// SPDX-License-Identifier: GPL-2.0 /* * NVMe over Fabrics RDMA host code. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */ #define NVME_RDMA_MAX_SEGMENTS 256 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 #define NVME_RDMA_DATA_SGL_SIZE \ (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) #define NVME_RDMA_METADATA_SGL_SIZE \ (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) struct nvme_rdma_device { struct ib_device *dev; struct ib_pd *pd; struct kref ref; struct list_head entry; unsigned int num_inline_segments; }; struct nvme_rdma_qe { struct ib_cqe cqe; void *data; u64 dma; }; struct nvme_rdma_sgl { int nents; struct sg_table sg_table; }; struct nvme_rdma_queue; struct nvme_rdma_request { struct nvme_request req; struct ib_mr *mr; struct nvme_rdma_qe sqe; union nvme_result result; __le16 status; refcount_t ref; struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; u32 num_sge; struct ib_reg_wr reg_wr; struct ib_cqe reg_cqe; struct nvme_rdma_queue *queue; struct nvme_rdma_sgl data_sgl; struct nvme_rdma_sgl *metadata_sgl; bool use_sig_mr; }; enum nvme_rdma_queue_flags { NVME_RDMA_Q_ALLOCATED = 0, NVME_RDMA_Q_LIVE = 1, NVME_RDMA_Q_TR_READY = 2, }; struct nvme_rdma_queue { struct nvme_rdma_qe *rsp_ring; int queue_size; size_t cmnd_capsule_len; struct nvme_rdma_ctrl *ctrl; struct nvme_rdma_device *device; struct ib_cq *ib_cq; struct ib_qp *qp; unsigned long flags; struct rdma_cm_id *cm_id; int cm_error; struct completion cm_done; bool pi_support; int cq_size; struct mutex queue_lock; }; struct nvme_rdma_ctrl { /* read only in the hot path */ struct nvme_rdma_queue *queues; /* other member variables */ struct blk_mq_tag_set tag_set; struct work_struct err_work; struct nvme_rdma_qe async_event_sqe; struct delayed_work reconnect_work; struct list_head list; struct blk_mq_tag_set admin_tag_set; struct nvme_rdma_device *device; u32 max_fr_pages; struct sockaddr_storage addr; struct sockaddr_storage src_addr; struct nvme_ctrl ctrl; bool use_inline_data; u32 io_queues[HCTX_MAX_TYPES]; }; static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); } static LIST_HEAD(device_list); static DEFINE_MUTEX(device_list_mutex); static LIST_HEAD(nvme_rdma_ctrl_list); static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); /* * Disabling this option makes small I/O goes faster, but is fundamentally * unsafe. With it turned off we will have to register a global rkey that * allows read and write access to all physical memory. */ static bool register_always = true; module_param(register_always, bool, 0444); MODULE_PARM_DESC(register_always, "Use memory registration even for contiguous memory regions"); static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event); static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); static void nvme_rdma_complete_rq(struct request *rq); static const struct blk_mq_ops nvme_rdma_mq_ops; static const struct blk_mq_ops nvme_rdma_admin_mq_ops; static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) { return queue - queue->ctrl->queues; } static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) { return nvme_rdma_queue_idx(queue) > queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + queue->ctrl->io_queues[HCTX_TYPE_READ]; } static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) { return queue->cmnd_capsule_len - sizeof(struct nvme_command); } static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir) { ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); kfree(qe->data); } static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir) { qe->data = kzalloc(capsule_size, GFP_KERNEL); if (!qe->data) return -ENOMEM; qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); if (ib_dma_mapping_error(ibdev, qe->dma)) { kfree(qe->data); qe->data = NULL; return -ENOMEM; } return 0; } static void nvme_rdma_free_ring(struct ib_device *ibdev, struct nvme_rdma_qe *ring, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir) { int i; for (i = 0; i < ib_queue_size; i++) nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); kfree(ring); } static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir) { struct nvme_rdma_qe *ring; int i; ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); if (!ring) return NULL; /* * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue * lifetime. It's safe, since any chage in the underlying RDMA device * will issue error recovery and queue re-creation. */ for (i = 0; i < ib_queue_size; i++) { if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) goto out_free_ring; } return ring; out_free_ring: nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); return NULL; } static void nvme_rdma_qp_event(struct ib_event *event, void *context) { pr_debug("QP event %s (%d)\n", ib_event_msg(event->event), event->event); } static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) { int ret; ret = wait_for_completion_interruptible(&queue->cm_done); if (ret) return ret; WARN_ON_ONCE(queue->cm_error > 0); return queue->cm_error; } static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) { struct nvme_rdma_device *dev = queue->device; struct ib_qp_init_attr init_attr; int ret; memset(&init_attr, 0, sizeof(init_attr)); init_attr.event_handler = nvme_rdma_qp_event; /* +1 for drain */ init_attr.cap.max_send_wr = factor * queue->queue_size + 1; /* +1 for drain */ init_attr.cap.max_recv_wr = queue->queue_size + 1; init_attr.cap.max_recv_sge = 1; init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; init_attr.qp_type = IB_QPT_RC; init_attr.send_cq = queue->ib_cq; init_attr.recv_cq = queue->ib_cq; if (queue->pi_support) init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; init_attr.qp_context = queue; ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); queue->qp = queue->cm_id->qp; return ret; } static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); kfree(req->sqe.data); } static int nvme_rdma_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data); struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; nvme_req(rq)->ctrl = &ctrl->ctrl; req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); if (!req->sqe.data) return -ENOMEM; /* metadata nvme_rdma_sgl struct is located after command's data SGL */ if (queue->pi_support) req->metadata_sgl = (void *)nvme_req(rq) + sizeof(struct nvme_rdma_request) + NVME_RDMA_DATA_SGL_SIZE; req->queue = queue; nvme_req(rq)->cmd = req->sqe.data; return 0; } static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data); struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); hctx->driver_data = queue; return 0; } static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data); struct nvme_rdma_queue *queue = &ctrl->queues[0]; BUG_ON(hctx_idx != 0); hctx->driver_data = queue; return 0; } static void nvme_rdma_free_dev(struct kref *ref) { struct nvme_rdma_device *ndev = container_of(ref, struct nvme_rdma_device, ref); mutex_lock(&device_list_mutex); list_del(&ndev->entry); mutex_unlock(&device_list_mutex); ib_dealloc_pd(ndev->pd); kfree(ndev); } static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) { kref_put(&dev->ref, nvme_rdma_free_dev); } static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) { return kref_get_unless_zero(&dev->ref); } static struct nvme_rdma_device * nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) { struct nvme_rdma_device *ndev; mutex_lock(&device_list_mutex); list_for_each_entry(ndev, &device_list, entry) { if (ndev->dev->node_guid == cm_id->device->node_guid && nvme_rdma_dev_get(ndev)) goto out_unlock; } ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); if (!ndev) goto out_err; ndev->dev = cm_id->device; kref_init(&ndev->ref); ndev->pd = ib_alloc_pd(ndev->dev, register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); if (IS_ERR(ndev->pd)) goto out_free_dev; if (!