/* * Compaq Hot Plug Controller Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to * */ #include #include #include #include #include #include #include #include #include "../pci.h" #include "cpqphp.h" #include "cpqphp_nvram.h" u8 cpqhp_nic_irq; u8 cpqhp_disk_irq; static u16 unused_IRQ; /* * detect_HRT_floating_pointer * * find the Hot Plug Resource Table in the specified region of memory. * */ static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end) { void __iomem *fp; void __iomem *endp; u8 temp1, temp2, temp3, temp4; int status = 0; endp = (end - sizeof(struct hrt) + 1); for (fp = begin; fp <= endp; fp += 16) { temp1 = readb(fp + SIG0); temp2 = readb(fp + SIG1); temp3 = readb(fp + SIG2); temp4 = readb(fp + SIG3); if (temp1 == '$' && temp2 == 'H' && temp3 == 'R' && temp4 == 'T') { status = 1; break; } } if (!status) fp = NULL; dbg("Discovered Hotplug Resource Table at %p\n", fp); return fp; } int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func) { struct pci_bus *child; int num; pci_lock_rescan_remove(); if (func->pci_dev == NULL) func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus, PCI_DEVFN(func->device, func->function)); /* No pci device, we need to create it then */ if (func->pci_dev == NULL) { dbg("INFO: pci_dev still null\n"); num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function)); if (num) pci_bus_add_devices(ctrl->pci_dev->bus); func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus, PCI_DEVFN(func->device, func->function)); if (func->pci_dev == NULL) { dbg("ERROR: pci_dev still null\n"); goto out; } } if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { pci_hp_add_bridge(func->pci_dev); child = func->pci_dev->subordinate; if (child) pci_bus_add_devices(child); } pci_dev_put(func->pci_dev); out: pci_unlock_rescan_remove(); return 0; } int cpqhp_unconfigure_device(struct pci_func *func) { int j; dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function); pci_lock_rescan_remove(); for (j = 0; j < 8 ; j++) { struct pci_dev *temp = pci_get_domain_bus_and_slot(0, func->bus, PCI_DEVFN(func->device, j)); if (temp) { pci_dev_put(temp); pci_stop_and_remove_bus_device(temp); } } pci_unlock_rescan_remove(); return 0; } static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value) { u32 vendID = 0; if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1) return -1; if (vendID == 0xffffffff) return -1; return pci_bus_read_config_dword(bus, devfn, offset, value); } /* * cpqhp_set_irq * * @bus_num: bus number of PCI device * @dev_num: device number of PCI device * @slot: pointer to u8 where slot number will be returned */ int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num) { int rc = 0; if (cpqhp_legacy_mode) { struct pci_dev *fakedev; struct pci_bus *fakebus; u16 temp_word; fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL); fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL); if (!fakedev || !fakebus) { kfree(fakedev); kfree(fakebus); return -ENOMEM; } fakedev->devfn = dev_num << 3; fakedev->bus = fakebus; fakebus->number = bus_num; dbg("%s: dev %d, bus %d, pin %d, num %d\n", __func__, dev_num, bus_num, int_pin, irq_num); rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num); kfree(fakedev); kfree(fakebus); dbg("%s: rc %d\n", __func__, rc); if (!rc) return !rc; /* set the Edge Level Control Register (ELCR) */ temp_word = inb(0x4d0); temp_word |= inb(0x4d1) << 8; temp_word |= 0x01 << irq_num; /* This should only be for x86 as it sets the Edge Level * Control Register */ outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1); rc = 0; } return rc; } static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num) { u16 tdevice; u32 work; u8 tbus; ctrl->pci_bus->number = bus_num; for (tdevice = 0; tdevice < 0xFF; tdevice++) { /* Scan for access first */ if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1) continue; dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice); /* Yep we got one. Not a bridge ? */ if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) { *dev_num = tdevice; dbg("found it !