/****************************************************************************** * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include #include #include #include "rs.h" #include "fw-api.h" #include "sta.h" #include "iwl-op-mode.h" #include "mvm.h" #include "debugfs.h" #define RS_NAME "iwl-mvm-rs" #define IWL_RATE_MAX_WINDOW 62 /* # tx in history window */ /* Calculations of success ratio are done in fixed point where 12800 is 100%. * Use this macro when dealing with thresholds consts set as a percentage */ #define RS_PERCENT(x) (128 * x) static u8 rs_ht_to_legacy[] = { [IWL_RATE_MCS_0_INDEX] = IWL_RATE_6M_INDEX, [IWL_RATE_MCS_1_INDEX] = IWL_RATE_9M_INDEX, [IWL_RATE_MCS_2_INDEX] = IWL_RATE_12M_INDEX, [IWL_RATE_MCS_3_INDEX] = IWL_RATE_18M_INDEX, [IWL_RATE_MCS_4_INDEX] = IWL_RATE_24M_INDEX, [IWL_RATE_MCS_5_INDEX] = IWL_RATE_36M_INDEX, [IWL_RATE_MCS_6_INDEX] = IWL_RATE_48M_INDEX, [IWL_RATE_MCS_7_INDEX] = IWL_RATE_54M_INDEX, [IWL_RATE_MCS_8_INDEX] = IWL_RATE_54M_INDEX, [IWL_RATE_MCS_9_INDEX] = IWL_RATE_54M_INDEX, }; static const u8 ant_toggle_lookup[] = { [ANT_NONE] = ANT_NONE, [ANT_A] = ANT_B, [ANT_B] = ANT_C, [ANT_AB] = ANT_BC, [ANT_C] = ANT_A, [ANT_AC] = ANT_AB, [ANT_BC] = ANT_AC, [ANT_ABC] = ANT_ABC, }; #define IWL_DECLARE_RATE_INFO(r, s, rp, rn) \ [IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \ IWL_RATE_HT_SISO_MCS_##s##_PLCP, \ IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \ IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \ IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP,\ IWL_RATE_##rp##M_INDEX, \ IWL_RATE_##rn##M_INDEX } #define IWL_DECLARE_MCS_RATE(s) \ [IWL_RATE_MCS_##s##_INDEX] = { IWL_RATE_INVM_PLCP, \ IWL_RATE_HT_SISO_MCS_##s##_PLCP, \ IWL_RATE_HT_MIMO2_MCS_##s##_PLCP, \ IWL_RATE_VHT_SISO_MCS_##s##_PLCP, \ IWL_RATE_VHT_MIMO2_MCS_##s##_PLCP, \ IWL_RATE_INVM_INDEX, \ IWL_RATE_INVM_INDEX } /* * Parameter order: * rate, ht rate, prev rate, next rate * * If there isn't a valid next or previous rate then INV is used which * maps to IWL_RATE_INVALID * */ static const struct iwl_rs_rate_info iwl_rates[IWL_RATE_COUNT] = { IWL_DECLARE_RATE_INFO(1, INV, INV, 2), /* 1mbps */ IWL_DECLARE_RATE_INFO(2, INV, 1, 5), /* 2mbps */ IWL_DECLARE_RATE_INFO(5, INV, 2, 11), /*5.5mbps */ IWL_DECLARE_RATE_INFO(11, INV, 9, 12), /* 11mbps */ IWL_DECLARE_RATE_INFO(6, 0, 5, 11), /* 6mbps ; MCS 0 */ IWL_DECLARE_RATE_INFO(9, INV, 6, 11), /* 9mbps */ IWL_DECLARE_RATE_INFO(12, 1, 11, 18), /* 12mbps ; MCS 1 */ IWL_DECLARE_RATE_INFO(18, 2, 12, 24), /* 18mbps ; MCS 2 */ IWL_DECLARE_RATE_INFO(24, 3, 18, 36), /* 24mbps ; MCS 3 */ IWL_DECLARE_RATE_INFO(36, 4, 24, 48), /* 36mbps ; MCS 4 */ IWL_DECLARE_RATE_INFO(48, 5, 36, 54), /* 48mbps ; MCS 5 */ IWL_DECLARE_RATE_INFO(54, 6, 48, INV), /* 54mbps ; MCS 6 */ IWL_DECLARE_MCS_RATE(7), /* MCS 7 */ IWL_DECLARE_MCS_RATE(8), /* MCS 8 */ IWL_DECLARE_MCS_RATE(9), /* MCS 9 */ }; enum rs_action { RS_ACTION_STAY = 0, RS_ACTION_DOWNSCALE = -1, RS_ACTION_UPSCALE = 1, }; enum rs_column_mode { RS_INVALID = 0, RS_LEGACY, RS_SISO, RS_MIMO2, }; #define MAX_NEXT_COLUMNS 7 #define MAX_COLUMN_CHECKS 3 struct rs_tx_column; typedef bool (*allow_column_func_t) (struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct rs_rate *rate, const struct rs_tx_column *next_col); struct rs_tx_column { enum rs_column_mode mode; u8 ant; bool sgi; enum rs_column next_columns[MAX_NEXT_COLUMNS]; allow_column_func_t checks[MAX_COLUMN_CHECKS]; }; static bool rs_ant_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct rs_rate *rate, const struct rs_tx_column *next_col) { return iwl_mvm_bt_coex_is_ant_avail(mvm, next_col->ant); } static bool rs_mimo_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct rs_rate *rate, const struct rs_tx_column *next_col) { struct iwl_mvm_sta *mvmsta; struct iwl_mvm_vif *mvmvif; if (!sta->ht_cap.ht_supported) return false; if (sta->smps_mode == IEEE80211_SMPS_STATIC) return false; if (num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) < 2) return false; if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) return false; mvmsta = iwl_mvm_sta_from_mac80211(sta); mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); if (mvm->nvm_data->sku_cap_mimo_disabled) return false; return true; } static bool rs_siso_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct rs_rate *rate, const struct rs_tx_column *next_col) { if (!sta->ht_cap.ht_supported) return false; return true; } static bool rs_sgi_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct rs_rate *rate, const struct rs_tx_column *next_col) { struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; if (is_ht20(rate) && (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)) return true; if (is_ht40(rate) && (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)) return true; if (is_ht80(rate) && (vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80)) return true; return false; } static const struct rs_tx_column rs_tx_columns[] = { [RS_COLUMN_LEGACY_ANT_A] = { .mode = RS_LEGACY, .ant = ANT_A, .next_columns = { RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_SISO_ANT_A, RS_COLUMN_MIMO2, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_ant_allow, }, }, [RS_COLUMN_LEGACY_ANT_B] = { .mode = RS_LEGACY, .ant = ANT_B, .next_columns = { RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_SISO_ANT_B, RS_COLUMN_MIMO2, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_ant_allow, }, }, [RS_COLUMN_SISO_ANT_A] = { .mode = RS_SISO, .ant = ANT_A, .next_columns = { RS_COLUMN_SISO_ANT_B, RS_COLUMN_MIMO2, RS_COLUMN_SISO_ANT_A_SGI, RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, rs_ant_allow, }, }, [RS_COLUMN_SISO_ANT_B] = { .mode = RS_SISO, .ant = ANT_B, .next_columns = { RS_COLUMN_SISO_ANT_A, RS_COLUMN_MIMO2, RS_COLUMN_SISO_ANT_B_SGI, RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, rs_ant_allow, }, }, [RS_COLUMN_SISO_ANT_A_SGI] = { .mode = RS_SISO, .ant = ANT_A, .sgi = true, .next_columns = { RS_COLUMN_SISO_ANT_B_SGI, RS_COLUMN_MIMO2_SGI, RS_COLUMN_SISO_ANT_A, RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, rs_ant_allow, rs_sgi_allow, }, }, [RS_COLUMN_SISO_ANT_B_SGI] = { .mode = RS_SISO, .ant = ANT_B, .sgi = true, .next_columns = { RS_COLUMN_SISO_ANT_A_SGI, RS_COLUMN_MIMO2_SGI, RS_COLUMN_SISO_ANT_B, RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_siso_allow, rs_ant_allow, rs_sgi_allow, }, }, [RS_COLUMN_MIMO2] = { .mode = RS_MIMO2, .ant = ANT_AB, .next_columns = { RS_COLUMN_SISO_ANT_A, RS_COLUMN_MIMO2_SGI, RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_mimo_allow, }, }, [RS_COLUMN_MIMO2_SGI] = { .mode = RS_MIMO2, .ant = ANT_AB, .sgi = true, .next_columns = { RS_COLUMN_SISO_ANT_A_SGI, RS_COLUMN_MIMO2, RS_COLUMN_LEGACY_ANT_A, RS_COLUMN_LEGACY_ANT_B, RS_COLUMN_INVALID, RS_COLUMN_INVALID, RS_COLUMN_INVALID, }, .checks = { rs_mimo_allow, rs_sgi_allow, }, }, }; static inline u8 rs_extract_rate(u32 rate_n_flags) { /* also works for HT because bits 7:6 are zero there */ return (u8)(rate_n_flags & RATE_LEGACY_RATE_MSK); } static int iwl_hwrate_to_plcp_idx(u32 rate_n_flags) { int idx = 0; if (rate_n_flags & RATE_MCS_HT_MSK) { idx = rate_n_flags & RATE_HT_MCS_RATE_CODE_MSK; idx += IWL_RATE_MCS_0_INDEX; /* skip 9M not supported in HT*/ if (idx >= IWL_RATE_9M_INDEX) idx += 1; if ((idx >= IWL_FIRST_HT_RATE) && (idx <= IWL_LAST_HT_RATE)) return idx; } else if (rate_n_flags & RATE_MCS_VHT_MSK) { idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; idx += IWL_RATE_MCS_0_INDEX; /* skip 9M not supported in VHT*/ if (idx >= IWL_RATE_9M_INDEX) idx++; if ((idx >= IWL_FIRST_VHT_RATE) && (idx <= IWL_LAST_VHT_RATE)) return idx; } else { /* legacy rate format, search for match in table */ u8 legacy_rate = rs_extract_rate(rate_n_flags); for (idx = 0; idx < ARRAY_SIZE(iwl_rates); idx++) if (iwl_rates[idx].plcp == legacy_rate) return idx; } return IWL_RATE_INVALID; } static void rs_rate_scale_perform(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, int tid); static void rs_fill_lq_cmd(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate); static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search); /** * The following tables contain the expected throughput metrics for all rates * * 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, 60 MBits * * where invalid entries are zeros. * * CCK rates are only valid in legacy table and will only be used in G * (2.4 GHz) band. */ static const u16 expected_tpt_legacy[IWL_RATE_COUNT] = { 7, 13, 35, 58, 40, 57, 72, 98, 121, 154, 177, 186, 0, 0, 0 }; /* Expected TpT tables. 4 indexes: * 0 - NGI, 1 - SGI, 2 - AGG+NGI, 3 - AGG+SGI */ static const u16 expected_tpt_siso_20MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 42, 0, 76, 102, 124, 159, 183, 193, 202, 216, 0}, {0, 0, 0, 0, 46, 0, 82, 110, 132, 168, 192, 202, 210, 225, 0}, {0, 0, 0, 0, 49, 0, 97, 145, 192, 285, 375, 420, 464, 551, 0}, {0, 0, 0, 0, 54, 0, 108, 160, 213, 315, 415, 465, 513, 608, 0}, }; static const u16 expected_tpt_siso_40MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 77, 0, 127, 160, 184, 220, 242, 250, 257, 269, 275}, {0, 0, 0, 0, 83, 0, 135, 169, 193, 229, 250, 257, 264, 275, 280}, {0, 0, 0, 0, 101, 0, 199, 295, 389, 570, 744, 828, 911, 1070, 1173}, {0, 0, 0, 0, 112, 0, 220, 326, 429, 629, 819, 912, 1000, 1173, 1284}, }; static const u16 expected_tpt_siso_80MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 130, 0, 191, 223, 244, 273, 288, 294, 298, 305, 308}, {0, 0, 0, 0, 138, 0, 200, 231, 251, 279, 293, 298, 302, 308, 312}, {0, 0, 0, 0, 217, 0, 429, 634, 834, 1220, 1585, 1760, 1931, 2258, 2466}, {0, 0, 0, 0, 241, 0, 475, 701, 921, 1343, 1741, 1931, 2117, 2468, 2691}, }; static const u16 expected_tpt_mimo2_20MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 74, 0, 123, 155, 179, 213, 235, 243, 250, 261, 0}, {0, 0, 0, 0, 81, 0, 131, 164, 187, 221, 242, 250, 256, 267, 0}, {0, 0, 0, 0, 98, 0, 193, 286, 375, 550, 718, 799, 878, 1032, 0}, {0, 0, 0, 0, 109, 0, 214, 316, 414, 607, 790, 879, 965, 1132, 0}, }; static const u16 expected_tpt_mimo2_40MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 123, 0, 182, 214, 235, 264, 279, 285, 289, 296, 300}, {0, 0, 0, 0, 131, 0, 191, 222, 242, 270, 284, 289, 293, 300, 303}, {0, 0, 0, 0, 200, 0, 390, 571, 741, 1067, 1365, 1505, 1640, 1894, 2053}, {0, 0, 0, 0, 221, 0, 430, 630, 816, 1169, 1490, 1641, 1784, 2053, 2221}, }; static const u16 expected_tpt_mimo2_80MHz[4][IWL_RATE_COUNT] = { {0, 0, 0, 0, 182, 0, 240, 264, 278, 299, 308, 311, 313, 317, 319}, {0, 0, 0, 0, 190, 0, 247, 269, 282, 302, 310, 313, 315, 319, 320}, {0, 0, 0, 0, 428, 0, 833, 1215, 1577, 2254, 2863, 3147, 3418, 3913, 4219}, {0, 0, 0, 0, 474, 0, 920, 1338, 1732, 2464, 3116, 3418, 3705, 4225, 4545}, }; /* mbps, mcs */ static const struct iwl_rate_mcs_info iwl_rate_mcs[IWL_RATE_COUNT] = { { "1", "BPSK DSSS"}, { "2", "QPSK DSSS"}, {"5.5", "BPSK CCK"}, { "11", "QPSK CCK"}, { "6", "BPSK 1/2"}, { "9", "BPSK 1/2"}, { "12", "QPSK 1/2"}, { "18", "QPSK 3/4"}, { "24", "16QAM 1/2"}, { "36", "16QAM 3/4"}, { "48", "64QAM 2/3"}, { "54", "64QAM 3/4"}, { "60", "64QAM 5/6"}, }; #define MCS_INDEX_PER_STREAM (8) static const char *rs_pretty_ant(u8 ant) { static const char * const ant_name[] = { [ANT_NONE] = "None", [ANT_A] = "A", [ANT_B] = "B", [ANT_AB] = "AB", [ANT_C] = "C", [ANT_AC] = "AC", [ANT_BC] = "BC", [ANT_ABC] = "ABC", }; if (ant > ANT_ABC) return "UNKNOWN"; return ant_name[ant]; } static const char *rs_pretty_lq_type(enum iwl_table_type type) { static const char * const lq_types[] = { [LQ_NONE] = "NONE", [LQ_LEGACY_A] = "LEGACY_A", [LQ_LEGACY_G] = "LEGACY_G", [LQ_HT_SISO] = "HT SISO", [LQ_HT_MIMO2] = "HT MIMO", [LQ_VHT_SISO] = "VHT SISO", [LQ_VHT_MIMO2] = "VHT MIMO", }; if (type < LQ_NONE || type >= LQ_MAX) return "UNKNOWN"; return lq_types[type]; } static char *rs_pretty_rate(const struct rs_rate *rate) { static char buf[40]; static const char * const legacy_rates[] = { [IWL_RATE_1M_INDEX] = "1M", [IWL_RATE_2M_INDEX] = "2M", [IWL_RATE_5M_INDEX] = "5.5M", [IWL_RATE_11M_INDEX] = "11M", [IWL_RATE_6M_INDEX] = "6M", [IWL_RATE_9M_INDEX] = "9M", [IWL_RATE_12M_INDEX] = "12M", [IWL_RATE_18M_INDEX] = "18M", [IWL_RATE_24M_INDEX] = "24M", [IWL_RATE_36M_INDEX] = "36M", [IWL_RATE_48M_INDEX] = "48M", [IWL_RATE_54M_INDEX] = "54M", }; static const char *const ht_vht_rates[] = { [IWL_RATE_MCS_0_INDEX] = "MCS0", [IWL_RATE_MCS_1_INDEX] = "MCS1", [IWL_RATE_MCS_2_INDEX] = "MCS2", [IWL_RATE_MCS_3_INDEX] = "MCS3", [IWL_RATE_MCS_4_INDEX] = "MCS4", [IWL_RATE_MCS_5_INDEX] = "MCS5", [IWL_RATE_MCS_6_INDEX] = "MCS6", [IWL_RATE_MCS_7_INDEX] = "MCS7", [IWL_RATE_MCS_8_INDEX] = "MCS8", [IWL_RATE_MCS_9_INDEX] = "MCS9", }; const char *rate_str; if (is_type_legacy(rate->type)) rate_str = legacy_rates[rate->index]; else if (is_type_ht(rate->type) || is_type_vht(rate->type)) rate_str = ht_vht_rates[rate->index]; else rate_str = "BAD_RATE"; sprintf(buf, "(%s|%s|%s)", rs_pretty_lq_type(rate->type), rs_pretty_ant(rate->ant), rate_str); return buf; } static inline void rs_dump_rate(struct iwl_mvm *mvm, const struct rs_rate *rate, const char *prefix) { IWL_DEBUG_RATE(mvm, "%s: %s BW: %d SGI: %d LDPC: %d STBC: %d\n", prefix, rs_pretty_rate(rate), rate->bw, rate->sgi, rate->ldpc, rate->stbc); } static void rs_rate_scale_clear_window(struct iwl_rate_scale_data *window) { window->data = 0; window->success_counter = 0; window->success_ratio = IWL_INVALID_VALUE; window->counter = 0; window->average_tpt = IWL_INVALID_VALUE; } static void rs_rate_scale_clear_tbl_windows(struct iwl_mvm *mvm, struct iwl_scale_tbl_info *tbl) { int i; IWL_DEBUG_RATE(mvm, "Clearing up window stats\n"); for (i = 0; i < IWL_RATE_COUNT; i++) rs_rate_scale_clear_window(&tbl->win[i]); for (i = 0; i < ARRAY_SIZE(tbl->tpc_win); i++) rs_rate_scale_clear_window(&tbl->tpc_win[i]); } static inline u8 rs_is_valid_ant(u8 valid_antenna, u8 ant_type) { return (ant_type & valid_antenna) == ant_type; } static int rs_tl_turn_on_agg_for_tid(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_data, u8 tid, struct ieee80211_sta *sta) { int ret = -EAGAIN; IWL_DEBUG_HT(mvm, "Starting Tx agg: STA: %pM tid: %d\n", sta->addr, tid); ret = ieee80211_start_tx_ba_session(sta, tid, 5000); if (ret == -EAGAIN) { /* * driver and mac80211 is out of sync * this might be cause by reloading firmware * stop the tx ba session here */ IWL_ERR(mvm, "Fail start Tx agg on tid: %d\n", tid); ieee80211_stop_tx_ba_session(sta, tid); } return ret; } static void rs_tl_turn_on_agg(struct iwl_mvm *mvm, u8 tid, struct iwl_lq_sta *lq_data, struct ieee80211_sta *sta) { if (tid < IWL_MAX_TID_COUNT) rs_tl_turn_on_agg_for_tid(mvm, lq_data, tid, sta); else IWL_ERR(mvm, "tid exceeds max TID count: %d/%d\n", tid, IWL_MAX_TID_COUNT); } static inline int get_num_of_ant_from_rate(u32 rate_n_flags) { return !!