// SPDX-License-Identifier: GPL-2.0 // LPC interface for ChromeOS Embedded Controller // // Copyright (C) 2012-2015 Google, Inc // // This driver uses the ChromeOS EC byte-level message-based protocol for // communicating the keyboard state (which keys are pressed) from a keyboard EC // to the AP over some bus (such as i2c, lpc, spi). The EC does debouncing, // but everything else (including deghosting) is done here. The main // motivation for this is to keep the EC firmware as simple as possible, since // it cannot be easily upgraded and EC flash/IRAM space is relatively // expensive. #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cros_ec.h" #include "cros_ec_lpc_mec.h" #define DRV_NAME "cros_ec_lpcs" #define ACPI_DRV_NAME "GOOG0004" /* True if ACPI device is present */ static bool cros_ec_lpc_acpi_device_found; /* * Indicates that lpc_driver_data.quirk_mmio_memory_base should * be used as the base port for EC mapped memory. */ #define CROS_EC_LPC_QUIRK_REMAP_MEMORY BIT(0) /* * Indicates that lpc_driver_data.quirk_acpi_id should be used to find * the ACPI device. */ #define CROS_EC_LPC_QUIRK_ACPI_ID BIT(1) /* * Indicates that lpc_driver_data.quirk_aml_mutex_name should be used * to find an AML mutex to protect access to Microchip EC. */ #define CROS_EC_LPC_QUIRK_AML_MUTEX BIT(2) /** * struct lpc_driver_data - driver data attached to a DMI device ID to indicate * hardware quirks. * @quirks: a bitfield composed of quirks from CROS_EC_LPC_QUIRK_* * @quirk_mmio_memory_base: The first I/O port addressing EC mapped memory (used * when quirk ...REMAP_MEMORY is set.) * @quirk_acpi_id: An ACPI HID to be used to find the ACPI device. * @quirk_aml_mutex_name: The name of an AML mutex to be used to protect access * to Microchip EC. */ struct lpc_driver_data { u32 quirks; u16 quirk_mmio_memory_base; const char *quirk_acpi_id; const char *quirk_aml_mutex_name; }; /** * struct cros_ec_lpc - LPC device-specific data * @mmio_memory_base: The first I/O port addressing EC mapped memory. */ struct cros_ec_lpc { u16 mmio_memory_base; }; /** * struct lpc_driver_ops - LPC driver operations * @read: Copy length bytes from EC address offset into buffer dest. * Returns a negative error code on error, or the 8-bit checksum * of all bytes read. * @write: Copy length bytes from buffer msg into EC address offset. * Returns a negative error code on error, or the 8-bit checksum * of all bytes written. */ struct lpc_driver_ops { int (*read)(unsigned int offset, unsigned int length, u8 *dest); int (*write)(unsigned int offset, unsigned int length, const u8 *msg); }; static struct lpc_driver_ops cros_ec_lpc_ops = { }; /* * A generic instance of the read function of struct lpc_driver_ops, used for * the LPC EC. */ static int cros_ec_lpc_read_bytes(unsigned int offset, unsigned int length, u8 *dest) { u8 sum = 0; int i; for (i = 0; i < length; ++i) { dest[i] = inb(offset + i); sum += dest[i]; } /* Return checksum of all bytes read */ return sum; } /* * A generic instance of the write function of struct lpc_driver_ops, used for * the LPC EC. */ static int cros_ec_lpc_write_bytes(unsigned int offset, unsigned int length, const u8 *msg) { u8 sum = 0; int i; for (i = 0; i < length; ++i) { outb(msg[i], offset + i); sum += msg[i]; } /* Return checksum of all bytes written */ return sum; } /* * An instance of the read function of struct lpc_driver_ops, used for the * MEC variant of LPC EC. */ static