\n"); return 0; } } for (tdevice = 0; tdevice < 0xFF; tdevice++) { /* Scan for access first */ if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1) continue; dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice); /* Yep we got one. bridge ? */ if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus); /* XXX: no recursion, wtf? */ dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice); return 0; } } return -1; } static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge) { int loop, len; u32 work; u8 tbus, tdevice, tslot; len = cpqhp_routing_table_length(); for (loop = 0; loop < len; ++loop) { tbus = cpqhp_routing_table->slots[loop].bus; tdevice = cpqhp_routing_table->slots[loop].devfn; tslot = cpqhp_routing_table->slots[loop].slot; if (tslot == slot) { *bus_num = tbus; *dev_num = tdevice; ctrl->pci_bus->number = tbus; pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work); if (!nobridge || (work == 0xffffffff)) return 0; dbg("bus_num %d devfn %d\n", *bus_num, *dev_num); pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work); dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS); if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus); dbg("Scan bus for Non Bridge: bus %d\n", tbus); if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) { *bus_num = tbus; return 0; } } else return 0; } } return -1; } int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot) { /* plain (bridges allowed) */ return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); } /* More PCI configuration routines; this time centered around hotplug * controller */ /* * cpqhp_save_config * * Reads configuration for all slots in a PCI bus and saves info. * * Note: For non-hot plug buses, the slot # saved is the device # * * returns 0 if success */ int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug) { long rc; u8 class_code; u8 header_type; u32 ID; u8 secondary_bus; struct pci_func *new_slot; int sub_bus; int FirstSupported; int LastSupported; int max_functions; int function; u8 DevError; int device = 0; int cloop = 0; int stop_it; int index; u16 devfn; /* Decide which slots are supported */ if (is_hot_plug) { /* * is_hot_plug is the slot mask */ FirstSupported = is_hot_plug >> 4; LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1; } else { FirstSupported = 0; LastSupported = 0x1F; } /* Save PCI configuration space for all devices in supported slots */ ctrl->pci_bus->number = busnumber; for (device = FirstSupported; device <= LastSupported; device++) { ID = 0xFFFFFFFF; rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) { if (is_hot_plug) { /* Setup slot structure with entry for empty * slot */ new_slot = cpqhp_slot_create(busnumber); if (new_slot == NULL) return 1; new_slot->bus = (u8) busnumber; new_slot->device = (u8) device; new_slot->function = 0; new_slot->is_a_board = 0; new_slot->presence_save = 0; new_slot->switch_save = 0; } continue; } rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code); if (rc) return rc; rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type); if (rc) return rc; /* If multi-function device, set max_functions to 8 */ if (header_type & 0x80) max_functions = 8; else max_functions = 1; function = 0; do { DevError = 0; if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* Recurse the subordinate bus * get the subordinate bus number */ rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus); if (rc) { return rc; } else { sub_bus = (int) secondary_bus; /* Save secondary bus cfg spc * with this recursive call. */ rc = cpqhp_save_config(ctrl, sub_bus, 0); if (rc) return rc; ctrl->pci_bus->number = busnumber; } } index = 0; new_slot = cpqhp_slot_find(busnumber, device, index++); while (new_slot && (new_slot->function != (u8) function)) new_slot = cpqhp_slot_find(busnumber, device, index++); if (!new_slot) { /* Setup slot structure. */ new_slot = cpqhp_slot_create(busnumber); if (new_slot == NULL) return 1; } new_slot->bus = (u8) busnumber; new_slot->device = (u8) device; new_slot->function = (u8) function; new_slot->is_a_board = 1; new_slot->switch_save = 0x10; /* In case of unsupported board */ new_slot->status = DevError; devfn = (new_slot->device << 3) | new_slot->function; new_slot->pci_dev = pci_get_domain_bus_and_slot(0, new_slot->bus, devfn); for (cloop = 0; cloop < 0x20; cloop++) { rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop])); if (rc) return rc; } pci_dev_put(new_slot->pci_dev); function++; stop_it = 0; /* this loop skips to the next present function * reading in Class Code and Header type. */ while ((function < max_functions) && (!stop_it)) { rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) { function++; continue; } rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code); if (rc) return rc; rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type); if (rc) return rc; stop_it++; } } while (function < max_functions); } /* End of FOR loop */ return 0; } /* * cpqhp_save_slot_config * * Saves configuration info for all PCI devices in a given slot * including subordinate