(ndev->dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) { dev_err(&ndev->dev->dev, "Memory registrations not supported.\n"); goto out_free_pd; } ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, ndev->dev->attrs.max_send_sge - 1); list_add(&ndev->entry, &device_list); out_unlock: mutex_unlock(&device_list_mutex); return ndev; out_free_pd: ib_dealloc_pd(ndev->pd); out_free_dev: kfree(ndev); out_err: mutex_unlock(&device_list_mutex); return NULL; } static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) { if (nvme_rdma_poll_queue(queue)) ib_free_cq(queue->ib_cq); else ib_cq_pool_put(queue->ib_cq, queue->cq_size); } static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) { struct nvme_rdma_device *dev; struct ib_device *ibdev; if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) return; dev = queue->device; ibdev = dev->dev; if (queue->pi_support) ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); /* * The cm_id object might have been destroyed during RDMA connection * establishment error flow to avoid getting other cma events, thus * the destruction of the QP shouldn't use rdma_cm API. */ ib_destroy_qp(queue->qp); nvme_rdma_free_cq(queue); nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, sizeof(struct nvme_completion), DMA_FROM_DEVICE); nvme_rdma_dev_put(dev); } static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) { u32 max_page_list_len; if (pi_support) max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; else max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); } static int nvme_rdma_create_cq(struct ib_device *ibdev, struct nvme_rdma_queue *queue) { int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); /* * Spread I/O queues completion vectors according their queue index. * Admin queues can always go on completion vector 0. */ comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; /* Polling queues need direct cq polling context */ if (nvme_rdma_poll_queue(queue)) queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, comp_vector, IB_POLL_DIRECT); else queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, comp_vector, IB_POLL_SOFTIRQ); if (IS_ERR(queue->ib_cq)) { ret = PTR_ERR(queue->ib_cq); return ret; } return 0; } static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) { struct ib_device *ibdev; const int send_wr_factor = 3; /* MR, SEND, INV */ const int cq_factor = send_wr_factor + 1; /* + RECV */ int ret, pages_per_mr; queue->device = nvme_rdma_find_get_device(queue->cm_id); if (!queue->device) { dev_err(queue->cm_id->device->dev.parent, "no client data found!\n"); return -ECONNREFUSED; } ibdev = queue->device->dev; /* +1 for ib_drain_qp */ queue->cq_size = cq_factor * queue->queue_size + 1; ret = nvme_rdma_create_cq(ibdev, queue); if (ret) goto out_put_dev; ret = nvme_rdma_create_qp(queue, send_wr_factor); if (ret) goto out_destroy_ib_cq; queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, sizeof(struct nvme_completion), DMA_FROM_DEVICE); if (!queue->rsp_ring) { ret = -ENOMEM; goto out_destroy_qp; } /* * Currently we don't use SG_GAPS MR's so if the first entry is * misaligned we'll end up using two entries for a single data page, * so one additional entry is required. */ pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, queue->queue_size, IB_MR_TYPE_MEM_REG, pages_per_mr, 0); if (ret) { dev_err(queue->ctrl->ctrl.device, "failed to initialize MR pool sized %d for QID %d\n", queue->queue_size, nvme_rdma_queue_idx(queue)); goto out_destroy_ring; } if (queue->pi_support) { ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, queue->queue_size, IB_MR_TYPE_INTEGRITY, pages_per_mr, pages_per_mr); if (ret) { dev_err(queue->ctrl->ctrl.device, "failed to initialize PI MR pool sized %d for QID %d\n", queue->queue_size, nvme_rdma_queue_idx(queue)); goto out_destroy_mr_pool; } } set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); return 0; out_destroy_mr_pool: ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); out_destroy_ring: nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, sizeof(struct nvme_completion), DMA_FROM_DEVICE); out_destroy_qp: rdma_destroy_qp(queue->cm_id); out_destroy_ib_cq: nvme_rdma_free_cq(queue); out_put_dev: nvme_rdma_dev_put(queue->device); return ret; } static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, int idx, size_t queue_size) { struct nvme_rdma_queue *queue; struct sockaddr *src_addr = NULL; int ret; queue = &ctrl->queues[idx]; mutex_init(&queue->queue_lock); queue->ctrl = ctrl; if (idx && ctrl->ctrl.max_integrity_segments) queue->pi_support = true; else queue->pi_support = false; init_completion(&queue->cm_done); if (idx > 0) queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; else queue->cmnd_capsule_len = sizeof(struct nvme_command); queue->queue_size = queue_size; queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(queue->cm_id)) { dev_info(ctrl->ctrl.device, "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); ret = PTR_ERR(queue->cm_id); goto out_destroy_mutex; } if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) src_addr = (struct sockaddr *)&ctrl->src_addr; queue->cm_error = -ETIMEDOUT; ret = rdma_resolve_addr(queue->cm_id, src_addr, (struct sockaddr *)&ctrl->addr, NVME_RDMA_CM_TIMEOUT_MS); if (ret) { dev_info(ctrl->ctrl.device, "rdma_resolve_addr failed (%d).