int cros_ec_lpc_mec_read_bytes(unsigned int offset, unsigned int length, u8 *dest) { int in_range = cros_ec_lpc_mec_in_range(offset, length); if (in_range < 0) return in_range; return in_range ? cros_ec_lpc_io_bytes_mec(MEC_IO_READ, offset - EC_HOST_CMD_REGION0, length, dest) : cros_ec_lpc_read_bytes(offset, length, dest); } /* * An instance of the write function of struct lpc_driver_ops, used for the * MEC variant of LPC EC. */ static int cros_ec_lpc_mec_write_bytes(unsigned int offset, unsigned int length, const u8 *msg) { int in_range = cros_ec_lpc_mec_in_range(offset, length); if (in_range < 0) return in_range; return in_range ? cros_ec_lpc_io_bytes_mec(MEC_IO_WRITE, offset - EC_HOST_CMD_REGION0, length, (u8 *)msg) : cros_ec_lpc_write_bytes(offset, length, msg); } static int ec_response_timed_out(void) { unsigned long one_second = jiffies + HZ; u8 data; int ret; usleep_range(200, 300); do { ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_CMD, 1, &data); if (ret < 0) return ret; if (!(data & EC_LPC_STATUS_BUSY_MASK)) return 0; usleep_range(100, 200); } while (time_before(jiffies, one_second)); return 1; } static int cros_ec_pkt_xfer_lpc(struct cros_ec_device *ec, struct cros_ec_command *msg) { struct ec_host_response response; u8 sum; int ret = 0; u8 *dout; ret = cros_ec_prepare_tx(ec, msg); if (ret < 0) goto done; /* Write buffer */ ret = cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_PACKET, ret, ec->dout); if (ret < 0) goto done; /* Here we go */ sum = EC_COMMAND_PROTOCOL_3; ret = cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_CMD, 1, &sum); if (ret < 0) goto done; ret = ec_response_timed_out(); if (ret < 0) goto done; if (ret) { dev_warn(ec->dev, "EC response timed out\n"); ret = -EIO; goto done; } /* Check result */ ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_DATA, 1, &sum); if (ret < 0) goto done; msg->result = ret; ret = cros_ec_check_result(ec, msg); if (ret) goto done; /* Read back response */ dout = (u8 *)&response; ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PACKET, sizeof(response), dout); if (ret < 0) goto done; sum = ret; msg->result = response.result; if (response.data_len > msg->insize) { dev_err(ec->dev, "packet too long (%d bytes, expected %d)", response.data_len, msg->insize); ret = -EMSGSIZE; goto done; } /* Read response and process checksum */ ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PACKET + sizeof(response), response.data_len, msg->data); if (ret < 0) goto done; sum += ret; if (sum) { dev_err(ec->dev, "bad packet checksum %02x\n", response.checksum); ret = -EBADMSG; goto done; } /* Return actual amount of data received */ ret = response.data_len; done: return ret; } static int cros_ec_cmd_xfer_lpc(struct cros_ec_device *ec, struct cros_ec_command *msg) { struct ec_lpc_host_args args; u8 sum; int ret = 0; if (msg->outsize > EC_PROTO2_MAX_PARAM_SIZE || msg->insize > EC_PROTO2_MAX_PARAM_SIZE) { dev_err(ec->dev, "invalid buffer sizes (out %d, in %d)\n", msg->outsize, msg->insize); return -EINVAL; } /* Now actually send the command to the EC and get the result */ args.flags = EC_HOST_ARGS_FLAG_FROM_HOST; args.command_version = msg->version; args.data_size = msg->outsize; /* Initialize checksum */ sum = msg->command + args.flags + args.command_version + args.data_size; /* Copy data and update checksum */ ret = cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_PARAM, msg->outsize, msg->data); if (ret < 0) goto done; sum += ret; /* Finalize checksum and write args */ args.checksum = sum; ret = cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_ARGS, sizeof(args), (u8 *)&args); if (ret < 0) goto done; /* Here we go */ sum = msg->command; ret = cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_CMD, 1, &sum); if (ret < 0) goto done; ret = ec_response_timed_out(); if (ret < 0) goto done; if (ret) { dev_warn(ec->dev, "EC response timed out\n"); ret = -EIO; goto done; } /* Check result */ ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_DATA, 1, &sum); if (ret < 0) goto done; msg->result = ret; ret = cros_ec_check_result(ec, msg); if (ret) goto done; /* Read back args */ ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_ARGS, sizeof(args), (u8 *)&args); if (ret < 0) goto done; if (args.data_size > msg->insize) { dev_err(ec->dev, "packet too long (%d bytes, expected %d)", args.data_size, msg->insize); ret = -ENOSPC; goto done; } /* Start calculating response checksum */ sum = msg->command + args.flags + args.command_version + args.data_size; /* Read response and update checksum */ ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PARAM, args.data_size, msg->data); if (ret < 0) goto done; sum += ret; /* Verify checksum */ if (args.checksum != sum) { dev_err(ec->dev, "bad packet checksum, expected %02x, got %02x\n", args.checksum, sum); ret = -EBADMSG; goto done; } /* Return actual amount of data received */ ret = args.data_size; done: return ret; } /* Returns num bytes read, or negative on error. Doesn't need locking. */ static int cros_ec_lpc_readmem(struct cros_ec_device *ec, unsigned int offset, unsigned int bytes, void *dest) { struct cros_ec_lpc *ec_lpc = ec->priv; int i = offset; char *s = dest; int cnt = 0; int ret; if (offset >= EC_MEMMAP_SIZE - bytes) return -EINVAL; /* fixed length */ if (bytes) { ret = cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + offset, bytes, s); if (ret < 0) return ret; return bytes; } /* string */ for (; i < EC_MEMMAP_SIZE; i++, s++) { ret = cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + i, 1, s); if (ret < 0) return ret; cnt++; if (!*s) break; } return cnt; } static void cros_ec_lpc_acpi_notify(acpi_handle device, u32 value, void *data) { static const char *env[] = { "ERROR=PANIC", NULL }; struct cros_ec_device *ec_dev = data; bool ec_has_more_events; int ret; ec_dev->last_event_time = cros_ec_get_time_ns(); if (value == ACPI_NOTIFY_CROS_EC_PANIC) { dev_emerg(ec_dev->dev, "CrOS EC Panic Reported. Shutdown is imminent!"); blocking_notifier_call_chain(&ec_dev->panic_notifier, 0, ec_dev); kobject_uevent_env(&ec_dev->dev->kobj, KOBJ_CHANGE, (char **)env); /* Begin orderly shutdown. EC will force reset after a short period. */ hw_protection_shutdown("CrOS EC Panic", -1); /* Do not query for other events after a panic is reported */ return; } if (ec_dev->mkbp_event_supported) do { ret = cros_ec_get_next_event(ec_dev, NULL, &ec_has_more_events); if (ret > 0) blocking_notifier_call_chain( &ec_dev->event_notifier, 0, ec_dev); } while (ec_has_more_events); if (value == ACPI_NOTIFY_DEVICE_WAKE) pm_system_wakeup(); } static acpi_status cros_ec_lpc_parse_device(acpi_handle handle, u32 level, void *context, void **retval) { *(struct acpi_device **)context = acpi_fetch_acpi_dev(handle); return AE_CTRL_TERMINATE; } static struct acpi_device *cros_ec_lpc_get_device(const char *id) { struct