// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. 802.11 status code portion of this file from ethereal-0.10.6: Copyright 2000, Axis Communications AB Ethereal - Network traffic analyzer By Gerald Combs Copyright 1998 Gerald Combs Contact Information: Intel Linux Wireless Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 ******************************************************************************/ #include #include #include #include "ipw2200.h" #include "ipw.h" #ifndef KBUILD_EXTMOD #define VK "k" #else #define VK #endif #ifdef CONFIG_IPW2200_DEBUG #define VD "d" #else #define VD #endif #ifdef CONFIG_IPW2200_MONITOR #define VM "m" #else #define VM #endif #ifdef CONFIG_IPW2200_PROMISCUOUS #define VP "p" #else #define VP #endif #ifdef CONFIG_IPW2200_RADIOTAP #define VR "r" #else #define VR #endif #ifdef CONFIG_IPW2200_QOS #define VQ "q" #else #define VQ #endif #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" #define DRV_VERSION IPW2200_VERSION #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("ipw2200-ibss.fw"); #ifdef CONFIG_IPW2200_MONITOR MODULE_FIRMWARE("ipw2200-sniffer.fw"); #endif MODULE_FIRMWARE("ipw2200-bss.fw"); static int cmdlog = 0; static int debug = 0; static int default_channel = 0; static int network_mode = 0; static u32 ipw_debug_level; static int associate; static int auto_create = 1; static int led_support = 1; static int disable = 0; static int bt_coexist = 0; static int hwcrypto = 0; static int roaming = 1; static const char ipw_modes[] = { 'a', 'b', 'g', '?' }; static int antenna = CFG_SYS_ANTENNA_BOTH; #ifdef CONFIG_IPW2200_PROMISCUOUS static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ #endif static struct ieee80211_rate ipw2200_rates[] = { { .bitrate = 10 }, { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60 }, { .bitrate = 90 }, { .bitrate = 120 }, { .bitrate = 180 }, { .bitrate = 240 }, { .bitrate = 360 }, { .bitrate = 480 }, { .bitrate = 540 } }; #define ipw2200_a_rates (ipw2200_rates + 4) #define ipw2200_num_a_rates 8 #define ipw2200_bg_rates (ipw2200_rates + 0) #define ipw2200_num_bg_rates 12 /* Ugly macro to convert literal channel numbers into their mhz equivalents * There are certianly some conditions that will break this (like feeding it '30') * but they shouldn't arise since nothing talks on channel 30. */ #define ieee80211chan2mhz(x) \ (((x) <= 14) ? \ (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \ ((x) + 1000) * 5) #ifdef CONFIG_IPW2200_QOS static int qos_enable = 0; static int qos_burst_enable = 0; static int qos_no_ack_mask = 0; static int burst_duration_CCK = 0; static int burst_duration_OFDM = 0; static struct libipw_qos_parameters def_qos_parameters_OFDM = { {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, QOS_TX3_CW_MIN_OFDM}, {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, QOS_TX3_CW_MAX_OFDM}, {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} }; static struct libipw_qos_parameters def_qos_parameters_CCK = { {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, QOS_TX3_CW_MIN_CCK}, {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, QOS_TX3_CW_MAX_CCK}, {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, QOS_TX3_TXOP_LIMIT_CCK} }; static struct libipw_qos_parameters def_parameters_OFDM = { {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, DEF_TX3_CW_MIN_OFDM}, {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, DEF_TX3_CW_MAX_OFDM}, {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} }; static struct libipw_qos_parameters def_parameters_CCK = { {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, DEF_TX3_CW_MIN_CCK}, {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, DEF_TX3_CW_MAX_CCK}, {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, DEF_TX3_TXOP_LIMIT_CCK} }; static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; static int from_priority_to_tx_queue[] = { IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 }; static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters *qos_param); static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element *qos_param); #endif /* CONFIG_IPW2200_QOS */ static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); static void ipw_remove_current_network(struct ipw_priv *priv); static void ipw_rx(struct ipw_priv *priv); static int ipw_queue_tx_reclaim(struct ipw_priv *priv, struct clx2_tx_queue *txq, int qindex); static int ipw_queue_reset(struct ipw_priv *priv); static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf, int len, int sync); static void ipw_tx_queue_free(struct ipw_priv *); static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); static void ipw_rx_queue_replenish(void *); static int ipw_up(struct ipw_priv *); static void ipw_bg_up(struct work_struct *work); static void ipw_down(struct ipw_priv *); static void ipw_bg_down(struct work_struct *work); static int ipw_config(struct ipw_priv *); static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *prates); static void ipw_set_hwcrypto_keys(struct ipw_priv *); static void ipw_send_wep_keys(struct ipw_priv *, int); static int snprint_line(char *buf, size_t count, const u8 * data, u32 len, u32 ofs) { int out, i, j, l; char c; out = scnprintf(buf, count, "%08X", ofs); for (l = 0, i = 0; i < 2; i++) { out += scnprintf(buf + out, count - out, " "); for (j = 0; j < 8 && l < len; j++, l++) out += scnprintf(buf + out, count - out, "%02X ", data[(i * 8 + j)]); for (; j < 8; j++) out += scnprintf(buf + out, count - out, " "); } out += scnprintf(buf + out, count - out, " "); for (l = 0, i = 0; i < 2; i++) { out += scnprintf(buf + out, count - out, " "); for (j = 0; j < 8 && l < len; j++, l++) { c = data[(i * 8 + j)]; if (!isascii(c) || !isprint(c)) c = '.'; out += scnprintf(buf + out, count - out, "%c", c); } for (; j < 8; j++) out += scnprintf(buf + out, count - out, " "); } return out; } static void printk_buf(int level, const u8 * data, u32 len) { char line[81]; u32 ofs = 0; if (!(ipw_debug_level & level)) return; while (len) { snprint_line(line, sizeof(line), &data[ofs], min(len, 16U), ofs); printk(KERN_DEBUG "%s\n", line); ofs += 16; len -= min(len, 16U); } } static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) { size_t out = size; u32 ofs = 0; int total = 0; while (size && len) { out = snprint_line(output, size, &data[ofs], min_t(size_t, len, 16U), ofs); ofs += 16; output += out; size -= out; len -= min_t(size_t, len, 16U); total += out; } return total; } /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) { IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32) (b), (u32) (c)); _ipw_write_reg8(a, b, c); } /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) { IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32) (b), (u32) (c)); _ipw_write_reg16(a, b, c); } /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) { IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32) (b), (u32) (c)); _ipw_write_reg32(a, b, c); } /* 8-bit direct write (low 4K) */ static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, u8 val) { writeb(val, ipw->hw_base + ofs); } /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ #define ipw_write8(ipw, ofs, val) do { \ IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ __LINE__, (u32)(ofs), (u32)(val)); \ _ipw_write8(ipw, ofs, val); \ } while (0) /* 16-bit direct write (low 4K) */ static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, u16 val) { writew(val, ipw->hw_base + ofs); } /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ #define ipw_write16(ipw, ofs, val) do { \ IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ __LINE__, (u32)(ofs), (u32)(val)); \ _ipw_write16(ipw, ofs, val); \ } while (0) /* 32-bit direct write (low 4K) */ static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, u32 val) { writel(val, ipw->hw_base + ofs); } /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ #define ipw_write32(ipw, ofs, val) do { \ IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ __LINE__, (u32)(ofs), (u32)(val)); \ _ipw_write32(ipw, ofs, val); \ } while (0) /* 8-bit direct read (low 4K) */ static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) { return readb(ipw->hw_base + ofs); } /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ #define ipw_read8(ipw, ofs) ({ \ IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ (u32)(ofs)); \ _ipw_read8(ipw, ofs); \ }) /* 32-bit direct read (low 4K) */ static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) { return readl(ipw->hw_base + ofs); } /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ #define ipw_read32(ipw, ofs) ({ \ IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ (u32)(ofs)); \ _ipw_read32(ipw, ofs); \ }) static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ #define ipw_read_indirect(a, b, c, d) ({ \ IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ __LINE__, (u32)(b), (u32)(d)); \ _ipw_read_indirect(a, b, c, d); \ }) /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, int num); #define ipw_write_indirect(a, b, c, d) do { \ IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ __LINE__, (u32)(b), (u32)(d)); \ _ipw_write_indirect(a, b, c, d); \ } while (0) /* 32-bit indirect write (above 4K) */ static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) { IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); _ipw_write32(priv, IPW_INDIRECT_DATA, value); } /* 8-bit indirect write (above 4K) */ static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) { u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ u32 dif_len = reg - aligned_addr; IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); } /* 16-bit indirect write (above 4K) */ static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) { u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ u32 dif_len = (reg - aligned_addr) & (~0x1ul); IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); } /* 8-bit indirect read (above 4K) */ static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) { u32 word; _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); word = _ipw_read32(priv, IPW_INDIRECT_DATA); return (word >> ((reg & 0x3) * 8)) & 0xff; } /* 32-bit indirect read (above 4K) */ static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) { u32 value; IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); value = _ipw_read32(priv, IPW_INDIRECT_DATA); IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); return