(rate_n_flags & RATE_MCS_ANT_A_MSK) + !!(rate_n_flags & RATE_MCS_ANT_B_MSK) + !!(rate_n_flags & RATE_MCS_ANT_C_MSK); } /* * Static function to get the expected throughput from an iwl_scale_tbl_info * that wraps a NULL pointer check */ static s32 get_expected_tpt(struct iwl_scale_tbl_info *tbl, int rs_index) { if (tbl->expected_tpt) return tbl->expected_tpt[rs_index]; return 0; } /** * rs_collect_tx_data - Update the success/failure sliding window * * We keep a sliding window of the last 62 packets transmitted * at this rate. window->data contains the bitmask of successful * packets. */ static int _rs_collect_tx_data(struct iwl_mvm *mvm, struct iwl_scale_tbl_info *tbl, int scale_index, int attempts, int successes, struct iwl_rate_scale_data *window) { static const u64 mask = (((u64)1) << (IWL_RATE_MAX_WINDOW - 1)); s32 fail_count, tpt; /* Get expected throughput */ tpt = get_expected_tpt(tbl, scale_index); /* * Keep track of only the latest 62 tx frame attempts in this rate's * history window; anything older isn't really relevant any more. * If we have filled up the sliding window, drop the oldest attempt; * if the oldest attempt (highest bit in bitmap) shows "success", * subtract "1" from the success counter (this is the main reason * we keep these bitmaps!). */ while (attempts > 0) { if (window->counter >= IWL_RATE_MAX_WINDOW) { /* remove earliest */ window->counter = IWL_RATE_MAX_WINDOW - 1; if (window->data & mask) { window->data &= ~mask; window->success_counter--; } } /* Increment frames-attempted counter */ window->counter++; /* Shift bitmap by one frame to throw away oldest history */ window->data <<= 1; /* Mark the most recent #successes attempts as successful */ if (successes > 0) { window->success_counter++; window->data |= 0x1; successes--; } attempts--; } /* Calculate current success ratio, avoid divide-by-0! */ if (window->counter > 0) window->success_ratio = 128 * (100 * window->success_counter) / window->counter; else window->success_ratio = IWL_INVALID_VALUE; fail_count = window->counter - window->success_counter; /* Calculate average throughput, if we have enough history. */ if ((fail_count >= IWL_MVM_RS_RATE_MIN_FAILURE_TH) || (window->success_counter >= IWL_MVM_RS_RATE_MIN_SUCCESS_TH)) window->average_tpt = (window->success_ratio * tpt + 64) / 128; else window->average_tpt = IWL_INVALID_VALUE; return 0; } static int rs_collect_tx_data(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl, int scale_index, int attempts, int successes, u8 reduced_txp) { struct iwl_rate_scale_data *window = NULL; int ret; if (scale_index < 0 || scale_index >= IWL_RATE_COUNT) return -EINVAL; if (tbl->column != RS_COLUMN_INVALID) { struct lq_sta_pers *pers = &lq_sta->pers; pers->tx_stats[tbl->column][scale_index].total += attempts; pers->tx_stats[tbl->column][scale_index].success += successes; } /* Select window for current tx bit rate */ window = &(tbl->win[scale_index]); ret = _rs_collect_tx_data(mvm, tbl, scale_index, attempts, successes, window); if (ret) return ret; if (WARN_ON_ONCE(reduced_txp > TPC_MAX_REDUCTION)) return -EINVAL; window = &tbl->tpc_win[reduced_txp]; return _rs_collect_tx_data(mvm, tbl, scale_index, attempts, successes, window); } /* Convert rs_rate object into ucode rate bitmask */ static u32 ucode_rate_from_rs_rate(struct iwl_mvm *mvm, struct rs_rate *rate) { u32 ucode_rate = 0; int index = rate->index; ucode_rate |= ((rate->ant << RATE_MCS_ANT_POS) & RATE_MCS_ANT_ABC_MSK); if (is_legacy(rate)) { ucode_rate |= iwl_rates[index].plcp; if (index >= IWL_FIRST_CCK_RATE && index <= IWL_LAST_CCK_RATE) ucode_rate |= RATE_MCS_CCK_MSK; return ucode_rate; } if (is_ht(rate)) { if (index < IWL_FIRST_HT_RATE || index > IWL_LAST_HT_RATE) { IWL_ERR(mvm, "Invalid HT rate index %d\n", index); index = IWL_LAST_HT_RATE; } ucode_rate |= RATE_MCS_HT_MSK; if (is_ht_siso(rate)) ucode_rate |= iwl_rates[index].plcp_ht_siso; else if (is_ht_mimo2(rate)) ucode_rate |= iwl_rates[index].plcp_ht_mimo2; else WARN_ON_ONCE(1); } else if (is_vht(rate)) { if (index < IWL_FIRST_VHT_RATE || index > IWL_LAST_VHT_RATE) { IWL_ERR(mvm, "Invalid VHT rate index %d\n", index); index = IWL_LAST_VHT_RATE; } ucode_rate |= RATE_MCS_VHT_MSK; if (is_vht_siso(rate)) ucode_rate |= iwl_rates[index].plcp_vht_siso; else if (is_vht_mimo2(rate)) ucode_rate |= iwl_rates[index].plcp_vht_mimo2; else WARN_ON_ONCE(1); } else { IWL_ERR(mvm, "Invalid rate->type %d\n", rate->type); } if (is_siso(rate) && rate->stbc) { /* To enable STBC we need to set both a flag and ANT_AB */ ucode_rate |= RATE_MCS_ANT_AB_MSK; ucode_rate |= RATE_MCS_VHT_STBC_MSK; } ucode_rate |= rate->bw; if (rate->sgi) ucode_rate |= RATE_MCS_SGI_MSK; if (rate->ldpc) ucode_rate |= RATE_MCS_LDPC_MSK; return ucode_rate; } /* Convert a ucode rate into an rs_rate object */ static int rs_rate_from_ucode_rate(const u32 ucode_rate, enum ieee80211_band band, struct rs_rate *rate) { u32 ant_msk = ucode_rate & RATE_MCS_ANT_ABC_MSK; u8 num_of_ant = get_num_of_ant_from_rate(ucode_rate); u8 nss; memset(rate, 0, sizeof(*rate)); rate->index = iwl_hwrate_to_plcp_idx(ucode_rate); if (rate->index == IWL_RATE_INVALID) return -EINVAL; rate->ant = (ant_msk >> RATE_MCS_ANT_POS); /* Legacy */ if (!(ucode_rate & RATE_MCS_HT_MSK) && !(ucode_rate & RATE_MCS_VHT_MSK)) { if (num_of_ant == 1) { if (band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; } return 0; } /* HT or VHT */ if (ucode_rate & RATE_MCS_SGI_MSK) rate->sgi = true; if (ucode_rate & RATE_MCS_LDPC_MSK) rate->ldpc = true; if (ucode_rate & RATE_MCS_VHT_STBC_MSK) rate->stbc = true; if (ucode_rate & RATE_MCS_BF_MSK) rate->bfer = true; rate->bw = ucode_rate & RATE_MCS_CHAN_WIDTH_MSK; if (ucode_rate & RATE_MCS_HT_MSK) { nss = ((ucode_rate & RATE_HT_MCS_NSS_MSK) >> RATE_HT_MCS_NSS_POS) + 1; if (nss == 1) { rate->type = LQ_HT_SISO; WARN_ONCE(!rate->stbc && !rate->bfer && num_of_ant != 1, "stbc %d bfer %d", rate->stbc, rate->bfer); } else if (nss == 2) { rate->type = LQ_HT_MIMO2; WARN_ON_ONCE(num_of_ant != 2); } else { WARN_ON_ONCE(1); } } else if (ucode_rate & RATE_MCS_VHT_MSK) { nss = ((ucode_rate & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1; if (nss == 1) { rate->type = LQ_VHT_SISO; WARN_ONCE(!rate->stbc && !rate->bfer && num_of_ant != 1, "stbc %d bfer %d", rate->stbc, rate->bfer); } else if (nss == 2) { rate->type = LQ_VHT_MIMO2; WARN_ON_ONCE(num_of_ant != 2); } else { WARN_ON_ONCE(1); } } WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_160); WARN_ON_ONCE(rate->bw == RATE_MCS_CHAN_WIDTH_80 && !is_vht(rate)); return 0; } /* switch to another antenna/antennas and return 1 */ /* if no other valid antenna found, return 0 */ static int rs_toggle_antenna(u32 valid_ant, struct rs_rate *rate) { u8 new_ant_type; if (!rate->ant || rate->ant > ANT_ABC) return 0; if (!rs_is_valid_ant(valid_ant, rate->ant)) return 0; new_ant_type = ant_toggle_lookup[rate->ant]; while ((new_ant_type != rate->ant) && !rs_is_valid_ant(valid_ant, new_ant_type)) new_ant_type = ant_toggle_lookup[new_ant_type]; if (new_ant_type == rate->ant) return 0; rate->ant = new_ant_type; return 1; } static u16 rs_get_supported_rates(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { if (is_legacy(rate)) return lq_sta->active_legacy_rate; else if (is_siso(rate)) return lq_sta->active_siso_rate; else if (is_mimo2(rate)) return lq_sta->active_mimo2_rate; WARN_ON_ONCE(1); return 0; } static u16 rs_get_adjacent_rate(struct iwl_mvm *mvm, u8 index, u16 rate_mask, int rate_type) { u8 high = IWL_RATE_INVALID; u8 low = IWL_RATE_INVALID; /* 802.11A or ht walks to the next literal adjacent rate in * the rate table */ if (is_type_a_band(rate_type) || !is_type_legacy(rate_type)) { int i; u32 mask; /* Find the previous rate that is in the rate mask */ i = index - 1; for (mask = (1 << i); i >= 0; i--, mask >>= 1) { if (rate_mask & mask) { low = i; break; } } /* Find the next rate that is in the rate mask */ i = index + 1; for (mask = (1 << i); i < IWL_RATE_COUNT; i++, mask <<= 1) { if (rate_mask & mask) { high = i; break; } } return (high << 8) | low; } low = index; while (low != IWL_RATE_INVALID) { low = iwl_rates[low].prev_rs; if (low == IWL_RATE_INVALID) break; if (rate_mask & (1 << low)) break; } high = index; while (high != IWL_RATE_INVALID) { high = iwl_rates[high].next_rs; if (high == IWL_RATE_INVALID) break; if (rate_mask & (1 << high)) break; } return (high << 8) | low; } static inline bool rs_rate_supported(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { return BIT(rate->index) & rs_get_supported_rates(lq_sta, rate); } /* Get the next supported lower rate in the current column. * Return true if bottom rate in the current column was reached */ static bool rs_get_lower_rate_in_column(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { u8 low; u16 high_low; u16 rate_mask; struct iwl_mvm *mvm = lq_sta->pers.drv; rate_mask = rs_get_supported_rates(lq_sta, rate); high_low = rs_get_adjacent_rate(mvm, rate->index, rate_mask, rate->type); low = high_low & 0xff; /* Bottom rate of column reached */ if (low == IWL_RATE_INVALID) return true; rate->index = low; return false; } /* Get the next rate to use following a column downgrade */ static void rs_get_lower_rate_down_column(struct iwl_lq_sta *lq_sta, struct rs_rate *rate) { struct iwl_mvm *mvm = lq_sta->pers.drv; if (is_legacy(rate)) { /* No column to downgrade from Legacy */ return; } else if (is_siso(rate)) { /* Downgrade to Legacy if we were in SISO */ if (lq_sta->band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; rate->bw = RATE_MCS_CHAN_WIDTH_20; WARN_ON_ONCE(rate->index < IWL_RATE_MCS_0_INDEX || rate->index > IWL_RATE_MCS_9_INDEX); rate->index = rs_ht_to_legacy[rate->index]; rate->ldpc = false; } else { /* Downgrade to SISO with same MCS if in MIMO */ rate->type = is_vht_mimo2(rate) ? LQ_VHT_SISO : LQ_HT_SISO; } if (num_of_ant(rate->ant) > 1) rate->ant = first_antenna(iwl_mvm_get_valid_tx_ant(mvm)); /* Relevant in both switching to SISO or Legacy */ rate->sgi = false; if (!rs_rate_supported(lq_sta, rate)) rs_get_lower_rate_in_column(lq_sta, rate); } /* Check if both rates are identical * allow_ant_mismatch enables matching a SISO rate on ANT_A or ANT_B * with a rate indicating STBC/BFER and ANT_AB. */ static inline bool rs_rate_equal(struct rs_rate *a, struct rs_rate *b, bool allow_ant_mismatch) { bool ant_match = (a->ant == b->ant) && (a->stbc == b->stbc) && (a->bfer == b->bfer); if (allow_ant_mismatch) { if (a->stbc || a->bfer) { WARN_ONCE(a->ant != ANT_AB, "stbc %d bfer %d ant %d", a->stbc, a->bfer, a->ant); ant_match |= (b->ant == ANT_A || b->ant == ANT_B); } else if (b->stbc || b->bfer) { WARN_ONCE(b->ant != ANT_AB, "stbc %d bfer %d ant %d", b->stbc, b->bfer, b->ant); ant_match |= (a->ant == ANT_A || a->ant == ANT_B); } } return (a->type == b->type) && (a->bw == b->bw) && (a->sgi == b->sgi) && (a->ldpc == b->ldpc) && (a->index == b->index) && ant_match; } /* Check if both rates share the same column */ static inline bool rs_rate_column_match(struct rs_rate *a, struct rs_rate *b) { bool ant_match; if (a->stbc || a->bfer) ant_match = (b->ant == ANT_A || b->ant == ANT_B); else ant_match = (a->ant == b->ant); return (a->type == b->type) && (a->bw == b->bw) && (a->sgi == b->sgi) && ant_match; } static inline enum rs_column rs_get_column_from_rate(struct rs_rate *rate) { if (is_legacy(rate)) { if (rate->ant == ANT_A) return RS_COLUMN_LEGACY_ANT_A; if (rate->ant == ANT_B) return RS_COLUMN_LEGACY_ANT_B; goto err; } if (is_siso(rate)) { if (rate->ant == ANT_A || rate->stbc || rate->bfer) return rate->sgi ? RS_COLUMN_SISO_ANT_A_SGI : RS_COLUMN_SISO_ANT_A; if (rate->ant == ANT_B) return rate->sgi ? RS_COLUMN_SISO_ANT_B_SGI : RS_COLUMN_SISO_ANT_B; goto err; } if (is_mimo(rate)) return rate->sgi ? RS_COLUMN_MIMO2_SGI : RS_COLUMN_MIMO2; err: return RS_COLUMN_INVALID; } static u8 rs_get_tid(struct ieee80211_hdr *hdr) { u8 tid = IWL_MAX_TID_COUNT; if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; } if (unlikely(tid > IWL_MAX_TID_COUNT)) tid = IWL_MAX_TID_COUNT; return tid; } void iwl_mvm_rs_tx_status(struct iwl_mvm *mvm, struct ieee80211_sta *sta, int tid, struct ieee80211_tx_info *info) { int legacy_success; int retries; int i; struct iwl_lq_cmd *table; u32 lq_hwrate; struct rs_rate lq_rate, tx_resp_rate; struct iwl_scale_tbl_info *curr_tbl, *other_tbl, *tmp_tbl; u8 reduced_txp = (uintptr_t)info->status.status_driver_data[0]; u32 tx_resp_hwrate = (uintptr_t)info->status.status_driver_data[1]; struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); struct iwl_lq_sta *lq_sta = &mvmsta->lq_sta; bool allow_ant_mismatch = fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_LQ_SS_PARAMS); /* Treat uninitialized rate scaling data same as non-existing. */ if (!lq_sta) { IWL_DEBUG_RATE(mvm, "Station rate scaling not created yet.