// SPDX-License-Identifier: GPL-2.0+ /* * drivers/of/property.c - Procedures for accessing and interpreting * Devicetree properties and graphs. * * Initially created by copying procedures from drivers/of/base.c. This * file contains the OF property as well as the OF graph interface * functions. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net * * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and * Grant Likely. */ #define pr_fmt(fmt) "OF: " fmt #include #include #include #include #include #include #include #include "of_private.h" /** * of_graph_is_present() - check graph's presence * @node: pointer to device_node containing graph port * * Return: True if @node has a port or ports (with a port) sub-node, * false otherwise. */ bool of_graph_is_present(const struct device_node *node) { struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); if (ports) node = ports; struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); return !!port; } EXPORT_SYMBOL(of_graph_is_present); /** * of_property_count_elems_of_size - Count the number of elements in a property * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @elem_size: size of the individual element * * Search for a property in a device node and count the number of elements of * size elem_size in it. * * Return: The number of elements on sucess, -EINVAL if the property does not * exist or its length does not match a multiple of elem_size and -ENODATA if * the property does not have a value. */ int of_property_count_elems_of_size(const struct device_node *np, const char *propname, int elem_size) { struct property *prop = of_find_property(np, propname, NULL); if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; if (prop->length % elem_size != 0) { pr_err("size of %s in node %pOF is not a multiple of %d\n", propname, np, elem_size); return -EINVAL; } return prop->length / elem_size; } EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); /** * of_find_property_value_of_size * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @min: minimum allowed length of property value * @max: maximum allowed length of property value (0 means unlimited) * @len: if !=NULL, actual length is written to here * * Search for a property in a device node and valid the requested size. * * Return: The property value on success, -EINVAL if the property does not * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the * property data is too small or too large. * */ static void *of_find_property_value_of_size(const struct device_node *np, const char *propname, u32 min, u32 max, size_t *len) { struct property *prop = of_find_property(np, propname, NULL); if (!prop) return ERR_PTR(-EINVAL); if (!prop->value) return ERR_PTR(-ENODATA); if (prop->length < min) return ERR_PTR(-EOVERFLOW); if (max && prop->length > max) return ERR_PTR(-EOVERFLOW); if (len) *len = prop->length; return prop->value; } /** * of_property_read_u32_index - Find and read a u32 from a multi-value property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the u32 in the list of values * @out_value: pointer to return value, modified only if no error. * * Search for a property in a device node and read nth 32-bit value from * it. * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid u32 value can be decoded. */ int of_property_read_u32_index(const struct device_node *np, const char *propname, u32 index, u32 *out_value) { const u32 *val = of_find_property_value_of_size(np, propname, ((index + 1) * sizeof(*out_value)), 0, NULL); if (IS_ERR(val)) return PTR_ERR(val); *out_value = be32_to_cpup(((__be32 *)val) + index); return 0; } EXPORT_SYMBOL_GPL(of_property_read_u32_index); /** * of_property_read_u64_index - Find and read a u64 from a multi-value property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the u64 in the list of values * @out_value: pointer to return value, modified only if no error. * * Search for a property in a device node and read nth 64-bit value from * it. * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid u64 value can be decoded. */ int of_property_read_u64_index(const struct device_node *np, const char *propname, u32 index, u64 *out_value) { const u64 *val = of_find_property_value_of_size(np, propname, ((index + 1) * sizeof(*out_value)), 0, NULL); if (IS_ERR(val)) return PTR_ERR(val); *out_value = be64_to_cpup(((__be64 *)val) + index); return 0; } EXPORT_SYMBOL_GPL(of_property_read_u64_index); /** * of_property_read_variable_u8_array - Find and read an array of u8 from a * property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to found values. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 8-bit value(s) from * it. * * dts entry of array should be like: * ``property = /bits/ 8 <0x50 0x60 0x70>;`` * * Return: The number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * The out_values is modified only if a valid u8 value can be decoded. */ int of_property_read_variable_u8_array(const struct device_node *np, const char *propname, u8 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const u8 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) *out_values++ = *val++; return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); /** * of_property_read_variable_u16_array - Find and read an array of u16 from a * property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to found values. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 16-bit value(s) from * it. * * dts entry of array should be like: * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` * * Return: The number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * The out_values is modified only if a valid u16 value can be decoded. */ int of_property_read_variable_u16_array(const struct device_node *np, const char *propname, u16 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const __be16 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) *out_values++ = be16_to_cpup(val++); return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); /** * of_property_read_variable_u32_array - Find and read an array of 32 bit * integers from a property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to return found values. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 32-bit value(s) from * it. * * Return: The number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * The out_values is modified only if a valid u32 value can be decoded. */ int of_property_read_variable_u32_array(const struct device_node *np, const char *propname, u32 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const __be32 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) *out_values++ = be32_to_cpup(val++); return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); /** * of_property_read_u64 - Find and read a 64 bit integer from a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_value: pointer to return value, modified only if return value is 0. * * Search for a property in a device node and read a 64-bit value from * it. * * Return: 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid u64 value can be decoded. */ int of_property_read_u64(const struct device_node *np, const char *propname, u64 *out_value) { const __be32 *val = of_find_property_value_of_size(np, propname, sizeof(*out_value), 0, NULL); if (IS_ERR(val)) return PTR_ERR(val); *out_value = of_read_number(val, 2); return 0; } EXPORT_SYMBOL_GPL(of_property_read_u64); /** * of_property_read_variable_u64_array - Find and read an array of 64 bit * integers from a property, with bounds on the minimum and maximum array size. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_values: pointer to found values. * @sz_min: minimum number of array elements to read * @sz_max: maximum number of array elements to read, if zero there is no * upper limit on the number of elements in the dts entry but only * sz_min will be read. * * Search for a property in a device node and read 64-bit value(s) from * it. * * Return: The number of elements read on success, -EINVAL if the property * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW * if the property data is smaller than sz_min or longer than sz_max. * * The out_values is modified only if a valid u64 value can be decoded. */ int of_property_read_variable_u64_array(const struct device_node *np, const char *propname, u64 *out_values, size_t sz_min, size_t sz_max) { size_t sz, count; const __be32 *val = of_find_property_value_of_size(np, propname, (sz_min * sizeof(*out_values)), (sz_max * sizeof(*out_values)), &sz); if (IS_ERR(val)) return PTR_ERR(val); if (!sz_max) sz = sz_min; else sz /= sizeof(*out_values); count = sz; while (count--) { *out_values++ = of_read_number(val, 2); val += 2; } return sz; } EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); /** * of_property_read_string - Find and read a string from a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_string: pointer to null terminated return string, modified only if * return value is 0. * * Search for a property in a device tree node and retrieve a