value; } /* General purpose, no alignment requirement, iterative (multi-byte) read, */ /* for area above 1st 4K of SRAM/reg space */ static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, int num) { u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ u32 dif_len = addr - aligned_addr; u32 i; IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); if (num <= 0) { return; } /* Read the first dword (or portion) byte by byte */ if (unlikely(dif_len)) { _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); /* Start reading at aligned_addr + dif_len */ for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); aligned_addr += 4; } /* Read all of the middle dwords as dwords, with auto-increment */ _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); /* Read the last dword (or portion) byte by byte */ if (unlikely(num)) { _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); for (i = 0; num > 0; i++, num--) *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); } } /* General purpose, no alignment requirement, iterative (multi-byte) write, */ /* for area above 1st 4K of SRAM/reg space */ static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, int num) { u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ u32 dif_len = addr - aligned_addr; u32 i; IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); if (num <= 0) { return; } /* Write the first dword (or portion) byte by byte */ if (unlikely(dif_len)) { _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); /* Start writing at aligned_addr + dif_len */ for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); aligned_addr += 4; } /* Write all of the middle dwords as dwords, with auto-increment */ _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); /* Write the last dword (or portion) byte by byte */ if (unlikely(num)) { _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); for (i = 0; num > 0; i++, num--, buf++) _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); } } /* General purpose, no alignment requirement, iterative (multi-byte) write, */ /* for 1st 4K of SRAM/regs space */ static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, int num) { memcpy_toio((priv->hw_base + addr), buf, num); } /* Set bit(s) in low 4K of SRAM/regs */ static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) { ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); } /* Clear bit(s) in low 4K of SRAM/regs */ static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) { ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); } static inline void __ipw_enable_interrupts(struct ipw_priv *priv) { if (priv->status & STATUS_INT_ENABLED) return; priv->status |= STATUS_INT_ENABLED; ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); } static inline void __ipw_disable_interrupts(struct ipw_priv *priv) { if (!(priv->status & STATUS_INT_ENABLED)) return; priv->status &= ~STATUS_INT_ENABLED; ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); } static inline void ipw_enable_interrupts(struct ipw_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->irq_lock, flags); __ipw_enable_interrupts(priv); spin_unlock_irqrestore(&priv->irq_lock, flags); } static inline void ipw_disable_interrupts(struct ipw_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->irq_lock, flags); __ipw_disable_interrupts(priv); spin_unlock_irqrestore(&priv->irq_lock, flags); } static char *ipw_error_desc(u32 val) { switch (val) { case IPW_FW_ERROR_OK: return "ERROR_OK"; case IPW_FW_ERROR_FAIL: return "ERROR_FAIL"; case IPW_FW_ERROR_MEMORY_UNDERFLOW: return "MEMORY_UNDERFLOW"; case IPW_FW_ERROR_MEMORY_OVERFLOW: return "MEMORY_OVERFLOW"; case IPW_FW_ERROR_BAD_PARAM: return "BAD_PARAM"; case IPW_FW_ERROR_BAD_CHECKSUM: return "BAD_CHECKSUM"; case IPW_FW_ERROR_NMI_INTERRUPT: return "NMI_INTERRUPT"; case IPW_FW_ERROR_BAD_DATABASE: return "BAD_DATABASE"; case IPW_FW_ERROR_ALLOC_FAIL: return "ALLOC_FAIL"; case IPW_FW_ERROR_DMA_UNDERRUN: return "DMA_UNDERRUN"; case IPW_FW_ERROR_DMA_STATUS: return "DMA_STATUS"; case IPW_FW_ERROR_DINO_ERROR: return "DINO_ERROR"; case IPW_FW_ERROR_EEPROM_ERROR: return "EEPROM_ERROR"; case IPW_FW_ERROR_SYSASSERT: return "SYSASSERT"; case IPW_FW_ERROR_FATAL_ERROR: return "FATAL_ERROR"; default: return "UNKNOWN_ERROR"; } } static void ipw_dump_error_log(struct ipw_priv *priv, struct ipw_fw_error *error) { u32 i; if (!error) { IPW_ERROR("Error allocating and capturing error log. " "Nothing to dump.\n"); return; } IPW_ERROR("Start IPW Error Log Dump:\n"); IPW_ERROR("Status: 0x%08X, Config: %08X\n", error->status, error->config); for (i = 0; i < error->elem_len; i++) IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", ipw_error_desc(error->elem[i].desc), error->elem[i].time, error->elem[i].blink1, error->elem[i].blink2, error->elem[i].link1, error->elem[i].link2, error->elem[i].data); for (i = 0; i < error->log_len; i++) IPW_ERROR("%i\t0x%08x\t%i\n", error->log[i].time, error->log[i].data, error->log[i].event); } static inline int ipw_is_init(struct ipw_priv *priv) { return (priv->status & STATUS_INIT) ? 1 : 0; } static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) { u32 addr, field_info, field_len, field_count, total_len; IPW_DEBUG_ORD("ordinal = %i\n", ord); if (!priv || !val || !len) { IPW_DEBUG_ORD("Invalid argument\n"); return -EINVAL; } /* verify device ordinal tables have been initialized */ if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { IPW_DEBUG_ORD("Access ordinals before initialization\n"); return -EINVAL; } switch (IPW_ORD_TABLE_ID_MASK & ord) { case IPW_ORD_TABLE_0_MASK: /* * TABLE 0: Direct access to a table of 32 bit values * * This is a very simple table with the data directly * read from the table */ /* remove the table id from the ordinal */ ord &= IPW_ORD_TABLE_VALUE_MASK; /* boundary check */ if (ord > priv->table0_len) { IPW_DEBUG_ORD("ordinal value (%i) longer then " "max (%i)\n", ord, priv->table0_len); return -EINVAL; } /* verify we have enough room to store the value */ if (*len < sizeof(u32)) { IPW_DEBUG_ORD("ordinal buffer length too small, " "need %zd\n", sizeof(u32)); return -EINVAL; } IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", ord, priv->table0_addr + (ord << 2)); *len = sizeof(u32); ord <<= 2; *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); break; case IPW_ORD_TABLE_1_MASK: /* * TABLE 1: Indirect access to a table of 32 bit values * * This is a fairly large table of u32 values each * representing starting addr for the data (which is * also a u32) */ /* remove the table id from the ordinal */ ord &= IPW_ORD_TABLE_VALUE_MASK; /* boundary check */ if (ord > priv->table1_len) { IPW_DEBUG_ORD("ordinal value too long\n"); return -EINVAL; } /* verify we have enough room to store the value */ if (*len < sizeof(u32)) { IPW_DEBUG_ORD("ordinal buffer length too small, " "need %zd\n", sizeof(u32)); return -EINVAL; } *((u32 *) val) = ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); *len = sizeof(u32); break; case IPW_ORD_TABLE_2_MASK: /* * TABLE 2: Indirect access to a table of variable sized values * * This table consist of six values, each containing * - dword containing the starting offset of the data * - dword containing the lengh in the first 16bits * and the count in the second 16bits */ /* remove the table id from the ordinal */ ord &= IPW_ORD_TABLE_VALUE_MASK; /* boundary check */ if (ord > priv->table2_len) { IPW_DEBUG_ORD("ordinal value too long\n"); return -EINVAL; } /* get the address of statistic */ addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); /* get the second DW of statistics ; * two 16-bit words - first is length, second is count */ field_info = ipw_read_reg32(priv, priv->table2_addr + (ord << 3) + sizeof(u32)); /* get each entry length */ field_len = *((u16 *) & field_info); /* get number of entries */ field_count = *(((u16 *) & field_info) + 1); /* abort if not enough memory */ total_len = field_len * field_count; if (total_len > *len) { *len = total_len; return -EINVAL; } *len = total_len; if (!total_len) return 0; IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " "field_info = 0x%08x\n", addr, total_len, field_info); ipw_read_indirect(priv, addr, val, total_len); break; default: IPW_DEBUG_ORD("Invalid ordinal!\n"); return -EINVAL; } return 0; } static void ipw_init_ordinals(struct ipw_priv *priv) { priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; priv->table0_len = ipw_read32(priv, priv->table0_addr); IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", priv->table0_addr, priv->table0_len); priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", priv->table1_addr, priv->table1_len); priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); priv->table2_len &= 0x0000ffff; /* use first two bytes */ IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", priv->table2_addr, priv->table2_len); } static u32 ipw_register_toggle(u32 reg) { reg &= ~IPW_START_STANDBY; if (reg & IPW_GATE_ODMA) reg &= ~IPW_GATE_ODMA; if (reg & IPW_GATE_IDMA) reg &= ~IPW_GATE_IDMA; if (reg & IPW_GATE_ADMA) reg &= ~IPW_GATE_ADMA; return reg; } /* * LED behavior: * - On radio ON, turn on any LEDs that require to be on during start * - On initialization, start unassociated blink * - On association, disable unassociated blink * - On disassociation, start unassociated blink * - On radio OFF, turn off any LEDs started during radio on * */ #define LD_TIME_LINK_ON msecs_to_jiffies(300) #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) #define LD_TIME_ACT_ON msecs_to_jiffies(250) static void ipw_led_link_on(struct ipw_priv *priv) { unsigned long flags; u32 led; /* If configured to not use LEDs, or nic_type is 1, * then we don't toggle a LINK led */ if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) return; spin_lock_irqsave(&priv->lock, flags); if (!(priv->status & STATUS_RF_KILL_MASK) && !(priv->status & STATUS_LED_LINK_ON)) { IPW_DEBUG_LED("Link LED On\n"); led = ipw_read_reg32(priv, IPW_EVENT_REG); led |= priv->led_association_on; led = ipw_register_toggle(led); IPW_DEBUG_LED("Reg: 0x%08X\n", led); ipw_write_reg32(priv, IPW_EVENT_REG, led); priv->status |= STATUS_LED_LINK_ON; /* If we aren't associated, schedule turning the LED off */ if (!