// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright (C) 2021 Martin Blumenstingl * Copyright (C) 2021 Jernej Skrabec * * Based on rtw88/pci.c: * Copyright(c) 2018-2019 Realtek Corporation */ #include #include #include #include "main.h" #include "debug.h" #include "fw.h" #include "ps.h" #include "reg.h" #include "rx.h" #include "sdio.h" #include "tx.h" #define RTW_SDIO_INDIRECT_RW_RETRIES 50 static bool rtw_sdio_is_bus_addr(u32 addr) { return !!(addr & RTW_SDIO_BUS_MSK); } static bool rtw_sdio_bus_claim_needed(struct rtw_sdio *rtwsdio) { return !rtwsdio->irq_thread || rtwsdio->irq_thread != current; } static u32 rtw_sdio_to_bus_offset(struct rtw_dev *rtwdev, u32 addr) { switch (addr & RTW_SDIO_BUS_MSK) { case WLAN_IOREG_OFFSET: addr &= WLAN_IOREG_REG_MSK; addr |= FIELD_PREP(REG_SDIO_CMD_ADDR_MSK, REG_SDIO_CMD_ADDR_MAC_REG); break; case SDIO_LOCAL_OFFSET: addr &= SDIO_LOCAL_REG_MSK; addr |= FIELD_PREP(REG_SDIO_CMD_ADDR_MSK, REG_SDIO_CMD_ADDR_SDIO_REG); break; default: rtw_warn(rtwdev, "Cannot convert addr 0x%08x to bus offset", addr); } return addr; } static bool rtw_sdio_use_memcpy_io(struct rtw_dev *rtwdev, u32 addr, u8 alignment) { return IS_ALIGNED(addr, alignment) && test_bit(RTW_FLAG_POWERON, rtwdev->flags); } static void rtw_sdio_writel(struct rtw_dev *rtwdev, u32 val, u32 addr, int *err_ret) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; u8 buf[4]; int i; if (rtw_sdio_use_memcpy_io(rtwdev, addr, 4)) { sdio_writel(rtwsdio->sdio_func, val, addr, err_ret); return; } *(__le32 *)buf = cpu_to_le32(val); for (i = 0; i < 4; i++) { sdio_writeb(rtwsdio->sdio_func, buf[i], addr + i, err_ret); if (*err_ret) return; } } static void rtw_sdio_writew(struct rtw_dev *rtwdev, u16 val, u32 addr, int *err_ret) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; u8 buf[2]; int i; *(__le16 *)buf = cpu_to_le16(val); for (i = 0; i < 2; i++) { sdio_writeb(rtwsdio->sdio_func, buf[i], addr + i, err_ret); if (*err_ret) return; } } static u32 rtw_sdio_readl(struct rtw_dev *rtwdev, u32 addr, int *err_ret) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; u8 buf[4]; int i; if (rtw_sdio_use_memcpy_io(rtwdev, addr, 4)) return sdio_readl(rtwsdio->sdio_func, addr, err_ret); for (i = 0; i < 4; i++) { buf[i] = sdio_readb(rtwsdio->sdio_func, addr + i, err_ret); if (*err_ret) return 0; } return le32_to_cpu(*(__le32 *)buf); } static u16 rtw_sdio_readw(struct rtw_dev *rtwdev, u32 addr, int *err_ret) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; u8 buf[2]; int i; for (i = 0; i < 2; i++) { buf[i] = sdio_readb(rtwsdio->sdio_func, addr + i, err_ret); if (*err_ret) return 0; } return le16_to_cpu(*(__le16 *)buf); } static u32 rtw_sdio_to_io_address(struct rtw_dev *rtwdev, u32 addr, bool direct) { if (!direct) return addr; if (!rtw_sdio_is_bus_addr(addr)) addr |= WLAN_IOREG_OFFSET; return rtw_sdio_to_bus_offset(rtwdev, addr); } static bool rtw_sdio_use_direct_io(struct rtw_dev *rtwdev, u32 addr) { return !rtw_sdio_is_sdio30_supported(rtwdev) || rtw_sdio_is_bus_addr(addr); } static int rtw_sdio_indirect_reg_cfg(struct rtw_dev *rtwdev, u32 addr, u32 cfg) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; unsigned int retry; u32 reg_cfg; int ret; u8 tmp; reg_cfg = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_CFG); rtw_sdio_writel(rtwdev, addr | cfg | BIT_SDIO_INDIRECT_REG_CFG_UNK20, reg_cfg, &ret); if (ret) return ret; for (retry = 0; retry < RTW_SDIO_INDIRECT_RW_RETRIES; retry++) { tmp = sdio_readb(rtwsdio->sdio_func, reg_cfg + 2, &ret); if (!ret && (tmp & BIT(4))) return 0; } return -ETIMEDOUT; } static u8 rtw_sdio_indirect_read8(struct rtw_dev *rtwdev, u32 addr, int *err_ret) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; u32 reg_data; *err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr, BIT_SDIO_INDIRECT_REG_CFG_READ); if (*err_ret) return 0; reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA); return sdio_readb(rtwsdio->sdio_func, reg_data, err_ret); } static int