buses. * * returns 0 if success */ int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot) { long rc; u8 class_code; u8 header_type; u32 ID; u8 secondary_bus; int sub_bus; int max_functions; int function = 0; int cloop = 0; int stop_it; ID = 0xFFFFFFFF; ctrl->pci_bus->number = new_slot->bus; pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) return 2; pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code); pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type); if (header_type & 0x80) /* Multi-function device */ max_functions = 8; else max_functions = 1; while (function < max_functions) { if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* Recurse the subordinate bus */ pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus); sub_bus = (int) secondary_bus; /* Save the config headers for the secondary * bus. */ rc = cpqhp_save_config(ctrl, sub_bus, 0); if (rc) return(rc); ctrl->pci_bus->number = new_slot->bus; } new_slot->status = 0; for (cloop = 0; cloop < 0x20; cloop++) pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop])); function++; stop_it = 0; /* this loop skips to the next present function * reading in the Class Code and the Header type. */ while ((function < max_functions) && (!stop_it)) { pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) function++; else { pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code); pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type); stop_it++; } } } return 0; } /* * cpqhp_save_base_addr_length * * Saves the length of all base address registers for the * specified slot. this is for hot plug REPLACE * * returns 0 if success */ int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func) { u8 cloop; u8 header_type; u8 secondary_bus; u8 type; int sub_bus; u32 temp_register; u32 base; u32 rc; struct pci_func *next; int index = 0; struct pci_bus *pci_bus = ctrl->pci_bus; unsigned int devfn; func = cpqhp_slot_find(func->bus, func->device, index++); while (func != NULL) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Check for Bridge */ pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); sub_bus = (int) secondary_bus; next = cpqhp_slot_list[sub_bus]; while (next != NULL) { rc = cpqhp_save_base_addr_length(ctrl, next); if (rc) return rc; next = next->next; } pci_bus->number = func->bus; /* FIXME: this loop is duplicated in the non-bridge * case. The two could be rolled together Figure out * IO and memory base lengths */ for (cloop = 0x10; cloop <= 0x14; cloop += 4) { temp_register = 0xFFFFFFFF; pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); /* If this register is implemented */ if (base) { if (base & 0x01L) { /* IO base * set base = amount of IO space * requested */ base = base & 0xFFFFFFFE; base = (~base) + 1; type = 1; } else { /* memory base */ base = base & 0xFFFFFFF0; base = (~base) + 1; type = 0; } } else { base = 0x0L; type = 0; } /* Save information in slot structure */ func->base_length[(cloop - 0x10) >> 2] = base; func->base_type[(cloop - 0x10) >> 2] = type; } /* End of base register loop */ } else if ((header_type & 0x7F) == 0x00) { /* Figure out IO and memory base lengths */ for (cloop = 0x10; cloop <= 0x24; cloop += 4) { temp_register = 0xFFFFFFFF; pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); /* If this register is implemented */ if (base) { if (base & 0x01L) { /* IO base * base = amount of IO space * requested */ base = base & 0xFFFFFFFE; base = (~base) + 1; type = 1; } else { /* memory base * base = amount of memory * space requested */ base = base & 0xFFFFFFF0; base = (~base) + 1; type = 0; } } else { base = 0x0L; type = 0; } /* Save information in slot structure */ func->base_length[(cloop - 0x10) >> 2] = base; func->base_type[(cloop - 0x10) >> 2] = type; } /* End of base register loop */ } else { /* Some other unknown header type */ } /* find the next device in this slot */ func = cpqhp_slot_find(func->bus, func->device, index++); } return(0); } /* * cpqhp_save_used_resources * * Stores used resource information for existing boards. this is * for boards that were in the system when this driver was loaded. * this function is for hot plug ADD * * returns 0 if success */ int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func) { u8 cloop; u8 header_type; u8 secondary_bus; u8 temp_byte; u8 b_base; u8 b_length; u16 command; u16 save_command; u16 w_base; u16 w_length; u32 temp_register; u32 save_base; u32 base; int index = 0; struct pci_resource *mem_node; struct pci_resource *p_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; struct