(priv->status & STATUS_ASSOCIATED)) schedule_delayed_work(&priv->led_link_off, LD_TIME_LINK_ON); } spin_unlock_irqrestore(&priv->lock, flags); } static void ipw_bg_led_link_on(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, led_link_on.work); mutex_lock(&priv->mutex); ipw_led_link_on(priv); mutex_unlock(&priv->mutex); } static void ipw_led_link_off(struct ipw_priv *priv) { unsigned long flags; u32 led; /* If configured not to use LEDs, or nic type is 1, * then we don't goggle the LINK led. */ if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) return; spin_lock_irqsave(&priv->lock, flags); if (priv->status & STATUS_LED_LINK_ON) { led = ipw_read_reg32(priv, IPW_EVENT_REG); led &= priv->led_association_off; led = ipw_register_toggle(led); IPW_DEBUG_LED("Reg: 0x%08X\n", led); ipw_write_reg32(priv, IPW_EVENT_REG, led); IPW_DEBUG_LED("Link LED Off\n"); priv->status &= ~STATUS_LED_LINK_ON; /* If we aren't associated and the radio is on, schedule * turning the LED on (blink while unassociated) */ if (!(priv->status & STATUS_RF_KILL_MASK) && !(priv->status & STATUS_ASSOCIATED)) schedule_delayed_work(&priv->led_link_on, LD_TIME_LINK_OFF); } spin_unlock_irqrestore(&priv->lock, flags); } static void ipw_bg_led_link_off(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, led_link_off.work); mutex_lock(&priv->mutex); ipw_led_link_off(priv); mutex_unlock(&priv->mutex); } static void __ipw_led_activity_on(struct ipw_priv *priv) { u32 led; if (priv->config & CFG_NO_LED) return; if (priv->status & STATUS_RF_KILL_MASK) return; if (!(priv->status & STATUS_LED_ACT_ON)) { led = ipw_read_reg32(priv, IPW_EVENT_REG); led |= priv->led_activity_on; led = ipw_register_toggle(led); IPW_DEBUG_LED("Reg: 0x%08X\n", led); ipw_write_reg32(priv, IPW_EVENT_REG, led); IPW_DEBUG_LED("Activity LED On\n"); priv->status |= STATUS_LED_ACT_ON; cancel_delayed_work(&priv->led_act_off); schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); } else { /* Reschedule LED off for full time period */ cancel_delayed_work(&priv->led_act_off); schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); } } #if 0 void ipw_led_activity_on(struct ipw_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); __ipw_led_activity_on(priv); spin_unlock_irqrestore(&priv->lock, flags); } #endif /* 0 */ static void ipw_led_activity_off(struct ipw_priv *priv) { unsigned long flags; u32 led; if (priv->config & CFG_NO_LED) return; spin_lock_irqsave(&priv->lock, flags); if (priv->status & STATUS_LED_ACT_ON) { led = ipw_read_reg32(priv, IPW_EVENT_REG); led &= priv->led_activity_off; led = ipw_register_toggle(led); IPW_DEBUG_LED("Reg: 0x%08X\n", led); ipw_write_reg32(priv, IPW_EVENT_REG, led); IPW_DEBUG_LED("Activity LED Off\n"); priv->status &= ~STATUS_LED_ACT_ON; } spin_unlock_irqrestore(&priv->lock, flags); } static void ipw_bg_led_activity_off(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, led_act_off.work); mutex_lock(&priv->mutex); ipw_led_activity_off(priv); mutex_unlock(&priv->mutex); } static void ipw_led_band_on(struct ipw_priv *priv) { unsigned long flags; u32 led; /* Only nic type 1 supports mode LEDs */ if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) return; spin_lock_irqsave(&priv->lock, flags); led = ipw_read_reg32(priv, IPW_EVENT_REG); if (priv->assoc_network->mode == IEEE_A) { led |= priv->led_ofdm_on; led &= priv->led_association_off; IPW_DEBUG_LED("Mode LED On: 802.11a\n"); } else if (priv->assoc_network->mode == IEEE_G) { led |= priv->led_ofdm_on; led |= priv->led_association_on; IPW_DEBUG_LED("Mode LED On: 802.11g\n"); } else { led &= priv->led_ofdm_off; led |= priv->led_association_on; IPW_DEBUG_LED("Mode LED On: 802.11b\n"); } led = ipw_register_toggle(led); IPW_DEBUG_LED("Reg: 0x%08X\n", led); ipw_write_reg32(priv, IPW_EVENT_REG, led); spin_unlock_irqrestore(&priv->lock, flags); } static void ipw_led_band_off(struct ipw_priv *priv) { unsigned long flags; u32 led; /* Only nic type 1 supports mode LEDs */ if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) return; spin_lock_irqsave(&priv->lock, flags); led = ipw_read_reg32(priv, IPW_EVENT_REG); led &= priv->led_ofdm_off; led &= priv->led_association_off; led = ipw_register_toggle(led); IPW_DEBUG_LED("Reg: 0x%08X\n", led); ipw_write_reg32(priv, IPW_EVENT_REG, led); spin_unlock_irqrestore(&priv->lock, flags); } static void ipw_led_radio_on(struct ipw_priv *priv) { ipw_led_link_on(priv); } static void ipw_led_radio_off(struct ipw_priv *priv) { ipw_led_activity_off(priv); ipw_led_link_off(priv); } static void ipw_led_link_up(struct ipw_priv *priv) { /* Set the Link Led on for all nic types */ ipw_led_link_on(priv); } static void ipw_led_link_down(struct ipw_priv *priv) { ipw_led_activity_off(priv); ipw_led_link_off(priv); if (priv->status & STATUS_RF_KILL_MASK) ipw_led_radio_off(priv); } static void ipw_led_init(struct ipw_priv *priv) { priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; /* Set the default PINs for the link and activity leds */ priv->led_activity_on = IPW_ACTIVITY_LED; priv->led_activity_off = ~(IPW_ACTIVITY_LED); priv->led_association_on = IPW_ASSOCIATED_LED; priv->led_association_off = ~(IPW_ASSOCIATED_LED); /* Set the default PINs for the OFDM leds */ priv->led_ofdm_on = IPW_OFDM_LED; priv->led_ofdm_off = ~(IPW_OFDM_LED); switch (priv->nic_type) { case EEPROM_NIC_TYPE_1: /* In this NIC type, the LEDs are reversed.... */ priv->led_activity_on = IPW_ASSOCIATED_LED; priv->led_activity_off = ~(IPW_ASSOCIATED_LED); priv->led_association_on = IPW_ACTIVITY_LED; priv->led_association_off = ~(IPW_ACTIVITY_LED); if (!(priv->config & CFG_NO_LED)) ipw_led_band_on(priv); /* And we don't blink link LEDs for this nic, so * just return here */ return; case EEPROM_NIC_TYPE_3: case EEPROM_NIC_TYPE_2: case EEPROM_NIC_TYPE_4: case EEPROM_NIC_TYPE_0: break; default: IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", priv->nic_type); priv->nic_type = EEPROM_NIC_TYPE_0; break; } if (!(priv->config & CFG_NO_LED)) { if (priv->status & STATUS_ASSOCIATED) ipw_led_link_on(priv); else ipw_led_link_off(priv); } } static void ipw_led_shutdown(struct ipw_priv *priv) { ipw_led_activity_off(priv); ipw_led_link_off(priv); ipw_led_band_off(priv); cancel_delayed_work(&priv->led_link_on); cancel_delayed_work(&priv->led_link_off); cancel_delayed_work(&priv->led_act_off); } /* * The following adds a new attribute to the sysfs representation * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) * used for controlling the debug level. * * See the level definitions in ipw for details. */ static ssize_t debug_level_show(struct device_driver *d, char *buf) { return sprintf(buf, "0x%08X\n", ipw_debug_level); } static ssize_t debug_level_store(struct device_driver *d, const char *buf, size_t count) { unsigned long val; int result = kstrtoul(buf, 0, &val); if (result == -EINVAL) printk(KERN_INFO DRV_NAME ": %s is not in hex or decimal form.\n", buf); else if (result == -ERANGE) printk(KERN_INFO DRV_NAME ": %s has overflowed.\n", buf); else ipw_debug_level = val; return count; } static DRIVER_ATTR_RW(debug_level); static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) { /* length = 1st dword in log */ return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); } static void ipw_capture_event_log(struct ipw_priv *priv, u32 log_len, struct ipw_event *log) { u32 base; if (log_len) { base = ipw_read32(priv, IPW_EVENT_LOG); ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), (u8 *) log, sizeof(*log) * log_len); } } static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) { struct ipw_fw_error *error; u32 log_len = ipw_get_event_log_len(priv); u32 base = ipw_read32(priv, IPW_ERROR_LOG); u32 elem_len = ipw_read_reg32(priv, base); error = kmalloc(size_add(struct_size(error, elem, elem_len), array_size(sizeof(*error->log), log_len)), GFP_ATOMIC); if (!error) { IPW_ERROR("Memory allocation for firmware error log " "failed.\n"); return NULL; } error->jiffies = jiffies; error->status = priv->status; error->config = priv->config; error->elem_len = elem_len; error->log_len = log_len; error->log = (struct ipw_event *)(error->elem + elem_len); ipw_capture_event_log(priv, log_len, error->log); if (elem_len) ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, sizeof(*error->elem) * elem_len); return error; } static ssize_t event_log_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); u32 log_len = ipw_get_event_log_len(priv); u32 log_size; struct ipw_event *log; u32 len = 0, i; /* not using min() because of its strict type checking */ log_size = PAGE_SIZE / sizeof(*log) > log_len ? sizeof(*log) * log_len : PAGE_SIZE; log = kzalloc(log_size, GFP_KERNEL); if (!log) { IPW_ERROR("Unable to allocate memory for log\n"); return 0; } log_len = log_size / sizeof(*log); ipw_capture_event_log(priv, log_len, log); len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); for (i = 0; i < log_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "\n%08X%08X%08X", log[i].time, log[i].event, log[i].data); len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); kfree(log); return len; } static DEVICE_ATTR_RO(event_log); static ssize_t error_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); u32 len = 0, i; if (!priv->error) return 0; len += scnprintf(buf + len, PAGE_SIZE - len, "%08lX%08X%08X%08X", priv->error->jiffies, priv->error->status, priv->error->config, priv->error->elem_len); for (i = 0; i < priv->error->elem_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "\n%08X%08X%08X%08X%08X%08X%08X", priv->error->elem[i].time, priv->error->elem[i].desc, priv->error->elem[i].blink1, priv->error->elem[i].blink2, priv->error->elem[i].link1, priv->error->elem[i].link2, priv->error->elem[i].data); len += scnprintf(buf + len, PAGE_SIZE - len, "\n%08X", priv->error->log_len); for (i = 0; i < priv->error->log_len; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "\n%08X%08X%08X", priv->error->log[i].time, priv->error->log[i].event, priv->error->log[i].data); len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); return len; } static ssize_t error_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); kfree(priv->error); priv->error = NULL; return count; } static DEVICE_ATTR_RW(error); static ssize_t cmd_log_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); u32 len = 0, i; if (!priv->cmdlog) return 0; for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; (i != priv->cmdlog_pos) && (len < PAGE_SIZE); i = (i + 1) % priv->cmdlog_len) { len += scnprintf(buf + len, PAGE_SIZE - len, "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, priv->cmdlog[i].cmd.len); len += snprintk_buf(buf + len, PAGE_SIZE - len, (u8 *) priv->cmdlog[i].cmd.param, priv->cmdlog[i].cmd.len); len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); } len += scnprintf(buf + len, PAGE_SIZE - len, "\n"); return len; } static DEVICE_ATTR_RO(cmd_log); #ifdef CONFIG_IPW2200_PROMISCUOUS static void ipw_prom_free(struct ipw_priv *priv); static int ipw_prom_alloc(struct ipw_priv *priv); static ssize_t rtap_iface_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); int rc = 0; if (count < 1) return -EINVAL; switch (buf[0]) { case '0': if (!rtap_iface) return count; if (netif_running(priv->prom_net_dev)) { IPW_WARNING("Interface is up. Cannot unregister.