acpi_device *adev = NULL; acpi_status status = acpi_get_devices(id, cros_ec_lpc_parse_device, &adev, NULL); if (ACPI_FAILURE(status)) { pr_warn(DRV_NAME ": Looking for %s failed\n", id); return NULL; } return adev; } static int cros_ec_lpc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct acpi_device *adev; acpi_status status; struct cros_ec_device *ec_dev; struct cros_ec_lpc *ec_lpc; struct lpc_driver_data *driver_data; u8 buf[2] = {}; int irq, ret; u32 quirks; ec_lpc = devm_kzalloc(dev, sizeof(*ec_lpc), GFP_KERNEL); if (!ec_lpc) return -ENOMEM; ec_lpc->mmio_memory_base = EC_LPC_ADDR_MEMMAP; driver_data = platform_get_drvdata(pdev); if (driver_data) { quirks = driver_data->quirks; if (quirks) dev_info(dev, "loaded with quirks %8.08x\n", quirks); if (quirks & CROS_EC_LPC_QUIRK_REMAP_MEMORY) ec_lpc->mmio_memory_base = driver_data->quirk_mmio_memory_base; if (quirks & CROS_EC_LPC_QUIRK_ACPI_ID) { adev = cros_ec_lpc_get_device(driver_data->quirk_acpi_id); if (!adev) { dev_err(dev, "failed to get ACPI device '%s'", driver_data->quirk_acpi_id); return -ENODEV; } ACPI_COMPANION_SET(dev, adev); } if (quirks & CROS_EC_LPC_QUIRK_AML_MUTEX) { const char *name = driver_data->quirk_aml_mutex_name; ret = cros_ec_lpc_mec_acpi_mutex(ACPI_COMPANION(dev), name); if (ret) { dev_err(dev, "failed to get AML mutex '%s'", name); return ret; } dev_info(dev, "got AML mutex '%s'", name); } } /* * The Framework Laptop (and possibly other non-ChromeOS devices) * only exposes the eight I/O ports that are required for the Microchip EC. * Requesting a larger reservation will fail. */ if (!devm_request_region(dev, EC_HOST_CMD_REGION0, EC_HOST_CMD_MEC_REGION_SIZE, dev_name(dev))) { dev_err(dev, "couldn't reserve MEC region\n"); return -EBUSY; } cros_ec_lpc_mec_init(EC_HOST_CMD_REGION0, EC_LPC_ADDR_MEMMAP + EC_MEMMAP_SIZE); /* * Read the mapped ID twice, the first one is assuming the * EC is a Microchip Embedded Controller (MEC) variant, if the * protocol fails, fallback to the non MEC variant and try to * read again the ID. */ cros_ec_lpc_ops.read = cros_ec_lpc_mec_read_bytes; cros_ec_lpc_ops.write = cros_ec_lpc_mec_write_bytes; ret = cros_ec_lpc_ops.read(EC_LPC_ADDR_MEMMAP + EC_MEMMAP_ID, 2, buf); if (ret < 0) return ret; if (buf[0] != 'E' || buf[1] != 'C') { if (!devm_request_region(dev, ec_lpc->mmio_memory_base, EC_MEMMAP_SIZE, dev_name(dev))) { dev_err(dev, "couldn't reserve memmap region\n"); return -EBUSY; } /* Re-assign read/write operations for the non MEC variant */ cros_ec_lpc_ops.read = cros_ec_lpc_read_bytes; cros_ec_lpc_ops.write = cros_ec_lpc_write_bytes; ret = cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + EC_MEMMAP_ID, 2, buf); if (ret < 0) return ret; if (buf[0] != 'E' || buf[1] != 'C') { dev_err(dev, "EC ID not detected\n"); return -ENODEV; } /* Reserve the remaining I/O ports required by the non-MEC protocol. */ if (!devm_request_region(dev, EC_HOST_CMD_REGION0 + EC_HOST_CMD_MEC_REGION_SIZE, EC_HOST_CMD_REGION_SIZE - EC_HOST_CMD_MEC_REGION_SIZE, dev_name(dev))) { dev_err(dev, "couldn't reserve remainder of region0\n"); return -EBUSY; } if (!devm_request_region(dev, EC_HOST_CMD_REGION1, EC_HOST_CMD_REGION_SIZE, dev_name(dev))) { dev_err(dev, "couldn't reserve region1\n"); return -EBUSY; } } ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL); if (!ec_dev) return -ENOMEM; platform_set_drvdata(pdev, ec_dev); ec_dev->dev = dev; ec_dev->phys_name = dev_name(dev); ec_dev->cmd_xfer = cros_ec_cmd_xfer_lpc; ec_dev->pkt_xfer = cros_ec_pkt_xfer_lpc; ec_dev->cmd_readmem = cros_ec_lpc_readmem; ec_dev->din_size = sizeof(struct ec_host_response) + sizeof(struct ec_response_get_protocol_info); ec_dev->dout_size = sizeof(struct ec_host_request); ec_dev->priv = ec_lpc; /* * Some boards do not have an IRQ allotted for cros_ec_lpc, * which makes ENXIO an expected (and safe) scenario. */ irq = platform_get_irq_optional(pdev, 0); if (irq > 0) ec_dev->irq = irq; else if (irq != -ENXIO) { dev_err(dev, "couldn't retrieve IRQ number (%d)\n", irq); return irq; } ret = cros_ec_register(ec_dev); if (ret) { dev_err(dev, "couldn't register ec_dev (%d)\n", ret); return ret; } /* * Connect a notify handler to process MKBP messages if we have a * companion ACPI device. */ adev = ACPI_COMPANION(dev); if (adev) { status = acpi_install_notify_handler(adev->handle, ACPI_ALL_NOTIFY, cros_ec_lpc_acpi_notify, ec_dev); if (ACPI_FAILURE(status)) dev_warn(dev, "Failed to register notifier %08x\n", status); } return 0; } static void cros_ec_lpc_remove(struct platform_device *pdev) { struct cros_ec_device *ec_dev = platform_get_drvdata(pdev); struct acpi_device *adev; adev = ACPI_COMPANION(&pdev->dev); if (adev) acpi_remove_notify_handler(adev->handle, ACPI_ALL_NOTIFY, cros_ec_lpc_acpi_notify); cros_ec_unregister(ec_dev); } static const struct acpi_device_id cros_ec_lpc_acpi_device_ids[] = { { ACPI_DRV_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(acpi, cros_ec_lpc_acpi_device_ids); static const struct lpc_driver_data framework_laptop_npcx_lpc_driver_data __initconst = { .quirks = CROS_EC_LPC_QUIRK_REMAP_MEMORY, .quirk_mmio_memory_base = 0xE00, }; static const struct lpc_driver_data framework_laptop_mec_lpc_driver_data __initconst = { .quirks = CROS_EC_LPC_QUIRK_ACPI_ID|CROS_EC_LPC_QUIRK_AML_MUTEX, .quirk_acpi_id = "PNP0C09", .quirk_aml_mutex_name = "ECMT", }; static const struct dmi_system_id cros_ec_lpc_dmi_table[] __initconst = { { /* * Today all Chromebooks/boxes ship with Google_* as version and * coreboot as bios vendor. No other systems with this * combination are known to date. */ .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"), DMI_MATCH(DMI_BIOS_VERSION, "Google_"), }, }, { /* * If the box is running custom coreboot firmware then the * DMI BIOS version string will not be matched by "Google_", * but the system vendor string will still be matched by * "GOOGLE". */ .matches = { DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"), DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"), }, }, { /* x86-link, the Chromebook Pixel. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"), DMI_MATCH(DMI_PRODUCT_NAME, "Link"), }, }, { /* x86-samus, the Chromebook Pixel 2. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"), DMI_MATCH(DMI_PRODUCT_NAME, "Samus"), }, }, { /* x86-peppy, the Acer C720 Chromebook. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Peppy"), }, }, { /* x86-glimmer, the Lenovo Thinkpad Yoga 11e. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"), DMI_MATCH(DMI_PRODUCT_NAME, "Glimmer"), }, }, /* A small number of non-Chromebook/box machines also use the ChromeOS EC */ { /* Framework Laptop (11th Gen Intel Core) */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Framework"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "Laptop"), }, .driver_data = (void *)&framework_laptop_mec_lpc_driver_data, }, { /* Framework Laptop (12th Gen Intel Core) */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Framework"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "12th Gen Intel Core"), }, .driver_data = (void *)&framework_laptop_mec_lpc_driver_data, }, { /* Framework Laptop (13th Gen Intel Core) */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Framework"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "13th Gen Intel Core"), }, .driver_data = (void *)&framework_laptop_mec_lpc_driver_data, }, { /* * All remaining Framework Laptop models (13 AMD Ryzen, 16 AMD * Ryzen, Intel Core Ultra) */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Framework"), DMI_MATCH(DMI_PRODUCT_FAMILY, "Laptop"), }, .driver_data = (void *)&framework_laptop_npcx_lpc_driver_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(dmi, cros_ec_lpc_dmi_table); #ifdef CONFIG_PM_SLEEP static int cros_ec_lpc_prepare(struct device *dev) { struct cros_ec_device *ec_dev = dev_get_drvdata(dev); return cros_ec_suspend_prepare(ec_dev); } static void cros_ec_lpc_complete(struct device *dev) { struct cros_ec_device *ec_dev = dev_get_drvdata(dev); cros_ec_resume_complete(ec_dev); } static int cros_ec_lpc_suspend_late(struct device *dev) { struct cros_ec_device *ec_dev = dev_get_drvdata(dev); return cros_ec_suspend_late(ec_dev); } static int cros_ec_lpc_resume_early(struct device *dev) { struct cros_ec_device *ec_dev = dev_get_drvdata(dev); return cros_ec_resume_early(ec_dev); } #endif static const struct dev_pm_ops cros_ec_lpc_pm_ops = { #ifdef CONFIG_PM_SLEEP .prepare = cros_ec_lpc_prepare, .complete = cros_ec_lpc_complete, #endif SET_LATE_SYSTEM_SLEEP_PM_OPS(cros_ec_lpc_suspend_late, cros_ec_lpc_resume_early) }; static struct platform_driver cros_ec_lpc_driver = { .driver = { .name = DRV_NAME, .acpi_match_table = cros_ec_lpc_acpi_device_ids, .pm = &cros_ec_lpc_pm_ops, /* * ACPI child devices may probe before us, and they racily * check our drvdata pointer. Force synchronous probe until * those races are resolved. */ .probe_type = PROBE_FORCE_SYNCHRONOUS, }, .probe = cros_ec_lpc_probe, .remove_new = cros_ec_lpc_remove, }; static struct platform_device cros_ec_lpc_device = { .name = DRV_NAME }; static int __init cros_ec_lpc_init(void) { int ret; const struct dmi_system_id *dmi_match; cros_ec_lpc_acpi_device_found = !!cros_ec_lpc_get_device(ACPI_DRV_NAME); dmi_match = dmi_first_match(cros_ec_lpc_dmi_table); if (!cros_ec_lpc_acpi_device_found && !dmi_match) { pr_err(DRV_NAME ": unsupported system.\n"); return -ENODEV; } /* Register the driver */ ret = platform_driver_register(&cros_ec_lpc_driver); if (ret) { pr_err(DRV_NAME ": can't register driver: %d\n", ret); return ret; } if (!cros_ec_lpc_acpi_device_found) { /* Pass the DMI match's driver data down to the platform device */ platform_set_drvdata(&cros_ec_lpc_device, dmi_match->driver_data); /* Register the device, and it'll get hooked up automatically */ ret = platform_device_register(&cros_ec_lpc_device); if (ret) { pr_err(DRV_NAME ": can't register device: %d\n", ret); platform_driver_unregister(&cros_ec_lpc_driver); } } return ret; } static void __exit cros_ec_lpc_exit(void) { if (!cros_ec_lpc_acpi_device_found) platform_device_unregister(&cros_ec_lpc_device); platform_driver_unregister(&cros_ec_lpc_driver); } module_init(cros_ec_lpc_init); module_exit(cros_ec_lpc_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ChromeOS EC LPC driver");