pci_bus *pci_bus = ctrl->pci_bus; unsigned int devfn; func = cpqhp_slot_find(func->bus, func->device, index++); while ((func != NULL) && func->is_a_board) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Save the command register */ pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command); /* disable card */ command = 0x00; pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); /* Check for Bridge */ pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* Clear Bridge Control Register */ command = 0x00; pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte); bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL); if (!bus_node) return -ENOMEM; bus_node->base = secondary_bus; bus_node->length = temp_byte - secondary_bus + 1; bus_node->next = func->bus_head; func->bus_head = bus_node; /* Save IO base and Limit registers */ pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base); pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length); if ((b_base <= b_length) && (save_command & 0x01)) { io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = (b_base & 0xF0) << 8; io_node->length = (b_length - b_base + 0x10) << 8; io_node->next = func->io_head; func->io_head = io_node; } /* Save memory base and Limit registers */ pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base); pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length); if ((w_base <= w_length) && (save_command & 0x02)) { mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); if (!mem_node) return -ENOMEM; mem_node->base = w_base << 16; mem_node->length = (w_length - w_base + 0x10) << 16; mem_node->next = func->mem_head; func->mem_head = mem_node; } /* Save prefetchable memory base and Limit registers */ pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base); pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length); if ((w_base <= w_length) && (save_command & 0x02)) { p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); if (!p_mem_node) return -ENOMEM; p_mem_node->base = w_base << 16; p_mem_node->length = (w_length - w_base + 0x10) << 16; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } /* Figure out IO and memory base lengths */ for (cloop = 0x10; cloop <= 0x14; cloop += 4) { pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); temp_register = 0xFFFFFFFF; pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); temp_register = base; /* If this register is implemented */ if (base) { if (((base & 0x03L) == 0x01) && (save_command & 0x01)) { /* IO base * set temp_register = amount * of IO space requested */ temp_register = base & 0xFFFFFFFE; temp_register = (~temp_register) + 1; io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = save_base & (~0x03L); io_node->length = temp_register; io_node->next = func->io_head; func->io_head = io_node; } else if (((base & 0x0BL) == 0x08) && (save_command & 0x02)) { /* prefetchable memory base */ temp_register = base & 0xFFFFFFF0; temp_register = (~temp_register) + 1; p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); if (!p_mem_node) return -ENOMEM; p_mem_node->base = save_base & (~0x0FL); p_mem_node->length = temp_register; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else if (((base & 0x0BL) == 0x00) && (save_command & 0x02)) { /* prefetchable memory base */ temp_register = base & 0xFFFFFFF0; temp_register = (~temp_register) + 1; mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); if (!mem_node) return -ENOMEM; mem_node->base = save_base & (~0x0FL); mem_node->length = temp_register; mem_node->next = func->mem_head; func->mem_head = mem_node; } else return(1); } } /* End of base register loop */ /* Standard header */ } else if ((header_type & 0x7F) == 0x00) { /* Figure out IO and memory base lengths */ for (cloop = 0x10; cloop <= 0x24; cloop += 4) { pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); temp_register = 0xFFFFFFFF; pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); temp_register = base; /* If this register is implemented */ if (base) { if (((base & 0x03L) == 0x01) && (save_command & 0x01)) { /* IO base * set temp_register = amount * of IO space requested */ temp_register = base & 0xFFFFFFFE; temp_register = (~temp_register) + 1; io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = save_base & (~0x01L); io_node->length = temp_register; io_node->next = func->io_head; func->io_head = io_node; } else if (((base & 0x0BL) == 0x08) && (save_command & 0x02)) { /* prefetchable memory base */ temp_register = base & 0xFFFFFFF0; temp_register = (~temp_register) + 