rtw_sdio_indirect_read_bytes(struct rtw_dev *rtwdev, u32 addr, u8 *buf, int count) { int i, ret = 0; for (i = 0; i < count; i++) { buf[i] = rtw_sdio_indirect_read8(rtwdev, addr + i, &ret); if (ret) break; } return ret; } static u16 rtw_sdio_indirect_read16(struct rtw_dev *rtwdev, u32 addr, int *err_ret) { u32 reg_data; u8 buf[2]; if (!IS_ALIGNED(addr, 2)) { *err_ret = rtw_sdio_indirect_read_bytes(rtwdev, addr, buf, 2); if (*err_ret) return 0; return le16_to_cpu(*(__le16 *)buf); } *err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr, BIT_SDIO_INDIRECT_REG_CFG_READ); if (*err_ret) return 0; reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA); return rtw_sdio_readw(rtwdev, reg_data, err_ret); } static u32 rtw_sdio_indirect_read32(struct rtw_dev *rtwdev, u32 addr, int *err_ret) { u32 reg_data; u8 buf[4]; if (!IS_ALIGNED(addr, 4)) { *err_ret = rtw_sdio_indirect_read_bytes(rtwdev, addr, buf, 4); if (*err_ret) return 0; return le32_to_cpu(*(__le32 *)buf); } *err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr, BIT_SDIO_INDIRECT_REG_CFG_READ); if (*err_ret) return 0; reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA); return rtw_sdio_readl(rtwdev, reg_data, err_ret); } static u8 rtw_sdio_read8(struct rtw_dev *rtwdev, u32 addr) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool direct, bus_claim; int ret; u8 val; direct = rtw_sdio_use_direct_io(rtwdev, addr); addr = rtw_sdio_to_io_address(rtwdev, addr, direct); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); if (direct) val = sdio_readb(rtwsdio->sdio_func, addr, &ret); else val = rtw_sdio_indirect_read8(rtwdev, addr, &ret); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "sdio read8 failed (0x%x): %d", addr, ret); return val; } static u16 rtw_sdio_read16(struct rtw_dev *rtwdev, u32 addr) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool direct, bus_claim; int ret; u16 val; direct = rtw_sdio_use_direct_io(rtwdev, addr); addr = rtw_sdio_to_io_address(rtwdev, addr, direct); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); if (direct) val = rtw_sdio_readw(rtwdev, addr, &ret); else val = rtw_sdio_indirect_read16(rtwdev, addr, &ret); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "sdio read16 failed (0x%x): %d", addr, ret); return val; } static u32 rtw_sdio_read32(struct rtw_dev *rtwdev, u32 addr) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool direct, bus_claim; u32 val; int ret; direct = rtw_sdio_use_direct_io(rtwdev, addr); addr = rtw_sdio_to_io_address(rtwdev, addr, direct); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); if (direct) val = rtw_sdio_readl(rtwdev, addr, &ret); else val = rtw_sdio_indirect_read32(rtwdev, addr, &ret); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "sdio read32 failed (0x%x): %d", addr, ret); return val; } static void rtw_sdio_indirect_write8(struct rtw_dev *rtwdev, u8 val, u32 addr, int *err_ret) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; u32 reg_data; reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA); sdio_writeb(rtwsdio->sdio_func, val, reg_data, err_ret); if (*err_ret) return; *err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr, BIT_SDIO_INDIRECT_REG_CFG_WRITE); } static void rtw_sdio_indirect_write16(struct rtw_dev *rtwdev, u16 val, u32 addr, int *err_ret) { u32 reg_data; if (!IS_ALIGNED(addr, 2)) { addr = rtw_sdio_to_io_address(rtwdev, addr, true); rtw_sdio_writew(rtwdev, val, addr, err_ret); return; } reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA); rtw_sdio_writew(rtwdev, val, reg_data, err_ret); if (*err_ret) return; *err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr, BIT_SDIO_INDIRECT_REG_CFG_WRITE | BIT_SDIO_INDIRECT_REG_CFG_WORD); } static void rtw_sdio_indirect_write32(struct rtw_dev *rtwdev, u32 val, u32 addr, int *err_ret) { u32 reg_data; if (!IS_ALIGNED(addr, 4)) { addr = rtw_sdio_to_io_address(rtwdev, addr, true); rtw_sdio_writel(rtwdev, val, addr, err_ret); return; } reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA); rtw_sdio_writel(rtwdev, val, reg_data, err_ret); *err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr, BIT_SDIO_INDIRECT_REG_CFG_WRITE | BIT_SDIO_INDIRECT_REG_CFG_DWORD); } static void rtw_sdio_write8(struct rtw_dev *rtwdev, u32 addr, u8 val) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool direct, bus_claim; int ret; direct = rtw_sdio_use_direct_io(rtwdev, addr); addr = rtw_sdio_to_io_address(rtwdev, addr, direct); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); if (direct) sdio_writeb(rtwsdio->sdio_func, val, addr, &ret); else rtw_sdio_indirect_write8(rtwdev, val, addr, &ret); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "sdio write8 failed (0x%x): %d", addr, ret); } static void rtw_sdio_write16(struct rtw_dev *rtwdev, u32 addr, u16 val) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool direct, bus_claim; int ret; direct = rtw_sdio_use_direct_io(rtwdev, addr); addr = rtw_sdio_to_io_address(rtwdev, addr, direct); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); if (direct) rtw_sdio_writew(rtwdev, val, addr, &ret); else rtw_sdio_indirect_write16(rtwdev, val, addr, &ret); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "sdio write16 failed (0x%x): %d", addr, ret); } static void rtw_sdio_write32(struct rtw_dev *rtwdev, u32 addr, u32 val) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool direct, bus_claim; int ret; direct = rtw_sdio_use_direct_io(rtwdev, addr); addr = rtw_sdio_to_io_address(rtwdev, addr, direct); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); if (direct) rtw_sdio_writel(rtwdev, val, addr, &ret); else rtw_sdio_indirect_write32(rtwdev, val, addr, &ret); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "sdio write32 failed (0x%x): %d", addr, ret); } static u32 rtw_sdio_get_tx_addr(struct rtw_dev *rtwdev, size_t size, enum rtw_tx_queue_type queue) { u32 txaddr; switch (queue) { case RTW_TX_QUEUE_BCN: case RTW_TX_QUEUE_H2C: case RTW_TX_QUEUE_HI0: txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK, REG_SDIO_CMD_ADDR_TXFF_HIGH); break; case RTW_TX_QUEUE_VI: case RTW_TX_QUEUE_VO: txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK, REG_SDIO_CMD_ADDR_TXFF_NORMAL); break; case RTW_TX_QUEUE_BE: case RTW_TX_QUEUE_BK: txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK, REG_SDIO_CMD_ADDR_TXFF_LOW); break; case RTW_TX_QUEUE_MGMT: txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK, REG_SDIO_CMD_ADDR_TXFF_EXTRA); break; default: rtw_warn(rtwdev, "Unsupported queue for TX addr: 0x%02x\n", queue); return 0; } txaddr += DIV_ROUND_UP(size, 4); return txaddr; }; static int rtw_sdio_read_port(struct rtw_dev *rtwdev, u8 *buf, size_t count) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; struct mmc_host *host = rtwsdio->sdio_func->card->host; bool bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); u32 rxaddr = rtwsdio->rx_addr++; int ret = 0, err; size_t bytes; if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); while (count > 0) { bytes = min_t(size_t, host->max_req_size, count); err = sdio_memcpy_fromio(rtwsdio->sdio_func, buf, RTW_SDIO_ADDR_RX_RX0FF_GEN(rxaddr), bytes); if (err) { rtw_warn(rtwdev, "Failed to read %zu byte(s) from SDIO port 0x%08x: %d", bytes, rxaddr, err); /* Signal to the caller that reading did not work and * that the data in the buffer is short/corrupted. */ ret = err; /* Don't stop here - instead drain the remaining data * from the card's buffer, else the card will return * corrupt data for the next rtw_sdio_read_port() call. */ } count -= bytes; buf += bytes; } if (bus_claim) sdio_release_host(rtwsdio->sdio_func); return ret; } static int rtw_sdio_check_free_txpg(struct rtw_dev *rtwdev, u8 queue, size_t count) { unsigned int pages_free, pages_needed; if (rtw_chip_wcpu_11n(rtwdev)) { u32 free_txpg; free_txpg = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG); switch (queue) { case RTW_TX_QUEUE_BCN: case RTW_TX_QUEUE_H2C: case RTW_TX_QUEUE_HI0: case RTW_TX_QUEUE_MGMT: /* high */ pages_free = free_txpg & 0xff; break; case RTW_TX_QUEUE_VI: case RTW_TX_QUEUE_VO: /* normal */ pages_free = (free_txpg >> 8) & 0xff; break; case RTW_TX_QUEUE_BE: case RTW_TX_QUEUE_BK: /* low */ pages_free = (free_txpg >> 16) & 0xff; break; default: rtw_warn(rtwdev, "Unknown mapping for queue %u\n", queue); return -EINVAL; } /* add the pages from the public queue */ pages_free += (free_txpg >> 24) & 0xff; } else { u32 free_txpg[3]; free_txpg[0] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG); free_txpg[1] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG + 4); free_txpg[2] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG + 8); switch (queue) { case RTW_TX_QUEUE_BCN: case RTW_TX_QUEUE_H2C: case RTW_TX_QUEUE_HI0: /* high */ pages_free = free_txpg[0] & 0xfff; break; case RTW_TX_QUEUE_VI: case RTW_TX_QUEUE_VO: /* normal */ pages_free = (free_txpg[0] >> 16) & 0xfff; break; case RTW_TX_QUEUE_BE: case RTW_TX_QUEUE_BK: /* low */ pages_free = free_txpg[1] & 0xfff; break; case RTW_TX_QUEUE_MGMT: /* extra */ pages_free = free_txpg[2] & 0xfff; break; default: rtw_warn(rtwdev, "Unknown mapping for queue %u\n", queue); return -EINVAL; } /* add the pages from the public queue */ pages_free += (free_txpg[1] >> 16) & 0xfff; } pages_needed = DIV_ROUND_UP(count, rtwdev->chip->page_size); if (pages_needed > pages_free) { rtw_dbg(rtwdev, RTW_DBG_SDIO, "Not enough free pages (%u needed, %u free) in queue %u for %zu bytes\n", pages_needed, pages_free, queue, count); return -EBUSY; } return 0; } static int rtw_sdio_write_port(struct rtw_dev *rtwdev, struct sk_buff *skb, enum rtw_tx_queue_type queue) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool bus_claim; size_t txsize; u32 txaddr; int ret; txaddr = rtw_sdio_get_tx_addr(rtwdev, skb->len, queue); if (!txaddr) return -EINVAL; txsize = sdio_align_size(rtwsdio->sdio_func, skb->len); ret = rtw_sdio_check_free_txpg(rtwdev, queue, txsize); if (ret) return ret; if (!IS_ALIGNED((unsigned long)skb->data, RTW_SDIO_DATA_PTR_ALIGN)) rtw_warn(rtwdev, "Got unaligned SKB in %s() for queue %u\n", __func__, queue); bus_claim = rtw_sdio_bus_claim_needed(rtwsdio); if (bus_claim) sdio_claim_host(rtwsdio->sdio_func); ret = sdio_memcpy_toio(rtwsdio->sdio_func, txaddr, skb->data, txsize); if (bus_claim) sdio_release_host(rtwsdio->sdio_func); if (ret) rtw_warn(rtwdev, "Failed to write %zu byte(s) to SDIO port 0x%08x", txsize, txaddr); return ret; } static void rtw_sdio_init(struct rtw_dev *rtwdev) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; rtwsdio->irq_mask = REG_SDIO_HIMR_RX_REQUEST | REG_SDIO_HIMR_CPWM1; } static void rtw_sdio_enable_rx_aggregation(struct rtw_dev *rtwdev) { u8 size, timeout; if (rtw_chip_wcpu_11n(rtwdev)) { size = 0x6; timeout = 0x6; } else { size = 0xff; timeout = 0x1; } /* Make the firmware honor the size limit configured below */ rtw_write32_set(rtwdev, REG_RXDMA_AGG_PG_TH, BIT_EN_PRE_CALC); rtw_write8_set(rtwdev, REG_TXDMA_PQ_MAP, BIT_RXDMA_AGG_EN); rtw_write16(rtwdev, REG_RXDMA_AGG_PG_TH, FIELD_PREP(BIT_RXDMA_AGG_PG_TH, size) | FIELD_PREP(BIT_DMA_AGG_TO_V1, timeout)); rtw_write8_set(rtwdev, REG_RXDMA_MODE, BIT_DMA_MODE); } static void rtw_sdio_enable_interrupt(struct rtw_dev *rtwdev) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; rtw_write32(rtwdev, REG_SDIO_HIMR, rtwsdio->irq_mask); } static void rtw_sdio_disable_interrupt(struct rtw_dev *rtwdev) { rtw_write32(rtwdev, REG_SDIO_HIMR, 0x0); } static u8 rtw_sdio_get_tx_qsel(struct rtw_dev *rtwdev, struct sk_buff *skb, u8 queue) { switch (queue) { case RTW_TX_QUEUE_BCN: return TX_DESC_QSEL_BEACON; case RTW_TX_QUEUE_H2C: return TX_DESC_QSEL_H2C; case RTW_TX_QUEUE_MGMT: if (rtw_chip_wcpu_11n(rtwdev)) return TX_DESC_QSEL_HIGH; else return TX_DESC_QSEL_MGMT; case RTW_TX_QUEUE_HI0: return TX_DESC_QSEL_HIGH; default: return skb->priority; } } static int rtw_sdio_setup(struct rtw_dev *rtwdev) { /* nothing to do */ return 0; } static int rtw_sdio_start(struct rtw_dev *rtwdev) { rtw_sdio_enable_rx_aggregation(rtwdev); rtw_sdio_enable_interrupt(rtwdev); return 0; } static void rtw_sdio_stop(struct rtw_dev *rtwdev) { rtw_sdio_disable_interrupt(rtwdev); } static void rtw_sdio_deep_ps_enter(struct rtw_dev *rtwdev) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; bool tx_empty = true; u8 queue; if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) { /* Deep PS state is not allowed to TX-DMA */ for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { /* BCN queue is rsvd page, does not have DMA interrupt * H2C queue is managed by firmware */ if (queue == RTW_TX_QUEUE_BCN || queue == RTW_TX_QUEUE_H2C) continue; /* check if there is any skb DMAing */ if (skb_queue_len(&rtwsdio->tx_queue[queue])) { tx_empty = false; break; } } } if (!tx_empty) { rtw_dbg(rtwdev, RTW_DBG_PS, "TX path not empty, cannot enter deep power save state\n"); return; } set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags); rtw_power_mode_change(rtwdev, true); } static void rtw_sdio_deep_ps_leave(struct rtw_dev *rtwdev) { if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) rtw_power_mode_change(rtwdev, false); } static void rtw_sdio_deep_ps(struct rtw_dev *rtwdev, bool enter) { if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) rtw_sdio_deep_ps_enter(rtwdev); if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) rtw_sdio_deep_ps_leave(rtwdev); } static void rtw_sdio_tx_kick_off(struct rtw_dev *rtwdev) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; queue_work(rtwsdio->txwq, &rtwsdio->tx_handler_data->work); } static void rtw_sdio_link_ps(struct rtw_dev *rtwdev, bool enter) { /* nothing to do */ } static void rtw_sdio_interface_cfg(struct rtw_dev *rtwdev) { u32 val; rtw_read32(rtwdev, REG_SDIO_FREE_TXPG); val = rtw_read32(rtwdev, REG_SDIO_TX_CTRL); val &= 0xfff8; rtw_write32(rtwdev, REG_SDIO_TX_CTRL, val); } static struct rtw_sdio_tx_data *rtw_sdio_get_tx_data(struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); BUILD_BUG_ON(sizeof(struct rtw_sdio_tx_data) > sizeof(info->status.status_driver_data)); return (struct rtw_sdio_tx_data *)info->status.status_driver_data; } static void rtw_sdio_tx_skb_prepare(struct rtw_dev *rtwdev, struct rtw_tx_pkt_info *pkt_info, struct sk_buff *skb, enum rtw_tx_queue_type queue) { const struct rtw_chip_info *chip = rtwdev->chip; unsigned long data_addr, aligned_addr; size_t offset; u8 *pkt_desc; pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz); data_addr = (unsigned long)pkt_desc; aligned_addr = ALIGN(data_addr, RTW_SDIO_DATA_PTR_ALIGN); if (data_addr != aligned_addr) { /* Ensure that the start of the pkt_desc is always aligned at * RTW_SDIO_DATA_PTR_ALIGN. */ offset = RTW_SDIO_DATA_PTR_ALIGN - (aligned_addr - data_addr); pkt_desc = skb_push(skb, offset); /* By inserting padding to align the start of the pkt_desc we * need to inform the firmware that the actual data starts at * a different offset than normal. */ pkt_info->offset += offset; } memset(pkt_desc, 0, chip->tx_pkt_desc_sz); pkt_info->qsel = rtw_sdio_get_tx_qsel(rtwdev, skb, queue); rtw_tx_fill_tx_desc(pkt_info, skb); rtw_tx_fill_txdesc_checksum(rtwdev, pkt_info, pkt_desc); } static int rtw_sdio_write_data(struct rtw_dev *rtwdev, struct rtw_tx_pkt_info *pkt_info, struct sk_buff *skb, enum rtw_tx_queue_type queue) { int ret; rtw_sdio_tx_skb_prepare(rtwdev, pkt_info, skb, queue); ret = rtw_sdio_write_port(rtwdev, skb, queue); dev_kfree_skb_any(skb); return ret; } static int rtw_sdio_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf, u32 size) { struct rtw_tx_pkt_info pkt_info = {}; struct sk_buff *skb; skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size); if (!skb) return -ENOMEM; return rtw_sdio_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN); } static int rtw_sdio_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size) { struct rtw_tx_pkt_info pkt_info = {}; struct sk_buff *skb; skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size); if (!skb) return -ENOMEM; return rtw_sdio_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C); } static int rtw_sdio_tx_write(struct rtw_dev *rtwdev, struct rtw_tx_pkt_info *pkt_info, struct sk_buff *skb) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb); struct rtw_sdio_tx_data *tx_data; rtw_sdio_tx_skb_prepare(rtwdev, pkt_info, skb, queue); tx_data = rtw_sdio_get_tx_data(skb); tx_data->sn = pkt_info->sn; skb_queue_tail(&rtwsdio->tx_queue[queue], skb); return 0; } static void rtw_sdio_tx_err_isr(struct rtw_dev *rtwdev) { u32 val = rtw_read32(rtwdev, REG_TXDMA_STATUS); rtw_write32(rtwdev, REG_TXDMA_STATUS, val); } static void rtw_sdio_rx_skb(struct rtw_dev *rtwdev, struct sk_buff *skb, u32 pkt_offset, struct rtw_rx_pkt_stat *pkt_stat, struct ieee80211_rx_status *rx_status) { *IEEE80211_SKB_RXCB(skb) = *rx_status; if (pkt_stat->is_c2h) { skb_put(skb, pkt_stat->pkt_len + pkt_offset); rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, skb); return; } skb_put(skb, pkt_stat->pkt_len); skb_reserve(skb, pkt_offset); rtw_update_rx_freq_for_invalid(rtwdev, skb, rx_status, pkt_stat); rtw_rx_stats(rtwdev, pkt_stat->vif, skb); ieee80211_rx_irqsafe(rtwdev->hw, skb); } static void rtw_sdio_rxfifo_recv(struct rtw_dev *rtwdev, u32 rx_len) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; const struct rtw_chip_info *chip = rtwdev->chip; u32 pkt_desc_sz = chip->rx_pkt_desc_sz; struct ieee80211_rx_status rx_status; struct rtw_rx_pkt_stat pkt_stat; struct sk_buff *skb, *split_skb; u32 pkt_offset, curr_pkt_len; size_t bufsz; u8 *rx_desc; int ret; bufsz = sdio_align_size(rtwsdio->sdio_func, rx_len); skb = dev_alloc_skb(bufsz); if (!skb) return; ret = rtw_sdio_read_port(rtwdev, skb->data, bufsz); if (ret) { dev_kfree_skb_any(skb); return; } while (true) { rx_desc = skb->data; chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status); pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz + pkt_stat.shift; curr_pkt_len = ALIGN(pkt_offset + pkt_stat.pkt_len, RTW_SDIO_DATA_PTR_ALIGN); if ((curr_pkt_len + pkt_desc_sz) >= rx_len) { /* Use the original skb (with it's adjusted offset) * when processing the last (or even the only) entry to * have it's memory freed automatically. */ rtw_sdio_rx_skb(rtwdev, skb, pkt_offset, &pkt_stat, &rx_status); break; } split_skb = dev_alloc_skb(curr_pkt_len); if (!split_skb) { rtw_sdio_rx_skb(rtwdev, skb, pkt_offset, &pkt_stat, &rx_status); break; } skb_copy_header(split_skb, skb); memcpy(split_skb->data, skb->data, curr_pkt_len); rtw_sdio_rx_skb(rtwdev, split_skb, pkt_offset, &pkt_stat, &rx_status); /* Move to the start of the next RX descriptor */ skb_reserve(skb, curr_pkt_len); rx_len -= curr_pkt_len; } } static void rtw_sdio_rx_isr(struct rtw_dev *rtwdev) { u32 rx_len, hisr, total_rx_bytes = 0; do { if (rtw_chip_wcpu_11n(rtwdev)) rx_len = rtw_read16(rtwdev, REG_SDIO_RX0_REQ_LEN); else rx_len = rtw_read32(rtwdev, REG_SDIO_RX0_REQ_LEN); if (!rx_len) break; rtw_sdio_rxfifo_recv(rtwdev, rx_len); total_rx_bytes += rx_len; if (rtw_chip_wcpu_11n(rtwdev)) { /* Stop if no more RX requests are pending, even if * rx_len could be greater than zero in the next * iteration. This is needed because the RX buffer may * already contain data while either HW or FW are not * done filling that buffer yet. Still reading the * buffer can result in packets where * rtw_rx_pkt_stat.pkt_len is zero or points beyond the * end of the buffer. */ hisr = rtw_read32(rtwdev, REG_SDIO_HISR); } else { /* RTW_WCPU_11AC chips have improved hardware or * firmware and can use rx_len unconditionally. */ hisr = REG_SDIO_HISR_RX_REQUEST; } } while (total_rx_bytes < SZ_64K && hisr & REG_SDIO_HISR_RX_REQUEST); } static void rtw_sdio_handle_interrupt(struct sdio_func *sdio_func) { struct ieee80211_hw *hw = sdio_get_drvdata(sdio_func); struct rtw_sdio *rtwsdio; struct rtw_dev *rtwdev; u32 hisr; rtwdev = hw->priv; rtwsdio = (struct rtw_sdio *)rtwdev->priv; rtwsdio->irq_thread = current; hisr = rtw_read32(rtwdev, REG_SDIO_HISR); if (hisr & REG_SDIO_HISR_TXERR) rtw_sdio_tx_err_isr(rtwdev); if (hisr & REG_SDIO_HISR_RX_REQUEST) { hisr &= ~REG_SDIO_HISR_RX_REQUEST; rtw_sdio_rx_isr(rtwdev); } rtw_write32(rtwdev, REG_SDIO_HISR, hisr); rtwsdio->irq_thread = NULL; } static int __maybe_unused rtw_sdio_suspend(struct device *dev) { struct sdio_func *func = dev_to_sdio_func(dev); struct ieee80211_hw *hw = dev_get_drvdata(dev); struct rtw_dev *rtwdev = hw->priv; int ret; ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); if (ret) rtw_err(rtwdev, "Failed to host PM flag MMC_PM_KEEP_POWER"); return ret; } static int __maybe_unused rtw_sdio_resume(struct device *dev) { return 0; } SIMPLE_DEV_PM_OPS(rtw_sdio_pm_ops, rtw_sdio_suspend, rtw_sdio_resume); EXPORT_SYMBOL(rtw_sdio_pm_ops); static int rtw_sdio_claim(struct rtw_dev *rtwdev, struct sdio_func *sdio_func) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; int ret; sdio_claim_host(sdio_func); ret = sdio_enable_func(sdio_func); if (ret) { rtw_err(rtwdev, "Failed to enable SDIO func"); goto err_release_host; } ret = sdio_set_block_size(sdio_func, RTW_SDIO_BLOCK_SIZE); if (ret) { rtw_err(rtwdev, "Failed to set SDIO block size to 512"); goto err_disable_func; } rtwsdio->sdio_func = sdio_func; rtwsdio->sdio3_bus_mode = mmc_card_uhs(sdio_func->card); sdio_set_drvdata(sdio_func, rtwdev->hw); SET_IEEE80211_DEV(rtwdev->hw, &sdio_func->dev); sdio_release_host(sdio_func); return 0; err_disable_func: sdio_disable_func(sdio_func); err_release_host: sdio_release_host(sdio_func); return ret; } static void rtw_sdio_declaim(struct rtw_dev *rtwdev, struct sdio_func *sdio_func) { sdio_claim_host(sdio_func); sdio_disable_func(sdio_func); sdio_release_host(sdio_func); } static struct rtw_hci_ops rtw_sdio_ops = { .tx_write = rtw_sdio_tx_write, .tx_kick_off = rtw_sdio_tx_kick_off, .setup = rtw_sdio_setup, .start = rtw_sdio_start, .stop = rtw_sdio_stop, .deep_ps = rtw_sdio_deep_ps, .link_ps = rtw_sdio_link_ps, .interface_cfg = rtw_sdio_interface_cfg, .dynamic_rx_agg = NULL, .read8 = rtw_sdio_read8, .read16 = rtw_sdio_read16, .read32 = rtw_sdio_read32, .write8 = rtw_sdio_write8, .write16 = rtw_sdio_write16, .write32 = rtw_sdio_write32, .write_data_rsvd_page = rtw_sdio_write_data_rsvd_page, .write_data_h2c = rtw_sdio_write_data_h2c, }; static int rtw_sdio_request_irq(struct rtw_dev *rtwdev, struct sdio_func *sdio_func) { int ret; sdio_claim_host(sdio_func); ret = sdio_claim_irq(sdio_func, &rtw_sdio_handle_interrupt); sdio_release_host(sdio_func); if (ret) { rtw_err(rtwdev, "failed to claim SDIO IRQ"); return ret; } return 0; } static void rtw_sdio_indicate_tx_status(struct rtw_dev *rtwdev, struct sk_buff *skb) { struct rtw_sdio_tx_data *tx_data = rtw_sdio_get_tx_data(skb); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hw *hw = rtwdev->hw; /* enqueue to wait for tx report */ if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn); return; } /* always ACK for others, then they won't be marked as drop */ ieee80211_tx_info_clear_status(info); if (info->flags & IEEE80211_TX_CTL_NO_ACK) info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; else info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, skb); } static void rtw_sdio_process_tx_queue(struct rtw_dev *rtwdev, enum rtw_tx_queue_type queue) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; struct sk_buff *skb; int ret; skb = skb_dequeue(&rtwsdio->tx_queue[queue]); if (!skb) return; ret = rtw_sdio_write_port(rtwdev, skb, queue); if (ret) { skb_queue_head(&rtwsdio->tx_queue[queue], skb); return; } if (queue <= RTW_TX_QUEUE_VO) rtw_sdio_indicate_tx_status(rtwdev, skb); else dev_kfree_skb_any(skb); } static void rtw_sdio_tx_handler(struct work_struct *work) { struct rtw_sdio_work_data *work_data = container_of(work, struct rtw_sdio_work_data, work); struct rtw_sdio *rtwsdio; struct rtw_dev *rtwdev; int limit, queue; rtwdev = work_data->rtwdev; rtwsdio = (struct rtw_sdio *)rtwdev->priv; if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) rtw_sdio_deep_ps_leave(rtwdev); for (queue = RTK_MAX_TX_QUEUE_NUM - 1; queue >= 0; queue--) { for (limit = 0; limit < 1000; limit++) { rtw_sdio_process_tx_queue(rtwdev, queue); if (skb_queue_empty(&rtwsdio->tx_queue[queue])) break; } } } static void rtw_sdio_free_irq(struct rtw_dev *rtwdev, struct sdio_func *sdio_func) { sdio_claim_host(sdio_func); sdio_release_irq(sdio_func); sdio_release_host(sdio_func); } static int rtw_sdio_init_tx(struct rtw_dev *rtwdev) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; int i; rtwsdio->txwq = create_singlethread_workqueue("rtw88_sdio: tx wq"); if (!rtwsdio->txwq) { rtw_err(rtwdev, "failed to create TX work queue\n"); return -ENOMEM; } for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) skb_queue_head_init(&rtwsdio->tx_queue[i]); rtwsdio->tx_handler_data = kmalloc(sizeof(*rtwsdio->tx_handler_data), GFP_KERNEL); if (!rtwsdio->tx_handler_data) goto err_destroy_wq; rtwsdio->tx_handler_data->rtwdev = rtwdev; INIT_WORK(&rtwsdio->tx_handler_data->work, rtw_sdio_tx_handler); return 0; err_destroy_wq: destroy_workqueue(rtwsdio->txwq); return -ENOMEM; } static void rtw_sdio_deinit_tx(struct rtw_dev *rtwdev) { struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv; int i; for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) skb_queue_purge(&rtwsdio->tx_queue[i]); flush_workqueue(rtwsdio->txwq); destroy_workqueue(rtwsdio->txwq); kfree(rtwsdio->tx_handler_data); } int rtw_sdio_probe(struct sdio_func *sdio_func, const struct sdio_device_id *id) { struct ieee80211_hw *hw; struct rtw_dev *rtwdev; int drv_data_size; int ret; drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_sdio); hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops); if (!hw) { dev_err(&sdio_func->dev, "failed to allocate hw"); return -ENOMEM; } rtwdev = hw->priv; rtwdev->hw = hw; rtwdev->dev = &sdio_func->dev; rtwdev->chip = (struct rtw_chip_info *)id->driver_data; rtwdev->hci.ops = &rtw_sdio_ops; rtwdev->hci.type = RTW_HCI_TYPE_SDIO; ret = rtw_core_init(rtwdev); if (ret) goto err_release_hw; rtw_dbg(rtwdev, RTW_DBG_SDIO, "rtw88 SDIO probe: vendor=0x%04x device=%04x class=%02x", id->vendor, id->device, id->class); ret = rtw_sdio_claim(rtwdev, sdio_func); if (ret) { rtw_err(rtwdev, "failed to claim SDIO device"); goto err_deinit_core; } rtw_sdio_init(rtwdev); ret = rtw_sdio_init_tx(rtwdev); if (ret) { rtw_err(rtwdev, "failed to init SDIO TX queue\n"); goto err_sdio_declaim; } ret = rtw_chip_info_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip information"); goto err_destroy_txwq; } ret = rtw_sdio_request_irq(rtwdev, sdio_func); if (ret) goto err_destroy_txwq; ret = rtw_register_hw(rtwdev, hw); if (ret) { rtw_err(rtwdev, "failed to register hw"); goto err_free_irq; } return 0; err_free_irq: rtw_sdio_free_irq(rtwdev, sdio_func); err_destroy_txwq: rtw_sdio_deinit_tx(rtwdev); err_sdio_declaim: rtw_sdio_declaim(rtwdev, sdio_func); err_deinit_core: rtw_core_deinit(rtwdev); err_release_hw: ieee80211_free_hw(hw); return ret; } EXPORT_SYMBOL(rtw_sdio_probe); void rtw_sdio_remove(struct sdio_func *sdio_func) { struct ieee80211_hw *hw = sdio_get_drvdata(sdio_func); struct rtw_dev *rtwdev; if (!hw) return; rtwdev = hw->priv; rtw_unregister_hw(rtwdev, hw); rtw_sdio_disable_interrupt(rtwdev); rtw_sdio_free_irq(rtwdev, sdio_func); rtw_sdio_declaim(rtwdev, sdio_func); rtw_sdio_deinit_tx(rtwdev); rtw_core_deinit(rtwdev); ieee80211_free_hw(hw); } EXPORT_SYMBOL(rtw_sdio_remove); void rtw_sdio_shutdown(struct device *dev) { struct sdio_func *sdio_func = dev_to_sdio_func(dev); const struct rtw_chip_info *chip; struct ieee80211_hw *hw; struct rtw_dev *rtwdev; hw = sdio_get_drvdata(sdio_func); if (!hw) return; rtwdev = hw->priv; chip = rtwdev->chip; if (chip->ops->shutdown) chip->ops->shutdown(rtwdev); } EXPORT_SYMBOL(rtw_sdio_shutdown); MODULE_AUTHOR("Martin Blumenstingl"); MODULE_AUTHOR("Jernej Skrabec"); MODULE_DESCRIPTION("Realtek 802.11ac wireless SDIO driver"); MODULE_LICENSE("Dual BSD/GPL");