// SPDX-License-Identifier: GPL-2.0 /* * NVMe over Fabrics TCP target. * Copyright (c) 2018 Lightbits Labs. All rights reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvmet.h" #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */ #define NVMET_TCP_BACKLOG 128 static int param_store_val(const char *str, int *val, int min, int max) { int ret, new_val; ret = kstrtoint(str, 10, &new_val); if (ret) return -EINVAL; if (new_val < min || new_val > max) return -EINVAL; *val = new_val; return 0; } static int set_params(const char *str, const struct kernel_param *kp) { return param_store_val(str, kp->arg, 0, INT_MAX); } static const struct kernel_param_ops set_param_ops = { .set = set_params, .get = param_get_int, }; /* Define the socket priority to use for connections were it is desirable * that the NIC consider performing optimized packet processing or filtering. * A non-zero value being sufficient to indicate general consideration of any * possible optimization. Making it a module param allows for alternative * values that may be unique for some NIC implementations. */ static int so_priority; device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); /* Define a time period (in usecs) that io_work() shall sample an activated * queue before determining it to be idle. This optional module behavior * can enable NIC solutions that support socket optimized packet processing * using advanced interrupt moderation techniques. */ static int idle_poll_period_usecs; device_param_cb(idle_poll_period_usecs, &set_param_ops, &idle_poll_period_usecs, 0644); MODULE_PARM_DESC(idle_poll_period_usecs, "nvmet tcp io_work poll till idle time period in usecs: Default 0"); #ifdef CONFIG_NVME_TARGET_TCP_TLS /* * TLS handshake timeout */ static int tls_handshake_timeout = 10; module_param(tls_handshake_timeout, int, 0644); MODULE_PARM_DESC(tls_handshake_timeout, "nvme TLS handshake timeout in seconds (default 10)"); #endif #define NVMET_TCP_RECV_BUDGET 8 #define NVMET_TCP_SEND_BUDGET 8 #define NVMET_TCP_IO_WORK_BUDGET 64 enum nvmet_tcp_send_state { NVMET_TCP_SEND_DATA_PDU, NVMET_TCP_SEND_DATA, NVMET_TCP_SEND_R2T, NVMET_TCP_SEND_DDGST, NVMET_TCP_SEND_RESPONSE }; enum nvmet_tcp_recv_state { NVMET_TCP_RECV_PDU, NVMET_TCP_RECV_DATA, NVMET_TCP_RECV_DDGST, NVMET_TCP_RECV_ERR, }; enum { NVMET_TCP_F_INIT_FAILED = (1 << 0), }; struct nvmet_tcp_cmd { struct nvmet_tcp_queue *queue; struct nvmet_req req; struct nvme_tcp_cmd_pdu *cmd_pdu; struct nvme_tcp_rsp_pdu *rsp_pdu; struct nvme_tcp_data_pdu *data_pdu; struct nvme_tcp_r2t_pdu *r2t_pdu; u32 rbytes_done; u32 wbytes_done; u32 pdu_len; u32 pdu_recv; int sg_idx; char recv_cbuf[CMSG_LEN(sizeof(char))]; struct msghdr recv_msg; struct bio_vec *iov; u32 flags; struct list_head entry; struct llist_node lentry; /* send state */ u32 offset; struct scatterlist *cur_sg; enum nvmet_tcp_send_state state; __le32 exp_ddgst; __le32 recv_ddgst; }; enum nvmet_tcp_queue_state { NVMET_TCP_Q_CONNECTING, NVMET_TCP_Q_TLS_HANDSHAKE, NVMET_TCP_Q_LIVE, NVMET_TCP_Q_DISCONNECTING, NVMET_TCP_Q_FAILED, }; struct nvmet_tcp_queue { struct socket *sock; struct nvmet_tcp_port *port; struct work_struct io_work; struct nvmet_cq nvme_cq; struct nvmet_sq nvme_sq; struct kref kref; /* send state */ struct nvmet_tcp_cmd *cmds; unsigned int nr_cmds; struct list_head free_list; struct llist_head resp_list; struct list_head resp_send_list; int send_list_len; struct nvmet_tcp_cmd *snd_cmd; /* recv state */ int offset; int left; enum nvmet_tcp_recv_state rcv_state; struct nvmet_tcp_cmd *cmd; union nvme_tcp_pdu pdu; /* digest state */ bool hdr_digest; bool data_digest; struct ahash_request *snd_hash; struct ahash_request *rcv_hash; /* TLS state */ key_serial_t tls_pskid; struct delayed_work tls_handshake_tmo_work; unsigned long poll_end; spinlock_t state_lock; enum nvmet_tcp_queue_state state; struct sockaddr_storage sockaddr; struct sockaddr_storage sockaddr_peer; struct work_struct release_work; int idx; struct list_head queue_list; struct nvmet_tcp_cmd connect; struct page_frag_cache pf_cache; void (*data_ready)(struct sock *); void (*state_change)(struct sock *); void (*write_space)(struct sock *); }; struct nvmet_tcp_port { struct socket *sock; struct work_struct accept_work; struct nvmet_port *nport; struct sockaddr_storage addr; void (*data_ready)(struct sock *); }; static DEFINE_IDA(nvmet_tcp_queue_ida); static LIST_HEAD(nvmet_tcp_queue_list); static DEFINE_MUTEX(nvmet_tcp_queue_mutex); static struct workqueue_struct *nvmet_tcp_wq; static const struct nvmet_fabrics_ops nvmet_tcp_ops; static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, struct nvmet_tcp_cmd *cmd) { if (unlikely(!queue->nr_cmds)) { /* We didn't allocate cmds yet, send 0xffff */ return USHRT_MAX; } return cmd - queue->cmds; } static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) { return nvme_is_write(cmd->req.cmd) && cmd->rbytes_done < cmd->req.transfer_len; } static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) { return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; } static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) { return !nvme_is_write(cmd->req.cmd) && cmd->req.transfer_len > 0 && !cmd->req.cqe->status; } static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) { return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && !cmd->rbytes_done; } static inline struct nvmet_tcp_cmd * nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmd; cmd = list_first_entry_or_null(&queue->free_list, struct nvmet_tcp_cmd, entry); if (!cmd) return NULL; list_del_init(&cmd->entry); cmd->rbytes_done = cmd->wbytes_done = 0; cmd->pdu_len = 0; cmd->pdu_recv = 0; cmd->iov = NULL; cmd->flags = 0; return cmd; } static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) { if (unlikely(cmd == &cmd->queue->connect)) return; list_add_tail(&cmd->entry, &cmd->queue->free_list); } static inline int queue_cpu(struct nvmet_tcp_queue *queue) { return queue->sock->sk->sk_incoming_cpu; } static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) { return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; } static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) { return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; } static inline void nvmet_tcp_hdgst(struct ahash_request *hash, void *pdu, size_t len) { struct scatterlist sg; sg_init_one(&sg, pdu, len); ahash_request_set_crypt(hash, &sg, pdu + len, len); crypto_ahash_digest(hash); } static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, void *pdu, size_t len) { struct nvme_tcp_hdr *hdr = pdu; __le32 recv_digest; __le32 exp_digest; if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { pr_err("queue %d: header digest enabled but no header digest\n", queue->idx); return -EPROTO; } recv_digest = *(__le32 *)(pdu + hdr->hlen); nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); exp_digest = *(__le32 *)(pdu + hdr->hlen); if (recv_digest != exp_digest) { pr_err("queue %d: header digest error: recv %#x expected %#x\n", queue->idx, le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); return -EPROTO; } return 0; } static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) { struct nvme_tcp_hdr *hdr = pdu; u8 digest_len = nvmet_tcp_hdgst_len(queue); u32 len; len = le32_to_cpu(hdr->plen) - hdr->hlen - (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { pr_err("queue %d: data digest flag is cleared\n", queue->idx); return -EPROTO; } return 0; } static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) { kfree(cmd->iov); sgl_free(cmd->req.sg); cmd->iov = NULL; cmd->req.sg = NULL; } static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) { struct bio_vec *iov = cmd->iov; struct scatterlist *sg; u32 length, offset, sg_offset; int nr_pages; length = cmd->pdu_len; nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); offset = cmd->rbytes_done; cmd->sg_idx = offset / PAGE_SIZE; sg_offset = offset % PAGE_SIZE; sg = &cmd->req.sg[cmd->sg_idx]; while (length) { u32 iov_len = min_t(u32, length, sg->length - sg_offset); bvec_set_page(iov, sg_page(sg), iov_len, sg->offset + sg_offset); length -= iov_len; sg = sg_next(sg); iov++; sg_offset = 0; } iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, nr_pages, cmd->pdu_len); } static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) { queue->rcv_state = NVMET_TCP_RECV_ERR; if (queue->nvme_sq.ctrl) nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); else kernel_sock_shutdown(queue->sock, SHUT_RDWR); } static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) { queue->rcv_state = NVMET_TCP_RECV_ERR; if (status == -EPIPE || status == -ECONNRESET) kernel_sock_shutdown(queue->sock, SHUT_RDWR); else nvmet_tcp_fatal_error(queue); } static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) { struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; u32 len = le32_to_cpu(sgl->length); if (!len) return 0; if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET)) { if (!nvme_is_write(cmd->req.cmd)) return NVME_SC_INVALID_FIELD | NVME_SC_DNR; if (len > cmd->req.port->inline_data_size) return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; cmd->pdu_len = len; } cmd->req.transfer_len += len; cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); if (!cmd->req.sg) return NVME_SC_INTERNAL; cmd->cur_sg = cmd->req.sg; if (nvmet_tcp_has_data_in(cmd)) { cmd->iov = kmalloc_array(cmd->req.sg_cnt, sizeof(*cmd->iov), GFP_KERNEL); if (!cmd->iov) goto err; } return 0; err: nvmet_tcp_free_cmd_buffers(cmd); return NVME_SC_INTERNAL; } static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, struct nvmet_tcp_cmd *cmd) { ahash_request_set_crypt(hash, cmd->req.sg, (void *)&cmd->exp_ddgst, cmd->req.transfer_len); crypto_ahash_digest(hash); } static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) { struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; struct nvmet_tcp_queue *queue = cmd->queue; u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); cmd->offset = 0; cmd->state = NVMET_TCP_SEND_DATA_PDU; pdu->hdr.type = nvme_tcp_c2h_data; pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? NVME_TCP_F_DATA_SUCCESS : 0); pdu->hdr.hlen = sizeof(*pdu); pdu->hdr.pdo = pdu->hdr.hlen + hdgst; pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst + cmd->req.transfer_len + ddgst); pdu->command_id = cmd->req.cqe->command_id; pdu->data_length = cpu_to_le32(cmd->req.transfer_len); pdu->data_offset = cpu_to_le32(cmd->wbytes_done); if (queue->data_digest) { pdu->hdr.flags |= NVME_TCP_F_DDGST; nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); } if (cmd->queue->hdr_digest) { pdu->hdr.flags |= NVME_TCP_F_HDGST; nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); } } static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) { struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; struct nvmet_tcp_queue *queue = cmd->queue; u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); cmd->offset = 0; cmd->state = NVMET_TCP_SEND_R2T; pdu->hdr.type = nvme_tcp_r2t; pdu->hdr.flags = 0; pdu->hdr.hlen = sizeof(*pdu); pdu->hdr.pdo = 0; pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); pdu->command_id = cmd->req.cmd->common.command_id; pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); if (cmd->queue->hdr_digest) { pdu->hdr.flags |= NVME_TCP_F_HDGST; nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); } } static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) { struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; struct nvmet_tcp_queue *queue = cmd->queue; u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); cmd->offset = 0; cmd->state = NVMET_TCP_SEND_RESPONSE; pdu->hdr.type = nvme_tcp_rsp; pdu->hdr.flags = 0; pdu->hdr.hlen = sizeof(*pdu); pdu->hdr.pdo = 0; pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); if (cmd->queue->hdr_digest) { pdu->hdr.flags |= NVME_TCP_F_HDGST; nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); } } static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) { struct llist_node *node; struct nvmet_tcp_cmd *cmd; for (node = llist_del_all(&queue->resp_list); node; node = node->next) { cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); list_add(&cmd->entry, &queue->resp_send_list); queue->send_list_len++; } } static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) { queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, struct nvmet_tcp_cmd, entry); if (!queue->snd_cmd) { nvmet_tcp_process_resp_list(queue); queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, struct nvmet_tcp_cmd, entry); if (unlikely(!queue->snd_cmd)) return