\n", ret); goto out_destroy_cm_id; } ret = nvme_rdma_wait_for_cm(queue); if (ret) { dev_info(ctrl->ctrl.device, "rdma connection establishment failed (%d)\n", ret); goto out_destroy_cm_id; } set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); return 0; out_destroy_cm_id: rdma_destroy_id(queue->cm_id); nvme_rdma_destroy_queue_ib(queue); out_destroy_mutex: mutex_destroy(&queue->queue_lock); return ret; } static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) { rdma_disconnect(queue->cm_id); ib_drain_qp(queue->qp); } static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) { if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) return; mutex_lock(&queue->queue_lock); if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) __nvme_rdma_stop_queue(queue); mutex_unlock(&queue->queue_lock); } static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) { if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) return; rdma_destroy_id(queue->cm_id); nvme_rdma_destroy_queue_ib(queue); mutex_destroy(&queue->queue_lock); } static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) { int i; for (i = 1; i < ctrl->ctrl.queue_count; i++) nvme_rdma_free_queue(&ctrl->queues[i]); } static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) { int i; for (i = 1; i < ctrl->ctrl.queue_count; i++) nvme_rdma_stop_queue(&ctrl->queues[i]); } static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) { struct nvme_rdma_queue *queue = &ctrl->queues[idx]; int ret; if (idx) ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); else ret = nvmf_connect_admin_queue(&ctrl->ctrl); if (!ret) { set_bit(NVME_RDMA_Q_LIVE, &queue->flags); } else { if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) __nvme_rdma_stop_queue(queue); dev_info(ctrl->ctrl.device, "failed to connect queue: %d ret=%d\n", idx, ret); } return ret; } static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl, int first, int last) { int i, ret = 0; for (i = first; i < last; i++) { ret = nvme_rdma_start_queue(ctrl, i); if (ret) goto out_stop_queues; } return 0; out_stop_queues: for (i--; i >= first; i--) nvme_rdma_stop_queue(&ctrl->queues[i]); return ret; } static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; unsigned int nr_io_queues; int i, ret; nr_io_queues = nvmf_nr_io_queues(opts); ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); if (ret) return ret; if (nr_io_queues == 0) { dev_err(ctrl->ctrl.device, "unable to set any I/O queues\n"); return -ENOMEM; } ctrl->ctrl.queue_count = nr_io_queues + 1; dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", nr_io_queues); nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues); for (i = 1; i < ctrl->ctrl.queue_count; i++) { ret = nvme_rdma_alloc_queue(ctrl, i, ctrl->ctrl.sqsize + 1); if (ret) goto out_free_queues; } return 0; out_free_queues: for (i--; i >= 1; i--) nvme_rdma_free_queue(&ctrl->queues[i]); return ret; } static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl) { unsigned int cmd_size = sizeof(struct nvme_rdma_request) + NVME_RDMA_DATA_SGL_SIZE; if (ctrl->max_integrity_segments) cmd_size += sizeof(struct nvme_rdma_sgl) + NVME_RDMA_METADATA_SGL_SIZE; return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set, &nvme_rdma_mq_ops, ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, cmd_size); } static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) { if (ctrl->async_event_sqe.data) { cancel_work_sync(&ctrl->ctrl.async_event_work); nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); ctrl->async_event_sqe.data = NULL; } nvme_rdma_free_queue(&ctrl->queues[0]); } static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, bool new) { bool pi_capable = false; int error; error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); if (error) return error; ctrl->device = ctrl->queues[0].device; ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); /* T10-PI support */ if (ctrl->device->dev->attrs.kernel_cap_flags & IBK_INTEGRITY_HANDOVER) pi_capable = true; ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, pi_capable); /* * Bind the async event SQE DMA mapping to the admin queue lifetime. * It's safe, since any chage in the underlying RDMA device will issue * error recovery and queue re-creation. */ error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); if (error) goto out_free_queue; if (new) { error = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops, sizeof(struct nvme_rdma_request) + NVME_RDMA_DATA_SGL_SIZE); if (error) goto out_free_async_qe; } error = nvme_rdma_start_queue(ctrl, 0); if (error) goto out_remove_admin_tag_set; error = nvme_enable_ctrl(&ctrl->ctrl); if (error) goto out_stop_queue; ctrl->ctrl.max_segments = ctrl->max_fr_pages; ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); if (pi_capable) ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; else ctrl->ctrl.max_integrity_segments = 0; nvme_unquiesce_admin_queue(&ctrl->ctrl); error = nvme_init_ctrl_finish(&ctrl->ctrl, false); if (error) goto out_quiesce_queue; return 0; out_quiesce_queue: nvme_quiesce_admin_queue(&ctrl->ctrl); blk_sync_queue(ctrl->ctrl.admin_q); out_stop_queue: nvme_rdma_stop_queue(&ctrl->queues[0]); nvme_cancel_admin_tagset(&ctrl->ctrl); out_remove_admin_tag_set: if (new) nvme_remove_admin_tag_set(&ctrl->ctrl); out_free_async_qe: if (ctrl->async_event_sqe.data) { nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); ctrl->async_event_sqe.data = NULL; } out_free_queue: nvme_rdma_free_queue(&ctrl->queues[0]); return error; } static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) { int ret, nr_queues; ret = nvme_rdma_alloc_io_queues(ctrl); if (ret) return ret; if (new) { ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl); if (ret) goto out_free_io_queues; } /* * Only start IO queues for which we have allocated the tagset * and limitted it to the available queues. On reconnects, the * queue number might have changed. */ nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count); ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues); if (ret) goto out_cleanup_tagset; if (!new) { nvme_start_freeze(&ctrl->ctrl); nvme_unquiesce_io_queues(&ctrl->ctrl); if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { /* * If we timed out waiting for freeze we are likely to * be stuck. Fail the controller initialization just * to be safe. */ ret = -ENODEV; nvme_unfreeze(&ctrl->ctrl); goto out_wait_freeze_timed_out; } blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, ctrl->ctrl.queue_count - 1); nvme_unfreeze(&ctrl->ctrl); } /* * If the number of queues has increased (reconnect case) * start all new queues now. */ ret = nvme_rdma_start_io_queues(ctrl, nr_queues, ctrl->tag_set.nr_hw_queues + 1); if (ret) goto out_wait_freeze_timed_out; return 0; out_wait_freeze_timed_out: nvme_quiesce_io_queues(&ctrl->ctrl); nvme_sync_io_queues(&ctrl->ctrl); nvme_rdma_stop_io_queues(ctrl); out_cleanup_tagset: nvme_cancel_tagset(&ctrl->ctrl); if (new) nvme_remove_io_tag_set(&ctrl->ctrl); out_free_io_queues: nvme_rdma_free_io_queues(ctrl); return ret; } static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, bool remove) { nvme_quiesce_admin_queue(&ctrl->ctrl); blk_sync_queue(ctrl->ctrl.admin_q); nvme_rdma_stop_queue(&ctrl->queues[0]); nvme_cancel_admin_tagset(&ctrl->ctrl); if (remove) { nvme_unquiesce_admin_queue(&ctrl->ctrl); nvme_remove_admin_tag_set(&ctrl->ctrl); } nvme_rdma_destroy_admin_queue(ctrl); } static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, bool remove) { if (ctrl->ctrl.queue_count > 1) { nvme_quiesce_io_queues(&ctrl->ctrl); nvme_sync_io_queues(&ctrl->ctrl); nvme_rdma_stop_io_queues(ctrl); nvme_cancel_tagset(&ctrl->ctrl); if (remove) { nvme_unquiesce_io_queues(&ctrl->ctrl); nvme_remove_io_tag_set(&ctrl->ctrl); } nvme_rdma_free_io_queues(ctrl); } } static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); flush_work(&ctrl->err_work); cancel_delayed_work_sync(&ctrl->reconnect_work); } static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); if (list_empty(&ctrl->list)) goto free_ctrl; mutex_lock(&nvme_rdma_ctrl_mutex); list_del(&ctrl->list); mutex_unlock(&nvme_rdma_ctrl_mutex); nvmf_free_options(nctrl->opts); free_ctrl: kfree(ctrl->queues); kfree(ctrl); } static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl, int status) { enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl); /* If we are resetting/deleting then do nothing */ if (state != NVME_CTRL_CONNECTING) { WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); return; } if (nvmf_should_reconnect(&ctrl->ctrl, status)) { dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", ctrl->ctrl.opts->reconnect_delay); queue_delayed_work(nvme_wq, &ctrl->reconnect_work, ctrl->ctrl.opts->reconnect_delay * HZ); } else { nvme_delete_ctrl(&ctrl->ctrl); } } static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) { int ret; bool changed; u16 max_queue_size; ret = nvme_rdma_configure_admin_queue(ctrl, new); if (ret) return ret; if (ctrl->ctrl.icdoff) { ret = -EOPNOTSUPP; dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); goto destroy_admin; } if (!(ctrl->ctrl.sgls & (1 << 2))) { ret = -EOPNOTSUPP; dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not supported!\n"); goto destroy_admin; } if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { dev_warn(ctrl->ctrl.device, "queue_size %zu > ctrl sqsize %u, clamping down\n", ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); } if (ctrl->ctrl.max_integrity_segments) max_queue_size = NVME_RDMA_MAX_METADATA_QUEUE_SIZE; else max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; if (ctrl->ctrl.sqsize + 1 > max_queue_size) { dev_warn(ctrl->ctrl.device, "ctrl sqsize %u > max queue size %u, clamping down\n", ctrl->ctrl.sqsize + 1, max_queue_size); ctrl->ctrl.sqsize = max_queue_size - 1; } if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { dev_warn(ctrl->ctrl.device, "sqsize %u > ctrl maxcmd %u, clamping down\n", ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; } if (ctrl->ctrl.sgls & (1 << 20)) ctrl->use_inline_data = true; if (ctrl->ctrl.queue_count > 1) { ret = nvme_rdma_configure_io_queues(ctrl, new); if (ret) goto destroy_admin; } changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); if (!changed) { /* * state change failure is ok if we started ctrl delete, * unless we're during creation of a new controller to * avoid races with teardown flow. */ enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl); WARN_ON_ONCE(state != NVME_CTRL_DELETING && state != NVME_CTRL_DELETING_NOIO); WARN_ON_ONCE(new); ret = -EINVAL; goto destroy_io; } nvme_start_ctrl(&ctrl->ctrl); return 0; destroy_io: if (ctrl->ctrl.queue_count > 1) { nvme_quiesce_io_queues(&ctrl->ctrl); nvme_sync_io_queues(&ctrl->ctrl); nvme_rdma_stop_io_queues(ctrl); nvme_cancel_tagset(&ctrl->ctrl); if (new) nvme_remove_io_tag_set(&ctrl->ctrl); nvme_rdma_free_io_queues(ctrl); } destroy_admin: nvme_stop_keep_alive(&ctrl->ctrl); nvme_quiesce_admin_queue(&ctrl->ctrl); blk_sync_queue(ctrl->ctrl.admin_q); nvme_rdma_stop_queue(&ctrl->queues[0]); nvme_cancel_admin_tagset(&ctrl->ctrl); if (new) nvme_remove_admin_tag_set(&ctrl->ctrl); nvme_rdma_destroy_admin_queue(ctrl); return ret; } static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_rdma_ctrl, reconnect_work); int ret; ++ctrl->ctrl.nr_reconnects; ret = nvme_rdma_setup_ctrl(ctrl, false); if (ret) goto requeue; dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", ctrl->ctrl.nr_reconnects); ctrl->ctrl.nr_reconnects = 0; return; requeue: dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d/%d\n", ctrl->ctrl.nr_reconnects, ctrl->ctrl.opts->max_reconnects); nvme_rdma_reconnect_or_remove(ctrl, ret); } static void nvme_rdma_error_recovery_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(work, struct nvme_rdma_ctrl, err_work); nvme_stop_keep_alive(&ctrl->ctrl); flush_work(&ctrl->ctrl.async_event_work); nvme_rdma_teardown_io_queues(ctrl, false); nvme_unquiesce_io_queues(&ctrl->ctrl); nvme_rdma_teardown_admin_queue(ctrl, false); nvme_unquiesce_admin_queue(&ctrl->ctrl); nvme_auth_stop(&ctrl->ctrl); if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { /* state change failure is ok if we started ctrl delete */ enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl); WARN_ON_ONCE(state != NVME_CTRL_DELETING && state != NVME_CTRL_DELETING_NOIO); return; } nvme_rdma_reconnect_or_remove(ctrl, 0); } static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) { if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) return; dev_warn(ctrl->ctrl.device, "starting error recovery\n"); queue_work(nvme_reset_wq, &ctrl->err_work); } static void nvme_rdma_end_request(struct nvme_rdma_request *req) { struct request *rq = blk_mq_rq_from_pdu(req); if (!refcount_dec_and_test(&req->ref)) return; if (!nvme_try_complete_req(rq, req->status, req->result)) nvme_rdma_complete_rq(rq); } static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, const char *op) { struct nvme_rdma_queue *queue = wc->qp->qp_context; struct nvme_rdma_ctrl *ctrl = queue->ctrl; if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE) dev_info(ctrl->ctrl.device, "%s for CQE 0x%p failed with status %s (%d)\n", op, wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvme_rdma_error_recovery(ctrl); } static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) { if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "MEMREG"); } static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvme_rdma_request *req = container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); else nvme_rdma_end_request(req); } static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req) { struct ib_send_wr wr = { .opcode = IB_WR_LOCAL_INV, .next = NULL, .num_sge = 0, .send_flags = IB_SEND_SIGNALED, .ex.invalidate_rkey = req->mr->rkey, }; req->reg_cqe.done = nvme_rdma_inv_rkey_done; wr.wr_cqe = &req->reg_cqe; return ib_post_send(queue->qp, &wr, NULL); } static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); if (blk_integrity_rq(rq)) { ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, req->metadata_sgl->nents, rq_dma_dir(rq)); sg_free_table_chained(&req->metadata_sgl->sg_table, NVME_INLINE_METADATA_SG_CNT); } ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, rq_dma_dir(rq)); sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); } static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_device *dev = queue->device; struct ib_device *ibdev = dev->dev; struct list_head *pool = &queue->qp->rdma_mrs; if (!blk_rq_nr_phys_segments(rq)) return; if (req->use_sig_mr) pool = &queue->qp->sig_mrs; if (req->mr) { ib_mr_pool_put(queue->qp, pool, req->mr); req->mr = NULL; } nvme_rdma_dma_unmap_req(ibdev, rq); } static int nvme_rdma_set_sg_null(struct