// SPDX-License-Identifier: GPL-2.0 /* * Intel Platform Monitory Technology Telemetry driver * * Copyright (c) 2020, Intel Corporation. * All Rights Reserved. * * Author: "Alexander Duyck" */ #include #include #include #include #include #include #include "class.h" #define PMT_XA_START 1 #define PMT_XA_MAX INT_MAX #define PMT_XA_LIMIT XA_LIMIT(PMT_XA_START, PMT_XA_MAX) #define GUID_SPR_PUNIT 0x9956f43f bool intel_pmt_is_early_client_hw(struct device *dev) { struct intel_vsec_device *ivdev = dev_to_ivdev(dev); /* * Early implementations of PMT on client platforms have some * differences from the server platforms (which use the Out Of Band * Management Services Module OOBMSM). */ return !!(ivdev->quirks & VSEC_QUIRK_EARLY_HW); } EXPORT_SYMBOL_NS_GPL(intel_pmt_is_early_client_hw, INTEL_PMT); static inline int pmt_memcpy64_fromio(void *to, const u64 __iomem *from, size_t count) { int i, remain; u64 *buf = to; if (!IS_ALIGNED((unsigned long)from, 8)) return -EFAULT; for (i = 0; i < count/8; i++) buf[i] = readq(&from[i]); /* Copy any remaining bytes */ remain = count % 8; if (remain) { u64 tmp = readq(&from[i]); memcpy(&buf[i], &tmp, remain); } return count; } int pmt_telem_read_mmio(struct pci_dev *pdev, struct pmt_callbacks *cb, u32 guid, void *buf, void __iomem *addr, loff_t off, u32 count) { if (cb && cb->read_telem) return cb->read_telem(pdev, guid, buf, off, count); addr += off; if (guid == GUID_SPR_PUNIT) /* PUNIT on SPR only supports aligned 64-bit read */ return pmt_memcpy64_fromio(buf, addr, count); memcpy_fromio(buf, addr, count); return count; } EXPORT_SYMBOL_NS_GPL(pmt_telem_read_mmio, INTEL_PMT); /* * sysfs */ static ssize_t intel_pmt_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct intel_pmt_entry *entry = container_of(attr, struct intel_pmt_entry, pmt_bin_attr); if (off < 0) return -EINVAL; if (off >= entry->size) return 0; if (count > entry->size - off) count = entry->size - off; count = pmt_telem_read_mmio(entry->ep->pcidev, entry->cb, entry->header.guid, buf, entry->base, off, count); return count; } static int intel_pmt_mmap(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, struct vm_area_struct *vma) { struct intel_pmt_entry *entry = container_of(attr, struct intel_pmt_entry, pmt_bin_attr); unsigned long vsize = vma->vm_end - vma->vm_start; struct device *dev = kobj_to_dev(kobj); unsigned long phys = entry->base_addr; unsigned long pfn = PFN_DOWN(phys); unsigned long psize; if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE)) return -EROFS; psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE; if (vsize > psize) { dev_err(dev, "Requested mmap size is too large\n"); return -EINVAL; } vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (io_remap_pfn_range(vma, vma->vm_start, pfn, vsize, vma->vm_page_prot)) return -EAGAIN; return 0; } static ssize_t guid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); return sprintf(buf, "0x%x\n", entry->guid); } static DEVICE_ATTR_RO(guid); static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); return sprintf(buf, "%zu\n", entry->size); } static DEVICE_ATTR_RO(size); static ssize_t offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_pmt_entry *entry = dev_get_drvdata(dev); return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr)); } static DEVICE_ATTR_RO(offset); static struct attribute *intel_pmt_attrs[] = { &dev_attr_guid.attr, &dev_attr_size.attr, &dev_attr_offset.attr, NULL }; ATTRIBUTE_GROUPS(intel_pmt); static struct class intel_pmt_class = { .name = "intel_pmt", .dev_groups = intel_pmt_groups, }; static int intel_pmt_populate_entry(struct intel_pmt_entry *entry, struct intel_vsec_device *ivdev, struct resource *disc_res) { struct pci_dev *pci_dev = ivdev->pcidev; struct device *dev = &ivdev->auxdev.dev; struct intel_pmt_header *header = &entry->header; u8 bir; /* * The base offset should always be 8 byte aligned. * * For non-local access types the lower 3 bits of base offset * contains the index of the base address register where the * telemetry can be found. */ bir = GET_BIR(header->base_offset); /* Local access and BARID only for now */ switch (header->access_type) { case ACCESS_LOCAL: if (bir) { dev_err(dev, "Unsupported BAR index %d for access type %d\n", bir, header->access_type); return -EINVAL; } /* * For access_type LOCAL, the base address is as follows: * base address = end of discovery region + base offset */ entry->base_addr = disc_res->end + 1 + header->base_offset; /* * Some hardware use a different calculation for the base address * when access_type == ACCESS_LOCAL. On the these systems * ACCESS_LOCAL refers to an address in the same BAR as the * header but at a fixed offset. But as the header address was * supplied to the driver, we don't know which BAR it was in. * So search for the bar whose range includes the header address. */ if (intel_pmt_is_early_client_hw(dev)) { int i; entry->base_addr = 0; for (i = 0; i < 6; i++) if (disc_res->start >= pci_resource_start(pci_dev, i) && (disc_res->start <= pci_resource_end(pci_dev, i))) { entry->base_addr = pci_resource_start(pci_dev, i) + header->base_offset; break; } if (!entry->base_addr) return -EINVAL; } break; case ACCESS_BARID: /* Use the provided base address if it exists */ if (ivdev->base_addr) { entry->base_addr = ivdev->base_addr + GET_ADDRESS(header->base_offset); break; } /* * If another BAR was specified then the base offset * represents the offset within that BAR. SO retrieve the * address from the parent PCI device and add offset. */ entry->base_addr = pci_resource_start(pci_dev, bir) + GET_ADDRESS(header->base_offset); break; default: dev_err(dev, "Unsupported access type %d\n", header->access_type); return -EINVAL; } entry->guid = header->guid; entry->size = header->size; entry->cb = ivdev->priv_data; return 0; } static int intel_pmt_dev_register(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns, struct device *parent) { struct intel_vsec_device *ivdev = dev_to_ivdev(parent); struct resource res = {0}; struct device *dev; int ret; ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL); if (ret) return ret; dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry, "%s%d", ns->name, entry->devid); if (IS_ERR(dev)) { dev_err(parent, "Could not create %s%d device node\n", ns->name, entry->devid); ret = PTR_ERR(dev); goto fail_dev_create; } entry->kobj = &dev->kobj; if (ns->attr_grp) { ret = sysfs_create_group(entry->kobj, ns->attr_grp); if (ret) goto fail_sysfs_create_group; } /* if size is 0 assume no data buffer, so no file needed */ if (!entry->size) return 0; res.start = entry->base_addr; res.end = res.start + entry->size - 1; res.flags = IORESOURCE_MEM; entry->base = devm_ioremap_resource(dev, &res); if (IS_ERR(entry->base)) { ret = PTR_ERR(entry->base); goto fail_ioremap; } sysfs_bin_attr_init(&entry->pmt_bin_attr); entry->pmt_bin_attr.attr.name = ns->name; entry->pmt_bin_attr.attr.mode = 0440; entry->pmt_bin_attr.mmap = intel_pmt_mmap; entry->pmt_bin_attr.read = intel_pmt_read; entry->pmt_bin_attr.size = entry->size; ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr); if (ret) goto fail_ioremap; if (ns->pmt_add_endpoint) { ret = ns->pmt_add_endpoint(ivdev, entry); if (ret) goto fail_add_endpoint; } return 0; fail_add_endpoint: sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr); fail_ioremap: if (ns->attr_grp) sysfs_remove_group(entry->kobj, ns->attr_grp); fail_sysfs_create_group: device_unregister(dev); fail_dev_create: xa_erase(ns->xa, entry->devid); return ret; } int intel_pmt_dev_create(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns, struct intel_vsec_device *intel_vsec_dev, int idx) { struct device *dev = &intel_vsec_dev->auxdev.dev; struct resource *disc_res; int ret; disc_res = &intel_vsec_dev->resource[idx]; entry->disc_table = devm_ioremap_resource(dev, disc_res); if (IS_ERR(entry->disc_table)) return PTR_ERR(entry->disc_table); ret = ns->pmt_header_decode(entry, dev); if (ret) return ret; ret = intel_pmt_populate_entry(entry, intel_vsec_dev, disc_res); if (ret) return ret; return intel_pmt_dev_register(entry, ns, dev); } EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_create, INTEL_PMT); void intel_pmt_dev_destroy(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns) { struct device *dev = kobj_to_dev(entry->kobj); if (entry->size) sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr); if (ns->attr_grp) sysfs_remove_group(entry->kobj, ns->attr_grp); device_unregister(dev); xa_erase(ns->xa, entry->devid); } EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_destroy, INTEL_PMT); static int __init pmt_class_init(void) { return class_register(&intel_pmt_class); } static void __exit pmt_class_exit(void) { class_unregister(&intel_pmt_class); } module_init(pmt_class_init); module_exit(pmt_class_exit); MODULE_AUTHOR("Alexander Duyck "); MODULE_DESCRIPTION("Intel PMT Class driver"); MODULE_LICENSE("GPL v2");