\n"); return count; } ipw_prom_free(priv); rtap_iface = 0; break; case '1': if (rtap_iface) return count; rc = ipw_prom_alloc(priv); if (!rc) rtap_iface = 1; break; default: return -EINVAL; } if (rc) { IPW_ERROR("Failed to register promiscuous network " "device (error %d).\n", rc); } return count; } static ssize_t rtap_iface_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); if (rtap_iface) return sprintf(buf, "%s", priv->prom_net_dev->name); else { buf[0] = '-'; buf[1] = '1'; buf[2] = '\0'; return 3; } } static DEVICE_ATTR_ADMIN_RW(rtap_iface); static ssize_t rtap_filter_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); if (!priv->prom_priv) { IPW_ERROR("Attempting to set filter without " "rtap_iface enabled.\n"); return -EPERM; } priv->prom_priv->filter = simple_strtol(buf, NULL, 0); IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", BIT_ARG16(priv->prom_priv->filter)); return count; } static ssize_t rtap_filter_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); return sprintf(buf, "0x%04X", priv->prom_priv ? priv->prom_priv->filter : 0); } static DEVICE_ATTR_ADMIN_RW(rtap_filter); #endif static ssize_t scan_age_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); return sprintf(buf, "%d\n", priv->ieee->scan_age); } static ssize_t scan_age_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); struct net_device *dev = priv->net_dev; IPW_DEBUG_INFO("enter\n"); unsigned long val; int result = kstrtoul(buf, 0, &val); if (result == -EINVAL || result == -ERANGE) { IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); } else { priv->ieee->scan_age = val; IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); } IPW_DEBUG_INFO("exit\n"); return count; } static DEVICE_ATTR_RW(scan_age); static ssize_t led_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); } static ssize_t led_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); IPW_DEBUG_INFO("enter\n"); if (count == 0) return 0; if (*buf == 0) { IPW_DEBUG_LED("Disabling LED control.\n"); priv->config |= CFG_NO_LED; ipw_led_shutdown(priv); } else { IPW_DEBUG_LED("Enabling LED control.\n"); priv->config &= ~CFG_NO_LED; ipw_led_init(priv); } IPW_DEBUG_INFO("exit\n"); return count; } static DEVICE_ATTR_RW(led); static ssize_t status_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *p = dev_get_drvdata(d); return sprintf(buf, "0x%08x\n", (int)p->status); } static DEVICE_ATTR_RO(status); static ssize_t cfg_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *p = dev_get_drvdata(d); return sprintf(buf, "0x%08x\n", (int)p->config); } static DEVICE_ATTR_RO(cfg); static ssize_t nic_type_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); return sprintf(buf, "TYPE: %d\n", priv->nic_type); } static DEVICE_ATTR_RO(nic_type); static ssize_t ucode_version_show(struct device *d, struct device_attribute *attr, char *buf) { u32 len = sizeof(u32), tmp = 0; struct ipw_priv *p = dev_get_drvdata(d); if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) return 0; return sprintf(buf, "0x%08x\n", tmp); } static DEVICE_ATTR_RO(ucode_version); static ssize_t rtc_show(struct device *d, struct device_attribute *attr, char *buf) { u32 len = sizeof(u32), tmp = 0; struct ipw_priv *p = dev_get_drvdata(d); if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) return 0; return sprintf(buf, "0x%08x\n", tmp); } static DEVICE_ATTR_RO(rtc); /* * Add a device attribute to view/control the delay between eeprom * operations. */ static ssize_t eeprom_delay_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *p = dev_get_drvdata(d); int n = p->eeprom_delay; return sprintf(buf, "%i\n", n); } static ssize_t eeprom_delay_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *p = dev_get_drvdata(d); sscanf(buf, "%i", &p->eeprom_delay); return strnlen(buf, count); } static DEVICE_ATTR_RW(eeprom_delay); static ssize_t command_event_reg_show(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *p = dev_get_drvdata(d); reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); return sprintf(buf, "0x%08x\n", reg); } static ssize_t command_event_reg_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { u32 reg; struct ipw_priv *p = dev_get_drvdata(d); sscanf(buf, "%x", ®); ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); return strnlen(buf, count); } static DEVICE_ATTR_RW(command_event_reg); static ssize_t mem_gpio_reg_show(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *p = dev_get_drvdata(d); reg = ipw_read_reg32(p, 0x301100); return sprintf(buf, "0x%08x\n", reg); } static ssize_t mem_gpio_reg_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { u32 reg; struct ipw_priv *p = dev_get_drvdata(d); sscanf(buf, "%x", ®); ipw_write_reg32(p, 0x301100, reg); return strnlen(buf, count); } static DEVICE_ATTR_RW(mem_gpio_reg); static ssize_t indirect_dword_show(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *priv = dev_get_drvdata(d); if (priv->status & STATUS_INDIRECT_DWORD) reg = ipw_read_reg32(priv, priv->indirect_dword); else reg = 0; return sprintf(buf, "0x%08x\n", reg); } static ssize_t indirect_dword_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); sscanf(buf, "%x", &priv->indirect_dword); priv->status |= STATUS_INDIRECT_DWORD; return strnlen(buf, count); } static DEVICE_ATTR_RW(indirect_dword); static ssize_t indirect_byte_show(struct device *d, struct device_attribute *attr, char *buf) { u8 reg = 0; struct ipw_priv *priv = dev_get_drvdata(d); if (priv->status & STATUS_INDIRECT_BYTE) reg = ipw_read_reg8(priv, priv->indirect_byte); else reg = 0; return sprintf(buf, "0x%02x\n", reg); } static ssize_t indirect_byte_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); sscanf(buf, "%x", &priv->indirect_byte); priv->status |= STATUS_INDIRECT_BYTE; return strnlen(buf, count); } static DEVICE_ATTR_RW(indirect_byte); static ssize_t direct_dword_show(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *priv = dev_get_drvdata(d); if (priv->status & STATUS_DIRECT_DWORD) reg = ipw_read32(priv, priv->direct_dword); else reg = 0; return sprintf(buf, "0x%08x\n", reg); } static ssize_t direct_dword_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); sscanf(buf, "%x", &priv->direct_dword); priv->status |= STATUS_DIRECT_DWORD; return strnlen(buf, count); } static DEVICE_ATTR_RW(direct_dword); static int rf_kill_active(struct ipw_priv *priv) { if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { priv->status |= STATUS_RF_KILL_HW; wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); } else { priv->status &= ~STATUS_RF_KILL_HW; wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); } return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; } static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr, char *buf) { /* 0 - RF kill not enabled 1 - SW based RF kill active (sysfs) 2 - HW based RF kill active 3 - Both HW and SW baed RF kill active */ struct ipw_priv *priv = dev_get_drvdata(d); int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | (rf_kill_active(priv) ? 0x2 : 0x0); return sprintf(buf, "%i\n", val); } static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) { if ((disable_radio ? 1 : 0) == ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) return 0; IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", disable_radio ? "OFF" : "ON"); if (disable_radio) { priv->status |= STATUS_RF_KILL_SW; cancel_delayed_work(&priv->request_scan); cancel_delayed_work(&priv->request_direct_scan); cancel_delayed_work(&priv->request_passive_scan); cancel_delayed_work(&priv->scan_event); schedule_work(&priv->down); } else { priv->status &= ~STATUS_RF_KILL_SW; if (rf_kill_active(priv)) { IPW_DEBUG_RF_KILL("Can not turn radio back on - " "disabled by HW switch\n"); /* Make sure the RF_KILL check timer is running */ cancel_delayed_work(&priv->rf_kill); schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(2 * HZ)); } else schedule_work(&priv->up); } return 1; } static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); ipw_radio_kill_sw(priv, buf[0] == '1'); return count; } static DEVICE_ATTR_RW(rf_kill); static ssize_t speed_scan_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); int pos = 0, len = 0; if (priv->config & CFG_SPEED_SCAN) { while (priv->speed_scan[pos] != 0) len += sprintf(&buf[len], "%d ", priv->speed_scan[pos++]); return len + sprintf(&buf[len], "\n"); } return sprintf(buf, "0\n"); } static ssize_t speed_scan_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); int channel, pos = 0; const char *p = buf; /* list of space separated channels to scan, optionally ending with 0 */ while ((channel = simple_strtol(p, NULL, 0))) { if (pos == MAX_SPEED_SCAN - 1) { priv->speed_scan[pos] = 0; break; } if (libipw_is_valid_channel(priv->ieee, channel)) priv->speed_scan[pos++] = channel; else IPW_WARNING("Skipping invalid channel request: %d\n", channel); p = strchr(p, ' '); if (!p) break; while (*p == ' ' || *p == '\t') p++; } if (pos == 0) priv->config &= ~CFG_SPEED_SCAN; else { priv->speed_scan_pos = 0; priv->config |= CFG_SPEED_SCAN; } return count; } static DEVICE_ATTR_RW(speed_scan); static ssize_t net_stats_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); } static ssize_t net_stats_store(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = dev_get_drvdata(d); if (buf[0] == '1') priv->config |= CFG_NET_STATS; else priv->config &= ~CFG_NET_STATS; return count; } static DEVICE_ATTR_RW(net_stats); static ssize_t channels_show(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *priv = dev_get_drvdata(d); const struct libipw_geo *geo = libipw_get_geo(priv->ieee); int len = 0, i; len = sprintf(&buf[len], "Displaying %d channels in 2.4Ghz band " "(802.11bg):\n", geo->bg_channels); for (i = 0; i < geo->bg_channels; i++) { len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", geo->bg[i].channel, geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? " (radar