_data *pm_data; int ret = 0; ret = genpd_lock_interruptible(genpd); if (ret) return -ERESTARTSYS; list_for_each_entry(pm_data, &genpd->dev_list, list_node) seq_printf(s, "%s\n", dev_name(pm_data->dev)); genpd_unlock(genpd); return ret; } static int perf_state_show(struct seq_file *s, void *data) { struct generic_pm_domain *genpd = s->private; if (genpd_lock_interruptible(genpd)) return -ERESTARTSYS; seq_printf(s, "%u\n", genpd->performance_state); genpd_unlock(genpd); return 0; } DEFINE_SHOW_ATTRIBUTE(summary); DEFINE_SHOW_ATTRIBUTE(status); DEFINE_SHOW_ATTRIBUTE(sub_domains); DEFINE_SHOW_ATTRIBUTE(idle_states); DEFINE_SHOW_ATTRIBUTE(active_time); DEFINE_SHOW_ATTRIBUTE(total_idle_time); DEFINE_SHOW_ATTRIBUTE(devices); DEFINE_SHOW_ATTRIBUTE(perf_state); static void genpd_debug_add(struct generic_pm_domain *genpd) { struct dentry *d; if (!genpd_debugfs_dir) return; d = debugfs_create_dir(genpd->name, genpd_debugfs_dir); debugfs_create_file("current_state", 0444, d, genpd, &status_fops); debugfs_create_file("sub_domains", 0444, d, genpd, &sub_domains_fops); debugfs_create_file("idle_states", 0444, d, genpd, &idle_states_fops); debugfs_create_file("active_time", 0444, d, genpd, &active_time_fops); debugfs_create_file("total_idle_time", 0444, d, genpd, &total_idle_time_fops); debugfs_create_file("devices", 0444, d, genpd, &devices_fops); if (genpd->set_performance_state) debugfs_create_file("perf_state", 0444, d, genpd, &perf_state_fops); } static int __init genpd_debug_init(void) { struct generic_pm_domain *genpd; genpd_debugfs_dir = debugfs_create_dir("pm_genpd", NULL); debugfs_create_file("pm_genpd_summary", S_IRUGO, genpd_debugfs_dir, NULL, &summary_fops); list_for_each_entry(genpd, &gpd_list, gpd_list_node) genpd_debug_add(genpd); return 0; } late_initcall(genpd_debug_init); static void __exit genpd_debug_exit(void) { debugfs_remove_recursive(genpd_debugfs_dir); } __exitcall(genpd_debug_exit); #endif /* CONFIG_DEBUG_FS */