\n"); return; } else if (!lq_sta->pers.drv) { IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n"); return; } /* This packet was aggregated but doesn't carry status info */ if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) return; rs_rate_from_ucode_rate(tx_resp_hwrate, info->band, &tx_resp_rate); #ifdef CONFIG_MAC80211_DEBUGFS /* Disable last tx check if we are debugging with fixed rate but * update tx stats */ if (lq_sta->pers.dbg_fixed_rate) { int index = tx_resp_rate.index; enum rs_column column; int attempts, success; column = rs_get_column_from_rate(&tx_resp_rate); if (WARN_ONCE(column == RS_COLUMN_INVALID, "Can't map rate 0x%x to column", tx_resp_hwrate)) return; if (info->flags & IEEE80211_TX_STAT_AMPDU) { attempts = info->status.ampdu_len; success = info->status.ampdu_ack_len; } else { attempts = info->status.rates[0].count; success = !!(info->flags & IEEE80211_TX_STAT_ACK); } lq_sta->pers.tx_stats[column][index].total += attempts; lq_sta->pers.tx_stats[column][index].success += success; IWL_DEBUG_RATE(mvm, "Fixed rate 0x%x success %d attempts %d\n", tx_resp_hwrate, success, attempts); return; } #endif if (time_after(jiffies, (unsigned long)(lq_sta->last_tx + (IWL_MVM_RS_IDLE_TIMEOUT * HZ)))) { int t; IWL_DEBUG_RATE(mvm, "Tx idle for too long. reinit rs\n"); for (t = 0; t < IWL_MAX_TID_COUNT; t++) ieee80211_stop_tx_ba_session(sta, t); iwl_mvm_rs_rate_init(mvm, sta, info->band, false); return; } lq_sta->last_tx = jiffies; /* Ignore this Tx frame response if its initial rate doesn't match * that of latest Link Quality command. There may be stragglers * from a previous Link Quality command, but we're no longer interested * in those; they're either from the "active" mode while we're trying * to check "search" mode, or a prior "search" mode after we've moved * to a new "search" mode (which might become the new "active" mode). */ table = &lq_sta->lq; lq_hwrate = le32_to_cpu(table->rs_table[0]); rs_rate_from_ucode_rate(lq_hwrate, info->band, &lq_rate); /* Here we actually compare this rate to the latest LQ command */ if (!rs_rate_equal(&tx_resp_rate, &lq_rate, allow_ant_mismatch)) { IWL_DEBUG_RATE(mvm, "initial tx resp rate 0x%x does not match 0x%x\n", tx_resp_hwrate, lq_hwrate); /* * Since rates mis-match, the last LQ command may have failed. * After IWL_MISSED_RATE_MAX mis-matches, resync the uCode with * ... driver. */ lq_sta->missed_rate_counter++; if (lq_sta->missed_rate_counter > IWL_MVM_RS_MISSED_RATE_MAX) { lq_sta->missed_rate_counter = 0; IWL_DEBUG_RATE(mvm, "Too many rates mismatch. Send sync LQ. rs_state %d\n", lq_sta->rs_state); iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false); } /* Regardless, ignore this status info for outdated rate */ return; } else /* Rate did match, so reset the missed_rate_counter */ lq_sta->missed_rate_counter = 0; if (!lq_sta->search_better_tbl) { curr_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); other_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]); } else { curr_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]); other_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); } if (WARN_ON_ONCE(!rs_rate_column_match(&lq_rate, &curr_tbl->rate))) { IWL_DEBUG_RATE(mvm, "Neither active nor search matches tx rate\n"); tmp_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); rs_dump_rate(mvm, &tmp_tbl->rate, "ACTIVE"); tmp_tbl = &(lq_sta->lq_info[1 - lq_sta->active_tbl]); rs_dump_rate(mvm, &tmp_tbl->rate, "SEARCH"); rs_dump_rate(mvm, &lq_rate, "ACTUAL"); /* * no matching table found, let's by-pass the data collection * and continue to perform rate scale to find the rate table */ rs_stay_in_table(lq_sta, true); goto done; } /* * Updating the frame history depends on whether packets were * aggregated. * * For aggregation, all packets were transmitted at the same rate, the * first index into rate scale table. */ if (info->flags & IEEE80211_TX_STAT_AMPDU) { /* ampdu_ack_len = 0 marks no BA was received. In this case * treat it as a single frame loss as we don't want the success * ratio to dip too quickly because a BA wasn't received */ if (info->status.ampdu_ack_len == 0) info->status.ampdu_len = 1; rs_collect_tx_data(mvm, lq_sta, curr_tbl, lq_rate.index, info->status.ampdu_len, info->status.ampdu_ack_len, reduced_txp); /* Update success/fail counts if not searching for new mode */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) { lq_sta->total_success += info->status.ampdu_ack_len; lq_sta->total_failed += (info->status.ampdu_len - info->status.ampdu_ack_len); } } else { /* For legacy, update frame history with for each Tx retry. */ retries = info->status.rates[0].count - 1; /* HW doesn't send more than 15 retries */ retries = min(retries, 15); /* The last transmission may have been successful */ legacy_success = !!(info->flags & IEEE80211_TX_STAT_ACK); /* Collect data for each rate used during failed TX attempts */ for (i = 0; i <= retries; ++i) { lq_hwrate = le32_to_cpu(table->rs_table[i]); rs_rate_from_ucode_rate(lq_hwrate, info->band, &lq_rate); /* * Only collect stats if retried rate is in the same RS * table as active/search. */ if (rs_rate_column_match(&lq_rate, &curr_tbl->rate)) tmp_tbl = curr_tbl; else if (rs_rate_column_match(&lq_rate, &other_tbl->rate)) tmp_tbl = other_tbl; else continue; rs_collect_tx_data(mvm, lq_sta, tmp_tbl, lq_rate.index, 1, i < retries ? 0 : legacy_success, reduced_txp); } /* Update success/fail counts if not searching for new mode */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) { lq_sta->total_success += legacy_success; lq_sta->total_failed += retries + (1 - legacy_success); } } /* The last TX rate is cached in lq_sta; it's set in if/else above */ lq_sta->last_rate_n_flags = lq_hwrate; IWL_DEBUG_RATE(mvm, "reduced txpower: %d\n", reduced_txp); done: /* See if there's a better rate or modulation mode to try. */ if (sta->supp_rates[info->band]) rs_rate_scale_perform(mvm, sta, lq_sta, tid); } /* * mac80211 sends us Tx status */ static void rs_mac80211_tx_status(void *mvm_r, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_r; struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (!iwl_mvm_sta_from_mac80211(sta)->vif) return; if (!ieee80211_is_data(hdr->frame_control) || info->flags & IEEE80211_TX_CTL_NO_ACK) return; iwl_mvm_rs_tx_status(mvm, sta, rs_get_tid(hdr), info); } /* * Begin a period of staying with a selected modulation mode. * Set "stay_in_tbl" flag to prevent any mode switches. * Set frame tx success limits according to legacy vs. high-throughput, * and reset overall (spanning all rates) tx success history statistics. * These control how long we stay using same modulation mode before * searching for a new mode. */ static void rs_set_stay_in_table(struct iwl_mvm *mvm, u8 is_legacy, struct iwl_lq_sta *lq_sta) { IWL_DEBUG_RATE(mvm, "Moving to RS_STATE_STAY_IN_COLUMN\n"); lq_sta->rs_state = RS_STATE_STAY_IN_COLUMN; if (is_legacy) { lq_sta->table_count_limit = IWL_MVM_RS_LEGACY_TABLE_COUNT; lq_sta->max_failure_limit = IWL_MVM_RS_LEGACY_FAILURE_LIMIT; lq_sta->max_success_limit = IWL_MVM_RS_LEGACY_SUCCESS_LIMIT; } else { lq_sta->table_count_limit = IWL_MVM_RS_NON_LEGACY_TABLE_COUNT; lq_sta->max_failure_limit = IWL_MVM_RS_NON_LEGACY_FAILURE_LIMIT; lq_sta->max_success_limit = IWL_MVM_RS_NON_LEGACY_SUCCESS_LIMIT; } lq_sta->table_count = 0; lq_sta->total_failed = 0; lq_sta->total_success = 0; lq_sta->flush_timer = jiffies; lq_sta->visited_columns = 0; } static inline int rs_get_max_rate_from_mask(unsigned long rate_mask) { if (rate_mask) return find_last_bit(&rate_mask, BITS_PER_LONG); return IWL_RATE_INVALID; } static int rs_get_max_allowed_rate(struct iwl_lq_sta *lq_sta, const struct rs_tx_column *column) { switch (column->mode) { case RS_LEGACY: return lq_sta->max_legacy_rate_idx; case RS_SISO: return lq_sta->max_siso_rate_idx; case RS_MIMO2: return lq_sta->max_mimo2_rate_idx; default: WARN_ON_ONCE(1); } return lq_sta->max_legacy_rate_idx; } static const u16 *rs_get_expected_tpt_table(struct iwl_lq_sta *lq_sta, const struct rs_tx_column *column, u32 bw) { /* Used to choose among HT tables */ const u16 (*ht_tbl_pointer)[IWL_RATE_COUNT]; if (WARN_ON_ONCE(column->mode != RS_LEGACY && column->mode != RS_SISO && column->mode != RS_MIMO2)) return expected_tpt_legacy; /* Legacy rates have only one table */ if (column->mode == RS_LEGACY) return expected_tpt_legacy; ht_tbl_pointer = expected_tpt_mimo2_20MHz; /* Choose among many HT tables depending on number of streams * (SISO/MIMO2), channel width (20/40/80), SGI, and aggregation * status */ if (column->mode == RS_SISO) { switch (bw) { case RATE_MCS_CHAN_WIDTH_20: ht_tbl_pointer = expected_tpt_siso_20MHz; break; case RATE_MCS_CHAN_WIDTH_40: ht_tbl_pointer = expected_tpt_siso_40MHz; break; case RATE_MCS_CHAN_WIDTH_80: ht_tbl_pointer = expected_tpt_siso_80MHz; break; default: WARN_ON_ONCE(1); } } else if (column->mode == RS_MIMO2) { switch (bw) { case RATE_MCS_CHAN_WIDTH_20: ht_tbl_pointer = expected_tpt_mimo2_20MHz; break; case RATE_MCS_CHAN_WIDTH_40: ht_tbl_pointer = expected_tpt_mimo2_40MHz; break; case RATE_MCS_CHAN_WIDTH_80: ht_tbl_pointer = expected_tpt_mimo2_80MHz; break; default: WARN_ON_ONCE(1); } } else { WARN_ON_ONCE(1); } if (!column->sgi && !lq_sta->is_agg) /* Normal */ return ht_tbl_pointer[0]; else if (column->sgi && !lq_sta->is_agg) /* SGI */ return ht_tbl_pointer[1]; else if (!column->sgi && lq_sta->is_agg) /* AGG */ return ht_tbl_pointer[2]; else /* AGG+SGI */ return ht_tbl_pointer[3]; } static void rs_set_expected_tpt_table(struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl) { struct rs_rate *rate = &tbl->rate; const struct rs_tx_column *column = &rs_tx_columns[tbl->column]; tbl->expected_tpt = rs_get_expected_tpt_table(lq_sta, column, rate->bw); } static s32 rs_get_best_rate(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl, /* "search" */ unsigned long rate_mask, s8 index) { struct iwl_scale_tbl_info *active_tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); s32 success_ratio = active_tbl->win[index].success_ratio; u16 expected_current_tpt = active_tbl->expected_tpt[index]; const u16 *tpt_tbl = tbl->expected_tpt; u16 high_low; u32 target_tpt; int rate_idx; if (success_ratio >= RS_PERCENT(IWL_MVM_RS_SR_NO_DECREASE)) { target_tpt = 100 * expected_current_tpt; IWL_DEBUG_RATE(mvm, "SR %d high. Find rate exceeding EXPECTED_CURRENT %d\n", success_ratio, target_tpt); } else { target_tpt = lq_sta->last_tpt; IWL_DEBUG_RATE(mvm, "SR %d not that good. Find rate exceeding ACTUAL_TPT %d\n", success_ratio, target_tpt); } rate_idx = find_first_bit(&rate_mask, BITS_PER_LONG); while (rate_idx != IWL_RATE_INVALID) { if (target_tpt < (100 * tpt_tbl[rate_idx])) break; high_low = rs_get_adjacent_rate(mvm, rate_idx, rate_mask, tbl->rate.type); rate_idx = (high_low >> 8) & 0xff; } IWL_DEBUG_RATE(mvm, "Best rate found %d target_tp %d expected_new %d\n", rate_idx, target_tpt, rate_idx != IWL_RATE_INVALID ? 