spectrum)" : "", ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) ? "" : ", IBSS", geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? "passive only" : "active/passive", geo->bg[i].flags & LIBIPW_CH_B_ONLY ? "B" : "B/G"); } len += sprintf(&buf[len], "Displaying %d channels in 5.2Ghz band " "(802.11a):\n", geo->a_channels); for (i = 0; i < geo->a_channels; i++) { len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", geo->a[i].channel, geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? " (radar spectrum)" : "", ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) ? "" : ", IBSS", geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? "passive only" : "active/passive"); } return len; } static DEVICE_ATTR_ADMIN_RO(channels); static void notify_wx_assoc_event(struct ipw_priv *priv) { union iwreq_data wrqu; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if (priv->status & STATUS_ASSOCIATED) memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); else eth_zero_addr(wrqu.ap_addr.sa_data); wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); } static void ipw_irq_tasklet(struct tasklet_struct *t) { struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet); u32 inta, inta_mask, handled = 0; unsigned long flags; spin_lock_irqsave(&priv->irq_lock, flags); inta = ipw_read32(priv, IPW_INTA_RW); inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); if (inta == 0xFFFFFFFF) { /* Hardware disappeared */ IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); /* Only handle the cached INTA values */ inta = 0; } inta &= (IPW_INTA_MASK_ALL & inta_mask); /* Add any cached INTA values that need to be handled */ inta |= priv->isr_inta; spin_unlock_irqrestore(&priv->irq_lock, flags); spin_lock_irqsave(&priv->lock, flags); /* handle all the justifications for the interrupt */ if (inta & IPW_INTA_BIT_RX_TRANSFER) { ipw_rx(priv); handled |= IPW_INTA_BIT_RX_TRANSFER; } if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { IPW_DEBUG_HC("Command completed.\n"); ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); priv->status &= ~STATUS_HCMD_ACTIVE; wake_up_interruptible(&priv->wait_command_queue); handled |= IPW_INTA_BIT_TX_CMD_QUEUE; } if (inta & IPW_INTA_BIT_TX_QUEUE_1) { IPW_DEBUG_TX("TX_QUEUE_1\n"); ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); handled |= IPW_INTA_BIT_TX_QUEUE_1; } if (inta & IPW_INTA_BIT_TX_QUEUE_2) { IPW_DEBUG_TX("TX_QUEUE_2\n"); ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); handled |= IPW_INTA_BIT_TX_QUEUE_2; } if (inta & IPW_INTA_BIT_TX_QUEUE_3) { IPW_DEBUG_TX("TX_QUEUE_3\n"); ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); handled |= IPW_INTA_BIT_TX_QUEUE_3; } if (inta & IPW_INTA_BIT_TX_QUEUE_4) { IPW_DEBUG_TX("TX_QUEUE_4\n"); ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); handled |= IPW_INTA_BIT_TX_QUEUE_4; } if (inta & IPW_INTA_BIT_STATUS_CHANGE) { IPW_WARNING("STATUS_CHANGE\n"); handled |= IPW_INTA_BIT_STATUS_CHANGE; } if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { IPW_WARNING("TX_PERIOD_EXPIRED\n"); handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; } if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { IPW_WARNING("HOST_CMD_DONE\n"); handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; } if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { IPW_WARNING("FW_INITIALIZATION_DONE\n"); handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; } if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { IPW_WARNING("PHY_OFF_DONE\n"); handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; } if (inta & IPW_INTA_BIT_RF_KILL_DONE) { IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); priv->status |= STATUS_RF_KILL_HW; wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); wake_up_interruptible(&priv->wait_command_queue); priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); cancel_delayed_work(&priv->request_scan); cancel_delayed_work(&priv->request_direct_scan); cancel_delayed_work(&priv->request_passive_scan); cancel_delayed_work(&priv->scan_event); schedule_work(&priv->link_down); schedule_delayed_work(&priv->rf_kill, 2 * HZ); handled |= IPW_INTA_BIT_RF_KILL_DONE; } if (inta & IPW_INTA_BIT_FATAL_ERROR) { IPW_WARNING("Firmware error detected. Restarting.\n"); if (priv->error) { IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); if (ipw_debug_level & IPW_DL_FW_ERRORS) { struct ipw_fw_error *error = ipw_alloc_error_log(priv); ipw_dump_error_log(priv, error); kfree(error); } } else { priv->error = ipw_alloc_error_log(priv); if (priv->error) IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); else IPW_DEBUG_FW("Error allocating sysfs 'error' " "log.\n"); if (ipw_debug_level & IPW_DL_FW_ERRORS) ipw_dump_error_log(priv, priv->error); } /* XXX: If hardware encryption is for WPA/WPA2, * we have to notify the supplicant. */ if (priv->ieee->sec.encrypt) { priv->status &= ~STATUS_ASSOCIATED; notify_wx_assoc_event(priv); } /* Keep the restart process from trying to send host * commands by clearing the INIT status bit */ priv->status &= ~STATUS_INIT; /* Cancel currently queued command. */ priv->status &= ~STATUS_HCMD_ACTIVE; wake_up_interruptible(&priv->wait_command_queue); schedule_work(&priv->adapter_restart); handled |= IPW_INTA_BIT_FATAL_ERROR; } if (inta & IPW_INTA_BIT_PARITY_ERROR) { IPW_ERROR("Parity error\n"); handled |= IPW_INTA_BIT_PARITY_ERROR; } if (handled != inta) { IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); } spin_unlock_irqrestore(&priv->lock, flags); /* enable all interrupts */ ipw_enable_interrupts(priv); } #define IPW_CMD(x) case IPW_CMD_ ## x : return #x static char *get_cmd_string(u8 cmd) { switch (cmd) { IPW_CMD(HOST_COMPLETE); IPW_CMD(POWER_DOWN); IPW_CMD(SYSTEM_CONFIG); IPW_CMD(MULTICAST_ADDRESS); IPW_CMD(SSID); IPW_CMD(ADAPTER_ADDRESS); IPW_CMD(PORT_TYPE); IPW_CMD(RTS_THRESHOLD); IPW_CMD(FRAG_THRESHOLD); IPW_CMD(POWER_MODE); IPW_CMD(WEP_KEY); IPW_CMD(TGI_TX_KEY); IPW_CMD(SCAN_REQUEST); IPW_CMD(SCAN_REQUEST_EXT); IPW_CMD(ASSOCIATE); IPW_CMD(SUPPORTED_RATES); IPW_CMD(SCAN_ABORT); IPW_CMD(TX_FLUSH); IPW_CMD(QOS_PARAMETERS); IPW_CMD(DINO_CONFIG); IPW_CMD(RSN_CAPABILITIES); IPW_CMD(RX_KEY); IPW_CMD(CARD_DISABLE); IPW_CMD(SEED_NUMBER); IPW_CMD(TX_POWER); IPW_CMD(COUNTRY_INFO); IPW_CMD(AIRONET_INFO); IPW_CMD(AP_TX_POWER); IPW_CMD(CCKM_INFO); IPW_CMD(CCX_VER_INFO); IPW_CMD(SET_CALIBRATION); IPW_CMD(SENSITIVITY_CALIB); IPW_CMD(RETRY_LIMIT); IPW_CMD(IPW_PRE_POWER_DOWN); IPW_CMD(VAP_BEACON_TEMPLATE); IPW_CMD(VAP_DTIM_PERIOD); IPW_CMD(EXT_SUPPORTED_RATES); IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); IPW_CMD(VAP_QUIET_INTERVALS); IPW_CMD(VAP_CHANNEL_SWITCH); IPW_CMD(VAP_MANDATORY_CHANNELS); IPW_CMD(VAP_CELL_PWR_LIMIT); IPW_CMD(VAP_CF_PARAM_SET); IPW_CMD(VAP_SET_BEACONING_STATE); IPW_CMD(MEASUREMENT); IPW_CMD(POWER_CAPABILITY); IPW_CMD(SUPPORTED_CHANNELS); IPW_CMD(TPC_REPORT); IPW_CMD(WME_INFO); IPW_CMD(PRODUCTION_COMMAND); default: return "UNKNOWN"; } } #define HOST_COMPLETE_TIMEOUT HZ static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) { int rc = 0; unsigned long flags; unsigned long now, end; spin_lock_irqsave(&priv->lock, flags); if (priv->status & STATUS_HCMD_ACTIVE) { IPW_ERROR("Failed to send %s: Already sending a command.\n", get_cmd_string(cmd->cmd)); spin_unlock_irqrestore(&priv->lock, flags); return -EAGAIN; } priv->status |= STATUS_HCMD_ACTIVE; if (priv->cmdlog) { priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, cmd->len); priv->cmdlog[priv->cmdlog_pos].retcode = -1; } IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, priv->status); #ifndef DEBUG_CMD_WEP_KEY if (cmd->cmd == IPW_CMD_WEP_KEY) IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); else #endif printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); if (rc) { priv->status &= ~STATUS_HCMD_ACTIVE; IPW_ERROR("Failed to send %s: Reason %d\n", get_cmd_string(cmd->cmd), rc); spin_unlock_irqrestore(&priv->lock, flags); goto exit; } spin_unlock_irqrestore(&priv->lock, flags); now = jiffies; end = now + HOST_COMPLETE_TIMEOUT; again: rc = wait_event_interruptible_timeout(priv->wait_command_queue, !(priv-> status & STATUS_HCMD_ACTIVE), end - now); if (rc < 0) { now = jiffies; if (time_before(now, end)) goto again; rc = 0; } if (rc == 0) { spin_lock_irqsave(&priv->lock, flags); if (priv->status & STATUS_HCMD_ACTIVE) { IPW_ERROR("Failed to send %s: Command timed out.\n", get_cmd_string(cmd->cmd)); priv->status &= ~STATUS_HCMD_ACTIVE; spin_unlock_irqrestore(&priv->lock, flags); rc = -EIO; goto exit; } spin_unlock_irqrestore(&priv->lock, flags); } else rc = 0; if (priv->status & STATUS_RF_KILL_HW) { IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", get_cmd_string(cmd->cmd)); rc = -EIO; goto exit; } exit: if (priv->cmdlog) { priv->cmdlog[priv->cmdlog_pos++].retcode = rc; priv->cmdlog_pos %= priv->cmdlog_len; } return rc; } static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) { struct host_cmd cmd = { .cmd = command, }; return __ipw_send_cmd(priv, &cmd); } static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, const void *data) { struct host_cmd cmd = { .cmd = command, .len = len, .param = data, }; return __ipw_send_cmd(priv, &cmd); } static int ipw_send_host_complete(struct ipw_priv *priv) { if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); } static int ipw_send_system_config(struct ipw_priv *priv) { return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, sizeof(priv->sys_config), &priv->sys_config); } static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) { if (!priv || !ssid) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), ssid); } static int ipw_send_adapter_address(struct ipw_priv *priv, const u8 * mac) { if (!priv || !mac) { IPW_ERROR("Invalid args\n"); return -1; } IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", priv->net_dev->name, mac); return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); } static void ipw_adapter_restart(void *adapter) { struct ipw_priv *priv = adapter; if (priv->status & STATUS_RF_KILL_MASK) return; ipw_down(priv); if (priv->assoc_network && (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) ipw_remove_current_network(priv); if (ipw_up(priv)) { IPW_ERROR("Failed to up device\n"); return; } } static void ipw_bg_adapter_restart(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, adapter_restart); mutex_lock(&priv->mutex); ipw_adapter_restart(priv); mutex_unlock(&priv->mutex); } static void ipw_abort_scan(struct ipw_priv *priv); #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) static void ipw_scan_check(void *data) { struct ipw_priv *priv = data; if (priv->status & STATUS_SCAN_ABORTING) { IPW_DEBUG_SCAN("Scan completion watchdog resetting " "adapter after (%dms).