NULL; } list_del_init(&queue->snd_cmd->entry); queue->send_list_len--; if (nvmet_tcp_need_data_out(queue->snd_cmd)) nvmet_setup_c2h_data_pdu(queue->snd_cmd); else if (nvmet_tcp_need_data_in(queue->snd_cmd)) nvmet_setup_r2t_pdu(queue->snd_cmd); else nvmet_setup_response_pdu(queue->snd_cmd); return queue->snd_cmd; } static void nvmet_tcp_queue_response(struct nvmet_req *req) { struct nvmet_tcp_cmd *cmd = container_of(req, struct nvmet_tcp_cmd, req); struct nvmet_tcp_queue *queue = cmd->queue; struct nvme_sgl_desc *sgl; u32 len; if (unlikely(cmd == queue->cmd)) { sgl = &cmd->req.cmd->common.dptr.sgl; len = le32_to_cpu(sgl->length); /* * Wait for inline data before processing the response. * Avoid using helpers, this might happen before * nvmet_req_init is completed. */ if (queue->rcv_state == NVMET_TCP_RECV_PDU && len && len <= cmd->req.port->inline_data_size && nvme_is_write(cmd->req.cmd)) return; } llist_add(&cmd->lentry, &queue->resp_list); queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); } static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) { if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) nvmet_tcp_queue_response(&cmd->req); else cmd->req.execute(&cmd->req); } static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, }; struct bio_vec bvec; u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; int ret; bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); ret = sock_sendmsg(cmd->queue->sock, &msg); if (ret <= 0) return ret; cmd->offset += ret; left -= ret; if (left) return -EAGAIN; cmd->state = NVMET_TCP_SEND_DATA; cmd->offset = 0; return 1; } static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) { struct nvmet_tcp_queue *queue = cmd->queue; int ret; while (cmd->cur_sg) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; struct page *page = sg_page(cmd->cur_sg); struct bio_vec bvec; u32 left = cmd->cur_sg->length - cmd->offset; if ((!last_in_batch && cmd->queue->send_list_len) || cmd->wbytes_done + left < cmd->req.transfer_len || queue->data_digest || !queue->nvme_sq.sqhd_disabled) msg.msg_flags |= MSG_MORE; bvec_set_page(&bvec, page, left, cmd->offset); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); ret = sock_sendmsg(cmd->queue->sock, &msg); if (ret <= 0) return ret; cmd->offset += ret; cmd->wbytes_done += ret; /* Done with sg?*/ if (cmd->offset == cmd->cur_sg->length) { cmd->cur_sg = sg_next(cmd->cur_sg); cmd->offset = 0; } } if (queue->data_digest) { cmd->state = NVMET_TCP_SEND_DDGST; cmd->offset = 0; } else { if (queue->nvme_sq.sqhd_disabled) { cmd->queue->snd_cmd = NULL; nvmet_tcp_put_cmd(cmd); } else { nvmet_setup_response_pdu(cmd); } } if (queue->nvme_sq.sqhd_disabled) nvmet_tcp_free_cmd_buffers(cmd); return 1; } static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, bool last_in_batch) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; struct bio_vec bvec; u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; int ret; if (!last_in_batch && cmd->queue->send_list_len) msg.msg_flags |= MSG_MORE; else msg.msg_flags |= MSG_EOR; bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); ret = sock_sendmsg(cmd->queue->sock, &msg); if (ret <= 0) return ret; cmd->offset += ret; left -= ret; if (left) return -EAGAIN; nvmet_tcp_free_cmd_buffers(cmd); cmd->queue->snd_cmd = NULL; nvmet_tcp_put_cmd(cmd); return 1; } static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; struct bio_vec bvec; u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; int ret; if (!last_in_batch && cmd->queue->send_list_len) msg.msg_flags |= MSG_MORE; else msg.msg_flags |= MSG_EOR; bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); ret = sock_sendmsg(cmd->queue->sock, &msg); if (ret <= 0) return ret; cmd->offset += ret; left -= ret; if (left) return -EAGAIN; cmd->queue->snd_cmd = NULL; return 1; } static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) { struct nvmet_tcp_queue *queue = cmd->queue; int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; struct kvec iov = { .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, .iov_len = left }; int ret; if (!last_in_batch && cmd->queue->send_list_len) msg.msg_flags |= MSG_MORE; else msg.msg_flags |= MSG_EOR; ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); if (unlikely(ret <= 0)) return ret; cmd->offset += ret; left -= ret; if (left) return -EAGAIN; if (queue->nvme_sq.sqhd_disabled) { cmd->queue->snd_cmd = NULL; nvmet_tcp_put_cmd(cmd); } else { nvmet_setup_response_pdu(cmd); } return 1; } static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, bool last_in_batch) { struct nvmet_tcp_cmd *cmd = queue->snd_cmd; int ret = 0; if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { cmd = nvmet_tcp_fetch_cmd(queue); if (unlikely(!cmd)) return 0; } if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { ret = nvmet_try_send_data_pdu(cmd); if (ret <= 0) goto done_send; } if (cmd->state == NVMET_TCP_SEND_DATA) { ret = nvmet_try_send_data(cmd, last_in_batch); if (ret <= 0) goto done_send; } if (cmd->state == NVMET_TCP_SEND_DDGST) { ret = nvmet_try_send_ddgst(cmd, last_in_batch); if (ret <= 0) goto done_send; } if (cmd->state == NVMET_TCP_SEND_R2T) { ret = nvmet_try_send_r2t(cmd, last_in_batch); if (ret <= 0) goto done_send; } if (cmd->state == NVMET_TCP_SEND_RESPONSE) ret = nvmet_try_send_response(cmd, last_in_batch); done_send: if (ret < 0) { if (ret == -EAGAIN) return 0; return ret; } return 1; } static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, int budget, int *sends) { int i, ret = 0; for (i = 0; i < budget; i++) { ret = nvmet_tcp_try_send_one(queue, i == budget - 1); if (unlikely(ret < 0)) { nvmet_tcp_socket_error(queue, ret); goto done; } else if (ret == 0) { break; } (*sends)++; } done: return ret; } static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) { queue->offset = 0; queue->left = sizeof(struct nvme_tcp_hdr); queue->cmd = NULL; queue->rcv_state = NVMET_TCP_RECV_PDU; } static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); ahash_request_free(queue->rcv_hash); ahash_request_free(queue->snd_hash); crypto_free_ahash(tfm); } static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) { struct crypto_ahash *tfm; tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return PTR_ERR(tfm); queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); if (!queue->snd_hash) goto free_tfm; ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); if (!queue->rcv_hash) goto free_snd_hash; ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); return 0; free_snd_hash: ahash_request_free(queue->snd_hash); free_tfm: crypto_free_ahash(tfm); return -ENOMEM; } static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) { struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; struct msghdr msg = {}; struct kvec iov; int ret; if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { pr_err("bad nvme-tcp pdu length (%d)\n", le32_to_cpu(icreq->hdr.plen)); nvmet_tcp_fatal_error(queue); return -EPROTO; } if (icreq->pfv != NVME_TCP_PFV_1_0) { pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); return -EPROTO; } if (icreq->hpda != 0) { pr_err("queue %d: unsupported hpda %d\n", queue->idx, icreq->hpda); return -EPROTO; } queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); if (queue->hdr_digest || queue->data_digest) { ret = nvmet_tcp_alloc_crypto(queue); if (ret) return ret; } memset(icresp, 0, sizeof(*icresp)); icresp->hdr.type = nvme_tcp_icresp; icresp->hdr.hlen = sizeof(*icresp); icresp->hdr.pdo = 0; icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA); icresp->cpda = 0; if (queue->hdr_digest) icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; if (queue->data_digest) icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; iov.iov_base = icresp; iov.iov_len = sizeof(*icresp); ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); if (ret < 0) { queue->state = NVMET_TCP_Q_FAILED; return ret; /* queue removal will cleanup */ } queue->state = NVMET_TCP_Q_LIVE; nvmet_prepare_receive_pdu(queue); return 0; } static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) { size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); int ret; /* * This command has not been processed yet, hence we are trying to * figure out if there is still pending data left to receive. If * we don't, we can simply prepare for the next pdu and bail out, * otherwise we will need to prepare a buffer and receive the * stale data before continuing forward. */ if (!nvme_is_write(cmd->req.cmd) || !data_len || data_len > cmd->req.port->inline_data_size) { nvmet_prepare_receive_pdu(queue); return; } ret = nvmet_tcp_map_data(cmd); if (unlikely(ret)) { pr_err("queue %d: failed to map data\n", queue->idx); nvmet_tcp_fatal_error(queue); return; } queue->rcv_state = NVMET_TCP_RECV_DATA; nvmet_tcp_build_pdu_iovec(cmd); cmd->flags |= NVMET_TCP_F_INIT_FAILED; } static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) { struct nvme_tcp_data_pdu *data = &queue->pdu.data; struct nvmet_tcp_cmd *cmd; unsigned int exp_data_len; if (likely(queue->nr_cmds)) { if (unlikely(data->ttag >= queue->nr_cmds)) { pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", queue->idx, data->ttag, queue->nr_cmds); goto err_proto; } cmd = &queue->cmds[data->ttag]; } else { cmd = &queue->connect; } if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { pr_err("ttag %u unexpected data offset %u (expected %u)\n", data->ttag, le32_to_cpu(data->data_offset), cmd->rbytes_done); goto err_proto; } exp_data_len = le32_to_cpu(data->hdr.plen) - nvmet_tcp_hdgst_len(queue) - nvmet_tcp_ddgst_len(queue) - sizeof(*data); cmd->pdu_len = le32_to_cpu(data->data_length); if (unlikely(cmd->pdu_len != exp_data_len || cmd->pdu_len == 0 || cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) { pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len); goto err_proto; } cmd->pdu_recv = 0; nvmet_tcp_build_pdu_iovec(cmd); queue->cmd = cmd; queue->rcv_state = NVMET_TCP_RECV_DATA; return 0; err_proto: /* FIXME: use proper transport errors */ nvmet_tcp_fatal_error(queue); return -EPROTO; } static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) { struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; struct nvmet_req *req; int ret; if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { if (hdr->type != nvme_tcp_icreq) { pr_err("unexpected pdu type (%d) before icreq\n", hdr->type); nvmet_tcp_fatal_error(queue); return -EPROTO; } return nvmet_tcp_handle_icreq(queue); } if (unlikely(hdr->type == nvme_tcp_icreq)) { pr_err("queue %d: received icreq pdu in state %d\n", queue->idx, queue->state); nvmet_tcp_fatal_error(queue); return -EPROTO; } if (hdr->type == nvme_tcp_h2c_data) { ret = nvmet_tcp_handle_h2c_data_pdu(queue); if (unlikely(ret)) return ret; return 0; } queue->cmd = nvmet_tcp_get_cmd(queue); if (unlikely(!queue->cmd)) { /* This should never happen */ pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", queue->idx, queue->nr_cmds, queue->send_list_len, nvme_cmd->common.opcode); nvmet_tcp_fatal_error(queue); return -ENOMEM; } req = &queue->cmd->req; memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, &queue->nvme_sq, &nvmet_tcp_ops))) { pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", req->cmd, req->cmd->common.command_id, req->cmd->common.opcode, le32_to_cpu(req->cmd->common.dptr.sgl.length)); nvmet_tcp_handle_req_failure(queue, queue->cmd, req); return 0; } ret = nvmet_tcp_map_data(queue->cmd); if (unlikely(ret)) { pr_err("queue %d: failed to map data\n", queue->idx); if (nvmet_tcp_has_inline_data(queue->cmd)) nvmet_tcp_fatal_error(queue); else nvmet_req_complete(req, ret); ret = -EAGAIN; goto out; } if (nvmet_tcp_need_data_in(queue->cmd)) { if (nvmet_tcp_has_inline_data(queue->cmd)) { queue->rcv_state = NVMET_TCP_RECV_DATA; nvmet_tcp_build_pdu_iovec(queue->cmd); return 0; } /* send back R2T */ nvmet_tcp_queue_response(&queue->cmd->req); goto out; } queue->cmd->req.execute(&queue->cmd->req); out: nvmet_prepare_receive_pdu(queue); return ret; } static const u8 nvme_tcp_pdu_sizes[] = { [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), }; static inline u8 nvmet_tcp_pdu_size(u8 type) { size_t idx = type; return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && nvme_tcp_pdu_sizes[idx]) ? nvme_tcp_pdu_sizes[idx] : 0; } static inline bool nvmet_tcp_pdu_valid(u8 type) { switch (type) { case nvme_tcp_icreq: case nvme_tcp_cmd: case nvme_tcp_h2c_data: /* fallthru */ return true; } return false; } static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue, struct msghdr *msg, char *cbuf) { struct cmsghdr *cmsg = (struct