nvme_command *c) { struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; sg->addr = 0; put_unaligned_le24(0, sg->length); put_unaligned_le32(0, sg->key); sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; return 0; } static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count) { struct nvme_sgl_desc *sg = &c->common.dptr.sgl; struct ib_sge *sge = &req->sge[1]; struct scatterlist *sgl; u32 len = 0; int i; for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { sge->addr = sg_dma_address(sgl); sge->length = sg_dma_len(sgl); sge->lkey = queue->device->pd->local_dma_lkey; len += sge->length; sge++; } sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); sg->length = cpu_to_le32(len); sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; req->num_sge += count; return 0; } static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c) { struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; return 0; } static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count) { struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; int nr; req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); if (WARN_ON_ONCE(!req->mr)) return -EAGAIN; /* * Align the MR to a 4K page size to match the ctrl page size and * the block virtual boundary. */ nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, SZ_4K); if (unlikely(nr < count)) { ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); req->mr = NULL; if (nr < 0) return nr; return -EINVAL; } ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); req->reg_cqe.done = nvme_rdma_memreg_done; memset(&req->reg_wr, 0, sizeof(req->reg_wr)); req->reg_wr.wr.opcode = IB_WR_REG_MR; req->reg_wr.wr.wr_cqe = &req->reg_cqe; req->reg_wr.wr.num_sge = 0; req->reg_wr.mr = req->mr; req->reg_wr.key = req->mr->rkey; req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; sg->addr = cpu_to_le64(req->mr->iova); put_unaligned_le24(req->mr->length, sg->length); put_unaligned_le32(req->mr->rkey, sg->key); sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_INVALIDATE; return 0; } static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, struct nvme_command *cmd, struct ib_sig_domain *domain, u16 control, u8 pi_type) { domain->sig_type = IB_SIG_TYPE_T10_DIF; domain->sig.dif.bg_type = IB_T10DIF_CRC; domain->sig.dif.pi_interval = 1 << bi->interval_exp; domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); if (control & NVME_RW_PRINFO_PRCHK_REF) domain->sig.dif.ref_remap = true; domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat); domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm); domain->sig.dif.app_escape = true; if (pi_type == NVME_NS_DPS_PI_TYPE3) domain->sig.dif.ref_escape = true; } static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, u8 pi_type) { u16 control = le16_to_cpu(cmd->rw.control); memset(sig_attrs, 0, sizeof(*sig_attrs)); if (control & NVME_RW_PRINFO_PRACT) { /* for WRITE_INSERT/READ_STRIP no memory domain */ sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, pi_type); /* Clear the PRACT bit since HCA will generate/verify the PI */ control &= ~NVME_RW_PRINFO_PRACT; cmd->rw.control = cpu_to_le16(control); } else { /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, pi_type); nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, pi_type); } } static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) { *mask = 0; if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) *mask |= IB_SIG_CHECK_REFTAG; if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) *mask |= IB_SIG_CHECK_GUARD; } static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) { if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "SIG"); } static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count, int pi_count) { struct nvme_rdma_sgl *sgl = &req->data_sgl; struct ib_reg_wr *wr = &req->reg_wr; struct request *rq = blk_mq_rq_from_pdu(req); struct nvme_ns *ns = rq->q->queuedata; struct bio *bio = rq->bio; struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); u32 xfer_len; int nr; req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); if (WARN_ON_ONCE(!req->mr)) return -EAGAIN; nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, req->metadata_sgl->sg_table.sgl, pi_count, NULL, SZ_4K); if (unlikely(nr)) goto mr_put; nvme_rdma_set_sig_attrs(bi, c, req->mr->sig_attrs, ns->head->pi_type); nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); req->reg_cqe.done = nvme_rdma_sig_done; memset(wr, 0, sizeof(*wr)); wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; wr->wr.wr_cqe = &req->reg_cqe; wr->wr.num_sge = 0; wr->wr.send_flags = 0; wr->mr = req->mr; wr->key = req->mr->rkey; wr->access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; sg->addr = cpu_to_le64(req->mr->iova); xfer_len = req->mr->length; /* Check if PI is added by the HW */ if (!pi_count) xfer_len += (xfer_len >> bi->interval_exp) * ns->head->pi_size; put_unaligned_le24(xfer_len, sg->length); put_unaligned_le32(req->mr->rkey, sg->key); sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; return 0; mr_put: ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); req->mr = NULL; if (nr < 0) return nr; return -EINVAL; } static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq, int *count, int *pi_count) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); int ret; req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); ret = sg_alloc_table_chained(&req->data_sgl.sg_table, blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, NVME_INLINE_SG_CNT); if (ret) return -ENOMEM; req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, req->data_sgl.sg_table.sgl); *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, rq_dma_dir(rq)); if (unlikely(*count <= 0)) { ret = -EIO; goto out_free_table; } if (blk_integrity_rq(rq)) { req->metadata_sgl->sg_table.sgl = (struct scatterlist *)(req->metadata_sgl + 1); ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, blk_rq_count_integrity_sg(rq->q, rq->bio), req->metadata_sgl->sg_table.sgl, NVME_INLINE_METADATA_SG_CNT); if (unlikely(ret)) { ret = -ENOMEM; goto out_unmap_sg; } req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, rq->bio, req->metadata_sgl->sg_table.sgl); *pi_count = ib_dma_map_sg(ibdev, req->metadata_sgl->sg_table.sgl, req->metadata_sgl->nents, rq_dma_dir(rq)); if (unlikely(*pi_count <= 0)) { ret = -EIO; goto out_free_pi_table; } } return 0; out_free_pi_table: sg_free_table_chained(&req->metadata_sgl->sg_table, NVME_INLINE_METADATA_SG_CNT); out_unmap_sg: ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, rq_dma_dir(rq)); out_free_table: sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); return ret; } static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, struct request *rq, struct nvme_command *c) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_device *dev = queue->device; struct ib_device *ibdev = dev->dev; int pi_count = 0; int count, ret; req->num_sge = 1; refcount_set(&req->ref, 2); /* send and recv completions */ c->common.flags |= NVME_CMD_SGL_METABUF; if (!blk_rq_nr_phys_segments(rq)) return nvme_rdma_set_sg_null(c); ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count); if (unlikely(ret)) return ret; if (req->use_sig_mr) { ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); goto out; } if (count <= dev->num_inline_segments) { if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && queue->ctrl->use_inline_data && blk_rq_payload_bytes(rq) <= nvme_rdma_inline_data_size(queue)) { ret = nvme_rdma_map_sg_inline(queue, req, c, count); goto out; } if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { ret = nvme_rdma_map_sg_single(queue, req, c); goto out; } } ret = nvme_rdma_map_sg_fr(queue, req, c, count); out: if (unlikely(ret)) goto out_dma_unmap_req; return 0; out_dma_unmap_req: nvme_rdma_dma_unmap_req(ibdev, rq); return ret; } static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvme_rdma_qe *qe = container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); struct nvme_rdma_request *req = container_of(qe, struct nvme_rdma_request, sqe); if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "SEND"); else nvme_rdma_end_request(req); } static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, struct ib_send_wr *first) { struct ib_send_wr wr; int ret; sge->addr = qe->dma; sge->length = sizeof(struct nvme_command); sge->lkey = queue->device->pd->local_dma_lkey; wr.next = NULL; wr.wr_cqe = &qe->cqe; wr.sg_list = sge; wr.num_sge = num_sge; wr.opcode = IB_WR_SEND; wr.send_flags = IB_SEND_SIGNALED; if (first) first->next = ≀ else first = ≀ ret = ib_post_send(queue->qp, first, NULL); if (unlikely(ret)) { dev_err(queue->ctrl->ctrl.device, "%s failed with error code %d\n", __func__, ret); } return ret; } static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe) { struct ib_recv_wr wr; struct ib_sge list; int ret; list.addr = qe->dma; list.length = sizeof(struct nvme_completion); list.lkey = queue->device->pd->local_dma_lkey; qe->cqe.done = nvme_rdma_recv_done; wr.next = NULL; wr.wr_cqe = &qe->cqe; wr.sg_list = &list; wr.num_sge = 1; ret = ib_post_recv(queue->qp, &wr, NULL); if (unlikely(ret)) { dev_err(queue->ctrl->ctrl.device, "%s failed with error code %d\n", __func__, ret); } return ret; } static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) { u32 queue_idx = nvme_rdma_queue_idx(queue); if (queue_idx == 0) return queue->ctrl->admin_tag_set.tags[queue_idx]; return queue->ctrl->tag_set.tags[queue_idx - 1]; } static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) { if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "ASYNC"); } static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); struct nvme_rdma_queue *queue = &ctrl->queues[0]; struct ib_device *dev = queue->device->dev; struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; struct nvme_command *cmd = sqe->data; struct ib_sge sge; int ret; ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); memset(cmd, 0, sizeof(*cmd)); cmd->common.opcode = nvme_admin_async_event; cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; cmd->common.flags |= NVME_CMD_SGL_METABUF; nvme_rdma_set_sg_null(cmd); sqe->cqe.done = nvme_rdma_async_done; ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); WARN_ON_ONCE(ret); } static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, struct nvme_completion *cqe, struct ib_wc *wc) { struct request *rq; struct nvme_rdma_request *req; rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id); if (!rq) { dev_err(queue->ctrl->ctrl.device, "got bad command_id %#x on QP %#x\n", cqe->command_id, queue->qp->qp_num); nvme_rdma_error_recovery(queue->ctrl); return; } req = blk_mq_rq_to_pdu(rq); req->status = cqe->status; req->result = cqe->result; if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { if (unlikely(!req->mr || wc->ex.invalidate_rkey != req->mr->rkey)) { dev_err(queue->ctrl->ctrl.device, "Bogus remote invalidation for rkey %#x\n", req->mr ? req->mr->rkey : 0); nvme_rdma_error_recovery(queue->ctrl); } } else if (req->mr) { int ret; ret = nvme_rdma_inv_rkey(queue, req); if (unlikely(ret < 0)) { dev_err(queue->ctrl->ctrl.device, "Queueing INV WR for rkey %#x failed (%d)\n", req->mr->rkey, ret); nvme_rdma_error_recovery(queue->ctrl); } /* the local invalidation completion will end the request */ return; } nvme_rdma_end_request(req); } static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvme_rdma_qe *qe = container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); struct nvme_rdma_queue *queue = wc->qp->qp_context; struct ib_device *ibdev = queue->device->dev; struct nvme_completion *cqe = qe->data; const size_t len = sizeof(struct nvme_completion); if (unlikely(wc->status != IB_WC_SUCCESS)) { nvme_rdma_wr_error(cq, wc, "RECV"); return; } /* sanity checking for received data length */ if (unlikely(wc->byte_len < len)) { dev_err(queue->ctrl->ctrl.device, "Unexpected nvme completion length(%d)\n", wc->byte_len); nvme_rdma_error_recovery(queue->ctrl); return; } ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); /* * AEN requests are special as they don't time out and can * survive any kind of queue freeze and often don't respond to * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), cqe->command_id))) nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, &cqe->result); else nvme_rdma_process_nvme_rsp(queue, cqe, wc); ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); nvme_rdma_post_recv(queue, qe); } static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) { int ret, i; for (i = 0; i < queue->queue_size; i++) { ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); if (ret) return ret; } return 0; } static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, struct rdma_cm_event *ev) { struct rdma_cm_id *cm_id = queue->cm_id; int status = ev->status; const char *rej_msg; const struct nvme_rdma_cm_rej *rej_data; u8 rej_data_len; rej_msg = rdma_reject_msg(cm_id, status); rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); if (rej_data && rej_data_len >= sizeof(u16)) { u16 sts = le16_to_cpu(rej_data->sts); dev_err(queue->ctrl->ctrl.device, "Connect rejected: status %d (%s) nvme status %d (%s).\n", status, rej_msg, sts, nvme_rdma_cm_msg(sts)); } else { dev_err(queue->ctrl->ctrl.device, "Connect rejected: status %d (%s).