1; p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); if (!p_mem_node) return -ENOMEM; p_mem_node->base = save_base & (~0x0FL); p_mem_node->length = temp_register; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else if (((base & 0x0BL) == 0x00) && (save_command & 0x02)) { /* prefetchable memory base */ temp_register = base & 0xFFFFFFF0; temp_register = (~temp_register) + 1; mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); if (!mem_node) return -ENOMEM; mem_node->base = save_base & (~0x0FL); mem_node->length = temp_register; mem_node->next = func->mem_head; func->mem_head = mem_node; } else return(1); } } /* End of base register loop */ } /* find the next device in this slot */ func = cpqhp_slot_find(func->bus, func->device, index++); } return 0; } /* * cpqhp_configure_board * * Copies saved configuration information to one slot. * this is called recursively for bridge devices. * this is for hot plug REPLACE! * * returns 0 if success */ int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func) { int cloop; u8 header_type; u8 secondary_bus; int sub_bus; struct pci_func *next; u32 temp; u32 rc; int index = 0; struct pci_bus *pci_bus = ctrl->pci_bus; unsigned int devfn; func = cpqhp_slot_find(func->bus, func->device, index++); while (func != NULL) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Start at the top of config space so that the control * registers are programmed last */ for (cloop = 0x3C; cloop > 0; cloop -= 4) pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]); pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); /* If this is a bridge device, restore subordinate devices */ if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); sub_bus = (int) secondary_bus; next = cpqhp_slot_list[sub_bus]; while (next != NULL) { rc = cpqhp_configure_board(ctrl, next); if (rc) return rc; next = next->next; } } else { /* Check all the base Address Registers to make sure * they are the same. If not, the board is different. */ for (cloop = 16; cloop < 40; cloop += 4) { pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp); if (temp != func->config_space[cloop >> 2]) { dbg("Config space compare failure!!! offset = %x\n", cloop); dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function); dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]); return 1; } } } func->configured = 1; func = cpqhp_slot_find(func->bus, func->device, index++); } return 0; } /* * cpqhp_valid_replace * * this function checks to see if a board is the same as the * one it is replacing. this check will detect if the device's * vendor or device id's are the same * * returns 0 if the board is the same nonzero otherwise */ int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func) { u8 cloop; u8 header_type; u8 secondary_bus; u8 type; u32 temp_register = 0; u32 base; u32 rc; struct pci_func *next; int index = 0; struct pci_bus *pci_bus = ctrl->pci_bus; unsigned int devfn; if (!func->is_a_board) return(ADD_NOT_SUPPORTED); func = cpqhp_slot_find(func->bus, func->device, index++); while (func != NULL) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register); /* No adapter present */ if (temp_register == 0xFFFFFFFF) return(NO_ADAPTER_PRESENT); if (temp_register != func->config_space[0]) return(ADAPTER_NOT_SAME); /* Check for same revision number and class code */ pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register); /* Adapter not the same */ if (temp_register != func->config_space[0x08 >> 2]) return(ADAPTER_NOT_SAME); /* Check for Bridge */ pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* In order to continue checking, we must program the * bus registers in the bridge to respond to accesses * for its subordinate bus(es) */ temp_register = func->config_space[0x18 >> 2]; pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register); secondary_bus = (temp_register >> 8) & 0xFF; next = cpqhp_slot_list[secondary_bus]; while (next != NULL) { rc = cpqhp_valid_replace(ctrl, next); if (rc) return rc; next = next->next; } } /* Check to see if it is a standard config header */ else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) { /* Check subsystem vendor and ID */ pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register); if (temp_register != func->config_space[0x2C >> 2]) { /* If it's a SMART-2 and the register isn't * filled in, ignore the difference because * they just have an old rev of the firmware */ if (!