cmsghdr *)cbuf; u8 ctype, level, description; int ret = 0; ctype = tls_get_record_type(queue->sock->sk, cmsg); switch (ctype) { case 0: break; case TLS_RECORD_TYPE_DATA: break; case TLS_RECORD_TYPE_ALERT: tls_alert_recv(queue->sock->sk, msg, &level, &description); if (level == TLS_ALERT_LEVEL_FATAL) { pr_err("queue %d: TLS Alert desc %u\n", queue->idx, description); ret = -ENOTCONN; } else { pr_warn("queue %d: TLS Alert desc %u\n", queue->idx, description); ret = -EAGAIN; } break; default: /* discard this record type */ pr_err("queue %d: TLS record %d unhandled\n", queue->idx, ctype); ret = -EAGAIN; break; } return ret; } static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) { struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; int len, ret; struct kvec iov; char cbuf[CMSG_LEN(sizeof(char))] = {}; struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; recv: iov.iov_base = (void *)&queue->pdu + queue->offset; iov.iov_len = queue->left; if (queue->tls_pskid) { msg.msg_control = cbuf; msg.msg_controllen = sizeof(cbuf); } len = kernel_recvmsg(queue->sock, &msg, &iov, 1, iov.iov_len, msg.msg_flags); if (unlikely(len < 0)) return len; if (queue->tls_pskid) { ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); if (ret < 0) return ret; } queue->offset += len; queue->left -= len; if (queue->left) return -EAGAIN; if (queue->offset == sizeof(struct nvme_tcp_hdr)) { u8 hdgst = nvmet_tcp_hdgst_len(queue); if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { pr_err("unexpected pdu type %d\n", hdr->type); nvmet_tcp_fatal_error(queue); return -EIO; } if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); return -EIO; } queue->left = hdr->hlen - queue->offset + hdgst; goto recv; } if (queue->hdr_digest && nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { nvmet_tcp_fatal_error(queue); /* fatal */ return -EPROTO; } if (queue->data_digest && nvmet_tcp_check_ddgst(queue, &queue->pdu)) { nvmet_tcp_fatal_error(queue); /* fatal */ return -EPROTO; } return nvmet_tcp_done_recv_pdu(queue); } static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) { struct nvmet_tcp_queue *queue = cmd->queue; nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); queue->offset = 0; queue->left = NVME_TCP_DIGEST_LENGTH; queue->rcv_state = NVMET_TCP_RECV_DDGST; } static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmd = queue->cmd; int len, ret; while (msg_data_left(&cmd->recv_msg)) { len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, cmd->recv_msg.msg_flags); if (len <= 0) return len; if (queue->tls_pskid) { ret = nvmet_tcp_tls_record_ok(cmd->queue, &cmd->recv_msg, cmd->recv_cbuf); if (ret < 0) return ret; } cmd->pdu_recv += len; cmd->rbytes_done += len; } if (queue->data_digest) { nvmet_tcp_prep_recv_ddgst(cmd); return 0; } if (cmd->rbytes_done == cmd->req.transfer_len) nvmet_tcp_execute_request(cmd); nvmet_prepare_receive_pdu(queue); return 0; } static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmd = queue->cmd; int ret, len; char cbuf[CMSG_LEN(sizeof(char))] = {}; struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; struct kvec iov = { .iov_base = (void *)&cmd->recv_ddgst + queue->offset, .iov_len = queue->left }; if (queue->tls_pskid) { msg.msg_control = cbuf; msg.msg_controllen = sizeof(cbuf); } len = kernel_recvmsg(queue->sock, &msg, &iov, 1, iov.iov_len, msg.msg_flags); if (unlikely(len < 0)) return len; if (queue->tls_pskid) { ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); if (ret < 0) return ret; } queue->offset += len; queue->left -= len; if (queue->left) return -EAGAIN; if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", queue->idx, cmd->req.cmd->common.command_id, queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), le32_to_cpu(cmd->exp_ddgst)); nvmet_req_uninit(&cmd->req); nvmet_tcp_free_cmd_buffers(cmd); nvmet_tcp_fatal_error(queue); ret = -EPROTO; goto out; } if (cmd->rbytes_done == cmd->req.transfer_len) nvmet_tcp_execute_request(cmd); ret = 0; out: nvmet_prepare_receive_pdu(queue); return ret; } static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) { int result = 0; if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) return 0; if (queue->rcv_state == NVMET_TCP_RECV_PDU) { result = nvmet_tcp_try_recv_pdu(queue); if (result != 0) goto done_recv; } if (queue->rcv_state == NVMET_TCP_RECV_DATA) { result = nvmet_tcp_try_recv_data(queue); if (result != 0) goto done_recv; } if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { result = nvmet_tcp_try_recv_ddgst(queue); if (result != 0) goto done_recv; } done_recv: if (result < 0) { if (result == -EAGAIN) return 0; return result; } return 1; } static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, int budget, int *recvs) { int i, ret = 0; for (i = 0; i < budget; i++) { ret = nvmet_tcp_try_recv_one(queue); if (unlikely(ret < 0)) { nvmet_tcp_socket_error(queue, ret); goto done; } else if (ret == 0) { break; } (*recvs)++; } done: return ret; } static void nvmet_tcp_release_queue(struct kref *kref) { struct nvmet_tcp_queue *queue = container_of(kref, struct nvmet_tcp_queue, kref); WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING); queue_work(nvmet_wq, &queue->release_work); } static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) { spin_lock_bh(&queue->state_lock); if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { /* Socket closed during handshake */ tls_handshake_cancel(queue->sock->sk); } if (queue->state != NVMET_TCP_Q_DISCONNECTING) { queue->state = NVMET_TCP_Q_DISCONNECTING; kref_put(&queue->kref, nvmet_tcp_release_queue); } spin_unlock_bh(&queue->state_lock); } static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) { queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); } static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, int ops) { if (!idle_poll_period_usecs) return false; if (ops) nvmet_tcp_arm_queue_deadline(queue); return !time_after(jiffies, queue->poll_end); } static void nvmet_tcp_io_work(struct work_struct *w) { struct nvmet_tcp_queue *queue = container_of(w, struct nvmet_tcp_queue, io_work); bool pending; int ret, ops = 0; do { pending = false; ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); if (ret > 0) pending = true; else if (ret < 0) return; ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); if (ret > 0) pending = true; else if (ret < 0) return; } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); /* * Requeue the worker if idle deadline period is in progress or any * ops activity was recorded during the do-while loop above. */ if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); } static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, struct nvmet_tcp_cmd *c) { u8 hdgst = nvmet_tcp_hdgst_len(queue); c->queue = queue; c->req.port = queue->port->nport; c->cmd_pdu = page_frag_alloc(&queue->pf_cache, sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); if (!c->cmd_pdu) return -ENOMEM; c->req.cmd = &c->cmd_pdu->cmd; c->rsp_pdu = page_frag_alloc(&queue->pf_cache, sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); if (!c->rsp_pdu) goto out_free_cmd; c->req.cqe = &c->rsp_pdu->cqe; c->data_pdu = page_frag_alloc(&queue->pf_cache, sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); if (!c->data_pdu) goto out_free_rsp; c->r2t_pdu = page_frag_alloc(&queue->pf_cache, sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); if (!c->r2t_pdu) goto out_free_data; if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { c->recv_msg.msg_control = c->recv_cbuf; c->recv_msg.msg_controllen = sizeof(c->recv_cbuf); } c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; list_add_tail(&c->entry, &queue->free_list); return 0; out_free_data: page_frag_free(c->data_pdu); out_free_rsp: page_frag_free(c->rsp_pdu); out_free_cmd: page_frag_free(c->cmd_pdu); return -ENOMEM; } static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) { page_frag_free(c->r2t_pdu); page_frag_free(c->data_pdu); page_frag_free(c->rsp_pdu); page_frag_free(c->cmd_pdu); } static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmds; int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); if (!cmds) goto out; for (i = 0; i < nr_cmds; i++) { ret = nvmet_tcp_alloc_cmd(queue, cmds + i); if (ret) goto out_free; } queue->cmds = cmds; return 0; out_free: while (--i >= 0) nvmet_tcp_free_cmd(cmds + i); kfree(cmds); out: return ret; } static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmds = queue->cmds; int i; for (i = 0; i < queue->nr_cmds; i++) nvmet_tcp_free_cmd(cmds + i); nvmet_tcp_free_cmd(&queue->connect); kfree(cmds); } static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) { struct socket *sock = queue->sock; write_lock_bh(&sock->sk->sk_callback_lock); sock->sk->sk_data_ready = queue->data_ready; sock->sk->sk_state_change = queue->state_change; sock->sk->sk_write_space = queue->write_space; sock->sk->sk_user_data = NULL; write_unlock_bh(&sock->sk->sk_callback_lock); } static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmd = queue->cmds; int i; for (i = 0; i < queue->nr_cmds; i++, cmd++) { if (nvmet_tcp_need_data_in(cmd)) nvmet_req_uninit(&cmd->req); } if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { /* failed in connect */ nvmet_req_uninit(&queue->connect.req); } } static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) { struct nvmet_tcp_cmd *cmd = queue->cmds; int i; for (i = 0; i < queue->nr_cmds; i++, cmd++) { if (nvmet_tcp_need_data_in(cmd)) nvmet_tcp_free_cmd_buffers(cmd); } if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) nvmet_tcp_free_cmd_buffers(&queue->connect); } static void nvmet_tcp_release_queue_work(struct work_struct *w) { struct nvmet_tcp_queue *queue = container_of(w, struct nvmet_tcp_queue, release_work); mutex_lock(&nvmet_tcp_queue_mutex); list_del_init(&queue->queue_list); mutex_unlock(&nvmet_tcp_queue_mutex); nvmet_tcp_restore_socket_callbacks(queue); cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); cancel_work_sync(&queue->io_work); /* stop accepting incoming data */ queue->rcv_state = NVMET_TCP_RECV_ERR; nvmet_tcp_uninit_data_in_cmds(queue); nvmet_sq_destroy(&queue->nvme_sq); cancel_work_sync(&queue->io_work); nvmet_tcp_free_cmd_data_in_buffers(queue); /* ->sock will be released by fput() */ fput(queue->sock->file); nvmet_tcp_free_cmds(queue); if (queue->hdr_digest || queue->data_digest) nvmet_tcp_free_crypto(queue); ida_free(&nvmet_tcp_queue_ida, queue->idx); page_frag_cache_drain(&queue->pf_cache); kfree(queue); } static void nvmet_tcp_data_ready(struct sock *sk) { struct nvmet_tcp_queue *queue; trace_sk_data_ready(sk); read_lock_bh(&sk->sk_callback_lock); queue = sk->sk_user_data; if (likely(queue)) { if (queue->data_ready) queue->data_ready(sk); if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); } read_unlock_bh(&sk->sk_callback_lock); } static void nvmet_tcp_write_space(struct sock *sk) { struct nvmet_tcp_queue *queue; read_lock_bh(&sk->sk_callback_lock); queue = sk->sk_user_data; if (unlikely(!queue)) goto out; if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { queue->write_space(sk); goto out; } if (sk_stream_is_writeable(sk)) { clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); } out: read_unlock_bh(&sk->sk_callback_lock); } static void nvmet_tcp_state_change(struct sock *sk) { struct nvmet_tcp_queue *queue; read_lock_bh(&sk->sk_callback_lock); queue = sk->sk_user_data; if (!queue) goto done; switch (sk->sk_state) { case TCP_FIN_WAIT2: case TCP_LAST_ACK: break; case TCP_FIN_WAIT1: case TCP_CLOSE_WAIT: case TCP_CLOSE: /* FALLTHRU */ nvmet_tcp_schedule_release_queue(queue); break; default: pr_warn("queue %d unhandled state %d\n", queue->idx, sk->sk_state); } done: read_unlock_bh(&sk->sk_callback_lock); } static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) { struct socket *sock = queue->sock; struct inet_sock *inet = inet_sk(sock->sk); int ret; ret = kernel_getsockname(sock, (struct sockaddr *)&queue->sockaddr); if (ret < 0) return ret; ret = kernel_getpeername(sock, (struct sockaddr *)&queue->sockaddr_peer); if (ret < 0) return ret; /* * Cleanup whatever is sitting in the TCP transmit queue on socket * close. This is done to prevent stale data from being sent should * the network connection be restored before TCP times out. */ sock_no_linger(sock->sk); if (so_priority > 0) sock_set_priority(sock->sk, so_priority); /* Set socket type of service */ if (inet->rcv_tos > 0) ip_sock_set_tos(sock->sk, inet->rcv_tos); ret = 0; write_lock_bh(&sock->sk->sk_callback_lock); if (sock->sk->sk_state != TCP_ESTABLISHED) { /* * If the socket is