null * terminated string value (pointer to data, not a copy). * * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if * property does not have a value, and -EILSEQ if the string is not * null-terminated within the length of the property data. * * Note that the empty string "" has length of 1, thus -ENODATA cannot * be interpreted as an empty string. * * The out_string pointer is modified only if a valid string can be decoded. */ int of_property_read_string(const struct device_node *np, const char *propname, const char **out_string) { const struct property *prop = of_find_property(np, propname, NULL); if (!prop) return -EINVAL; if (!prop->length) return -ENODATA; if (strnlen(prop->value, prop->length) >= prop->length) return -EILSEQ; *out_string = prop->value; return 0; } EXPORT_SYMBOL_GPL(of_property_read_string); /** * of_property_match_string() - Find string in a list and return index * @np: pointer to the node containing the string list property * @propname: string list property name * @string: pointer to the string to search for in the string list * * Search for an exact match of string in a device node property which is a * string of lists. * * Return: the index of the first occurrence of the string on success, -EINVAL * if the property does not exist, -ENODATA if the property does not have a * value, and -EILSEQ if the string is not null-terminated within the length of * the property data. */ int of_property_match_string(const struct device_node *np, const char *propname, const char *string) { const struct property *prop = of_find_property(np, propname, NULL); size_t l; int i; const char *p, *end; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; p = prop->value; end = p + prop->length; for (i = 0; p < end; i++, p += l) { l = strnlen(p, end - p) + 1; if (p + l > end) return -EILSEQ; pr_debug("comparing %s with %s\n", string, p); if (strcmp(string, p) == 0) return i; /* Found it; return index */ } return -ENODATA; } EXPORT_SYMBOL_GPL(of_property_match_string); /** * of_property_read_string_helper() - Utility helper for parsing string properties * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_strs: output array of string pointers. * @sz: number of array elements to read. * @skip: Number of strings to skip over at beginning of list. * * Don't call this function directly. It is a utility helper for the * of_property_read_string*() family of functions. */ int of_property_read_string_helper(const struct device_node *np, const char *propname, const char **out_strs, size_t sz, int skip) { const struct property *prop = of_find_property(np, propname, NULL); int l = 0, i = 0; const char *p, *end; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; p = prop->value; end = p + prop->length; for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { l = strnlen(p, end - p) + 1; if (p + l > end) return -EILSEQ; if (out_strs && i >= skip) *out_strs++ = p; } i -= skip; return i <= 0 ? -ENODATA : i; } EXPORT_SYMBOL_GPL(of_property_read_string_helper); const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, u32 *pu) { const void *curv = cur; if (!prop) return NULL; if (!cur) { curv = prop->value; goto out_val; } curv += sizeof(*cur); if (curv >= prop->value + prop->length) return NULL; out_val: *pu = be32_to_cpup(curv); return curv; } EXPORT_SYMBOL_GPL(of_prop_next_u32); const char *of_prop_next_string(struct property *prop, const char *cur) { const void *curv = cur; if (!prop) return NULL; if (!cur) return prop->value; curv += strlen(cur) + 1; if (curv >= prop->value + prop->length) return NULL; return curv; } EXPORT_SYMBOL_GPL(of_prop_next_string); /** * of_graph_parse_endpoint() - parse common endpoint node properties * @node: pointer to endpoint device_node * @endpoint: pointer to the OF endpoint data structure * * The caller should hold a reference to @node. */ int of_graph_parse_endpoint(const struct device_node *node, struct of_endpoint *endpoint) { struct device_node *port_node __free(device_node) = of_get_parent(node); WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", __func__, node); memset(endpoint, 0, sizeof(*endpoint)); endpoint->local_node = node; /* * It doesn't matter whether the two calls below succeed. * If they don't then the default value 0 is used. */ of_property_read_u32(port_node, "reg", &endpoint->port); of_property_read_u32(node, "reg", &endpoint->id); return 0; } EXPORT_SYMBOL(of_graph_parse_endpoint); /** * of_graph_get_port_by_id() - get the port matching a given id * @parent: pointer to the parent device node * @id: id of the port * * Return: A 'port' node pointer with refcount incremented. The caller * has to use of_node_put() on it when done. */ struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) { struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); if (node) parent = node; for_each_child_of_node_scoped(parent, port) { u32 port_id = 0; if (!of_node_name_eq(port, "port")) continue; of_property_read_u32(port, "reg", &port_id); if (id == port_id) return_ptr(port); } return NULL; } EXPORT_SYMBOL(of_graph_get_port_by_id); /** * of_graph_get_next_endpoint() - get next endpoint node * @parent: pointer to the parent device node * @prev: previous endpoint node, or NULL to get first * * Return: An 'endpoint' node pointer with refcount incremented. Refcount * of the passed @prev node is decremented. */ struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, struct device_node *prev) { struct device_node *endpoint; struct device_node *port; if (!parent) return NULL; /* * Start by locating the port node. If no previous endpoint is specified * search for the first port node, otherwise get the previous endpoint * parent port node. */ if (!prev) { struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); if (node) parent = node; port = of_get_child_by_name(parent, "port"); if (!port) { pr_debug("graph: no port node found in %pOF\n", parent); return NULL; } } else { port = of_get_parent(prev); if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", __func__, prev)) return NULL; } while (1) { /* * Now that we have a port node, get the next endpoint by * getting the next child. If the previous endpoint is NULL this * will return the first child. */ endpoint = of_get_next_child(port, prev); if (endpoint) { of_node_put(port); return endpoint; } /* No more endpoints under this port, try the next one. */ prev = NULL; do { port = of_get_next_child(parent, port); if (!port) return NULL; } while (!of_node_name_eq(port, "port")); } } EXPORT_SYMBOL(of_graph_get_next_endpoint); /** * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers * @parent: pointer to the parent device node * @port_reg: identifier (value of reg property) of the parent port node * @reg: identifier (value of reg property) of the endpoint node * * Return: An 'endpoint' node pointer which is identified by reg and at the same * is the child of a port node identified by port_reg. reg and port_reg are * ignored when they are -1. Use of_node_put() on the pointer when done. */ struct device_node *of_graph_get_endpoint_by_regs( const struct device_node *parent, int port_reg, int reg) { struct of_endpoint endpoint; struct device_node *node = NULL; for_each_endpoint_of_node(parent, node) { of_graph_parse_endpoint(node, &endpoint); if (((port_reg == -1) || (endpoint.port == port_reg)) && ((reg == -1) || (endpoint.id == reg))) return node; } return NULL; } EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); /** * of_graph_get_remote_endpoint() - get remote endpoint node * @node: pointer to a local endpoint device_node * * Return: Remote endpoint node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) { /* Get remote endpoint node. */ return of_parse_phandle(node, "remote-endpoint", 0); } EXPORT_SYMBOL(of_graph_get_remote_endpoint); /** * of_graph_get_port_parent() - get port's parent node * @node: pointer to a local endpoint device_node * * Return: device node associated with endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_port_parent(struct device_node *node) { unsigned int depth; if (!node) return NULL; /* * Preserve usecount for passed in node as of_get_next_parent() * will do of_node_put() on it. */ of_node_get(node); /* Walk 3 levels up only if there is 'ports' node. */ for (depth = 3; depth && node; depth--) { node = of_get_next_parent(node); if (depth == 2 && !of_node_name_eq(node, "ports") && !of_node_name_eq(node, "in-ports") && !of_node_name_eq(node, "out-ports")) break; } return node; } EXPORT_SYMBOL(of_graph_get_port_parent); /** * of_graph_get_remote_port_parent() - get remote port's parent node * @node: pointer to a local endpoint device_node * * Return: Remote device node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_port_parent( const struct device_node *node) { /* Get remote endpoint node. */ struct device_node *np __free(device_node) = of_graph_get_remote_endpoint(node); return of_graph_get_port_parent(np); } EXPORT_SYMBOL(of_graph_get_remote_port_parent); /** * of_graph_get_remote_port() - get remote port node * @node: pointer to a local endpoint device_node * * Return: Remote port node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_port(const struct device_node *node) { struct device_node *np; /* Get remote endpoint node. */ np = of_graph_get_remote_endpoint(node); if (!np) return NULL; return of_get_next_parent(np); } EXPORT_SYMBOL(of_graph_get_remote_port); /** * of_graph_get_endpoint_count() - get the number of endpoints in a device node * @np: parent device node containing ports and endpoints * * Return: count of endpoint of this device node */ unsigned int of_graph_get_endpoint_count(const struct device_node *np) { struct device_node *endpoint; unsigned int num = 0; for_each_endpoint_of_node(np, endpoint) num++; return num; } EXPORT_SYMBOL(of_graph_get_endpoint_count); /** * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint * @node: pointer to parent device_node containing graph port/endpoint * @port: identifier (value of reg property) of the parent port node * @endpoint: identifier (value of reg property) of the endpoint node * * Return: Remote device node associated with remote endpoint node linked * to @node. Use of_node_put() on it when done. */ struct device_node *of_graph_get_remote_node(const struct device_node *node, u32 port, u32 endpoint) { struct device_node *endpoint_node, *remote; endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); if (!endpoint_node) { pr_debug("no valid endpoint (%d, %d) for node %pOF\n", port, endpoint, node); return NULL; } remote = of_graph_get_remote_port_parent(endpoint_node); of_node_put(endpoint_node); if (!remote) { pr_debug("no valid remote node\n"); return NULL; } if (!of_device_is_available(remote)) { pr_debug("not available for remote node\n"); of_node_put(remote); return NULL; } return remote; } EXPORT_SYMBOL(of_graph_get_remote_node); static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) { return of_fwnode_handle(of_node_get(to_of_node(fwnode))); } static void of_fwnode_put(struct fwnode_handle *fwnode) { of_node_put(to_of_node(fwnode)); } static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) { return of_device_is_available(to_of_node(fwnode)); } static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) { return true; } static enum dev_dma_attr of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) { if (of_dma_is_coherent(to_of_node(fwnode))) return DEV_DMA_COHERENT; else return DEV_DMA_NON_COHERENT; } static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, const char *propname) { return of_property_read_bool(to_of_node(fwnode), propname); } static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, const char *propname, unsigned int elem_size, void *val, size_t nval) { const struct device_node *node = to_of_node(fwnode); if (!val) return of_property_count_elems_of_size(node, propname, elem_size); switch (elem_size) { case sizeof(u8): return of_property_read_u8_array(node, propname, val, nval); case sizeof(u16): return of_property_read_u16_array(node, propname, val, nval); case sizeof(u32): return of_property_read_u32_array(node, propname, val, nval); case sizeof(u64): return of_property_read_u64_array(node, propname, val, nval); } return -ENXIO; } static int of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, const char *propname, const char **val, size_t nval) { const struct device_node *node = to_of_node(fwnode); return val ? of_property_read_string_array(node, propname, val, nval) : of_property_count_strings(node, propname); } static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) { return kbasename(to_of_node(fwnode)->full_name); } static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) { /* Root needs no prefix here (its name is "/"). */ if (!to_of_node(fwnode)->parent) return ""; return "/"; } static struct fwnode_handle * of_fwnode_get_parent(const struct fwnode_handle *fwnode) { return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); } static struct fwnode_handle * of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), to_of_node(child))); } static struct fwnode_handle * of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, const char *childname) { const struct device_node *node = to_of_node(fwnode); struct device_node *child; for_each_available_child_of_node(node, child) if (of_node_name_eq(child, childname)) return of_fwnode_handle(child); return NULL; } static int of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, const char *prop, const char *nargs_prop, unsigned int nargs, unsigned int index, struct fwnode_reference_args *args) { struct of_phandle_args of_args; unsigned int i; int ret; if (nargs_prop) ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, nargs_prop, index, &of_args); else ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, nargs, index, &of_args); if (ret < 0) return ret; if (!args) { of_node_put(of_args.np); return 0; } args->nargs = of_args.args_count; args->fwnode = of_fwnode_handle(of_args.np); for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; return 0; } static struct fwnode_handle * of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), to_of_node(prev))); } static struct fwnode_handle * of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) { return of_fwnode_handle( of_graph_get_remote_endpoint(to_of_node(fwnode))); } static struct fwnode_handle * of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) { struct device_node *np; /* Get the parent of the port */ np = of_get_parent(to_of_node(fwnode)); if (!np) return NULL; /* Is this the "ports" node? If not, it's the port parent. */ if (!of_node_name_eq(np, "ports")) return of_fwnode_handle(np); return of_fwnode_handle(of_get_next_parent(np)); } static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, struct fwnode_endpoint *endpoint) { const struct device_node *node = to_of_node(fwnode); struct device_node *port_node __free(device_node) = of_get_parent(node); endpoint->local_fwnode = fwnode; of_property_read_u32(port_node, "reg", &endpoint->port); of_property_read_u32(node, "reg", &endpoint->id); return 0; } static const void * of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, const struct device *dev) { return of_device_get_match_data(dev); } static void of_link_to_phandle(struct device_node *con_np, struct device_node *sup_np, u8 flags) { struct device_node *tmp_np __free(device_node) = of_node_get(sup_np); /* Check that sup_np and its ancestors are available. */ while (tmp_np) { if (of_fwnode_handle(tmp_np)->dev) break; if (!of_device_is_available(tmp_np)) return; tmp_np = of_get_next_parent(tmp_np); } fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); } /** * parse_prop_cells - Property parsing function for suppliers * * @np: Pointer to device tree node containing a list * @prop_name: Name of property to be parsed. Expected to hold phandle values * @index: For properties holding a list of phandles, this is the index * into the list. * @list_name: Property name that is known to contain list of phandle(s) to * supplier(s) * @cells_name: property name that specifies phandles' arguments count * * This is a helper function to parse properties that have a known fixed name * and are a list of phandles and phandle arguments. * * Returns: * - phandle node pointer with refcount incremented. Caller must of_node_put() * on it when done. * - NULL if no phandle found at index */ static struct device_node *parse_prop_cells(struct device_node *np, const char *prop_name, int index, const char *list_name, const char *cells_name) { struct of_phandle_args sup_args; if (strcmp(prop_name, list_name)) return NULL; if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, &sup_args)) return NULL; return sup_args.np; } #define DEFINE_SIMPLE_PROP(fname, name, cells) \ static struct device_node *parse_##fname(struct device_node *np, \ const char *prop_name, int index) \ { \ return parse_prop_cells(np, prop_name, index, name, cells); \ } static int strcmp_suffix(const char *str, const char *suffix) { unsigned int len, suffix_len; len = strlen(str); suffix_len = strlen(suffix); if (len <= suffix_len) return -1; return strcmp(str + len - suffix_len, suffix); } /** * parse_suffix_prop_cells - Suffix property parsing function for suppliers * * @np: Pointer to device tree node containing a list * @prop_name: Name of property to be parsed. Expected to hold phandle values * @index: For properties holding a list of phandles, this is the index * into the list. * @suffix: Property suffix that is known to contain list of phandle(s) to * supplier(s) * @cells_name: property name that specifies phandles' arguments count * * This is a helper function to parse properties that have a known fixed suffix * and are a list of phandles and phandle arguments. * * Returns: * - phandle node pointer with refcount incremented. Caller must of_node_put() * on it when done. * - NULL if no phandle found at index */ static struct device_node *parse_suffix_prop_cells(struct device_node *np, const char *prop_name, int index, const char *suffix, const