\n", status, rej_msg); } return -ECONNRESET; } static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) { struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; int ret; ret = nvme_rdma_create_queue_ib(queue); if (ret) return ret; if (ctrl->opts->tos >= 0) rdma_set_service_type(queue->cm_id, ctrl->opts->tos); ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS); if (ret) { dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", queue->cm_error); goto out_destroy_queue; } return 0; out_destroy_queue: nvme_rdma_destroy_queue_ib(queue); return ret; } static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) { struct nvme_rdma_ctrl *ctrl = queue->ctrl; struct rdma_conn_param param = { }; struct nvme_rdma_cm_req priv = { }; int ret; param.qp_num = queue->qp->qp_num; param.flow_control = 1; param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; /* maximum retry count */ param.retry_count = 7; param.rnr_retry_count = 7; param.private_data = &priv; param.private_data_len = sizeof(priv); priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); /* * set the admin queue depth to the minimum size * specified by the Fabrics standard. */ if (priv.qid == 0) { priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); } else { /* * current interpretation of the fabrics spec * is at minimum you make hrqsize sqsize+1, or a * 1's based representation of sqsize. */ priv.hrqsize = cpu_to_le16(queue->queue_size); priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); /* cntlid should only be set when creating an I/O queue */ priv.cntlid = cpu_to_le16(ctrl->ctrl.cntlid); } ret = rdma_connect_locked(queue->cm_id, ¶m); if (ret) { dev_err(ctrl->ctrl.device, "rdma_connect_locked failed (%d).\n", ret); return ret; } return 0; } static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *ev) { struct nvme_rdma_queue *queue = cm_id->context; int cm_error = 0; dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", rdma_event_msg(ev->event), ev->event, ev->status, cm_id); switch (ev->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: cm_error = nvme_rdma_addr_resolved(queue); break; case RDMA_CM_EVENT_ROUTE_RESOLVED: cm_error = nvme_rdma_route_resolved(queue); break; case RDMA_CM_EVENT_ESTABLISHED: queue->cm_error = nvme_rdma_conn_established(queue); /* complete cm_done regardless of success/failure */ complete(&queue->cm_done); return 0; case RDMA_CM_EVENT_REJECTED: cm_error = nvme_rdma_conn_rejected(queue, ev); break; case RDMA_CM_EVENT_ROUTE_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_ADDR_ERROR: dev_dbg(queue->ctrl->ctrl.device, "CM error event %d\n", ev->event); cm_error = -ECONNRESET; break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_TIMEWAIT_EXIT: dev_dbg(queue->ctrl->ctrl.device, "disconnect received - connection closed\n"); nvme_rdma_error_recovery(queue->ctrl); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: /* device removal is handled via the ib_client API */ break; default: dev_err(queue->ctrl->ctrl.device, "Unexpected RDMA CM event (%d)\n", ev->event); nvme_rdma_error_recovery(queue->ctrl); break; } if (cm_error) { queue->cm_error = cm_error; complete(&queue->cm_done); } return 0; } static void nvme_rdma_complete_timed_out(struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_queue *queue = req->queue; nvme_rdma_stop_queue(queue); nvmf_complete_timed_out_request(rq); } static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_queue *queue = req->queue; struct nvme_rdma_ctrl *ctrl = queue->ctrl; struct nvme_command *cmd = req->req.cmd; int qid = nvme_rdma_queue_idx(queue); dev_warn(ctrl->ctrl.device, "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n", rq->tag, nvme_cid(rq), cmd->common.opcode, nvme_fabrics_opcode_str(qid, cmd), qid); if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) { /* * If we are resetting, connecting or deleting we should * complete immediately because we may block controller * teardown or setup sequence * - ctrl disable/shutdown fabrics requests * - connect requests * - initialization admin requests * - I/O requests that entered after unquiescing and * the controller stopped responding * * All other requests should be cancelled by the error * recovery work, so it's fine that we fail it here. */ nvme_rdma_complete_timed_out(rq); return BLK_EH_DONE; } /* * LIVE state should trigger the normal error recovery which will * handle completing this request. */ nvme_rdma_error_recovery(ctrl); return BLK_EH_RESET_TIMER; } static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_rdma_queue *queue = hctx->driver_data; struct request *rq = bd->rq; struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_qe *sqe = &req->sqe; struct nvme_command *c = nvme_req(rq)->cmd; struct ib_device *dev; bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); blk_status_t ret; int err; WARN_ON_ONCE(rq->tag < 0); if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); dev = queue->device->dev; req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, sizeof(struct nvme_command), DMA_TO_DEVICE); err = ib_dma_mapping_error(dev, req->sqe.dma); if (unlikely(err)) return BLK_STS_RESOURCE; ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(struct nvme_command), DMA_TO_DEVICE); ret = nvme_setup_cmd(ns, rq); if (ret) goto unmap_qe; nvme_start_request(rq); if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && queue->pi_support && (c->common.opcode == nvme_cmd_write || c->common.opcode == nvme_cmd_read) && nvme_ns_has_pi(ns->head)) req->use_sig_mr = true; else req->use_sig_mr = false; err = nvme_rdma_map_data(queue, rq, c); if (unlikely(err < 0)) { dev_err(queue->ctrl->ctrl.device, "Failed to map data (%d)\n", err); goto err; } sqe->cqe.done = nvme_rdma_send_done; ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(struct nvme_command), DMA_TO_DEVICE); err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, req->mr ? &req->reg_wr.wr : NULL); if (unlikely(err)) goto err_unmap; return BLK_STS_OK; err_unmap: nvme_rdma_unmap_data(queue, rq); err: if (err == -EIO) ret = nvme_host_path_error(rq); else if (err == -ENOMEM || err == -EAGAIN) ret = BLK_STS_RESOURCE; else ret = BLK_STS_IOERR; nvme_cleanup_cmd(rq); unmap_qe: ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), DMA_TO_DEVICE); return ret; } static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) { struct nvme_rdma_queue *queue = hctx->driver_data; return ib_process_cq_direct(queue->ib_cq, -1); } static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) { struct request *rq = blk_mq_rq_from_pdu(req); struct ib_mr_status mr_status; int ret; ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); if (ret) { pr_err("ib_check_mr_status failed, ret %d\n", ret); nvme_req(rq)->status = NVME_SC_INVALID_PI; return; } if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { switch (mr_status.sig_err.err_type) { case IB_SIG_BAD_GUARD: nvme_req(rq)->status = NVME_SC_GUARD_CHECK; break; case IB_SIG_BAD_REFTAG: nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; break; case IB_SIG_BAD_APPTAG: nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; break; } pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", mr_status.sig_err.err_type, mr_status.sig_err.expected, mr_status.sig_err.actual); } } static void nvme_rdma_complete_rq(struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_queue *queue = req->queue; struct ib_device *ibdev = queue->device->dev; if (req->use_sig_mr) nvme_rdma_check_pi_status(req); nvme_rdma_unmap_data(queue, rq); ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), DMA_TO_DEVICE); nvme_complete_rq(rq); } static void