already closing, don't even start * consuming it */ ret = -ENOTCONN; } else { sock->sk->sk_user_data = queue; queue->data_ready = sock->sk->sk_data_ready; sock->sk->sk_data_ready = nvmet_tcp_data_ready; queue->state_change = sock->sk->sk_state_change; sock->sk->sk_state_change = nvmet_tcp_state_change; queue->write_space = sock->sk->sk_write_space; sock->sk->sk_write_space = nvmet_tcp_write_space; if (idle_poll_period_usecs) nvmet_tcp_arm_queue_deadline(queue); queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); } write_unlock_bh(&sock->sk->sk_callback_lock); return ret; } #ifdef CONFIG_NVME_TARGET_TCP_TLS static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue) { struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; int len, ret; struct kvec iov = { .iov_base = (u8 *)&queue->pdu + queue->offset, .iov_len = sizeof(struct nvme_tcp_hdr), }; char cbuf[CMSG_LEN(sizeof(char))] = {}; struct msghdr msg = { .msg_control = cbuf, .msg_controllen = sizeof(cbuf), .msg_flags = MSG_PEEK, }; if (nvmet_port_secure_channel_required(queue->port->nport)) return 0; len = kernel_recvmsg(queue->sock, &msg, &iov, 1, iov.iov_len, msg.msg_flags); if (unlikely(len < 0)) { pr_debug("queue %d: peek error %d\n", queue->idx, len); return len; } ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf); if (ret < 0) return ret; if (len < sizeof(struct nvme_tcp_hdr)) { pr_debug("queue %d: short read, %d bytes missing\n", queue->idx, (int)iov.iov_len - len); return -EAGAIN; } pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n", queue->idx, hdr->type, hdr->hlen, hdr->plen, (int)sizeof(struct nvme_tcp_icreq_pdu)); if (hdr->type == nvme_tcp_icreq && hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) && hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) { pr_debug("queue %d: icreq detected\n", queue->idx); return len; } return 0; } static void nvmet_tcp_tls_handshake_done(void *data, int status, key_serial_t peerid) { struct nvmet_tcp_queue *queue = data; pr_debug("queue %d: TLS handshake done, key %x, status %d\n", queue->idx, peerid, status); spin_lock_bh(&queue->state_lock); if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { spin_unlock_bh(&queue->state_lock); return; } if (!status) { queue->tls_pskid = peerid; queue->state = NVMET_TCP_Q_CONNECTING; } else queue->state = NVMET_TCP_Q_FAILED; spin_unlock_bh(&queue->state_lock); cancel_delayed_work_sync(&queue->tls_handshake_tmo_work); if (status) nvmet_tcp_schedule_release_queue(queue); else nvmet_tcp_set_queue_sock(queue); kref_put(&queue->kref, nvmet_tcp_release_queue); } static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) { struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w), struct nvmet_tcp_queue, tls_handshake_tmo_work); pr_warn("queue %d: TLS handshake timeout\n", queue->idx); /* * If tls_handshake_cancel() fails we've lost the race with * nvmet_tcp_tls_handshake_done() */ if (!tls_handshake_cancel(queue->sock->sk)) return; spin_lock_bh(&queue->state_lock); if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) { spin_unlock_bh(&queue->state_lock); return; } queue->state = NVMET_TCP_Q_FAILED; spin_unlock_bh(&queue->state_lock); nvmet_tcp_schedule_release_queue(queue); kref_put(&queue->kref, nvmet_tcp_release_queue); } static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue) { int ret = -EOPNOTSUPP; struct tls_handshake_args args; if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) { pr_warn("cannot start TLS in state %d\n", queue->state); return -EINVAL; } kref_get(&queue->kref); pr_debug("queue %d: TLS ServerHello\n", queue->idx); memset(&args, 0, sizeof(args)); args.ta_sock = queue->sock; args.ta_done = nvmet_tcp_tls_handshake_done; args.ta_data = queue; args.ta_keyring = key_serial(queue->port->nport->keyring); args.ta_timeout_ms = tls_handshake_timeout * 1000; ret = tls_server_hello_psk(&args, GFP_KERNEL); if (ret) { kref_put(&queue->kref, nvmet_tcp_release_queue); pr_err("failed to start TLS, err=%d\n", ret); } else { queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work, tls_handshake_timeout * HZ); } return ret; } #else static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {} #endif static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, struct socket *newsock) { struct nvmet_tcp_queue *queue; struct file *sock_file = NULL; int ret; queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) { ret = -ENOMEM; goto out_release; } INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); INIT_WORK(&queue->io_work, nvmet_tcp_io_work); kref_init(&queue->kref); queue->sock = newsock; queue->port = port; queue->nr_cmds = 0; spin_lock_init(&queue->state_lock); if (queue->port->nport->disc_addr.tsas.tcp.sectype == NVMF_TCP_SECTYPE_TLS13) queue->state = NVMET_TCP_Q_TLS_HANDSHAKE; else queue->state = NVMET_TCP_Q_CONNECTING; INIT_LIST_HEAD(&queue->free_list); init_llist_head(&queue->resp_list); INIT_LIST_HEAD(&queue->resp_send_list); sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); if (IS_ERR(sock_file)) { ret = PTR_ERR(sock_file); goto out_free_queue; } queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); if (queue->idx < 0) { ret = queue->idx; goto out_sock; } ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); if (ret) goto out_ida_remove; ret = nvmet_sq_init(&queue->nvme_sq); if (ret) goto out_free_connect; nvmet_prepare_receive_pdu(queue); mutex_lock(&nvmet_tcp_queue_mutex); list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); mutex_unlock(&nvmet_tcp_queue_mutex); INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work, nvmet_tcp_tls_handshake_timeout); #ifdef CONFIG_NVME_TARGET_TCP_TLS if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) { struct sock *sk = queue->sock->sk; /* Restore the default callbacks before starting upcall */ read_lock_bh(&sk->sk_callback_lock); sk->sk_user_data = NULL; sk->sk_data_ready = port->data_ready; read_unlock_bh(&sk->sk_callback_lock); if (!nvmet_tcp_try_peek_pdu(queue)) { if (!nvmet_tcp_tls_handshake(queue)) return; /* TLS handshake failed, terminate the connection */ goto out_destroy_sq; } /* Not a TLS connection, continue with normal processing */ queue->state = NVMET_TCP_Q_CONNECTING; } #endif ret = nvmet_tcp_set_queue_sock(queue); if (ret) goto out_destroy_sq; return; out_destroy_sq: mutex_lock(&nvmet_tcp_queue_mutex); list_del_init(&queue->queue_list); mutex_unlock(&nvmet_tcp_queue_mutex); nvmet_sq_destroy(&queue->nvme_sq); out_free_connect: nvmet_tcp_free_cmd(&queue->connect); out_ida_remove: ida_free(&nvmet_tcp_queue_ida, queue->idx); out_sock: fput(queue->sock->file); out_free_queue: kfree(queue); out_release: pr_err("failed to allocate queue, error %d\n", ret); if (!sock_file) sock_release(newsock); } static void nvmet_tcp_accept_work(struct work_struct *w) { struct nvmet_tcp_port *port = container_of(w, struct nvmet_tcp_port, accept_work); struct socket *newsock; int ret; while (true) { ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); if (ret < 0) { if (ret != -EAGAIN) pr_warn("failed to accept err=%d\n", ret); return; } nvmet_tcp_alloc_queue(port, newsock); } } static void nvmet_tcp_listen_data_ready(struct sock *sk) { struct nvmet_tcp_port *port; trace_sk_data_ready(sk); read_lock_bh(&sk->sk_callback_lock); port = sk->sk_user_data; if (!port) goto out; if (sk->sk_state == TCP_LISTEN) queue_work(nvmet_wq, &port->accept_work); out: read_unlock_bh(&sk->sk_callback_lock); } static int nvmet_tcp_add_port(struct nvmet_port *nport) { struct nvmet_tcp_port *port; __kernel_sa_family_t af; int ret; port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) return -ENOMEM; switch (nport->disc_addr.adrfam) { case NVMF_ADDR_FAMILY_IP4: af = AF_INET; break; case NVMF_ADDR_FAMILY_IP6: af = AF_INET6; break; default: pr_err("address family %d not supported\n", nport->disc_addr.adrfam); ret = -EINVAL; goto err_port; } ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, nport->disc_addr.trsvcid, &port->addr); if (ret) { pr_err("malformed ip/port passed: %s:%s\n", nport->disc_addr.traddr, nport->disc_addr.trsvcid); goto err_port; } port->nport = nport; INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); if (port->nport->inline_data_size < 0) port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; ret = sock_create(port->addr.ss_family, SOCK_STREAM, IPPROTO_TCP, &port->sock); if (ret) { pr_err("failed to create a socket\n"); goto err_port; } port->sock->sk->sk_user_data = port; port->data_ready = port->sock->sk->sk_data_ready; port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; sock_set_reuseaddr(port->sock->sk); tcp_sock_set_nodelay(port->sock->sk); if (so_priority > 0) sock_set_priority(port->sock->sk, so_priority); ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, sizeof(port->addr)); if (ret) { pr_err("failed to bind port socket %d\n", ret); goto err_sock; } ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG); if (ret) { pr_err("failed to listen %d on port sock\n", ret); goto err_sock; } nport->priv = port; pr_info("enabling port %d (%pISpc)\n", le16_to_cpu(nport->disc_addr.portid), &port->addr); return 0; err_sock: sock_release(port->sock); err_port: kfree(port); return ret; } static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) { struct nvmet_tcp_queue *queue; mutex_lock(&nvmet_tcp_queue_mutex); list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) if (queue->port == port) kernel_sock_shutdown(queue->sock, SHUT_RDWR); mutex_unlock(&nvmet_tcp_queue_mutex); } static void nvmet_tcp_remove_port(struct nvmet_port *nport) { struct nvmet_tcp_port *port = nport->priv; write_lock_bh(&port->sock->sk->sk_callback_lock); port->sock->sk->sk_data_ready = port->data_ready; port->sock->sk->sk_user_data = NULL; write_unlock_bh(&port->sock->sk->sk_callback_lock); cancel_work_sync(&port->accept_work); /* * Destroy the remaining queues, which are not belong to any * controller yet. */ nvmet_tcp_destroy_port_queues(port); sock_release(port->sock); kfree(port); } static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) { struct nvmet_tcp_queue *queue; mutex_lock(&nvmet_tcp_queue_mutex); list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) if (queue->nvme_sq.ctrl == ctrl) kernel_sock_shutdown(queue->sock, SHUT_RDWR); mutex_unlock(&nvmet_tcp_queue_mutex); } static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) { struct nvmet_tcp_queue *queue = container_of(sq, struct nvmet_tcp_queue, nvme_sq); if (sq->qid == 0) { struct nvmet_tcp_queue *q; int pending = 0; /* Check for pending controller teardown */ mutex_lock(&nvmet_tcp_queue_mutex); list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) { if (q->nvme_sq.ctrl == sq->ctrl && q->state == NVMET_TCP_Q_DISCONNECTING) pending++; } mutex_unlock(&nvmet_tcp_queue_mutex); if (pending > NVMET_TCP_BACKLOG) return NVME_SC_CONNECT_CTRL_BUSY; } queue->nr_cmds = sq->size * 2; if (nvmet_tcp_alloc_cmds(queue)) return NVME_SC_INTERNAL; return 0; } static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, struct nvmet_port *nport, char *traddr) { struct nvmet_tcp_port *port = nport->priv; if (inet_addr_is_any((struct sockaddr *)&port->addr)) { struct nvmet_tcp_cmd *cmd = container_of(req, struct nvmet_tcp_cmd, req); struct nvmet_tcp_queue *queue = cmd->queue; sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); } else { memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); } } static const struct nvmet_fabrics_ops nvmet_tcp_ops = { .owner = THIS_MODULE, .type = NVMF_TRTYPE_TCP, .msdbd = 1, .add_port = nvmet_tcp_add_port, .remove_port = nvmet_tcp_remove_port, .queue_response = nvmet_tcp_queue_response, .delete_ctrl = nvmet_tcp_delete_ctrl, .install_queue = nvmet_tcp_install_queue, .disc_traddr = nvmet_tcp_disc_port_addr, }; static int __init nvmet_tcp_init(void) { int ret; nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); if (!nvmet_tcp_wq) return -ENOMEM; ret = nvmet_register_transport(&nvmet_tcp_ops); if (ret) goto err; return 0; err: destroy_workqueue(nvmet_tcp_wq); return ret; } static void __exit nvmet_tcp_exit(void) { struct nvmet_tcp_queue *queue; nvmet_unregister_transport(&nvmet_tcp_ops); flush_workqueue(nvmet_wq); mutex_lock(&nvmet_tcp_queue_mutex); list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) kernel_sock_shutdown(queue->sock, SHUT_RDWR); mutex_unlock(&nvmet_tcp_queue_mutex); flush_workqueue(nvmet_wq); destroy_workqueue(nvmet_tcp_wq); ida_destroy(&nvmet_tcp_queue_ida); } module_init(nvmet_tcp_init); module_exit(nvmet_tcp_exit); MODULE_DESCRIPTION("NVMe target TCP transport driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */