// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2019-2020 Realtek Corporation */ #include "acpi.h" #include "debug.h" #include "phy.h" #include "reg.h" #include "sar.h" #define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */ #define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR) #define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR) static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev, u32 center_freq) { switch (center_freq) { default: rtw89_debug(rtwdev, RTW89_DBG_SAR, "center freq: %u to SAR subband is unhandled\n", center_freq); fallthrough; case 2412 ... 2484: return RTW89_SAR_2GHZ_SUBBAND; case 5180 ... 5320: return RTW89_SAR_5GHZ_SUBBAND_1_2; case 5500 ... 5720: return RTW89_SAR_5GHZ_SUBBAND_2_E; case 5745 ... 5825: return RTW89_SAR_5GHZ_SUBBAND_3; case 5955 ... 6155: return RTW89_SAR_6GHZ_SUBBAND_5_L; case 6175 ... 6415: return RTW89_SAR_6GHZ_SUBBAND_5_H; case 6435 ... 6515: return RTW89_SAR_6GHZ_SUBBAND_6; case 6535 ... 6695: return RTW89_SAR_6GHZ_SUBBAND_7_L; case 6715 ... 6855: return RTW89_SAR_6GHZ_SUBBAND_7_H; /* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H * and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with * struct rtw89_sar_span in the following. */ case 6895 ... 7115: return RTW89_SAR_6GHZ_SUBBAND_8; } } struct rtw89_sar_span { enum rtw89_sar_subband subband_low; enum rtw89_sar_subband subband_high; }; #define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high) #define RTW89_SAR_6GHZ_SPAN_HEAD 6145 #define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \ ((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2) #define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \ [RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \ .subband_low = RTW89_SAR_6GHZ_ ## subband_l, \ .subband_high = RTW89_SAR_6GHZ_ ## subband_h, \ } /* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR * subbands. In the following, we describe each of them with rtw89_sar_span. */ static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = { RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H), RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H), RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H), RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L), RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L), RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L), RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H), RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H), RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8), RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8), RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8), RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8), }; static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev, u32 center_freq, s32 *cfg) { struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common; const struct rtw89_sar_span *span = NULL; enum rtw89_sar_subband subband_l, subband_h; int idx; if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) { idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq); /* To decrease size of rtw89_sar_overlapping_6ghz[], * RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs * to make first span as index 0 of the table. So, if center * frequency is less than the first one, it will get netative. */ if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz)) span = &rtw89_sar_overlapping_6ghz[idx]; } if (span && RTW89_SAR_SPAN_VALID(span)) { subband_l = span->subband_low; subband_h = span->subband_high; } else { subband_l = rtw89_sar_get_subband(rtwdev, center_freq); subband_h = subband_l; } rtw89_debug(rtwdev, RTW89_DBG_SAR, "center_freq %u: SAR subband {%u, %u}\n", center_freq, subband_l, subband_h); if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h]) return -ENODATA; if (!rtwsar->set[subband_l]) *cfg = rtwsar->cfg[subband_h]; else if (!rtwsar->set[subband_h]) *cfg = rtwsar->cfg[subband_l]; else *cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]); return 0; } static const struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = { [RTW89_SAR_SOURCE_COMMON] = { .descr_sar_source = "RTW89_SAR_SOURCE_COMMON", .txpwr_factor_sar = 2, .query_sar_config = rtw89_query_sar_config_common, }, }; #define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \ do { \ typeof(_src) _s = (_src); \ typeof(_dev) _d = (_dev); \ BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \ BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \ lockdep_assert_held(&_d->mutex); \ _d->sar._cfg_name = *(_cfg_data); \ _d->sar.src = _s; \ } while (0) static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg) { const u8 fct_mac = rtwdev->chip->txpwr_factor_mac; s32 cfg_mac; cfg_mac = fct > fct_mac ? cfg >> (fct - fct_mac) : cfg << (fct_mac - fct); return (s8)clamp_t(s32, cfg_mac, RTW89_SAR_TXPWR_MAC_MIN, RTW89_SAR_TXPWR_MAC_MAX); } static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl, s8 cfg) { const u8 fct = sar_hdl->txpwr_factor_sar; if (fct > RTW89_TAS_FACTOR) return cfg << (fct - RTW89_TAS_FACTOR); else return cfg >> (RTW89_TAS_FACTOR - fct); } static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl, s8 cfg) { const u8 fct = sar_hdl->txpwr_factor_sar; if (fct > RTW89_TAS_FACTOR) return cfg >> (fct - RTW89_TAS_FACTOR); else return cfg << (RTW89_TAS_FACTOR - fct); } s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq) { const enum rtw89_sar_sources src = rtwdev->sar.src; /* its members are protected by rtw89_sar_set_src() */ const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src]; struct rtw89_tas_info *tas = &rtwdev->tas; s8 delta; int ret; s32 cfg; u8 fct; lockdep_assert_held(&rtwdev->mutex); if (src == RTW89_SAR_SOURCE_NONE) return RTW89_SAR_TXPWR_MAC_MAX; ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg); if (ret) return RTW89_SAR_TXPWR_MAC_MAX; if (tas->enable) { switch (tas->state) { case RTW89_TAS_STATE_DPR_OFF: return RTW89_SAR_TXPWR_MAC_MAX; case RTW89_TAS_STATE_DPR_ON: delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta); cfg -= delta; break; case RTW89_TAS_STATE_DPR_FORBID: default: break; } } fct = sar_hdl->txpwr_factor_sar; return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg); } void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq) { const enum rtw89_sar_sources src = rtwdev->sar.src; /* its members are protected by rtw89_sar_set_src() */ const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src]; const u8 fct_mac = rtwdev->chip->txpwr_factor_mac; int ret; s32 cfg; u8 fct; lockdep_assert_held(&rtwdev->mutex); if (src == RTW89_SAR_SOURCE_NONE) { seq_puts(m, "no SAR is applied\n"); return; } seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source); ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg); if (ret) { seq_printf(m, "config: return code: %d\n", ret); seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n", RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac)); return; } fct = sar_hdl->txpwr_factor_sar; seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct)); } void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev) { struct rtw89_tas_info *tas = &rtwdev->tas; if (!tas->enable) { seq_puts(m, "no TAS is applied\n"); return; } seq_printf(m, "DPR gap: %d\n", tas->dpr_gap); seq_printf(m, "TAS delta: %d\n", tas->delta); } static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev, const struct rtw89_sar_cfg_common *sar) { enum rtw89_sar_sources src; int ret = 0; mutex_lock(&rtwdev->mutex); src = rtwdev->sar.src; if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) { rtw89_warn(rtwdev, "SAR source: %d is in use", src); ret = -EBUSY; goto exit; } rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar); rtw89_core_set_chip_txpwr(rtwdev); exit: mutex_unlock(&rtwdev->mutex); return ret; } static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = { { .start_freq = 2412, .end_freq = 2484, }, { .start_freq = 5180, .end_freq = 5320, }, { .start_freq = 5500, .end_freq = 5720, }, { .start_freq = 5745, .end_freq = 5825, }, { .start_freq = 5955, .end_freq = 6155, }, { .start_freq = 6175, .end_freq = 6415, }, { .start_freq = 6435, .end_freq = 6515, }, { .start_freq = 6535, .end_freq = 6695, }, { .start_freq = 6715, .end_freq = 6875, }, { .start_freq = 6875, .end_freq = 7115, }, }; static_assert(RTW89_SAR_SUBBAND_NR == ARRAY_SIZE(rtw89_common_sar_freq_ranges)); const struct cfg80211_sar_capa rtw89_sar_capa = { .type = NL80211_SAR_TYPE_POWER, .num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges), .freq_ranges = rtw89_common_sar_freq_ranges, }; int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct rtw89_dev *rtwdev = hw->priv; struct rtw89_sar_cfg_common sar_common = {0}; u8 fct; u32 freq_start; u32 freq_end; s32 power; u32 i, idx; if (sar->type != NL80211_SAR_TYPE_POWER) return -EINVAL; fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar; for (i = 0; i < sar->num_sub_specs; i++) { idx = sar->sub_specs[i].freq_range_index; if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges)) return -EINVAL; freq_start = rtw89_common_sar_freq_ranges[idx].start_freq; freq_end = rtw89_common_sar_freq_ranges[idx].end_freq; power = sar->sub_specs[i].power; rtw89_debug(rtwdev, RTW89_DBG_SAR, "On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n", freq_start, freq_end, power, BIT(fct)); sar_common.set[idx] = true; sar_common.cfg[idx] = power; } return rtw89_apply_sar_common(rtwdev, &sar_common); } static void rtw89_tas_state_update(struct rtw89_dev *rtwdev) { const enum rtw89_sar_sources src = rtwdev->sar.src; /* its members are protected by rtw89_sar_set_src() */ const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src]; struct rtw89_tas_info *tas = &rtwdev->tas; s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT; s32 dpr_on_threshold, dpr_off_threshold, cfg; enum rtw89_tas_state state = tas->state; const struct rtw89_chan *chan; int ret; lockdep_assert_held(&rtwdev->mutex); if (src == RTW89_SAR_SOURCE_NONE) return; chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0); ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg); if (ret) return; cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg); if (tas->delta >= cfg) { rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS delta exceed SAR limit\n"); state = RTW89_TAS_STATE_DPR_FORBID; goto out; } dpr_on_threshold = cfg; dpr_off_threshold = cfg - tas->dpr_gap; rtw89_debug(rtwdev, RTW89_DBG_SAR, "DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n", dpr_on_threshold, dpr_off_threshold, txpwr_avg); if (txpwr_avg >= dpr_on_threshold) state = RTW89_TAS_STATE_DPR_ON; else if (txpwr_avg < dpr_off_threshold) state = RTW89_TAS_STATE_DPR_OFF; out: if (tas->state == state) return; rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS old state: %d, new state: %d\n", tas->state, state); tas->state = state; rtw89_core_set_chip_txpwr(rtwdev); } void rtw89_tas_init(struct rtw89_dev *rtwdev) { struct rtw89_tas_info *tas = &rtwdev->tas; struct rtw89_acpi_dsm_result res = {}; int ret; u8 val; ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &res); if (ret) { rtw89_debug(rtwdev, RTW89_DBG_SAR, "acpi: cannot get TAS: %d\n", ret); return; } val = res.u.value; switch (val) { case 0: tas->enable = false; break; case 1: tas->enable = true; break; default: break; } if (!tas->enable) { rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n"); return; } tas->dpr_gap = RTW89_TAS_DPR_GAP; tas->delta = RTW89_TAS_DELTA; } void rtw89_tas_reset(struct rtw89_dev *rtwdev) { struct rtw89_tas_info *tas = &rtwdev->tas; if (!tas->enable) return; memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history)); tas->total_txpwr = 0; tas->cur_idx = 0; tas->state = RTW89_TAS_STATE_DPR_OFF; } static const struct rtw89_reg_def txpwr_regs[] = { {R_PATH0_TXPWR, B_PATH0_TXPWR}, {R_PATH1_TXPWR, B_PATH1_TXPWR}, }; void rtw89_tas_track(struct rtw89_dev *rtwdev) { struct rtw89_env_monitor_info *env = &rtwdev->env_monitor; const enum rtw89_sar_sources src = rtwdev->sar.src; u8 max_nss_num = rtwdev->chip->rf_path_num; struct rtw89_tas_info *tas = &rtwdev->tas; s16 tmp, txpwr, instant_txpwr = 0; u32 val; int i; if (!tas->enable || src == RTW89_SAR_SOURCE_NONE) return; if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM) return; for (i = 0; i < max_nss_num; i++) { val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr, txpwr_regs[i].mask); tmp = sign_extend32(val, 8); if (tmp <= 0) return; instant_txpwr += tmp; } instant_txpwr /= max_nss_num; /* in unit of 0.25 dBm multiply by percentage */ txpwr = instant_txpwr * env->ifs_clm_tx_ratio; tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx]; tas->txpwr_history[tas->cur_idx] = txpwr; rtw89_debug(rtwdev, RTW89_DBG_SAR, "instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n", instant_txpwr, env->ifs_clm_tx_ratio, txpwr); tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW; rtw89_tas_state_update(rtwdev); }