100 * tpt_tbl[rate_idx] : IWL_INVALID_VALUE); return rate_idx; } static u32 rs_bw_from_sta_bw(struct ieee80211_sta *sta) { if (sta->bandwidth >= IEEE80211_STA_RX_BW_80) return RATE_MCS_CHAN_WIDTH_80; else if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) return RATE_MCS_CHAN_WIDTH_40; return RATE_MCS_CHAN_WIDTH_20; } /* * Check whether we should continue using same modulation mode, or * begin search for a new mode, based on: * 1) # tx successes or failures while using this mode * 2) # times calling this function * 3) elapsed time in this mode (not used, for now) */ static void rs_stay_in_table(struct iwl_lq_sta *lq_sta, bool force_search) { struct iwl_scale_tbl_info *tbl; int active_tbl; int flush_interval_passed = 0; struct iwl_mvm *mvm; mvm = lq_sta->pers.drv; active_tbl = lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); /* If we've been disallowing search, see if we should now allow it */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) { /* Elapsed time using current modulation mode */ if (lq_sta->flush_timer) flush_interval_passed = time_after(jiffies, (unsigned long)(lq_sta->flush_timer + (IWL_MVM_RS_STAY_IN_COLUMN_TIMEOUT * HZ))); /* * Check if we should allow search for new modulation mode. * If many frames have failed or succeeded, or we've used * this same modulation for a long time, allow search, and * reset history stats that keep track of whether we should * allow a new search. Also (below) reset all bitmaps and * stats in active history. */ if (force_search || (lq_sta->total_failed > lq_sta->max_failure_limit) || (lq_sta->total_success > lq_sta->max_success_limit) || ((!lq_sta->search_better_tbl) && (lq_sta->flush_timer) && (flush_interval_passed))) { IWL_DEBUG_RATE(mvm, "LQ: stay is expired %d %d %d\n", lq_sta->total_failed, lq_sta->total_success, flush_interval_passed); /* Allow search for new mode */ lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_STARTED; IWL_DEBUG_RATE(mvm, "Moving to RS_STATE_SEARCH_CYCLE_STARTED\n"); lq_sta->total_failed = 0; lq_sta->total_success = 0; lq_sta->flush_timer = 0; /* mark the current column as visited */ lq_sta->visited_columns = BIT(tbl->column); /* * Else if we've used this modulation mode enough repetitions * (regardless of elapsed time or success/failure), reset * history bitmaps and rate-specific stats for all rates in * active table. */ } else { lq_sta->table_count++; if (lq_sta->table_count >= lq_sta->table_count_limit) { lq_sta->table_count = 0; IWL_DEBUG_RATE(mvm, "LQ: stay in table clear win\n"); rs_rate_scale_clear_tbl_windows(mvm, tbl); } } /* If transitioning to allow "search", reset all history * bitmaps and stats in active table (this will become the new * "search" table). */ if (lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED) { rs_rate_scale_clear_tbl_windows(mvm, tbl); } } } /* * setup rate table in uCode */ static void rs_update_rate_tbl(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl) { rs_fill_lq_cmd(mvm, sta, lq_sta, &tbl->rate); iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, false); } static bool rs_tweak_rate_tbl(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl, enum rs_action scale_action) { if (sta->bandwidth != IEEE80211_STA_RX_BW_80) return false; if (!is_vht_siso(&tbl->rate)) return false; if ((tbl->rate.bw == RATE_MCS_CHAN_WIDTH_80) && (tbl->rate.index == IWL_RATE_MCS_0_INDEX) && (scale_action == RS_ACTION_DOWNSCALE)) { tbl->rate.bw = RATE_MCS_CHAN_WIDTH_20; tbl->rate.index = IWL_RATE_MCS_4_INDEX; IWL_DEBUG_RATE(mvm, "Switch 80Mhz SISO MCS0 -> 20Mhz MCS4\n"); goto tweaked; } /* Go back to 80Mhz MCS1 only if we've established that 20Mhz MCS5 is * sustainable, i.e. we're past the test window. We can't go back * if MCS5 is just tested as this will happen always after switching * to 20Mhz MCS4 because the rate stats are cleared. */ if ((tbl->rate.bw == RATE_MCS_CHAN_WIDTH_20) && (((tbl->rate.index == IWL_RATE_MCS_5_INDEX) && (scale_action == RS_ACTION_STAY)) || ((tbl->rate.index > IWL_RATE_MCS_5_INDEX) && (scale_action == RS_ACTION_UPSCALE)))) { tbl->rate.bw = RATE_MCS_CHAN_WIDTH_80; tbl->rate.index = IWL_RATE_MCS_1_INDEX; IWL_DEBUG_RATE(mvm, "Switch 20Mhz SISO MCS5 -> 80Mhz MCS1\n"); goto tweaked; } return false; tweaked: rs_set_expected_tpt_table(lq_sta, tbl); rs_rate_scale_clear_tbl_windows(mvm, tbl); return true; } static enum rs_column rs_get_next_column(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct ieee80211_sta *sta, struct iwl_scale_tbl_info *tbl) { int i, j, max_rate; enum rs_column next_col_id; const struct rs_tx_column *curr_col = &rs_tx_columns[tbl->column]; const struct rs_tx_column *next_col; allow_column_func_t allow_func; u8 valid_ants = iwl_mvm_get_valid_tx_ant(mvm); const u16 *expected_tpt_tbl; u16 tpt, max_expected_tpt; for (i = 0; i < MAX_NEXT_COLUMNS; i++) { next_col_id = curr_col->next_columns[i]; if (next_col_id == RS_COLUMN_INVALID) continue; if (lq_sta->visited_columns & BIT(next_col_id)) { IWL_DEBUG_RATE(mvm, "Skip already visited column %d\n", next_col_id); continue; } next_col = &rs_tx_columns[next_col_id]; if (!rs_is_valid_ant(valid_ants, next_col->ant)) { IWL_DEBUG_RATE(mvm, "Skip column %d as ANT config isn't supported by chip. valid_ants 0x%x column ant 0x%x\n", next_col_id, valid_ants, next_col->ant); continue; } for (j = 0; j < MAX_COLUMN_CHECKS; j++) { allow_func = next_col->checks[j]; if (allow_func && !allow_func(mvm, sta, &tbl->rate, next_col)) break; } if (j != MAX_COLUMN_CHECKS) { IWL_DEBUG_RATE(mvm, "Skip column %d: not allowed (check %d failed)\n", next_col_id, j); continue; } tpt = lq_sta->last_tpt / 100; expected_tpt_tbl = rs_get_expected_tpt_table(lq_sta, next_col, rs_bw_from_sta_bw(sta)); if (WARN_ON_ONCE(!expected_tpt_tbl)) continue; max_rate = rs_get_max_allowed_rate(lq_sta, next_col); if (max_rate == IWL_RATE_INVALID) { IWL_DEBUG_RATE(mvm, "Skip column %d: no rate is allowed in this column\n", next_col_id); continue; } max_expected_tpt = expected_tpt_tbl[max_rate]; if (tpt >= max_expected_tpt) { IWL_DEBUG_RATE(mvm, "Skip column %d: can't beat current TPT. Max expected %d current %d\n", next_col_id, max_expected_tpt, tpt); continue; } IWL_DEBUG_RATE(mvm, "Found potential column %d. Max expected %d current %d\n", next_col_id, max_expected_tpt, tpt); break; } if (i == MAX_NEXT_COLUMNS) return RS_COLUMN_INVALID; return next_col_id; } static int rs_switch_to_column(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct ieee80211_sta *sta, enum rs_column col_id) { struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); struct iwl_scale_tbl_info *search_tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]); struct rs_rate *rate = &search_tbl->rate; const struct rs_tx_column *column = &rs_tx_columns[col_id]; const struct rs_tx_column *curr_column = &rs_tx_columns[tbl->column]; u32 sz = (sizeof(struct iwl_scale_tbl_info) - (sizeof(struct iwl_rate_scale_data) * IWL_RATE_COUNT)); unsigned long rate_mask = 0; u32 rate_idx = 0; memcpy(search_tbl, tbl, sz); rate->sgi = column->sgi; rate->ant = column->ant; if (column->mode == RS_LEGACY) { if (lq_sta->band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; rate->bw = RATE_MCS_CHAN_WIDTH_20; rate->ldpc = false; rate_mask = lq_sta->active_legacy_rate; } else if (column->mode == RS_SISO) { rate->type = lq_sta->is_vht ? LQ_VHT_SISO : LQ_HT_SISO; rate_mask = lq_sta->active_siso_rate; } else if (column->mode == RS_MIMO2) { rate->type = lq_sta->is_vht ? LQ_VHT_MIMO2 : LQ_HT_MIMO2; rate_mask = lq_sta->active_mimo2_rate; } else { WARN_ON_ONCE("Bad column mode"); } if (column->mode != RS_LEGACY) { rate->bw = rs_bw_from_sta_bw(sta); rate->ldpc = lq_sta->ldpc; } search_tbl->column = col_id; rs_set_expected_tpt_table(lq_sta, search_tbl); lq_sta->visited_columns |= BIT(col_id); /* Get the best matching rate if we're changing modes. e.g. * SISO->MIMO, LEGACY->SISO, MIMO->SISO */ if (curr_column->mode != column->mode) { rate_idx = rs_get_best_rate(mvm, lq_sta, search_tbl, rate_mask, rate->index); if ((rate_idx == IWL_RATE_INVALID) || !(BIT(rate_idx) & rate_mask)) { IWL_DEBUG_RATE(mvm, "can not switch with index %d" " rate mask %lx\n", rate_idx, rate_mask); goto err; } rate->index = rate_idx; } IWL_DEBUG_RATE(mvm, "Switched to column %d: Index %d\n", col_id, rate->index); return 0; err: rate->type = LQ_NONE; return -1; } static enum rs_action rs_get_rate_action(struct iwl_mvm *mvm, struct iwl_scale_tbl_info *tbl, s32 sr, int low, int high, int current_tpt, int low_tpt, int high_tpt) { enum rs_action action = RS_ACTION_STAY; if ((sr <= RS_PERCENT(IWL_MVM_RS_SR_FORCE_DECREASE)) || (current_tpt == 0)) { IWL_DEBUG_RATE(mvm, "Decrease rate because of low SR\n"); return RS_ACTION_DOWNSCALE; } if ((low_tpt == IWL_INVALID_VALUE) && (high_tpt == IWL_INVALID_VALUE) && (high != IWL_RATE_INVALID)) { IWL_DEBUG_RATE(mvm, "No data about high/low rates. Increase rate\n"); return RS_ACTION_UPSCALE; } if ((high_tpt == IWL_INVALID_VALUE) && (high != IWL_RATE_INVALID) && (low_tpt != IWL_INVALID_VALUE) && (low_tpt < current_tpt)) { IWL_DEBUG_RATE(mvm, "No data about high rate and low rate is worse. Increase rate\n"); return RS_ACTION_UPSCALE; } if ((high_tpt != IWL_INVALID_VALUE) && (high_tpt > current_tpt)) { IWL_DEBUG_RATE(mvm, "Higher rate is better. Increate rate\n"); return RS_ACTION_UPSCALE; } if ((low_tpt != IWL_INVALID_VALUE) && (high_tpt != IWL_INVALID_VALUE) && (low_tpt < current_tpt) && (high_tpt < current_tpt)) { IWL_DEBUG_RATE(mvm, "Both high and low are worse. Maintain rate\n"); return RS_ACTION_STAY; } if ((low_tpt != IWL_INVALID_VALUE) && (low_tpt > current_tpt)) { IWL_DEBUG_RATE(mvm, "Lower rate is better\n"); action = RS_ACTION_DOWNSCALE; goto out; } if ((low_tpt == IWL_INVALID_VALUE) && (low != IWL_RATE_INVALID)) { IWL_DEBUG_RATE(mvm, "No data about lower rate\n"); action = RS_ACTION_DOWNSCALE; goto out; } IWL_DEBUG_RATE(mvm, "Maintain rate\n"); out: if ((action == RS_ACTION_DOWNSCALE) && (low != IWL_RATE_INVALID)) { if (sr >= RS_PERCENT(IWL_MVM_RS_SR_NO_DECREASE)) { IWL_DEBUG_RATE(mvm, "SR is above NO DECREASE. Avoid downscale\n"); action = RS_ACTION_STAY; } else if (current_tpt > (100 * tbl->expected_tpt[low])) { IWL_DEBUG_RATE(mvm, "Current TPT is higher than max expected in low rate. Avoid downscale\n"); action = RS_ACTION_STAY; } else { IWL_DEBUG_RATE(mvm, "Decrease rate\n"); } } return action; } static bool rs_stbc_allow(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta) { /* Our chip supports Tx STBC and the peer is an HT/VHT STA which * supports STBC of at least 1*SS */ if (!lq_sta->stbc_capable) return false; if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) return false; return true; } static void rs_get_adjacent_txp(struct iwl_mvm *mvm, int index, int *weaker, int *stronger) { *weaker = index + IWL_MVM_RS_TPC_TX_POWER_STEP; if (*weaker > TPC_MAX_REDUCTION) *weaker = TPC_INVALID; *stronger = index - IWL_MVM_RS_TPC_TX_POWER_STEP; if (*stronger < 0) *stronger = TPC_INVALID; } static bool rs_tpc_allowed(struct iwl_mvm *mvm, struct ieee80211_vif *vif, struct rs_rate *rate, enum ieee80211_band band) { int index = rate->index; bool cam = (iwlmvm_mod_params.power_scheme == IWL_POWER_SCHEME_CAM); bool sta_ps_disabled = (vif->type == NL80211_IFTYPE_STATION && !vif->bss_conf.ps); IWL_DEBUG_RATE(mvm, "cam: %d sta_ps_disabled %d\n", cam, sta_ps_disabled); /* * allow tpc only if power management is enabled, or bt coex * activity grade allows it and we are on 2.4Ghz. */ if ((cam || sta_ps_disabled) && !iwl_mvm_bt_coex_is_tpc_allowed(mvm, band)) return false; IWL_DEBUG_RATE(mvm, "check rate, table type: %d\n", rate->type); if (is_legacy(rate)) return index == IWL_RATE_54M_INDEX; if (is_ht(rate)) return index == IWL_RATE_MCS_7_INDEX; if (is_vht(rate)) return index == IWL_RATE_MCS_7_INDEX || index == IWL_RATE_MCS_8_INDEX || index == IWL_RATE_MCS_9_INDEX; WARN_ON_ONCE(1); return false; } enum tpc_action { TPC_ACTION_STAY, TPC_ACTION_DECREASE, TPC_ACTION_INCREASE, TPC_ACTION_NO_RESTIRCTION, }; static enum tpc_action rs_get_tpc_action(struct iwl_mvm *mvm, s32 sr, int weak, int strong, int current_tpt, int weak_tpt, int strong_tpt) { /* stay until we have valid tpt */ if (current_tpt == IWL_INVALID_VALUE) { IWL_DEBUG_RATE(mvm, "no current tpt. stay.