char *cells_name) { struct of_phandle_args sup_args; if (strcmp_suffix(prop_name, suffix)) return NULL; if (of_parse_phandle_with_args(np, prop_name, cells_name, index, &sup_args)) return NULL; return sup_args.np; } #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ static struct device_node *parse_##fname(struct device_node *np, \ const char *prop_name, int index) \ { \ return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ } /** * struct supplier_bindings - Property parsing functions for suppliers * * @parse_prop: function name * parse_prop() finds the node corresponding to a supplier phandle * parse_prop.np: Pointer to device node holding supplier phandle property * parse_prop.prop_name: Name of property holding a phandle value * parse_prop.index: For properties holding a list of phandles, this is the * index into the list * @get_con_dev: If the consumer node containing the property is never converted * to a struct device, implement this ops so fw_devlink can use it * to find the true consumer. * @optional: Describes whether a supplier is mandatory or not * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link * for this property. * * Returns: * parse_prop() return values are * - phandle node pointer with refcount incremented. Caller must of_node_put() * on it when done. * - NULL if no phandle found at index */ struct supplier_bindings { struct device_node *(*parse_prop)(struct device_node *np, const char *prop_name, int index); struct device_node *(*get_con_dev)(struct device_node *np); bool optional; u8 fwlink_flags; }; DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") DEFINE_SIMPLE_PROP(leds, "leds", NULL) DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) DEFINE_SIMPLE_PROP(panel, "panel", NULL) DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") static struct device_node *parse_gpios(struct device_node *np, const char *prop_name, int index) { if (!strcmp_suffix(prop_name, ",nr-gpios")) return NULL; return parse_suffix_prop_cells(np, prop_name, index, "-gpios", "#gpio-cells"); } static struct device_node *parse_iommu_maps(struct device_node *np, const char *prop_name, int index) { if (strcmp(prop_name, "iommu-map")) return NULL; return of_parse_phandle(np, prop_name, (index * 4) + 1); } static struct device_node *parse_gpio_compat(struct device_node *np, const char *prop_name, int index) { struct of_phandle_args sup_args; if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) return NULL; /* * Ignore node with gpio-hog property since its gpios are all provided * by its parent. */ if (of_property_read_bool(np, "gpio-hog")) return NULL; if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, &sup_args)) return NULL; return sup_args.np; } static struct device_node *parse_interrupts(struct device_node *np, const char *prop_name, int index) { struct of_phandle_args sup_args; if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) return NULL; if (strcmp(prop_name, "interrupts") && strcmp(prop_name, "interrupts-extended")) return NULL; return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; } static struct device_node *parse_interrupt_map(struct device_node *np, const char *prop_name, int index) { const __be32 *imap, *imap_end; struct of_phandle_args sup_args; u32 addrcells, intcells; int imaplen; if (!IS_ENABLED(CONFIG_OF_IRQ)) return NULL; if (strcmp(prop_name, "interrupt-map")) return NULL; if (of_property_read_u32(np, "#interrupt-cells", &intcells)) return NULL; addrcells = of_bus_n_addr_cells(np); imap = of_get_property(np, "interrupt-map", &imaplen); imaplen /= sizeof(*imap); if (!imap) return NULL; imap_end = imap + imaplen; for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) { imap += addrcells + intcells; imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args); if (!imap) return NULL; if (i == index) return sup_args.np; of_node_put(sup_args.np); } return NULL; } static struct device_node *parse_remote_endpoint(struct device_node *np, const char *prop_name, int index) { /* Return NULL for index > 0 to signify end of remote-endpoints. */ if (index > 0 || strcmp(prop_name, "remote-endpoint")) return NULL; return of_graph_get_remote_port_parent(np); } static const struct supplier_bindings of_supplier_bindings[] = { { .parse_prop = parse_clocks, }, { .parse_prop = parse_interconnects, }, { .parse_prop = parse_iommus, .optional = true, }, { .parse_prop = parse_iommu_maps, .optional = true, }, { .parse_prop = parse_mboxes, }, { .parse_prop = parse_io_channels, }, { .parse_prop = parse_io_backends, }, { .parse_prop = parse_interrupt_parent, }, { .parse_prop = parse_dmas, .optional = true, }, { .parse_prop = parse_power_domains, }, { .parse_prop = parse_hwlocks, }, { .parse_prop = parse_extcon, }, { .parse_prop = parse_nvmem_cells, }, { .parse_prop = parse_phys, }, { .parse_prop = parse_wakeup_parent, }, { .parse_prop = parse_pinctrl0, }, { .parse_prop = parse_pinctrl1, }, { .parse_prop = parse_pinctrl2, }, { .parse_prop = parse_pinctrl3, }, { .parse_prop = parse_pinctrl4, }, { .parse_prop = parse_pinctrl5, }, { .parse_prop = parse_pinctrl6, }, { .parse_prop = parse_pinctrl7, }, { .parse_prop = parse_pinctrl8, }, { .parse_prop = parse_remote_endpoint, .get_con_dev = of_graph_get_port_parent, }, { .parse_prop = parse_pwms, }, { .parse_prop = parse_resets, }, { .parse_prop = parse_leds, }, { .parse_prop = parse_backlight, }, { .parse_prop = parse_panel, }, { .parse_prop = parse_msi_parent, }, { .parse_prop = parse_pses, }, { .parse_prop = parse_power_supplies, }, { .parse_prop = parse_gpio_compat, }, { .parse_prop = parse_interrupts, }, { .parse_prop = parse_interrupt_map, }, { .parse_prop = parse_access_controllers, }, { .parse_prop = parse_regulators, }, { .parse_prop = parse_gpio, }, { .parse_prop = parse_gpios, }, { .parse_prop = parse_post_init_providers, .fwlink_flags = FWLINK_FLAG_IGNORE, }, {} }; /** * of_link_property - Create device links to suppliers listed in a property * @con_np: The consumer device tree node which contains the property * @prop_name: Name of property to be parsed * * This function checks if the property @prop_name that is present in the * @con_np device tree node is one of the known common device tree bindings * that list phandles to suppliers. If @prop_name isn't one, this function * doesn't do anything. * * If @prop_name is one, this function attempts to create fwnode links from the * consumer device tree node @con_np to all the suppliers device tree nodes * listed in @prop_name. * * Any failed attempt to create a fwnode link will NOT result in an immediate * return. of_link_property() must create links to all the available supplier * device tree nodes even when attempts to create a link to one or more * suppliers fail. */ static int of_link_property(struct device_node *con_np, const char *prop_name) { struct device_node *phandle; const struct supplier_bindings *s = of_supplier_bindings; unsigned int i = 0; bool matched = false; /* Do not stop at first failed link, link all available suppliers. */ while (!matched && s->parse_prop) { if (s->optional && !fw_devlink_is_strict()) { s++; continue; } while ((phandle = s->parse_prop(con_np, prop_name, i))) { struct device_node *con_dev_np __free(device_node) = s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np); matched = true; i++; of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); of_node_put(phandle); } s++; } return 0; } static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) { #ifdef CONFIG_OF_ADDRESS return of_iomap(to_of_node(fwnode), index); #else return NULL; #endif } static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) { return of_irq_get(to_of_node(fwnode), index); } static int of_fwnode_add_links(struct fwnode_handle *fwnode) { struct property *p; struct device_node *con_np = to_of_node(fwnode); if (IS_ENABLED(CONFIG_X86)) return 0; if (!con_np) return -EINVAL; for_each_property_of_node(con_np, p) of_link_property(con_np, p->name); return 0; } const struct fwnode_operations of_fwnode_ops = { .get = of_fwnode_get, .put = of_fwnode_put, .device_is_available = of_fwnode_device_is_available, .device_get_match_data = of_fwnode_device_get_match_data, .device_dma_supported = of_fwnode_device_dma_supported, .device_get_dma_attr = of_fwnode_device_get_dma_attr, .property_present = of_fwnode_property_present, .property_read_int_array = of_fwnode_property_read_int_array, .property_read_string_array = of_fwnode_property_read_string_array, .get_name = of_fwnode_get_name, .get_name_prefix = of_fwnode_get_name_prefix, .get_parent = of_fwnode_get_parent, .get_next_child_node = of_fwnode_get_next_child_node, .get_named_child_node = of_fwnode_get_named_child_node, .get_reference_args = of_fwnode_get_reference_args, .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, .graph_get_port_parent = of_fwnode_graph_get_port_parent, .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, .iomap = of_fwnode_iomap, .irq_get = of_fwnode_irq_get, .add_links = of_fwnode_add_links, }; EXPORT_SYMBOL_GPL(of_fwnode_ops);