nvme_rdma_map_queues(struct blk_mq_tag_set *set) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data); nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); } static const struct blk_mq_ops nvme_rdma_mq_ops = { .queue_rq = nvme_rdma_queue_rq, .complete = nvme_rdma_complete_rq, .init_request = nvme_rdma_init_request, .exit_request = nvme_rdma_exit_request, .init_hctx = nvme_rdma_init_hctx, .timeout = nvme_rdma_timeout, .map_queues = nvme_rdma_map_queues, .poll = nvme_rdma_poll, }; static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { .queue_rq = nvme_rdma_queue_rq, .complete = nvme_rdma_complete_rq, .init_request = nvme_rdma_init_request, .exit_request = nvme_rdma_exit_request, .init_hctx = nvme_rdma_init_admin_hctx, .timeout = nvme_rdma_timeout, }; static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) { nvme_rdma_teardown_io_queues(ctrl, shutdown); nvme_quiesce_admin_queue(&ctrl->ctrl); nvme_disable_ctrl(&ctrl->ctrl, shutdown); nvme_rdma_teardown_admin_queue(ctrl, shutdown); } static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) { nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); } static void nvme_rdma_reset_ctrl_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); int ret; nvme_stop_ctrl(&ctrl->ctrl); nvme_rdma_shutdown_ctrl(ctrl, false); if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { /* state change failure should never happen */ WARN_ON_ONCE(1); return; } ret = nvme_rdma_setup_ctrl(ctrl, false); if (ret) goto out_fail; return; out_fail: ++ctrl->ctrl.nr_reconnects; nvme_rdma_reconnect_or_remove(ctrl, ret); } static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { .name = "rdma", .module = THIS_MODULE, .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, .reg_read32 = nvmf_reg_read32, .reg_read64 = nvmf_reg_read64, .reg_write32 = nvmf_reg_write32, .subsystem_reset = nvmf_subsystem_reset, .free_ctrl = nvme_rdma_free_ctrl, .submit_async_event = nvme_rdma_submit_async_event, .delete_ctrl = nvme_rdma_delete_ctrl, .get_address = nvmf_get_address, .stop_ctrl = nvme_rdma_stop_ctrl, }; /* * Fails a connection request if it matches an existing controller * (association) with the same tuple: * * * if local address is not specified in the request, it will match an * existing controller with all the other parameters the same and no * local port address specified as well. * * The ports don't need to be compared as they are intrinsically * already matched by the port pointers supplied. */ static bool nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) { struct nvme_rdma_ctrl *ctrl; bool found = false; mutex_lock(&nvme_rdma_ctrl_mutex); list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { found = nvmf_ip_options_match(&ctrl->ctrl, opts); if (found) break; } mutex_unlock(&nvme_rdma_ctrl_mutex); return found; } static struct nvme_rdma_ctrl *nvme_rdma_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_rdma_ctrl *ctrl; int ret; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return ERR_PTR(-ENOMEM); ctrl->ctrl.opts = opts; INIT_LIST_HEAD(&ctrl->list); if (!(opts->mask & NVMF_OPT_TRSVCID)) { opts->trsvcid = kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); if (!opts->trsvcid) { ret = -ENOMEM; goto out_free_ctrl; } opts->mask |= NVMF_OPT_TRSVCID; } ret = inet_pton_with_scope(&init_net, AF_UNSPEC, opts->traddr, opts->trsvcid, &ctrl->addr); if (ret) { pr_err("malformed address passed: %s:%s\n", opts->traddr, opts->trsvcid); goto out_free_ctrl; } if (opts->mask & NVMF_OPT_HOST_TRADDR) { ret = inet_pton_with_scope(&init_net, AF_UNSPEC, opts->host_traddr, NULL, &ctrl->src_addr); if (ret) { pr_err("malformed src address passed: %s\n", opts->host_traddr); goto out_free_ctrl; } } if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { ret = -EALREADY; goto out_free_ctrl; } INIT_DELAYED_WORK(&ctrl->reconnect_work, nvme_rdma_reconnect_ctrl_work); INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + opts->nr_poll_queues + 1; ctrl->ctrl.sqsize = opts->queue_size - 1; ctrl->ctrl.kato = opts->kato; ret = -ENOMEM; ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), GFP_KERNEL); if (!ctrl->queues) goto out_free_ctrl; ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 0 /* no quirks, we're perfect! */); if (ret) goto out_kfree_queues; return ctrl; out_kfree_queues: kfree(ctrl->queues); out_free_ctrl: kfree(ctrl); return ERR_PTR(ret); } static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_rdma_ctrl *ctrl; bool changed; int ret; ctrl = nvme_rdma_alloc_ctrl(dev, opts); if (IS_ERR(ctrl)) return ERR_CAST(ctrl); ret = nvme_add_ctrl(&ctrl->ctrl); if (ret) goto out_put_ctrl; changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); WARN_ON_ONCE(!changed); ret = nvme_rdma_setup_ctrl(ctrl, true); if (ret) goto out_uninit_ctrl; dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n", nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); mutex_lock(&nvme_rdma_ctrl_mutex); list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); mutex_unlock(&nvme_rdma_ctrl_mutex); return &ctrl->ctrl; out_uninit_ctrl: nvme_uninit_ctrl(&ctrl->ctrl); out_put_ctrl: nvme_put_ctrl(&ctrl->ctrl); if (ret > 0) ret = -EIO; return ERR_PTR(ret); } static struct nvmf_transport_ops nvme_rdma_transport = { .name = "rdma", .module = THIS_MODULE, .required_opts = NVMF_OPT_TRADDR, .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | NVMF_OPT_TOS, .create_ctrl = nvme_rdma_create_ctrl, }; static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) { struct nvme_rdma_ctrl *ctrl; struct nvme_rdma_device *ndev; bool found = false; mutex_lock(&device_list_mutex); list_for_each_entry(ndev, &device_list, entry) { if (ndev->dev == ib_device) { found = true; break; } } mutex_unlock(&device_list_mutex); if (!found) return; /* Delete all controllers using this device */ mutex_lock(&nvme_rdma_ctrl_mutex); list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { if (ctrl->device->dev != ib_device) continue; nvme_delete_ctrl(&ctrl->ctrl); } mutex_unlock(&nvme_rdma_ctrl_mutex); flush_workqueue(nvme_delete_wq); } static struct ib_client nvme_rdma_ib_client = { .name = "nvme_rdma", .remove = nvme_rdma_remove_one }; static int __init nvme_rdma_init_module(void) { int ret; ret = ib_register_client(&nvme_rdma_ib_client); if (ret) return ret; ret = nvmf_register_transport(&nvme_rdma_transport); if (ret) goto err_unreg_client; return 0; err_unreg_client: ib_unregister_client(&nvme_rdma_ib_client); return ret; } static void __exit nvme_rdma_cleanup_module(void) { struct nvme_rdma_ctrl *ctrl; nvmf_unregister_transport(&nvme_rdma_transport); ib_unregister_client(&nvme_rdma_ib_client); mutex_lock(&nvme_rdma_ctrl_mutex); list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) nvme_delete_ctrl(&ctrl->ctrl); mutex_unlock(&nvme_rdma_ctrl_mutex); flush_workqueue(nvme_delete_wq); } module_init(nvme_rdma_init_module); module_exit(nvme_rdma_cleanup_module); MODULE_DESCRIPTION("NVMe host RDMA transport driver"); MODULE_LICENSE("GPL v2");