\n"); return TPC_ACTION_STAY; } /* Too many failures, increase txp */ if (sr <= RS_PERCENT(IWL_MVM_RS_TPC_SR_FORCE_INCREASE) || current_tpt == 0) { IWL_DEBUG_RATE(mvm, "increase txp because of weak SR\n"); return TPC_ACTION_NO_RESTIRCTION; } /* try decreasing first if applicable */ if (weak != TPC_INVALID) { if (weak_tpt == IWL_INVALID_VALUE && (strong_tpt == IWL_INVALID_VALUE || current_tpt >= strong_tpt)) { IWL_DEBUG_RATE(mvm, "no weak txp measurement. decrease txp\n"); return TPC_ACTION_DECREASE; } if (weak_tpt > current_tpt) { IWL_DEBUG_RATE(mvm, "lower txp has better tpt. decrease txp\n"); return TPC_ACTION_DECREASE; } } /* next, increase if needed */ if (sr < RS_PERCENT(IWL_MVM_RS_TPC_SR_NO_INCREASE) && strong != TPC_INVALID) { if (weak_tpt == IWL_INVALID_VALUE && strong_tpt != IWL_INVALID_VALUE && current_tpt < strong_tpt) { IWL_DEBUG_RATE(mvm, "higher txp has better tpt. increase txp\n"); return TPC_ACTION_INCREASE; } if (weak_tpt < current_tpt && (strong_tpt == IWL_INVALID_VALUE || strong_tpt > current_tpt)) { IWL_DEBUG_RATE(mvm, "lower txp has worse tpt. increase txp\n"); return TPC_ACTION_INCREASE; } } IWL_DEBUG_RATE(mvm, "no need to increase or decrease txp - stay\n"); return TPC_ACTION_STAY; } static bool rs_tpc_perform(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, struct iwl_scale_tbl_info *tbl) { struct iwl_mvm_sta *mvm_sta = iwl_mvm_sta_from_mac80211(sta); struct ieee80211_vif *vif = mvm_sta->vif; struct ieee80211_chanctx_conf *chanctx_conf; enum ieee80211_band band; struct iwl_rate_scale_data *window; struct rs_rate *rate = &tbl->rate; enum tpc_action action; s32 sr; u8 cur = lq_sta->lq.reduced_tpc; int current_tpt; int weak, strong; int weak_tpt = IWL_INVALID_VALUE, strong_tpt = IWL_INVALID_VALUE; #ifdef CONFIG_MAC80211_DEBUGFS if (lq_sta->pers.dbg_fixed_txp_reduction <= TPC_MAX_REDUCTION) { IWL_DEBUG_RATE(mvm, "fixed tpc: %d\n", lq_sta->pers.dbg_fixed_txp_reduction); lq_sta->lq.reduced_tpc = lq_sta->pers.dbg_fixed_txp_reduction; return cur != lq_sta->pers.dbg_fixed_txp_reduction; } #endif rcu_read_lock(); chanctx_conf = rcu_dereference(vif->chanctx_conf); if (WARN_ON(!chanctx_conf)) band = IEEE80211_NUM_BANDS; else band = chanctx_conf->def.chan->band; rcu_read_unlock(); if (!rs_tpc_allowed(mvm, vif, rate, band)) { IWL_DEBUG_RATE(mvm, "tpc is not allowed. remove txp restrictions\n"); lq_sta->lq.reduced_tpc = TPC_NO_REDUCTION; return cur != TPC_NO_REDUCTION; } rs_get_adjacent_txp(mvm, cur, &weak, &strong); /* Collect measured throughputs for current and adjacent rates */ window = tbl->tpc_win; sr = window[cur].success_ratio; current_tpt = window[cur].average_tpt; if (weak != TPC_INVALID) weak_tpt = window[weak].average_tpt; if (strong != TPC_INVALID) strong_tpt = window[strong].average_tpt; IWL_DEBUG_RATE(mvm, "(TPC: %d): cur_tpt %d SR %d weak %d strong %d weak_tpt %d strong_tpt %d\n", cur, current_tpt, sr, weak, strong, weak_tpt, strong_tpt); action = rs_get_tpc_action(mvm, sr, weak, strong, current_tpt, weak_tpt, strong_tpt); /* override actions if we are on the edge */ if (weak == TPC_INVALID && action == TPC_ACTION_DECREASE) { IWL_DEBUG_RATE(mvm, "already in lowest txp, stay\n"); action = TPC_ACTION_STAY; } else if (strong == TPC_INVALID && (action == TPC_ACTION_INCREASE || action == TPC_ACTION_NO_RESTIRCTION)) { IWL_DEBUG_RATE(mvm, "already in highest txp, stay\n"); action = TPC_ACTION_STAY; } switch (action) { case TPC_ACTION_DECREASE: lq_sta->lq.reduced_tpc = weak; return true; case TPC_ACTION_INCREASE: lq_sta->lq.reduced_tpc = strong; return true; case TPC_ACTION_NO_RESTIRCTION: lq_sta->lq.reduced_tpc = TPC_NO_REDUCTION; return true; case TPC_ACTION_STAY: /* do nothing */ break; } return false; } /* * Do rate scaling and search for new modulation mode. */ static void rs_rate_scale_perform(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, int tid) { int low = IWL_RATE_INVALID; int high = IWL_RATE_INVALID; int index; struct iwl_rate_scale_data *window = NULL; int current_tpt = IWL_INVALID_VALUE; int low_tpt = IWL_INVALID_VALUE; int high_tpt = IWL_INVALID_VALUE; u32 fail_count; enum rs_action scale_action = RS_ACTION_STAY; u16 rate_mask; u8 update_lq = 0; struct iwl_scale_tbl_info *tbl, *tbl1; u8 active_tbl = 0; u8 done_search = 0; u16 high_low; s32 sr; u8 prev_agg = lq_sta->is_agg; struct iwl_mvm_sta *sta_priv = iwl_mvm_sta_from_mac80211(sta); struct iwl_mvm_tid_data *tid_data; struct rs_rate *rate; lq_sta->is_agg = !!sta_priv->agg_tids; /* * Select rate-scale / modulation-mode table to work with in * the rest of this function: "search" if searching for better * modulation mode, or "active" if doing rate scaling within a mode. */ if (!lq_sta->search_better_tbl) active_tbl = lq_sta->active_tbl; else active_tbl = 1 - lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); rate = &tbl->rate; if (prev_agg != lq_sta->is_agg) { IWL_DEBUG_RATE(mvm, "Aggregation changed: prev %d current %d. Update expected TPT table\n", prev_agg, lq_sta->is_agg); rs_set_expected_tpt_table(lq_sta, tbl); rs_rate_scale_clear_tbl_windows(mvm, tbl); } /* current tx rate */ index = rate->index; /* rates available for this association, and for modulation mode */ rate_mask = rs_get_supported_rates(lq_sta, rate); if (!(BIT(index) & rate_mask)) { IWL_ERR(mvm, "Current Rate is not valid\n"); if (lq_sta->search_better_tbl) { /* revert to active table if search table is not valid*/ rate->type = LQ_NONE; lq_sta->search_better_tbl = 0; tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); rs_update_rate_tbl(mvm, sta, lq_sta, tbl); } return; } /* Get expected throughput table and history window for current rate */ if (!tbl->expected_tpt) { IWL_ERR(mvm, "tbl->expected_tpt is NULL\n"); return; } /* TODO: handle rate_idx_mask and rate_idx_mcs_mask */ window = &(tbl->win[index]); /* * If there is not enough history to calculate actual average * throughput, keep analyzing results of more tx frames, without * changing rate or mode (bypass most of the rest of this function). * Set up new rate table in uCode only if old rate is not supported * in current association (use new rate found above). */ fail_count = window->counter - window->success_counter; if ((fail_count < IWL_MVM_RS_RATE_MIN_FAILURE_TH) && (window->success_counter < IWL_MVM_RS_RATE_MIN_SUCCESS_TH)) { IWL_DEBUG_RATE(mvm, "%s: Test Window: succ %d total %d\n", rs_pretty_rate(rate), window->success_counter, window->counter); /* Can't calculate this yet; not enough history */ window->average_tpt = IWL_INVALID_VALUE; /* Should we stay with this modulation mode, * or search for a new one? */ rs_stay_in_table(lq_sta, false); return; } /* If we are searching for better modulation mode, check success. */ if (lq_sta->search_better_tbl) { /* If good success, continue using the "search" mode; * no need to send new link quality command, since we're * continuing to use the setup that we've been trying. */ if (window->average_tpt > lq_sta->last_tpt) { IWL_DEBUG_RATE(mvm, "SWITCHING TO NEW TABLE SR: %d " "cur-tpt %d old-tpt %d\n", window->success_ratio, window->average_tpt, lq_sta->last_tpt); /* Swap tables; "search" becomes "active" */ lq_sta->active_tbl = active_tbl; current_tpt = window->average_tpt; /* Else poor success; go back to mode in "active" table */ } else { IWL_DEBUG_RATE(mvm, "GOING BACK TO THE OLD TABLE: SR %d " "cur-tpt %d old-tpt %d\n", window->success_ratio, window->average_tpt, lq_sta->last_tpt); /* Nullify "search" table */ rate->type = LQ_NONE; /* Revert to "active" table */ active_tbl = lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); /* Revert to "active" rate and throughput info */ index = tbl->rate.index; current_tpt = lq_sta->last_tpt; /* Need to set up a new rate table in uCode */ update_lq = 1; } /* Either way, we've made a decision; modulation mode * search is done, allow rate adjustment next time. */ lq_sta->search_better_tbl = 0; done_search = 1; /* Don't switch modes below! */ goto lq_update; } /* (Else) not in search of better modulation mode, try for better * starting rate, while staying in this mode. */ high_low = rs_get_adjacent_rate(mvm, index, rate_mask, rate->type); low = high_low & 0xff; high = (high_low >> 8) & 0xff; /* TODO: handle rate_idx_mask and rate_idx_mcs_mask */ sr = window->success_ratio; /* Collect measured throughputs for current and adjacent rates */ current_tpt = window->average_tpt; if (low != IWL_RATE_INVALID) low_tpt = tbl->win[low].average_tpt; if (high != IWL_RATE_INVALID) high_tpt = tbl->win[high].average_tpt; IWL_DEBUG_RATE(mvm, "%s: cur_tpt %d SR %d low %d high %d low_tpt %d high_tpt %d\n", rs_pretty_rate(rate), current_tpt, sr, low, high, low_tpt, high_tpt); scale_action = rs_get_rate_action(mvm, tbl, sr, low, high, current_tpt, low_tpt, high_tpt); /* Force a search in case BT doesn't like us being in MIMO */ if (is_mimo(rate) && !iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) { IWL_DEBUG_RATE(mvm, "BT Coex forbids MIMO. Search for new config\n"); rs_stay_in_table(lq_sta, true); goto lq_update; } switch (scale_action) { case RS_ACTION_DOWNSCALE: /* Decrease starting rate, update uCode's rate table */ if (low != IWL_RATE_INVALID) { update_lq = 1; index = low; } else { IWL_DEBUG_RATE(mvm, "At the bottom rate. Can't decrease\n"); } break; case RS_ACTION_UPSCALE: /* Increase starting rate, update uCode's rate table */ if (high != IWL_RATE_INVALID) { update_lq = 1; index = high; } else { IWL_DEBUG_RATE(mvm, "At the top rate. Can't increase\n"); } break; case RS_ACTION_STAY: /* No change */ if (lq_sta->rs_state == RS_STATE_STAY_IN_COLUMN) update_lq = rs_tpc_perform(mvm, sta, lq_sta, tbl); break; default: break; } lq_update: /* Replace uCode's rate table for the destination station. */ if (update_lq) { tbl->rate.index = index; if (IWL_MVM_RS_80_20_FAR_RANGE_TWEAK) rs_tweak_rate_tbl(mvm, sta, lq_sta, tbl, scale_action); rs_update_rate_tbl(mvm, sta, lq_sta, tbl); } rs_stay_in_table(lq_sta, false); /* * Search for new modulation mode if we're: * 1) Not changing rates right now * 2) Not just finishing up a search * 3) Allowing a new search */ if (!update_lq && !done_search && lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_STARTED && window->counter) { enum rs_column next_column; /* Save current throughput to compare with "search" throughput*/ lq_sta->last_tpt = current_tpt; IWL_DEBUG_RATE(mvm, "Start Search: update_lq %d done_search %d rs_state %d win->counter %d\n", update_lq, done_search, lq_sta->rs_state, window->counter); next_column = rs_get_next_column(mvm, lq_sta, sta, tbl); if (next_column != RS_COLUMN_INVALID) { int ret = rs_switch_to_column(mvm, lq_sta, sta, next_column); if (!ret) lq_sta->search_better_tbl = 1; } else { IWL_DEBUG_RATE(mvm, "No more columns to explore in search cycle. Go to RS_STATE_SEARCH_CYCLE_ENDED\n"); lq_sta->rs_state = RS_STATE_SEARCH_CYCLE_ENDED; } /* If new "search" mode was selected, set up in uCode table */ if (lq_sta->search_better_tbl) { /* Access the "search" table, clear its history. */ tbl = &(lq_sta->lq_info[(1 - lq_sta->active_tbl)]); rs_rate_scale_clear_tbl_windows(mvm, tbl); /* Use new "search" start rate */ index = tbl->rate.index; rs_dump_rate(mvm, &tbl->rate, "Switch to SEARCH TABLE:"); rs_update_rate_tbl(mvm, sta, lq_sta, tbl); } else { done_search = 1; } } if (done_search && lq_sta->rs_state == RS_STATE_SEARCH_CYCLE_ENDED) { /* If the "active" (non-search) mode was legacy, * and we've tried switching antennas, * but we haven't been able to try HT modes (not available), * stay with best antenna legacy modulation for a while * before next round of mode comparisons. */ tbl1 = &(lq_sta->lq_info[lq_sta->active_tbl]); if (is_legacy(&tbl1->rate)) { IWL_DEBUG_RATE(mvm, "LQ: STAY in legacy table\n"); if (tid != IWL_MAX_TID_COUNT) { tid_data = &sta_priv->tid_data[tid]; if (tid_data->state != IWL_AGG_OFF) { IWL_DEBUG_RATE(mvm, "Stop aggregation on tid %d\n", tid); ieee80211_stop_tx_ba_session(sta, tid); } } rs_set_stay_in_table(mvm, 1, lq_sta); } else { /* If we're in an HT mode, and all 3 mode switch actions * have been tried and compared, stay in this best modulation * mode for a while before next round of mode comparisons. */ if ((lq_sta->last_tpt > IWL_AGG_TPT_THREHOLD) && (lq_sta->tx_agg_tid_en & (1 << tid)) && (tid != IWL_MAX_TID_COUNT)) { tid_data = &sta_priv->tid_data[tid]; if (tid_data->state == IWL_AGG_OFF) { IWL_DEBUG_RATE(mvm, "try to aggregate tid %d\n", tid); rs_tl_turn_on_agg(mvm, tid, lq_sta, sta); } } rs_set_stay_in_table(mvm, 0, lq_sta); } } } struct rs_init_rate_info { s8 rssi; u8 rate_idx; }; static const struct rs_init_rate_info rs_optimal_rates_24ghz_legacy[] = { { -60, IWL_RATE_54M_INDEX }, { -64, IWL_RATE_48M_INDEX }, { -68, IWL_RATE_36M_INDEX }, { -80, IWL_RATE_24M_INDEX }, { -84, IWL_RATE_18M_INDEX }, { -85, IWL_RATE_12M_INDEX }, { -86, IWL_RATE_11M_INDEX }, { -88, IWL_RATE_5M_INDEX }, { -90, IWL_RATE_2M_INDEX }, { S8_MIN, IWL_RATE_1M_INDEX }, }; static const struct rs_init_rate_info rs_optimal_rates_5ghz_legacy[] = { { -60, IWL_RATE_54M_INDEX }, { -64, IWL_RATE_48M_INDEX }, { -72, IWL_RATE_36M_INDEX }, { -80, IWL_RATE_24M_INDEX }, { -84, IWL_RATE_18M_INDEX }, { -85, IWL_RATE_12M_INDEX }, { -87, IWL_RATE_9M_INDEX }, { S8_MIN, IWL_RATE_6M_INDEX }, }; static const struct rs_init_rate_info rs_optimal_rates_ht[] = { { -60, IWL_RATE_MCS_7_INDEX }, { -64, IWL_RATE_MCS_6_INDEX }, { -68, IWL_RATE_MCS_5_INDEX }, { -72, IWL_RATE_MCS_4_INDEX }, { -80, IWL_RATE_MCS_3_INDEX }, { -84, IWL_RATE_MCS_2_INDEX }, { -85, IWL_RATE_MCS_1_INDEX }, { S8_MIN, IWL_RATE_MCS_0_INDEX}, }; static const struct rs_init_rate_info rs_optimal_rates_vht_20mhz[] = { { -60, IWL_RATE_MCS_8_INDEX }, { -64, IWL_RATE_MCS_7_INDEX }, { -68, IWL_RATE_MCS_6_INDEX }, { -72, IWL_RATE_MCS_5_INDEX }, { -80, IWL_RATE_MCS_4_INDEX }, { -84, IWL_RATE_MCS_3_INDEX }, { -85, IWL_RATE_MCS_2_INDEX }, { -87, IWL_RATE_MCS_1_INDEX }, { S8_MIN, IWL_RATE_MCS_0_INDEX}, }; static const struct rs_init_rate_info rs_optimal_rates_vht_40_80mhz[] = { { -60, IWL_RATE_MCS_9_INDEX }, { -64, IWL_RATE_MCS_8_INDEX }, { -68, IWL_RATE_MCS_7_INDEX }, { -72, IWL_RATE_MCS_6_INDEX }, { -80, IWL_RATE_MCS_5_INDEX }, { -84, IWL_RATE_MCS_4_INDEX }, { -85, IWL_RATE_MCS_3_INDEX }, { -87, IWL_RATE_MCS_2_INDEX }, { -88, IWL_RATE_MCS_1_INDEX }, { S8_MIN, IWL_RATE_MCS_0_INDEX }, }; /* Init the optimal rate based on STA caps * This combined with rssi is used to report the last tx rate * to userspace when we haven't transmitted enough frames. */ static void rs_init_optimal_rate(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta) { struct rs_rate *rate = &lq_sta->optimal_rate; if (lq_sta->max_mimo2_rate_idx != IWL_RATE_INVALID) rate->type = lq_sta->is_vht ? LQ_VHT_MIMO2 : LQ_HT_MIMO2; else if (lq_sta->max_siso_rate_idx != IWL_RATE_INVALID) rate->type = lq_sta->is_vht ? LQ_VHT_SISO : LQ_HT_SISO; else if (lq_sta->band == IEEE80211_BAND_5GHZ) rate->type = LQ_LEGACY_A; else rate->type = LQ_LEGACY_G; rate->bw = rs_bw_from_sta_bw(sta); rate->sgi = rs_sgi_allow(mvm, sta, rate, NULL); /* ANT/LDPC/STBC aren't relevant for the rate reported to userspace */ if (is_mimo(rate)) { lq_sta->optimal_rate_mask = lq_sta->active_mimo2_rate; } else if (is_siso(rate)) { lq_sta->optimal_rate_mask = lq_sta->active_siso_rate; } else { lq_sta->optimal_rate_mask = lq_sta->active_legacy_rate; if (lq_sta->band == IEEE80211_BAND_5GHZ) { lq_sta->optimal_rates = rs_optimal_rates_5ghz_legacy; lq_sta->optimal_nentries = ARRAY_SIZE(rs_optimal_rates_5ghz_legacy); } else { lq_sta->optimal_rates = rs_optimal_rates_24ghz_legacy; lq_sta->optimal_nentries = ARRAY_SIZE(rs_optimal_rates_24ghz_legacy); } } if (is_vht(rate)) { if (rate->bw == RATE_MCS_CHAN_WIDTH_20) { lq_sta->optimal_rates = rs_optimal_rates_vht_20mhz; lq_sta->optimal_nentries = ARRAY_SIZE(rs_optimal_rates_vht_20mhz); } else { lq_sta->optimal_rates = rs_optimal_rates_vht_40_80mhz; lq_sta->optimal_nentries = ARRAY_SIZE(rs_optimal_rates_vht_40_80mhz); } } else if (is_ht(rate)) { lq_sta->optimal_rates = rs_optimal_rates_ht; lq_sta->optimal_nentries = ARRAY_SIZE(rs_optimal_rates_ht); } } /* Compute the optimal rate index based on RSSI */ static struct rs_rate *rs_get_optimal_rate(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta) { struct rs_rate *rate = &lq_sta->optimal_rate; int i; rate->index = find_first_bit(&lq_sta->optimal_rate_mask, BITS_PER_LONG); for (i = 0; i < lq_sta->optimal_nentries; i++) { int rate_idx = lq_sta->optimal_rates[i].rate_idx; if ((lq_sta->pers.last_rssi >= lq_sta->optimal_rates[i].rssi) && (BIT(rate_idx) & lq_sta->optimal_rate_mask)) { rate->index = rate_idx; break; } } return rate; } /* Choose an initial legacy rate and antenna to use based on the RSSI * of last Rx */ static void rs_get_initial_rate(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, enum ieee80211_band band, struct rs_rate *rate) { int i, nentries; s8 best_rssi = S8_MIN; u8 best_ant = ANT_NONE; u8 valid_tx_ant = iwl_mvm_get_valid_tx_ant(mvm); const struct rs_init_rate_info *initial_rates; for (i = 0; i < ARRAY_SIZE(lq_sta->pers.chain_signal); i++) { if (!(lq_sta->pers.chains & BIT(i))) continue; if (lq_sta->pers.chain_signal[i] > best_rssi) { best_rssi = lq_sta->pers.chain_signal[i]; best_ant = BIT(i); } } IWL_DEBUG_RATE(mvm, "Best ANT: %s Best RSSI: %d\n", rs_pretty_ant(best_ant), best_rssi); if (best_ant != ANT_A && best_ant != ANT_B) rate->ant = first_antenna(valid_tx_ant); else rate->ant = best_ant; rate->sgi = false; rate->ldpc = false; rate->bw = RATE_MCS_CHAN_WIDTH_20; rate->index = find_first_bit(&lq_sta->active_legacy_rate, BITS_PER_LONG); if (band == IEEE80211_BAND_5GHZ) { rate->type = LQ_LEGACY_A; initial_rates = rs_optimal_rates_5ghz_legacy; nentries = ARRAY_SIZE(rs_optimal_rates_5ghz_legacy); } else { rate->type = LQ_LEGACY_G; initial_rates = rs_optimal_rates_24ghz_legacy; nentries = ARRAY_SIZE(rs_optimal_rates_24ghz_legacy); } if (IWL_MVM_RS_RSSI_BASED_INIT_RATE) { for (i = 0; i < nentries; i++) { int rate_idx = initial_rates[i].rate_idx; if ((best_rssi >= initial_rates[i].rssi) && (BIT(rate_idx) & lq_sta->active_legacy_rate)) { rate->index = rate_idx; break; } } } IWL_DEBUG_RATE(mvm, "rate_idx %d ANT %s\n", rate->index, rs_pretty_ant(rate->ant)); } /* Save info about RSSI of last Rx */ void rs_update_last_rssi(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct ieee80211_rx_status *rx_status) { int i; lq_sta->pers.chains = rx_status->chains; lq_sta->pers.chain_signal[0] = rx_status->chain_signal[0]; lq_sta->pers.chain_signal[1] = rx_status->chain_signal[1]; lq_sta->pers.chain_signal[2] = rx_status->chain_signal[2]; lq_sta->pers.last_rssi = S8_MIN; for (i = 0; i < ARRAY_SIZE(lq_sta->pers.chain_signal); i++) { if (!(lq_sta->pers.chains & BIT(i))) continue; if (lq_sta->pers.chain_signal[i] > lq_sta->pers.last_rssi) lq_sta->pers.last_rssi = lq_sta->pers.chain_signal[i]; } } /** * rs_initialize_lq - Initialize a station's hardware rate table * * The uCode's station table contains a table of fallback rates * for automatic fallback during transmission. * * NOTE: This sets up a default set of values. These will be replaced later * if the driver's iwl-agn-rs rate scaling algorithm is used, instead of * rc80211_simple. * * NOTE: Run REPLY_ADD_STA command to set up station table entry, before * calling this function (which runs REPLY_TX_LINK_QUALITY_CMD, * which requires station table entry to exist). */ static void rs_initialize_lq(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, enum ieee80211_band band, bool init) { struct iwl_scale_tbl_info *tbl; struct rs_rate *rate; u8 active_tbl = 0; if (!sta || !lq_sta) return; if (!lq_sta->search_better_tbl) active_tbl = lq_sta->active_tbl; else active_tbl = 1 - lq_sta->active_tbl; tbl = &(lq_sta->lq_info[active_tbl]); rate = &tbl->rate; rs_get_initial_rate(mvm, lq_sta, band, rate); rs_init_optimal_rate(mvm, sta, lq_sta); WARN_ON_ONCE(rate->ant != ANT_A && rate->ant != ANT_B); if (rate->ant == ANT_A) tbl->column = RS_COLUMN_LEGACY_ANT_A; else tbl->column = RS_COLUMN_LEGACY_ANT_B; rs_set_expected_tpt_table(lq_sta, tbl); rs_fill_lq_cmd(mvm, sta, lq_sta, rate); /* TODO restore station should remember the lq cmd */ iwl_mvm_send_lq_cmd(mvm, &lq_sta->lq, init); } static void rs_get_rate(void *mvm_r, struct ieee80211_sta *sta, void *mvm_sta, struct ieee80211_tx_rate_control *txrc) { struct sk_buff *skb = txrc->skb; struct iwl_op_mode *op_mode __maybe_unused = (struct iwl_op_mode *)mvm_r; struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct iwl_lq_sta *lq_sta = mvm_sta; struct rs_rate *optimal_rate; u32 last_ucode_rate; if (sta && !iwl_mvm_sta_from_mac80211(sta)->vif) { /* if vif isn't initialized mvm doesn't know about * this station, so don't do anything with the it */ sta = NULL; mvm_sta = NULL; } /* TODO: handle rate_idx_mask and rate_idx_mcs_mask */ /* Treat uninitialized rate scaling data same as non-existing. */ if (lq_sta && !lq_sta->pers.drv) { IWL_DEBUG_RATE(mvm, "Rate scaling not initialized yet.\n"); mvm_sta = NULL; } /* Send management frames and NO_ACK data using lowest rate. */ if (rate_control_send_low(sta, mvm_sta, txrc)) return; iwl_mvm_hwrate_to_tx_rate(lq_sta->last_rate_n_flags, info->band, &info->control.rates[0]); info->control.rates[0].count = 1; /* Report the optimal rate based on rssi and STA caps if we haven't * converged yet (too little traffic) or exploring other modulations */ if (lq_sta->rs_state != RS_STATE_STAY_IN_COLUMN) { optimal_rate = rs_get_optimal_rate(mvm, lq_sta); last_ucode_rate = ucode_rate_from_rs_rate(mvm, optimal_rate); iwl_mvm_hwrate_to_tx_rate(last_ucode_rate, info->band, &txrc->reported_rate); } } static void *rs_alloc_sta(void *mvm_rate, struct ieee80211_sta *sta, gfp_t gfp) { struct iwl_mvm_sta *sta_priv = iwl_mvm_sta_from_mac80211(sta); struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_rate; struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode); struct iwl_lq_sta *lq_sta = &sta_priv->lq_sta; IWL_DEBUG_RATE(mvm, "create station rate scale window\n"); lq_sta->pers.drv = mvm; #ifdef CONFIG_MAC80211_DEBUGFS lq_sta->pers.dbg_fixed_rate = 0; lq_sta->pers.dbg_fixed_txp_reduction = TPC_INVALID; lq_sta->pers.ss_force = RS_SS_FORCE_NONE; #endif lq_sta->pers.chains = 0; memset(lq_sta->pers.chain_signal, 0, sizeof(lq_sta->pers.chain_signal)); lq_sta->pers.last_rssi = S8_MIN; return &sta_priv->lq_sta; } static int rs_vht_highest_rx_mcs_index(struct ieee80211_sta_vht_cap *vht_cap, int nss) { u16 rx_mcs = le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) & (0x3 << (2 * (nss - 1))); rx_mcs >>= (2 * (nss - 1)); if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_7) return IWL_RATE_MCS_7_INDEX; else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_8) return IWL_RATE_MCS_8_INDEX; else if (rx_mcs == IEEE80211_VHT_MCS_SUPPORT_0_9) return IWL_RATE_MCS_9_INDEX; WARN_ON_ONCE(rx_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED); return -1; } static void rs_vht_set_enabled_rates(struct ieee80211_sta *sta, struct ieee80211_sta_vht_cap *vht_cap, struct iwl_lq_sta *lq_sta) { int i; int highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 1); if (highest_mcs >= IWL_RATE_MCS_0_INDEX) { for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) { if (i == IWL_RATE_9M_INDEX) continue; /* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */ if (i == IWL_RATE_MCS_9_INDEX && sta->bandwidth == IEEE80211_STA_RX_BW_20) continue; lq_sta->active_siso_rate |= BIT(i); } } if (sta->rx_nss < 2) return; highest_mcs = rs_vht_highest_rx_mcs_index(vht_cap, 2); if (highest_mcs >= IWL_RATE_MCS_0_INDEX) { for (i = IWL_RATE_MCS_0_INDEX; i <= highest_mcs; i++) { if (i == IWL_RATE_9M_INDEX) continue; /* VHT MCS9 isn't valid for 20Mhz for NSS=1,2 */ if (i == IWL_RATE_MCS_9_INDEX && sta->bandwidth == IEEE80211_STA_RX_BW_20) continue; lq_sta->active_mimo2_rate |= BIT(i); } } } static void rs_ht_init(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, struct ieee80211_sta_ht_cap *ht_cap) { /* active_siso_rate mask includes 9 MBits (bit 5), * and CCK (bits 0-3), supp_rates[] does not; * shift to convert format, force 9 MBits off. */ lq_sta->active_siso_rate = ht_cap->mcs.rx_mask[0] << 1; lq_sta->active_siso_rate |= ht_cap->mcs.rx_mask[0] & 0x1; lq_sta->active_siso_rate &= ~((u16)0x2); lq_sta->active_siso_rate <<= IWL_FIRST_OFDM_RATE; lq_sta->active_mimo2_rate = ht_cap->mcs.rx_mask[1] << 1; lq_sta->active_mimo2_rate |= ht_cap->mcs.rx_mask[1] & 0x1; lq_sta->active_mimo2_rate &= ~((u16)0x2); lq_sta->active_mimo2_rate <<= IWL_FIRST_OFDM_RATE; if (mvm->cfg->ht_params->ldpc && (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)) lq_sta->ldpc = true; if (mvm->cfg->ht_params->stbc && (num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) > 1) && (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC)) lq_sta->stbc_capable = true; lq_sta->is_vht = false; } static void rs_vht_init(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, struct ieee80211_sta_vht_cap *vht_cap) { rs_vht_set_enabled_rates(sta, vht_cap, lq_sta); if (mvm->cfg->ht_params->ldpc && (vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC)) lq_sta->ldpc = true; if (mvm->cfg->ht_params->stbc && (num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) > 1) && (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK)) lq_sta->stbc_capable = true; if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_BEAMFORMER) && (num_of_ant(iwl_mvm_get_valid_tx_ant(mvm)) > 1) && (vht_cap->cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)) lq_sta->bfer_capable = true; lq_sta->is_vht = true; } #ifdef CONFIG_IWLWIFI_DEBUGFS static void iwl_mvm_reset_frame_stats(struct iwl_mvm *mvm) { spin_lock_bh(&mvm->drv_stats_lock); memset(&mvm->drv_rx_stats, 0, sizeof(mvm->drv_rx_stats)); spin_unlock_bh(&mvm->drv_stats_lock); } void iwl_mvm_update_frame_stats(struct iwl_mvm *mvm, u32 rate, bool agg) { u8 nss = 0, mcs = 0; spin_lock(&mvm->drv_stats_lock); if (agg) mvm->drv_rx_stats.agg_frames++; mvm->drv_rx_stats.success_frames++; switch (rate & RATE_MCS_CHAN_WIDTH_MSK) { case RATE_MCS_CHAN_WIDTH_20: mvm->drv_rx_stats.bw_20_frames++; break; case RATE_MCS_CHAN_WIDTH_40: mvm->drv_rx_stats.bw_40_frames++; break; case RATE_MCS_CHAN_WIDTH_80: mvm->drv_rx_stats.bw_80_frames++; break; default: WARN_ONCE(1, "bad BW. rate 0x%x", rate); } if (rate & RATE_MCS_HT_MSK) { mvm->drv_rx_stats.ht_frames++; mcs = rate & RATE_HT_MCS_RATE_CODE_MSK; nss = ((rate & RATE_HT_MCS_NSS_MSK) >> RATE_HT_MCS_NSS_POS) + 1; } else if (rate & RATE_MCS_VHT_MSK) { mvm->drv_rx_stats.vht_frames++; mcs = rate & RATE_VHT_MCS_RATE_CODE_MSK; nss = ((rate & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1; } else { mvm->drv_rx_stats.legacy_frames++; } if (nss == 1) mvm->drv_rx_stats.siso_frames++; else if (nss == 2) mvm->drv_rx_stats.mimo2_frames++; if (rate & RATE_MCS_SGI_MSK) mvm->drv_rx_stats.sgi_frames++; else mvm->drv_rx_stats.ngi_frames++; mvm->drv_rx_stats.last_rates[mvm->drv_rx_stats.last_frame_idx] = rate; mvm->drv_rx_stats.last_frame_idx = (mvm->drv_rx_stats.last_frame_idx + 1) % ARRAY_SIZE(mvm->drv_rx_stats.last_rates); spin_unlock(&mvm->drv_stats_lock); } #endif /* * Called after adding a new station to initialize rate scaling */ void iwl_mvm_rs_rate_init(struct iwl_mvm *mvm, struct ieee80211_sta *sta, enum ieee80211_band band, bool init) { int i, j; struct ieee80211_hw *hw = mvm->hw; struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; struct iwl_mvm_sta *sta_priv = iwl_mvm_sta_from_mac80211(sta); struct iwl_lq_sta *lq_sta = &sta_priv->lq_sta; struct ieee80211_supported_band *sband; unsigned long supp; /* must be unsigned long for for_each_set_bit */ /* clear all non-persistent lq data */ memset(lq_sta, 0, offsetof(typeof(*lq_sta), pers)); sband = hw->wiphy->bands[band]; lq_sta->lq.sta_id = sta_priv->sta_id; for (j = 0; j < LQ_SIZE; j++) rs_rate_scale_clear_tbl_windows(mvm, &lq_sta->lq_info[j]); lq_sta->flush_timer = 0; lq_sta->last_tx = jiffies; IWL_DEBUG_RATE(mvm, "LQ: *** rate scale station global init for station %d ***\n", sta_priv->sta_id); /* TODO: what is a good starting rate for STA? About middle? Maybe not * the lowest or the highest rate.. Could consider using RSSI from * previous packets? Need to have IEEE 802.1X auth succeed immediately * after assoc.. */ lq_sta->missed_rate_counter = IWL_MVM_RS_MISSED_RATE_MAX; lq_sta->band = sband->band; /* * active legacy rates as per supported rates bitmap */ supp = sta->supp_rates[sband->band]; lq_sta->active_legacy_rate = 0; for_each_set_bit(i, &supp, BITS_PER_LONG) lq_sta->active_legacy_rate |= BIT(sband->bitrates[i].hw_value); /* TODO: should probably account for rx_highest for both HT/VHT */ if (!vht_cap || !vht_cap->vht_supported) rs_ht_init(mvm, sta, lq_sta, ht_cap); else rs_vht_init(mvm, sta, lq_sta, vht_cap); lq_sta->max_legacy_rate_idx = rs_get_max_rate_from_mask(lq_sta->active_legacy_rate); lq_sta->max_siso_rate_idx = rs_get_max_rate_from_mask(lq_sta->active_siso_rate); lq_sta->max_mimo2_rate_idx = rs_get_max_rate_from_mask(lq_sta->active_mimo2_rate); IWL_DEBUG_RATE(mvm, "LEGACY=%lX SISO=%lX MIMO2=%lX VHT=%d LDPC=%d STBC=%d BFER=%d\n", lq_sta->active_legacy_rate, lq_sta->active_siso_rate, lq_sta->active_mimo2_rate, lq_sta->is_vht, lq_sta->ldpc, lq_sta->stbc_capable, lq_sta->bfer_capable); IWL_DEBUG_RATE(mvm, "MAX RATE: LEGACY=%d SISO=%d MIMO2=%d\n", lq_sta->max_legacy_rate_idx, lq_sta->max_siso_rate_idx, lq_sta->max_mimo2_rate_idx); /* These values will be overridden later */ lq_sta->lq.single_stream_ant_msk = first_antenna(iwl_mvm_get_valid_tx_ant(mvm)); lq_sta->lq.dual_stream_ant_msk = ANT_AB; /* as default allow aggregation for all tids */ lq_sta->tx_agg_tid_en = IWL_AGG_ALL_TID; lq_sta->is_agg = 0; #ifdef CONFIG_IWLWIFI_DEBUGFS iwl_mvm_reset_frame_stats(mvm); #endif rs_initialize_lq(mvm, sta, lq_sta, band, init); } static void rs_rate_update(void *mvm_r, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta, u32 changed) { u8 tid; struct iwl_op_mode *op_mode = (struct iwl_op_mode *)mvm_r; struct iwl_mvm *mvm = IWL_OP_MODE_GET_MVM(op_mode); if (!iwl_mvm_sta_from_mac80211(sta)->vif) return; /* Stop any ongoing aggregations as rs starts off assuming no agg */ for (tid = 0; tid < IWL_MAX_TID_COUNT; tid++) ieee80211_stop_tx_ba_session(sta, tid); iwl_mvm_rs_rate_init(mvm, sta, sband->band, false); } #ifdef CONFIG_MAC80211_DEBUGFS static void rs_build_rates_table_from_fixed(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq_cmd, enum ieee80211_band band, u32 ucode_rate) { struct rs_rate rate; int i; int num_rates = ARRAY_SIZE(lq_cmd->rs_table); __le32 ucode_rate_le32 = cpu_to_le32(ucode_rate); u8 ant = (ucode_rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS; for (i = 0; i < num_rates; i++) lq_cmd->rs_table[i] = ucode_rate_le32; rs_rate_from_ucode_rate(ucode_rate, band, &rate); if (is_mimo(&rate)) lq_cmd->mimo_delim = num_rates - 1; else lq_cmd->mimo_delim = 0; lq_cmd->reduced_tpc = 0; if (num_of_ant(ant) == 1) lq_cmd->single_stream_ant_msk = ant; lq_cmd->agg_frame_cnt_limit = LINK_QUAL_AGG_FRAME_LIMIT_DEF; } #endif /* CONFIG_MAC80211_DEBUGFS */ static void rs_fill_rates_for_column(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta, struct rs_rate *rate, __le32 *rs_table, int *rs_table_index, int num_rates, int num_retries, u8 valid_tx_ant, bool toggle_ant) { int i, j; __le32 ucode_rate; bool bottom_reached = false; int prev_rate_idx = rate->index; int end = LINK_QUAL_MAX_RETRY_NUM; int index = *rs_table_index; for (i = 0; i < num_rates && index < end; i++) { for (j = 0; j < num_retries && index < end; j++, index++) { ucode_rate = cpu_to_le32(ucode_rate_from_rs_rate(mvm, rate)); rs_table[index] = ucode_rate; if (toggle_ant) rs_toggle_antenna(valid_tx_ant, rate); } prev_rate_idx = rate->index; bottom_reached = rs_get_lower_rate_in_column(lq_sta, rate); if (bottom_reached && !is_legacy(rate)) break; } if (!bottom_reached && !is_legacy(rate)) rate->index = prev_rate_idx; *rs_table_index = index; } /* Building the rate table is non trivial. When we're in MIMO2/VHT/80Mhz/SGI * column the rate table should look like this: * * rate[0] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI * rate[1] 0x400D019 VHT | ANT: AB BW: 80Mhz MCS: 9 NSS: 2 SGI * rate[2] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI * rate[3] 0x400D018 VHT | ANT: AB BW: 80Mhz MCS: 8 NSS: 2 SGI * rate[4] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI * rate[5] 0x400D017 VHT | ANT: AB BW: 80Mhz MCS: 7 NSS: 2 SGI * rate[6] 0x4005007 VHT | ANT: A BW: 80Mhz MCS: 7 NSS: 1 NGI * rate[7] 0x4009006 VHT | ANT: B BW: 80Mhz MCS: 6 NSS: 1 NGI * rate[8] 0x4005005 VHT | ANT: A BW: 80Mhz MCS: 5 NSS: 1 NGI * rate[9] 0x800B Legacy | ANT: B Rate: 36 Mbps * rate[10] 0x4009 Legacy | ANT: A Rate: 24 Mbps * rate[11] 0x8007 Legacy | ANT: B Rate: 18 Mbps * rate[12] 0x4005 Legacy | ANT: A Rate: 12 Mbps * rate[13] 0x800F Legacy | ANT: B Rate: 9 Mbps * rate[14] 0x400D Legacy | ANT: A Rate: 6 Mbps * rate[15] 0x800D Legacy | ANT: B Rate: 6 Mbps */ static void rs_build_rates_table(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate) { struct rs_rate rate; int num_rates, num_retries, index = 0; u8 valid_tx_ant = 0; struct iwl_lq_cmd *lq_cmd = &lq_sta->lq; bool toggle_ant = false; memcpy(&rate, initial_rate, sizeof(rate)); valid_tx_ant = iwl_mvm_get_valid_tx_ant(mvm); /* TODO: remove old API when min FW API hits 14 */ if (!fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_LQ_SS_PARAMS) && rs_stbc_allow(mvm, sta, lq_sta)) rate.stbc = true; if (is_siso(&rate)) { num_rates = IWL_MVM_RS_INITIAL_SISO_NUM_RATES; num_retries = IWL_MVM_RS_HT_VHT_RETRIES_PER_RATE; } else if (is_mimo(&rate)) { num_rates = IWL_MVM_RS_INITIAL_MIMO_NUM_RATES; num_retries = IWL_MVM_RS_HT_VHT_RETRIES_PER_RATE; } else { num_rates = IWL_MVM_RS_INITIAL_LEGACY_NUM_RATES; num_retries = IWL_MVM_RS_INITIAL_LEGACY_RETRIES; toggle_ant = true; } rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index, num_rates, num_retries, valid_tx_ant, toggle_ant); rs_get_lower_rate_down_column(lq_sta, &rate); if (is_siso(&rate)) { num_rates = IWL_MVM_RS_SECONDARY_SISO_NUM_RATES; num_retries = IWL_MVM_RS_SECONDARY_SISO_RETRIES; lq_cmd->mimo_delim = index; } else if (is_legacy(&rate)) { num_rates = IWL_MVM_RS_SECONDARY_LEGACY_NUM_RATES; num_retries = IWL_MVM_RS_SECONDARY_LEGACY_RETRIES; } else { WARN_ON_ONCE(1); } toggle_ant = true; rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index, num_rates, num_retries, valid_tx_ant, toggle_ant); rs_get_lower_rate_down_column(lq_sta, &rate); num_rates = IWL_MVM_RS_SECONDARY_LEGACY_NUM_RATES; num_retries = IWL_MVM_RS_SECONDARY_LEGACY_RETRIES; rs_fill_rates_for_column(mvm, lq_sta, &rate, lq_cmd->rs_table, &index, num_rates, num_retries, valid_tx_ant, toggle_ant); } struct rs_bfer_active_iter_data { struct ieee80211_sta *exclude_sta; struct iwl_mvm_sta *bfer_mvmsta; }; static void rs_bfer_active_iter(void *_data, struct ieee80211_sta *sta) { struct rs_bfer_active_iter_data *data = _data; struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); struct iwl_lq_cmd *lq_cmd = &mvmsta->lq_sta.lq; u32 ss_params = le32_to_cpu(lq_cmd->ss_params); if (sta == data->exclude_sta) return; /* The current sta has BFER allowed */ if (ss_params & LQ_SS_BFER_ALLOWED) { WARN_ON_ONCE(data->bfer_mvmsta != NULL); data->bfer_mvmsta = mvmsta; } } static int rs_bfer_priority(struct iwl_mvm_sta *sta) { int prio = -1; enum nl80211_iftype viftype = ieee80211_vif_type_p2p(sta->vif); switch (viftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: prio = 3; break; case NL80211_IFTYPE_P2P_CLIENT: prio = 2; break; case NL80211_IFTYPE_STATION: prio = 1; break; default: WARN_ONCE(true, "viftype %d sta_id %d", viftype, sta->sta_id); prio = -1; } return prio; } /* Returns >0 if sta1 has a higher BFER priority compared to sta2 */ static int rs_bfer_priority_cmp(struct iwl_mvm_sta *sta1, struct iwl_mvm_sta *sta2) { int prio1 = rs_bfer_priority(sta1); int prio2 = rs_bfer_priority(sta2); if (prio1 > prio2) return 1; if (prio1 < prio2) return -1; return 0; } static void rs_set_lq_ss_params(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate) { struct iwl_lq_cmd *lq_cmd = &lq_sta->lq; struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); struct rs_bfer_active_iter_data data = { .exclude_sta = sta, .bfer_mvmsta = NULL, }; struct iwl_mvm_sta *bfer_mvmsta = NULL; u32 ss_params = LQ_SS_PARAMS_VALID; if (!iwl_mvm_bt_coex_is_mimo_allowed(mvm, sta)) goto out; #ifdef CONFIG_MAC80211_DEBUGFS /* Check if forcing the decision is configured. * Note that SISO is forced by not allowing STBC or BFER */ if (lq_sta->pers.ss_force == RS_SS_FORCE_STBC) ss_params |= (LQ_SS_STBC_1SS_ALLOWED | LQ_SS_FORCE); else if (lq_sta->pers.ss_force == RS_SS_FORCE_BFER) ss_params |= (LQ_SS_BFER_ALLOWED | LQ_SS_FORCE); if (lq_sta->pers.ss_force != RS_SS_FORCE_NONE) { IWL_DEBUG_RATE(mvm, "Forcing single stream Tx decision %d\n", lq_sta->pers.ss_force); goto out; } #endif if (lq_sta->stbc_capable) ss_params |= LQ_SS_STBC_1SS_ALLOWED; if (!lq_sta->bfer_capable) goto out; ieee80211_iterate_stations_atomic(mvm->hw, rs_bfer_active_iter, &data); bfer_mvmsta = data.bfer_mvmsta; /* This code is safe as it doesn't run concurrently for different * stations. This is guaranteed by the fact that calls to * ieee80211_tx_status wouldn't run concurrently for a single HW. */ if (!bfer_mvmsta) { IWL_DEBUG_RATE(mvm, "No sta with BFER allowed found. Allow\n"); ss_params |= LQ_SS_BFER_ALLOWED; goto out; } IWL_DEBUG_RATE(mvm, "Found existing sta %d with BFER activated\n", bfer_mvmsta->sta_id); /* Disallow BFER on another STA if active and we're a higher priority */ if (rs_bfer_priority_cmp(mvmsta, bfer_mvmsta) > 0) { struct iwl_lq_cmd *bfersta_lq_cmd = &bfer_mvmsta->lq_sta.lq; u32 bfersta_ss_params = le32_to_cpu(bfersta_lq_cmd->ss_params); bfersta_ss_params &= ~LQ_SS_BFER_ALLOWED; bfersta_lq_cmd->ss_params = cpu_to_le32(bfersta_ss_params); iwl_mvm_send_lq_cmd(mvm, bfersta_lq_cmd, false); ss_params |= LQ_SS_BFER_ALLOWED; IWL_DEBUG_RATE(mvm, "Lower priority BFER sta found (%d). Switch BFER\n", bfer_mvmsta->sta_id); } out: lq_cmd->ss_params = cpu_to_le32(ss_params); } static void rs_fill_lq_cmd(struct iwl_mvm *mvm, struct ieee80211_sta *sta, struct iwl_lq_sta *lq_sta, const struct rs_rate *initial_rate) { struct iwl_lq_cmd *lq_cmd = &lq_sta->lq; struct iwl_mvm_sta *mvmsta; struct iwl_mvm_vif *mvmvif; lq_cmd->agg_disable_start_th = IWL_MVM_RS_AGG_DISABLE_START; lq_cmd->agg_time_limit = cpu_to_le16(IWL_MVM_RS_AGG_TIME_LIMIT); #ifdef CONFIG_MAC80211_DEBUGFS if (lq_sta->pers.dbg_fixed_rate) { rs_build_rates_table_from_fixed(mvm, lq_cmd, lq_sta->band, lq_sta->pers.dbg_fixed_rate); return; } #endif if (WARN_ON_ONCE(!sta || !initial_rate)) return; rs_build_rates_table(mvm, sta, lq_sta, initial_rate); if (fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_LQ_SS_PARAMS)) rs_set_lq_ss_params(mvm, sta, lq_sta, initial_rate); mvmsta = iwl_mvm_sta_from_mac80211(sta); mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); if (num_of_ant(initial_rate->ant) == 1) lq_cmd->single_stream_ant_msk = initial_rate->ant; lq_cmd->agg_frame_cnt_limit = mvmsta->max_agg_bufsize; /* * In case of low latency, tell the firmware to leave a frame in the * Tx Fifo so that it can start a transaction in the same TxOP. This * basically allows the firmware to send bursts. */ if (iwl_mvm_vif_low_latency(mvmvif)) lq_cmd->agg_frame_cnt_limit--; if (mvmsta->vif->p2p) lq_cmd->flags |= LQ_FLAG_USE_RTS_MSK; lq_cmd->agg_time_limit = cpu_to_le16(iwl_mvm_coex_agg_time_limit(mvm, sta)); } static void *rs_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) { return hw->priv; } /* rate scale requires free function to be implemented */ static void rs_free(void *mvm_rate) { return; } static void rs_free_sta(void *mvm_r, struct ieee80211_sta *sta, void *mvm_sta) { struct iwl_op_mode *op_mode __maybe_unused = mvm_r; struct iwl_mvm *mvm __maybe_unused = IWL_OP_MODE_GET_MVM(op_mode); IWL_DEBUG_RATE(mvm, "enter\n"); IWL_DEBUG_RATE(mvm, "leave\n"); } #ifdef CONFIG_MAC80211_DEBUGFS int rs_pretty_print_rate(char *buf, const u32 rate) { char *type, *bw; u8 mcs = 0, nss = 0; u8 ant = (rate & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS; if (!