((func->config_space[0] == 0xAE100E11) && (temp_register == 0x00L))) return(ADAPTER_NOT_SAME); } /* Figure out IO and memory base lengths */ for (cloop = 0x10; cloop <= 0x24; cloop += 4) { temp_register = 0xFFFFFFFF; pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); /* If this register is implemented */ if (base) { if (base & 0x01L) { /* IO base * set base = amount of IO * space requested */ base = base & 0xFFFFFFFE; base = (~base) + 1; type = 1; } else { /* memory base */ base = base & 0xFFFFFFF0; base = (~base) + 1; type = 0; } } else { base = 0x0L; type = 0; } /* Check information in slot structure */ if (func->base_length[(cloop - 0x10) >> 2] != base) return(ADAPTER_NOT_SAME); if (func->base_type[(cloop - 0x10) >> 2] != type) return(ADAPTER_NOT_SAME); } /* End of base register loop */ } /* End of (type 0 config space) else */ else { /* this is not a type 0 or 1 config space header so * we don't know how to do it */ return(DEVICE_TYPE_NOT_SUPPORTED); } /* Get the next function */ func = cpqhp_slot_find(func->bus, func->device, index++); } return 0; } /* * cpqhp_find_available_resources * * Finds available memory, IO, and IRQ resources for programming * devices which may be added to the system * this function is for hot plug ADD! * * returns 0 if success */ int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start) { u8 temp; u8 populated_slot; u8 bridged_slot; void __iomem *one_slot; void __iomem *rom_resource_table; struct pci_func *func = NULL; int i = 10, index; u32 temp_dword, rc; struct pci_resource *mem_node; struct pci_resource *p_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff); dbg("rom_resource_table = %p\n", rom_resource_table); if (rom_resource_table == NULL) return -ENODEV; /* Sum all resources and setup resource maps */ unused_IRQ = readl(rom_resource_table + UNUSED_IRQ); dbg("unused_IRQ = %x\n", unused_IRQ); temp = 0; while (unused_IRQ) { if (unused_IRQ & 1) { cpqhp_disk_irq = temp; break; } unused_IRQ = unused_IRQ >> 1; temp++; } dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq); unused_IRQ = unused_IRQ >> 1; temp++; while (unused_IRQ) { if (unused_IRQ & 1) { cpqhp_nic_irq = temp; break; } unused_IRQ = unused_IRQ >> 1; temp++; } dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq); unused_IRQ = readl(rom_resource_table + PCIIRQ); temp = 0; if (!cpqhp_nic_irq) cpqhp_nic_irq = ctrl->cfgspc_irq; if (!cpqhp_disk_irq) cpqhp_disk_irq = ctrl->cfgspc_irq; dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq); rc = compaq_nvram_load(rom_start, ctrl); if (rc) return rc; one_slot = rom_resource_table + sizeof(struct hrt); i = readb(rom_resource_table + NUMBER_OF_ENTRIES); dbg("number_of_entries = %d\n", i); if (!readb(one_slot + SECONDARY_BUS)) return 1; dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n"); while (i && readb(one_slot + SECONDARY_BUS)) { u8 dev_func = readb(one_slot + DEV_FUNC); u8 primary_bus = readb(one_slot + PRIMARY_BUS); u8 secondary_bus = readb(one_slot + SECONDARY_BUS); u8 max_bus = readb(one_slot + MAX_BUS); u16 io_base = readw(one_slot + IO_BASE); u16 io_length = readw(one_slot + IO_LENGTH); u16 mem_base = readw(one_slot + MEM_BASE); u16 mem_length = readw(one_slot + MEM_LENGTH); u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE); u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH); dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n", dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length, primary_bus, secondary_bus, max_bus); /* If this entry isn't for our controller's bus, ignore it */ if (primary_bus != ctrl->bus) { i--; one_slot += sizeof(struct slot_rt); continue; } /* find out if this entry is for an occupied slot */ ctrl->pci_bus->number = primary_bus; pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword); dbg("temp_D_word = %x\n", temp_dword); if (temp_dword != 0xFFFFFFFF) { index = 0; func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0); while (func && (func->function != (dev_func & 0x07))) { dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index); func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++); } /* If we can't find a match, skip this table entry */ if (!func) { i--; one_slot += sizeof(struct slot_rt); continue; } /* this may not work and shouldn't be used */ if (secondary_bus != primary_bus) bridged_slot = 1; else bridged_slot = 0; populated_slot = 1; } else { populated_slot = 0; bridged_slot = 0; } /* If we've got a valid IO base, use it */ temp_dword = io_base + io_length; if ((io_base) && (temp_dword < 0x10000)) { io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = io_base; io_node->length = io_length; dbg("found io_node(base, length) = %x, %x\n", io_node->base, io_node->length); dbg("populated slot =%d \n", populated_slot); if (!populated_slot) { io_node->next = ctrl->io_head; ctrl->io_head = io_node; } else { io_node->next = func->io_head; func->io_head = io_node; } } /* If we've got a valid memory base, use it */ temp_dword = mem_base + mem_length; if ((mem_base) && (temp_dword < 0x10000)) { mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); if (!mem_node) return -ENOMEM; mem_node->base = mem_base << 16; mem_node->length = mem_length << 16; dbg("found mem_node(base, length) = %x, %x\n", mem_node->base, mem_node->length); dbg("populated slot =%d \n", populated_slot); if (!populated_slot) { mem_node->next = ctrl->mem_head; ctrl->mem_head = mem_node; } else { mem_node->next = func->mem_head; func->mem_head = mem_node; } } /* If we've got a valid prefetchable memory base, and * the base + length isn't greater than 0xFFFF */ temp_dword = pre_mem_base + pre_mem_length; if ((pre_mem_base) && (temp_dword < 0x10000)) { p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); if (!p_mem_node) return -ENOMEM; p_mem_node->base = pre_mem_base << 16; p_mem_node->length = pre_mem_length << 16; dbg("found p_mem_node(base, length) = %x, %x\n", p_mem_node->base, p_mem_node->length); dbg("populated slot =%d \n", populated_slot); if (!populated_slot) { p_mem_node->next = ctrl->p_mem_head; ctrl->p_mem_head = p_mem_node; } else { p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } } /* If we've got a valid bus number, use it * The second condition is to ignore bus numbers on * populated slots that don't have PCI-PCI bridges */ if (secondary_bus && (secondary_bus != primary_bus)) { bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL); if (!bus_node) return -ENOMEM; bus_node->base = secondary_bus; bus_node->length = max_bus - secondary_bus + 1; dbg("found bus_node(base, length) = %x, %x\n", bus_node->base, bus_node->length); dbg("populated slot =%d \n", populated_slot); if (!populated_slot) { bus_node->next = ctrl->bus_head; ctrl->bus_head = bus_node; } else { bus_node->next = func->bus_head; func->bus_head = bus_node; } } i--; one_slot += sizeof(struct slot_rt); } /* If all of the following fail, we don't have any resources for * hot plug add */ rc = 1; rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head)); rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); return rc; } /* * cpqhp_return_board_resources * * this routine returns all resources allocated to a board to * the available pool. * * returns 0 if success */ int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources) { int rc = 0; struct pci_resource *node; struct pci_resource *t_node; dbg("%s\n", __func__); if (!func) return 1; node = func->io_head; func->io_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->io_head), node); node = t_node; } node = func->mem_head; func->mem_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->mem_head), node); node = t_node; } node = func->p_mem_head; func->p_mem_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->p_mem_head), node); node = t_node; } node = func->bus_head; func->bus_head = NULL; while (node) { t_node = node->next; return_resource(&(resources->bus_head), node); node = t_node; } rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head)); rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head)); rc |= cpqhp_resource_sort_and_combine(&(resources->io_head)); rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head)); return rc; } /* * cpqhp_destroy_resource_list * * Puts node back in the resource list pointed to by head */ void cpqhp_destroy_resource_list(struct resource_lists *resources) { struct pci_resource *res, *tres; res = resources->io_head; resources->io_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = resources->mem_head; resources->mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = resources->p_mem_head; resources->p_mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = resources->bus_head; resources->bus_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } } /* * cpqhp_destroy_board_resources * * Puts node back in the resource list pointed to by head */ void cpqhp_destroy_board_resources(struct pci_func *func) { struct pci_resource *res, *tres; res = func->io_head; func->io_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = func->mem_head; func->mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = func->p_mem_head; func->p_mem_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } res = func->bus_head; func->bus_head = NULL; while (res) { tres = res; res = res->next; kfree(tres); } }