(rate & RATE_MCS_HT_MSK) && !(rate & RATE_MCS_VHT_MSK)) { int index = iwl_hwrate_to_plcp_idx(rate); return sprintf(buf, "Legacy | ANT: %s Rate: %s Mbps\n", rs_pretty_ant(ant), index == IWL_RATE_INVALID ? "BAD" : iwl_rate_mcs[index].mbps); } if (rate & RATE_MCS_VHT_MSK) { type = "VHT"; mcs = rate & RATE_VHT_MCS_RATE_CODE_MSK; nss = ((rate & RATE_VHT_MCS_NSS_MSK) >> RATE_VHT_MCS_NSS_POS) + 1; } else if (rate & RATE_MCS_HT_MSK) { type = "HT"; mcs = rate & RATE_HT_MCS_INDEX_MSK; } else { type = "Unknown"; /* shouldn't happen */ } switch (rate & RATE_MCS_CHAN_WIDTH_MSK) { case RATE_MCS_CHAN_WIDTH_20: bw = "20Mhz"; break; case RATE_MCS_CHAN_WIDTH_40: bw = "40Mhz"; break; case RATE_MCS_CHAN_WIDTH_80: bw = "80Mhz"; break; case RATE_MCS_CHAN_WIDTH_160: bw = "160Mhz"; break; default: bw = "BAD BW"; } return sprintf(buf, "%s | ANT: %s BW: %s MCS: %d NSS: %d %s%s%s%s%s\n", type, rs_pretty_ant(ant), bw, mcs, nss, (rate & RATE_MCS_SGI_MSK) ? "SGI " : "NGI ", (rate & RATE_MCS_HT_STBC_MSK) ? "STBC " : "", (rate & RATE_MCS_LDPC_MSK) ? "LDPC " : "", (rate & RATE_MCS_BF_MSK) ? "BF " : "", (rate & RATE_MCS_ZLF_MSK) ? "ZLF " : ""); } /** * Program the device to use fixed rate for frame transmit * This is for debugging/testing only * once the device start use fixed rate, we need to reload the module * to being back the normal operation. */ static void rs_program_fix_rate(struct iwl_mvm *mvm, struct iwl_lq_sta *lq_sta) { lq_sta->active_legacy_rate = 0x0FFF; /* 1 - 54 MBits, includes CCK */ lq_sta->active_siso_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */ lq_sta->active_mimo2_rate = 0x1FD0; /* 6 - 60 MBits, no 9, no CCK */ IWL_DEBUG_RATE(mvm, "sta_id %d rate 0x%X\n", lq_sta->lq.sta_id, lq_sta->pers.dbg_fixed_rate); if (lq_sta->pers.dbg_fixed_rate) { rs_fill_lq_cmd(mvm, NULL, lq_sta, NULL); iwl_mvm_send_lq_cmd(lq_sta->pers.drv, &lq_sta->lq, false); } } static ssize_t rs_sta_dbgfs_scale_table_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_lq_sta *lq_sta = file->private_data; struct iwl_mvm *mvm; char buf[64]; size_t buf_size; u32 parsed_rate; mvm = lq_sta->pers.drv; memset(buf, 0, sizeof(buf)); buf_size = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; if (sscanf(buf, "%x", &parsed_rate) == 1) lq_sta->pers.dbg_fixed_rate = parsed_rate; else lq_sta->pers.dbg_fixed_rate = 0; rs_program_fix_rate(mvm, lq_sta); return count; } static ssize_t rs_sta_dbgfs_scale_table_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buff; int desc = 0; int i = 0; ssize_t ret; struct iwl_lq_sta *lq_sta = file->private_data; struct iwl_mvm *mvm; struct iwl_scale_tbl_info *tbl = &(lq_sta->lq_info[lq_sta->active_tbl]); struct rs_rate *rate = &tbl->rate; u32 ss_params; mvm = lq_sta->pers.drv; buff = kmalloc(2048, GFP_KERNEL); if (!buff) return -ENOMEM; desc += sprintf(buff+desc, "sta_id %d\n", lq_sta->lq.sta_id); desc += sprintf(buff+desc, "failed=%d success=%d rate=0%lX\n", lq_sta->total_failed, lq_sta->total_success, lq_sta->active_legacy_rate); desc += sprintf(buff+desc, "fixed rate 0x%X\n", lq_sta->pers.dbg_fixed_rate); desc += sprintf(buff+desc, "valid_tx_ant %s%s%s\n", (iwl_mvm_get_valid_tx_ant(mvm) & ANT_A) ? "ANT_A," : "", (iwl_mvm_get_valid_tx_ant(mvm) & ANT_B) ? "ANT_B," : "", (iwl_mvm_get_valid_tx_ant(mvm) & ANT_C) ? "ANT_C" : ""); desc += sprintf(buff+desc, "lq type %s\n", (is_legacy(rate)) ? "legacy" : is_vht(rate) ? "VHT" : "HT"); if (!is_legacy(rate)) { desc += sprintf(buff + desc, " %s", (is_siso(rate)) ? "SISO" : "MIMO2"); desc += sprintf(buff + desc, " %s", (is_ht20(rate)) ? "20MHz" : (is_ht40(rate)) ? "40MHz" : (is_ht80(rate)) ? "80Mhz" : "BAD BW"); desc += sprintf(buff + desc, " %s %s %s\n", (rate->sgi) ? "SGI" : "NGI", (rate->ldpc) ? "LDPC" : "BCC", (lq_sta->is_agg) ? "AGG on" : ""); } desc += sprintf(buff+desc, "last tx rate=0x%X\n", lq_sta->last_rate_n_flags); desc += sprintf(buff+desc, "general: flags=0x%X mimo-d=%d s-ant=0x%x d-ant=0x%x\n", lq_sta->lq.flags, lq_sta->lq.mimo_delim, lq_sta->lq.single_stream_ant_msk, lq_sta->lq.dual_stream_ant_msk); desc += sprintf(buff+desc, "agg: time_limit=%d dist_start_th=%d frame_cnt_limit=%d\n", le16_to_cpu(lq_sta->lq.agg_time_limit), lq_sta->lq.agg_disable_start_th, lq_sta->lq.agg_frame_cnt_limit); desc += sprintf(buff+desc, "reduced tpc=%d\n", lq_sta->lq.reduced_tpc); ss_params = le32_to_cpu(lq_sta->lq.ss_params); desc += sprintf(buff+desc, "single stream params: %s%s%s%s\n", (ss_params & LQ_SS_PARAMS_VALID) ? "VALID" : "INVALID", (ss_params & LQ_SS_BFER_ALLOWED) ? ", BFER" : "", (ss_params & LQ_SS_STBC_1SS_ALLOWED) ? ", STBC" : "", (ss_params & LQ_SS_FORCE) ? ", FORCE" : ""); desc += sprintf(buff+desc, "Start idx [0]=0x%x [1]=0x%x [2]=0x%x [3]=0x%x\n", lq_sta->lq.initial_rate_index[0], lq_sta->lq.initial_rate_index[1], lq_sta->lq.initial_rate_index[2], lq_sta->lq.initial_rate_index[3]); for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) { u32 r = le32_to_cpu(lq_sta->lq.rs_table[i]); desc += sprintf(buff+desc, " rate[%d] 0x%X ", i, r); desc += rs_pretty_print_rate(buff+desc, r); } ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc); kfree(buff); return ret; } static const struct file_operations rs_sta_dbgfs_scale_table_ops = { .write = rs_sta_dbgfs_scale_table_write, .read = rs_sta_dbgfs_scale_table_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t rs_sta_dbgfs_stats_table_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buff; int desc = 0; int i, j; ssize_t ret; struct iwl_scale_tbl_info *tbl; struct rs_rate *rate; struct iwl_lq_sta *lq_sta = file->private_data; buff = kmalloc(1024, GFP_KERNEL); if (!buff) return -ENOMEM; for (i = 0; i < LQ_SIZE; i++) { tbl = &(lq_sta->lq_info[i]); rate = &tbl->rate; desc += sprintf(buff+desc, "%s type=%d SGI=%d BW=%s DUP=0\n" "index=%d\n", lq_sta->active_tbl == i ? "*" : "x", rate->type, rate->sgi, is_ht20(rate) ? "20Mhz" : is_ht40(rate) ? "40Mhz" : is_ht80(rate) ? "80Mhz" : "ERR", rate->index); for (j = 0; j < IWL_RATE_COUNT; j++) { desc += sprintf(buff+desc, "counter=%d success=%d %%=%d\n", tbl->win[j].counter, tbl->win[j].success_counter, tbl->win[j].success_ratio); } } ret = simple_read_from_buffer(user_buf, count, ppos, buff, desc); kfree(buff); return ret; } static const struct file_operations rs_sta_dbgfs_stats_table_ops = { .read = rs_sta_dbgfs_stats_table_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t rs_sta_dbgfs_drv_tx_stats_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { static const char * const column_name[] = { [RS_COLUMN_LEGACY_ANT_A] = "LEGACY_ANT_A", [RS_COLUMN_LEGACY_ANT_B] = "LEGACY_ANT_B", [RS_COLUMN_SISO_ANT_A] = "SISO_ANT_A", [RS_COLUMN_SISO_ANT_B] = "SISO_ANT_B", [RS_COLUMN_SISO_ANT_A_SGI] = "SISO_ANT_A_SGI", [RS_COLUMN_SISO_ANT_B_SGI] = "SISO_ANT_B_SGI", [RS_COLUMN_MIMO2] = "MIMO2", [RS_COLUMN_MIMO2_SGI] = "MIMO2_SGI", }; static const char * const rate_name[] = { [IWL_RATE_1M_INDEX] = "1M", [IWL_RATE_2M_INDEX] = "2M", [IWL_RATE_5M_INDEX] = "5.5M", [IWL_RATE_11M_INDEX] = "11M", [IWL_RATE_6M_INDEX] = "6M|MCS0", [IWL_RATE_9M_INDEX] = "9M", [IWL_RATE_12M_INDEX] = "12M|MCS1", [IWL_RATE_18M_INDEX] = "18M|MCS2", [IWL_RATE_24M_INDEX] = "24M|MCS3", [IWL_RATE_36M_INDEX] = "36M|MCS4", [IWL_RATE_48M_INDEX] = "48M|MCS5", [IWL_RATE_54M_INDEX] = "54M|MCS6", [IWL_RATE_MCS_7_INDEX] = "MCS7", [IWL_RATE_MCS_8_INDEX] = "MCS8", [IWL_RATE_MCS_9_INDEX] = "MCS9", }; char *buff, *pos, *endpos; int col, rate; ssize_t ret; struct iwl_lq_sta *lq_sta = file->private_data; struct rs_rate_stats *stats; static const size_t bufsz = 1024; buff = kmalloc(bufsz, GFP_KERNEL); if (!buff) return -ENOMEM; pos = buff; endpos = pos + bufsz; pos += scnprintf(pos, endpos - pos, "COLUMN,"); for (rate = 0; rate < IWL_RATE_COUNT; rate++) pos += scnprintf(pos, endpos - pos, "%s,", rate_name[rate]); pos += scnprintf(pos, endpos - pos, "\n"); for (col = 0; col < RS_COLUMN_COUNT; col++) { pos += scnprintf(pos, endpos - pos, "%s,", column_name[col]); for (rate = 0; rate < IWL_RATE_COUNT; rate++) { stats = &(lq_sta->pers.tx_stats[col][rate]); pos += scnprintf(pos, endpos - pos, "%llu/%llu,", stats->success, stats->total); } pos += scnprintf(pos, endpos - pos, "\n"); } ret = simple_read_from_buffer(user_buf, count, ppos, buff, pos - buff); kfree(buff); return ret; } static ssize_t rs_sta_dbgfs_drv_tx_stats_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_lq_sta *lq_sta = file->private_data; memset(lq_sta->pers.tx_stats, 0, sizeof(lq_sta->pers.tx_stats)); return count; } static const struct file_operations rs_sta_dbgfs_drv_tx_stats_ops = { .read = rs_sta_dbgfs_drv_tx_stats_read, .write = rs_sta_dbgfs_drv_tx_stats_write, .open = simple_open, .llseek = default_llseek, }; static ssize_t iwl_dbgfs_ss_force_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_lq_sta *lq_sta = file->private_data; char buf[12]; int bufsz = sizeof(buf); int pos = 0; static const char * const ss_force_name[] = { [RS_SS_FORCE_NONE] = "none", [RS_SS_FORCE_STBC] = "stbc", [RS_SS_FORCE_BFER] = "bfer", [RS_SS_FORCE_SISO] = "siso", }; pos += scnprintf(buf+pos, bufsz-pos, "%s\n", ss_force_name[lq_sta->pers.ss_force]); return simple_read_from_buffer(user_buf, count, ppos, buf, pos); } static ssize_t iwl_dbgfs_ss_force_write(struct iwl_lq_sta *lq_sta, char *buf, size_t count, loff_t *ppos) { struct iwl_mvm *mvm = lq_sta->pers.drv; int ret = 0; if (!strncmp("none", buf, 4)) { lq_sta->pers.ss_force = RS_SS_FORCE_NONE; } else if (!strncmp("siso", buf, 4)) { lq_sta->pers.ss_force = RS_SS_FORCE_SISO; } else if (!strncmp("stbc", buf, 4)) { if (lq_sta->stbc_capable) { lq_sta->pers.ss_force = RS_SS_FORCE_STBC; } else { IWL_ERR(mvm, "can't force STBC. peer doesn't support\n"); ret = -EINVAL; } } else if (!strncmp("bfer", buf, 4)) { if (lq_sta->bfer_capable) { lq_sta->pers.ss_force = RS_SS_FORCE_BFER; } else { IWL_ERR(mvm, "can't force BFER. peer doesn't support\n"); ret = -EINVAL; } } else { IWL_ERR(mvm, "valid values none|siso|stbc|bfer\n"); ret = -EINVAL; } return ret ?: count; } #define MVM_DEBUGFS_READ_WRITE_FILE_OPS(name, bufsz) \ _MVM_DEBUGFS_READ_WRITE_FILE_OPS(name, bufsz, struct iwl_lq_sta) #define MVM_DEBUGFS_ADD_FILE_RS(name, parent, mode) do { \ if (!debugfs_create_file(#name, mode, parent, lq_sta, \ &iwl_dbgfs_##name##_ops)) \ goto err; \ } while (0) MVM_DEBUGFS_READ_WRITE_FILE_OPS(ss_force, 32); static void rs_add_debugfs(void *mvm, void *priv_sta, struct dentry *dir) { struct iwl_lq_sta *lq_sta = priv_sta; struct iwl_mvm_sta *mvmsta; mvmsta = container_of(lq_sta, struct iwl_mvm_sta, lq_sta); if (!mvmsta->vif) return; debugfs_create_file("rate_scale_table", S_IRUSR | S_IWUSR, dir, lq_sta, &rs_sta_dbgfs_scale_table_ops); debugfs_create_file("rate_stats_table", S_IRUSR, dir, lq_sta, &rs_sta_dbgfs_stats_table_ops); debugfs_create_file("drv_tx_stats", S_IRUSR | S_IWUSR, dir, lq_sta, &rs_sta_dbgfs_drv_tx_stats_ops); debugfs_create_u8("tx_agg_tid_enable", S_IRUSR | S_IWUSR, dir, &lq_sta->tx_agg_tid_en); debugfs_create_u8("reduced_tpc", S_IRUSR | S_IWUSR, dir, &lq_sta->pers.dbg_fixed_txp_reduction); MVM_DEBUGFS_ADD_FILE_RS(ss_force, dir, S_IRUSR | S_IWUSR); return; err: IWL_ERR((struct iwl_mvm *)mvm, "Can't create debugfs entity\n"); } static void rs_remove_debugfs(void *mvm, void *mvm_sta) { } #endif /* * Initialization of rate scaling information is done by driver after * the station is added. Since mac80211 calls this function before a * station is added we ignore it. */ static void rs_rate_init_stub(void *mvm_r, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *mvm_sta) { } static const struct rate_control_ops rs_mvm_ops = { .name = RS_NAME, .tx_status = rs_mac80211_tx_status, .get_rate = rs_get_rate, .rate_init = rs_rate_init_stub, .alloc = rs_alloc, .free = rs_free, .alloc_sta = rs_alloc_sta, .free_sta = rs_free_sta, .rate_update = rs_rate_update, #ifdef CONFIG_MAC80211_DEBUGFS .add_sta_debugfs = rs_add_debugfs, .remove_sta_debugfs = rs_remove_debugfs, #endif }; int iwl_mvm_rate_control_register(void) { return ieee80211_rate_control_register(&rs_mvm_ops); } void iwl_mvm_rate_control_unregister(void) { ieee80211_rate_control_unregister(&rs_mvm_ops); } /** * iwl_mvm_tx_protection - Gets LQ command, change it to enable/disable * Tx protection, according to this request and previous requests, * and send the LQ command. * @mvmsta: The station * @enable: Enable Tx protection? */ int iwl_mvm_tx_protection(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta, bool enable) { struct iwl_lq_cmd *lq = &mvmsta->lq_sta.lq; lockdep_assert_held(&mvm->mutex); if (enable) { if (mvmsta->tx_protection == 0) lq->flags |= LQ_FLAG_USE_RTS_MSK; mvmsta->tx_protection++; } else { mvmsta->tx_protection--; if (mvmsta->tx_protection == 0) lq->flags &= ~LQ_FLAG_USE_RTS_MSK; } return iwl_mvm_send_lq_cmd(mvm, lq, false); }