\n", jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); schedule_work(&priv->adapter_restart); } else if (priv->status & STATUS_SCANNING) { IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " "after (%dms).\n", jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); ipw_abort_scan(priv); schedule_delayed_work(&priv->scan_check, HZ); } } static void ipw_bg_scan_check(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, scan_check.work); mutex_lock(&priv->mutex); ipw_scan_check(priv); mutex_unlock(&priv->mutex); } static int ipw_send_scan_request_ext(struct ipw_priv *priv, struct ipw_scan_request_ext *request) { return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, sizeof(*request), request); } static int ipw_send_scan_abort(struct ipw_priv *priv) { if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); } static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) { struct ipw_sensitivity_calib calib = { .beacon_rssi_raw = cpu_to_le16(sens), }; return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), &calib); } static int ipw_send_associate(struct ipw_priv *priv, struct ipw_associate *associate) { if (!priv || !associate) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), associate); } static int ipw_send_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *rates) { if (!priv || !rates) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), rates); } static int ipw_set_random_seed(struct ipw_priv *priv) { u32 val; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } get_random_bytes(&val, sizeof(val)); return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); } static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) { __le32 v = cpu_to_le32(phy_off); if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); } static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) { if (!priv || !power) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); } static int ipw_set_tx_power(struct ipw_priv *priv) { const struct libipw_geo *geo = libipw_get_geo(priv->ieee); struct ipw_tx_power tx_power; s8 max_power; int i; memset(&tx_power, 0, sizeof(tx_power)); /* configure device for 'G' band */ tx_power.ieee_mode = IPW_G_MODE; tx_power.num_channels = geo->bg_channels; for (i = 0; i < geo->bg_channels; i++) { max_power = geo->bg[i].max_power; tx_power.channels_tx_power[i].channel_number = geo->bg[i].channel; tx_power.channels_tx_power[i].tx_power = max_power ? min(max_power, priv->tx_power) : priv->tx_power; } if (ipw_send_tx_power(priv, &tx_power)) return -EIO; /* configure device to also handle 'B' band */ tx_power.ieee_mode = IPW_B_MODE; if (ipw_send_tx_power(priv, &tx_power)) return -EIO; /* configure device to also handle 'A' band */ if (priv->ieee->abg_true) { tx_power.ieee_mode = IPW_A_MODE; tx_power.num_channels = geo->a_channels; for (i = 0; i < tx_power.num_channels; i++) { max_power = geo->a[i].max_power; tx_power.channels_tx_power[i].channel_number = geo->a[i].channel; tx_power.channels_tx_power[i].tx_power = max_power ? min(max_power, priv->tx_power) : priv->tx_power; } if (ipw_send_tx_power(priv, &tx_power)) return -EIO; } return 0; } static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) { struct ipw_rts_threshold rts_threshold = { .rts_threshold = cpu_to_le16(rts), }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, sizeof(rts_threshold), &rts_threshold); } static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) { struct ipw_frag_threshold frag_threshold = { .frag_threshold = cpu_to_le16(frag), }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, sizeof(frag_threshold), &frag_threshold); } static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) { __le32 param; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } /* If on battery, set to 3, if AC set to CAM, else user * level */ switch (mode) { case IPW_POWER_BATTERY: param = cpu_to_le32(IPW_POWER_INDEX_3); break; case IPW_POWER_AC: param = cpu_to_le32(IPW_POWER_MODE_CAM); break; default: param = cpu_to_le32(mode); break; } return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), ¶m); } static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) { struct ipw_retry_limit retry_limit = { .short_retry_limit = slimit, .long_retry_limit = llimit }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), &retry_limit); } /* * The IPW device contains a Microwire compatible EEPROM that stores * various data like the MAC address. Usually the firmware has exclusive * access to the eeprom, but during device initialization (before the * device driver has sent the HostComplete command to the firmware) the * device driver has read access to the EEPROM by way of indirect addressing * through a couple of memory mapped registers. * * The following is a simplified implementation for pulling data out of the * eeprom, along with some helper functions to find information in * the per device private data's copy of the eeprom. * * NOTE: To better understand how these functions work (i.e what is a chip * select and why do have to keep driving the eeprom clock?), read * just about any data sheet for a Microwire compatible EEPROM. */ /* write a 32 bit value into the indirect accessor register */ static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) { ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); /* the eeprom requires some time to complete the operation */ udelay(p->eeprom_delay); } /* perform a chip select operation */ static void eeprom_cs(struct ipw_priv *priv) { eeprom_write_reg(priv, 0); eeprom_write_reg(priv, EEPROM_BIT_CS); eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); eeprom_write_reg(priv, EEPROM_BIT_CS); } /* perform a chip select operation */ static void eeprom_disable_cs(struct ipw_priv *priv) { eeprom_write_reg(priv, EEPROM_BIT_CS); eeprom_write_reg(priv, 0); eeprom_write_reg(priv, EEPROM_BIT_SK); } /* push a single bit down to the eeprom */ static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) { int d = (bit ? EEPROM_BIT_DI : 0); eeprom_write_reg(p, EEPROM_BIT_CS | d); eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); } /* push an opcode followed by an address down to the eeprom */ static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) { int i; eeprom_cs(priv); eeprom_write_bit(priv, 1); eeprom_write_bit(priv, op & 2); eeprom_write_bit(priv, op & 1); for (i = 7; i >= 0; i--) { eeprom_write_bit(priv, addr & (1 << i)); } } /* pull 16 bits off the eeprom, one bit at a time */ static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) { int i; u16 r = 0; /* Send READ Opcode */ eeprom_op(priv, EEPROM_CMD_READ, addr); /* Send dummy bit */ eeprom_write_reg(priv, EEPROM_BIT_CS); /* Read the byte off the eeprom one bit at a time */ for (i = 0; i < 16; i++) { u32 data = 0; eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); eeprom_write_reg(priv, EEPROM_BIT_CS); data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); } /* Send another dummy bit */ eeprom_write_reg(priv, 0); eeprom_disable_cs(priv); return r; } /* helper function for pulling the mac address out of the private */ /* data's copy of the eeprom data */ static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) { memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN); } static void ipw_read_eeprom(struct ipw_priv *priv) { int i; __le16 *eeprom = (__le16 *) priv->eeprom; IPW_DEBUG_TRACE(">>\n"); /* read entire contents of eeprom into private buffer */ for (i = 0; i < 128; i++) eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); IPW_DEBUG_TRACE("<<\n"); } /* * Either the device driver (i.e. the host) or the firmware can * load eeprom data into the designated region in SRAM. If neither * happens then the FW will shutdown with a fatal error. * * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE * bit needs region of shared SRAM needs to be non-zero. */ static void ipw_eeprom_init_sram(struct ipw_priv *priv) { int i; IPW_DEBUG_TRACE(">>\n"); /* If the data looks correct, then copy it to our private copy. Otherwise let the firmware know to perform the operation on its own. */ if (priv->eeprom[EEPROM_VERSION] != 0) { IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); /* write the eeprom data to sram */ for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); /* Do not load eeprom data on fatal error or suspend */ ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); } else { IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n"); /* Load eeprom data on fatal error or suspend */ ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); } IPW_DEBUG_TRACE("<<\n"); } static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) { count >>= 2; if (!count) return; _ipw_write32(priv, IPW_AUTOINC_ADDR, start); while (count--) _ipw_write32(priv, IPW_AUTOINC_DATA, 0); } static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) { ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, CB_NUMBER_OF_ELEMENTS_SMALL * sizeof(struct command_block)); } static int ipw_fw_dma_enable(struct ipw_priv *priv) { /* start dma engine but no transfers yet */ IPW_DEBUG_FW(">> :\n"); /* Start the dma */ ipw_fw_dma_reset_command_blocks(priv); /* Write CB base address */ ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); IPW_DEBUG_FW("<< :\n"); return 0; } static void ipw_fw_dma_abort(struct ipw_priv *priv) { u32 control = 0; IPW_DEBUG_FW(">> :\n"); /* set the Stop and Abort bit */ control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); priv->sram_desc.last_cb_index = 0; IPW_DEBUG_FW("<<\n"); } static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, struct command_block *cb) { u32 address = IPW_SHARED_SRAM_DMA_CONTROL + (sizeof(struct command_block) * index); IPW_DEBUG_FW(">> :\n"); ipw_write_indirect(priv, address, (u8 *) cb, (int)sizeof(struct command_block)); IPW_DEBUG_FW("<< :\n"); return 0; } static int ipw_fw_dma_kick(struct ipw_priv *priv) { u32 control = 0; u32 index = 0; IPW_DEBUG_FW(">> :\n"); for (index = 0; index < priv->sram_desc.last_cb_index; index++) ipw_fw_dma_write_command_block(priv, index, &priv->sram_desc.cb_list[index]); /* Enable the DMA in the CSR register */ ipw_clear_bit(priv, IPW_RESET_REG, IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); /* Set the Start bit. */ control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); IPW_DEBUG_FW("<< :\n"); return 0; } static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) { u32 address; u32 register_value = 0; u32 cb_fields_address = 0; IPW_DEBUG_FW(">> :\n"); address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); /* Read the DMA Controlor register */ register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); /* Print the CB values */ cb_fields_address = address; register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); cb_fields_address += sizeof(u32); register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); cb_fields_address += sizeof(u32); register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", register_value); cb_fields_address += sizeof(u32); register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); IPW_DEBUG_FW(">> :\n"); } static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) { u32 current_cb_address = 0; u32 current_cb_index = 0; IPW_DEBUG_FW("<< :\n"); current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / sizeof(struct command_block); IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", current_cb_index, current_cb_address); IPW_DEBUG_FW(">> :\n"); return current_cb_index; } static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, u32 src_address, u32 dest_address, u32 length, int interrupt_enabled, int is_last) { u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | CB_DEST_SIZE_LONG; struct command_block *cb; u32 last_cb_element = 0; IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", src_address, dest_address, length); if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) return -1; last_cb_element = priv->sram_desc.last_cb_index; cb = &priv->sram_desc.cb_list[last_cb_element]; priv->sram_desc.last_cb_index++; /* Calculate the new CB control word */ if (interrupt_enabled) control |= CB_INT_ENABLED; if (is_last) control |= CB_LAST_VALID; control |= length; /* Calculate the CB Element's checksum value */ cb->status = control ^ src_address ^ dest_address; /* Copy the Source and Destination addresses */ cb->dest_addr = dest_address; cb->source_addr = src_address; /* Copy the Control Word last */ cb->control = control; return 0; } static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, int nr, u32 dest_address, u32 len) { int ret, i; u32 size; IPW_DEBUG_FW(">>\n"); IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", nr, dest_address, len); for (i = 0; i < nr; i++) { size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); ret = ipw_fw_dma_add_command_block(priv, src_address[i], dest_address + i * CB_MAX_LENGTH, size, 0, 0); if (ret) { IPW_DEBUG_FW_INFO(": Failed\n"); return -1; } else IPW_DEBUG_FW_INFO(": Added new cb\n"); } IPW_DEBUG_FW("<<\n"); return 0; } static int ipw_fw_dma_wait(struct ipw_priv *priv) { u32 current_index = 0, previous_index; u32 watchdog = 0; IPW_DEBUG_FW(">> :\n"); current_index = ipw_fw_dma_command_block_index(priv); IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", (int)priv->sram_desc.last_cb_index); while (current_index < priv->sram_desc.last_cb_index) { udelay(50); previous_index = current_index; current_index = ipw_fw_dma_command_block_index(priv); if (previous_index < current_index) { watchdog = 0; continue; } if (++watchdog > 400) { IPW_DEBUG_FW_INFO("Timeout\n"); ipw_fw_dma_dump_command_block(priv); ipw_fw_dma_abort(priv); return -1; } } ipw_fw_dma_abort(priv); /*Disable the DMA in the CSR register */ ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); IPW_DEBUG_FW("<< dmaWaitSync\n"); return 0; } static void ipw_remove_current_network(struct ipw_priv *priv) { struct list_head *element, *safe; struct libipw_network *network = NULL; unsigned long flags; spin_lock_irqsave(&priv->ieee->lock, flags); list_for_each_safe(element, safe, &priv->ieee->network_list) { network = list_entry(element, struct libipw_network, list); if (ether_addr_equal(network->bssid, priv->bssid)) { list_del(element); list_add_tail(&network->list, &priv->ieee->network_free_list); } } spin_unlock_irqrestore(&priv->ieee->lock, flags); } /* timeout in msec, attempted in 10-msec quanta */ static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, int timeout) { int i = 0; do { if ((ipw_read32(priv, addr) & mask) == mask) return i; mdelay(10); i += 10; } while (i < timeout); return -ETIME; } /* These functions load the firmware and micro code for the operation of * the ipw hardware. It assumes the buffer has all the bits for the * image and the caller is handling the memory allocation and clean up. */ static int ipw_stop_master(struct ipw_priv *priv) { int rc; IPW_DEBUG_TRACE(">>\n"); /* stop master. typical delay - 0 */ ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); /* timeout is in msec, polled in 10-msec quanta */ rc = ipw_poll_bit(priv, IPW_RESET_REG, IPW_RESET_REG_MASTER_DISABLED, 100); if (rc < 0) { IPW_ERROR("wait for stop master failed after 100ms\n"); return -1; } IPW_DEBUG_INFO("stop master %dms\n", rc); return rc; } static void ipw_arc_release(struct ipw_priv *priv) { IPW_DEBUG_TRACE(">>\n"); mdelay(5); ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); /* no one knows timing, for safety add some delay */ mdelay(5); } struct fw_chunk { __le32 address; __le32 length; }; static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) { int rc = 0, i, addr; u8 cr = 0; __le16 *image; image = (__le16 *) data; IPW_DEBUG_TRACE(">>\n"); rc = ipw_stop_master(priv); if (rc < 0) return rc; for (addr = IPW_SHARED_LOWER_BOUND; addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { ipw_write32(priv, addr, 0); } /* no ucode (yet) */ memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); /* destroy DMA queues */ /* reset sequence */ ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); ipw_arc_release(priv); ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); mdelay(1); /* reset PHY */ ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); mdelay(1); ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); mdelay(1); /* enable ucode store */ ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); mdelay(1); /* write ucode */ /* * @bug * Do NOT set indirect address register once and then * store data to indirect data register in the loop. * It seems very reasonable, but in this case DINO do not * accept ucode. It is essential to set address each time. */ /* load new ipw uCode */ for (i = 0; i < len / 2; i++) ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, le16_to_cpu(image[i])); /* enable DINO */ ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); /* this is where the igx / win driver deveates from the VAP driver. */ /* wait for alive response */ for (i = 0; i < 100; i++) { /* poll for incoming data */ cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); if (cr & DINO_RXFIFO_DATA) break; mdelay(1); } if (cr & DINO_RXFIFO_DATA) { /* alive_command_responce size is NOT multiple of 4 */ __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; for (i = 0; i < ARRAY_SIZE(response_buffer); i++) response_buffer[i] = cpu_to_le32(ipw_read_reg32(priv, IPW_BASEBAND_RX_FIFO_READ)); memcpy(&priv->dino_alive, response_buffer, sizeof(priv->dino_alive)); if (priv->dino_alive.alive_command == 1 && priv->dino_alive.ucode_valid == 1) { rc = 0; IPW_DEBUG_INFO ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " "of %02d/%02d/%02d %02d:%02d\n", priv->dino_alive.software_revision, priv->dino_alive.software_revision, priv->dino_alive.device_identifier, priv->dino_alive.device_identifier, priv->dino_alive.time_stamp[0], priv->dino_alive.time_stamp[1], priv->dino_alive.time_stamp[2], priv->dino_alive.time_stamp[3], priv->dino_alive.time_stamp[4]); } else { IPW_DEBUG_INFO("Microcode is not alive\n"); rc = -EINVAL; } } else { IPW_DEBUG_INFO("No alive response from DINO\n"); rc = -ETIME; } /* disable DINO, otherwise for some reason firmware have problem getting alive resp. */ ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); return rc; } static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) { int ret = -1; int offset = 0; struct fw_chunk *chunk; int total_nr = 0; int i; struct dma_pool *pool; void **virts; dma_addr_t *phys; IPW_DEBUG_TRACE("<< :\n"); virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *), GFP_KERNEL); if (!virts) return -ENOMEM; phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t), GFP_KERNEL); if (!phys) { kfree(virts); return -ENOMEM; } pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0, 0); if (!pool) { IPW_ERROR("dma_pool_create failed\n"); kfree(phys); kfree(virts); return -ENOMEM; } /* Start the Dma */ ret = ipw_fw_dma_enable(priv); /* the DMA is already ready this would be a bug. */ BUG_ON(priv->sram_desc.last_cb_index > 0); do { u32 chunk_len; u8 *start; int size; int nr = 0; chunk = (struct fw_chunk *)(data + offset); offset += sizeof(struct fw_chunk); chunk_len = le32_to_cpu(chunk->length); start = data + offset; nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; for (i = 0; i < nr; i++) { virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL, &phys[total_nr]); if (!virts[total_nr]) { ret = -ENOMEM; goto out; } size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); memcpy(virts[total_nr], start, size); start += size; total_nr++; /* We don't support fw chunk larger than 64*8K */ BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); } /* build DMA packet and queue up for sending */ /* dma to chunk->address, the chunk->length bytes from data + * offeset*/ /* Dma loading */ ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], nr, le32_to_cpu(chunk->address), chunk_len); if (ret) { IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); goto out; } offset += chunk_len; } while (offset < len); /* Run the DMA and wait for the answer */ ret = ipw_fw_dma_kick(priv); if (ret) { IPW_ERROR("dmaKick Failed\n"); goto out; } ret = ipw_fw_dma_wait(priv); if (ret) { IPW_ERROR("dmaWaitSync Failed\n"); goto out; } out: for (i = 0; i < total_nr; i++) dma_pool_free(pool, virts[i], phys[i]); dma_pool_destroy(pool); kfree(phys); kfree(virts); return ret; } /* stop nic */ static int ipw_stop_nic(struct ipw_priv *priv) { int rc = 0; /* stop */ ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); rc = ipw_poll_bit(priv, IPW_RESET_REG, IPW_RESET_REG_MASTER_DISABLED, 500); if (rc < 0) { IPW_ERROR("wait for reg master disabled failed after 500ms\n"); return rc; } ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); return rc; } static void ipw_start_nic(struct ipw_priv *priv) { IPW_DEBUG_TRACE(">>\n"); /* prvHwStartNic release ARC */ ipw_clear_bit(priv, IPW_RESET_REG, IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER | CBD_RESET_REG_PRINCETON_RESET); /* enable power management */ ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); IPW_DEBUG_TRACE("<<\n"); } static int ipw_init_nic(struct ipw_priv *priv) { int rc; IPW_DEBUG_TRACE(">>\n"); /* reset */ /*prvHwInitNic */ /* set "initialization complete" bit to move adapter to D0 state */ ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); /* low-level PLL activation */ ipw_write32(priv, IPW_READ_INT_REGISTER, IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); /* wait for clock stabilization */ rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_CLOCK_READY, 250); if (rc < 0) IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); /* assert SW reset */ ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); udelay(10); /* set "initialization complete" bit to move adapter to D0 state */ ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); IPW_DEBUG_TRACE(">>\n"); return 0; } /* Call this function from process context, it will sleep in request_firmware. * Probe is an ok place to call this from. */ static int ipw_reset_nic(struct ipw_priv *priv) { int rc = 0; unsigned long flags; IPW_DEBUG_TRACE(">>\n"); rc = ipw_init_nic(priv); spin_lock_irqsave(&priv->lock, flags); /* Clear the 'host command active' bit... */ priv->status &= ~STATUS_HCMD_ACTIVE; wake_up_interruptible(&priv->wait_command_queue); priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); wake_up_interruptible(&priv->wait_state); spin_unlock_irqrestore(&priv->lock, flags); IPW_DEBUG_TRACE("<<\n"); return rc; } struct ipw_fw { __le32 ver; __le32 boot_size; __le32 ucode_size; __le32 fw_size; u8 data[]; }; static int ipw_get_fw(struct ipw_priv *priv, const struct firmware **raw, const char *name) { struct ipw_fw *fw; int rc; /* ask firmware_class module to get the boot firmware off disk */ rc = request_firmware(raw, name, &priv->pci_dev->dev); if (rc < 0) { IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); return rc; } if ((*raw)->size < sizeof(*fw)) { IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); return -EINVAL; } fw = (void *)(*raw)->data; if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { IPW_ERROR("%s is too small or corrupt (%zd)\n", name, (*raw)->size); return -EINVAL; } IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", name, le32_to_cpu(fw->ver) >> 16, le32_to_cpu(fw->ver) & 0xff, (*raw)->size - sizeof(*fw)); return 0; } #define IPW_RX_BUF_SIZE (3000) static void ipw_rx_queue_reset(struct ipw_priv *priv, struct ipw_rx_queue *rxq) { unsigned long flags; int i; spin_lock_irqsave(&rxq->lock, flags); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { /* In the reset function, these buffers may have been allocated * to an SKB, so we need to unmap and free potential storage */ if (rxq->pool[i].skb != NULL) { dma_unmap_single(&priv->pci_dev->dev, rxq->pool[i].dma_addr, IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); dev_kfree_skb_irq(rxq->pool[i].skb); rxq->pool[i].skb = NULL; } list_add_tail(&rxq->pool[i].list, &rxq->rx_used); } /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->free_count = 0; spin_unlock_irqrestore(&rxq->lock, flags); } #ifdef CONFIG_PM static int fw_loaded = 0; static const struct firmware *raw = NULL; static void free_firmware(void) { if (fw_loaded) { release_firmware(raw); raw = NULL; fw_loaded = 0; } } #else #define free_firmware() do {} while (0) #endif static int ipw_load(struct ipw_priv *priv) { #ifndef CONFIG_PM const struct firmware *raw = NULL; #endif struct ipw_fw *fw; u8 *boot_img, *ucode_img, *fw_img; u8 *name = NULL; int rc = 0, retries = 3; switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: name = "ipw2200-ibss.fw"; break; #ifdef CONFIG_IPW2200_MONITOR case IW_MODE_MONITOR: name = "ipw2200-sniffer.fw"; break; #endif case IW_MODE_INFRA: name = "ipw2200-bss.fw"; break; } if (!name) { rc = -EINVAL; goto error; } #ifdef CONFIG_PM if (!fw_loaded) { #endif rc = ipw_get_fw(priv, &raw, name); if (rc < 0) goto error; #ifdef CONFIG_PM } #endif fw = (void *)raw->data; boot_img = &fw->data[0]; ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; fw_img = &fw->data[le32_to_cpu(fw->boot_size) + le32_to_cpu(fw->ucode_size)]; if (!priv->rxq) priv->rxq = ipw_rx_queue_alloc(priv); else ipw_rx_queue_reset(priv, priv->rxq); if (!priv->rxq) { IPW_ERROR("Unable to initialize Rx queue\n"); rc = -ENOMEM; goto error; } retry: /* Ensure interrupts are disabled */ ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); priv->status &= ~STATUS_INT_ENABLED; /* ack pending interrupts */ ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); ipw_stop_nic(priv); rc = ipw_reset_nic(priv); if (rc < 0) { IPW_ERROR("Unable to reset NIC\n"); goto error; } ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); /* DMA the initial boot firmware into the device */ rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); if (rc < 0) { IPW_ERROR("Unable to load boot firmware: %d\n", rc); goto error; } /* kick start the device */ ipw_start_nic(priv); /* wait for the device to finish its initial startup sequence */ rc = ipw_poll_bit(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); if (rc < 0) { IPW_ERROR("device failed to boot initial fw image\n"); goto error; } IPW_DEBUG_INFO("initial device response after %dms\n", rc); /* ack fw init done interrupt */ ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); /* DMA the ucode into the device */ rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); if (rc < 0) { IPW_ERROR("Unable to load ucode: %d\n", rc); goto error; } /* stop nic */ ipw_stop_nic(priv); /* DMA bss firmware into the device */ rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); if (rc < 0) { IPW_ERROR("Unable to load firmware: %d\n", rc); goto error; } #ifdef CONFIG_PM fw_loaded = 1; #endif ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); rc = ipw_queue_reset(priv); if (rc < 0) { IPW_ERROR("Unable to initialize queues\n"); goto error; } /* Ensure interrupts are disabled */ ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); /* ack pending interrupts */ ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); /* kick start the device */ ipw_start_nic(priv); if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { if (retries > 0) { IPW_WARNING("Parity error. Retrying init.\n"); retries--; goto retry; } IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); rc = -EIO; goto error; } /* wait for the device */ rc = ipw_poll_bit(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); if (rc < 0) { IPW_ERROR("device failed to start within 500ms\n"); goto error; } IPW_DEBUG_INFO("device response after %dms\n", rc); /* ack fw init done interrupt */ ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); /* read eeprom data */ priv->eeprom_delay = 1; ipw_read_eeprom(priv); /* initialize the eeprom region of sram */ ipw_eeprom_init_sram(priv); /* enable interrupts */ ipw_enable_interrupts(priv); /* Ensure our queue has valid packets */ ipw_rx_queue_replenish(priv); ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); /* ack pending interrupts */ ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); #ifndef CONFIG_PM release_firmware(raw); #endif return 0; error: if (priv->rxq) { ipw_rx_queue_free(priv, priv->rxq); priv->rxq = NULL; } ipw_tx_queue_free(priv); release_firmware(raw); #ifdef CONFIG_PM fw_loaded = 0; raw = NULL; #endif return rc; } /* * DMA services * * Theory of operation * * A queue is a circular buffers with 'Read' and 'Write' pointers. * 2 empty entries always kept in the buffer to protect from overflow. * * For Tx queue, there are low mark and high mark limits. If, after queuing * the packet for Tx, free space become < low mark, Tx queue stopped. When * reclaiming packets (on 'tx done IRQ), if free space become > high mark, * Tx queue resumed. * * The IPW operates with six queues, one receive queue in the device's * sram, one transmit queue for sending commands to the device firmware, * and four transmit queues for data. * * The four transmit queues allow for performing quality of service (qos) * transmissions as per the 802.11 protocol. Currently Linux does not * provide a mechanism to the user for utilizing prioritized queues, so * we only utilize the first data transmit queue (queue1). */ /* * Driver allocates buffers of this size for Rx */ /* * ipw_rx_queue_space - Return number of free slots available in queue. */ static int ipw_rx_queue_space(const struct ipw_rx_queue *q) { int s = q->read - q->write; if (s <= 0) s += RX_QUEUE_SIZE; /* keep some buffer to not confuse full and empty queue */ s -= 2; if (s < 0) s = 0; return s; } static inline int ipw_tx_queue_space(const struct clx2_queue *q) { int s = q->last_used - q->first_empty; if (s <= 0) s += q->n_bd; s -= 2; /* keep some reserve to not confuse empty and full situations */ if (s < 0) s = 0; return s; } static inline int ipw_queue_inc_wrap(int index, int n_bd) { return (++index == n_bd) ? 0 : index; } /* * Initialize common DMA queue structure * * @param q queue to init * @param count Number of BD's to allocate. Should be power of 2 * @param read_register Address for 'read' register * (not offset within BAR, full address) * @param write_register Address for 'write' register * (not offset within BAR, full address) * @param base_register Address for 'base' register * (not offset within BAR, full address) * @param size Address for 'size' register * (not offset within BAR, full address) */ static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, int count, u32 read, u32 write, u32 base, u32 size) { q->n_bd = count; q->low_mark = q->n_bd / 4; if (q->low_mark < 4) q->low_mark = 4; q->high_mark = q->n_bd / 8; if (q->high_mark < 2) q->high_mark = 2; q->first_empty = q->last_used = 0; q->reg_r = read; q->reg_w = write; ipw_write32(priv, base, q->dma_addr); ipw_write32(priv, size, count); ipw_write32(priv, read, 0); ipw_write32(priv, write, 0); _ipw_read32(priv, 0x90); } static int ipw_queue_tx_init(struct ipw_priv *priv, struct clx2_tx_queue *q, int count, u32 read, u32 write, u32 base, u32 size) { struct pci_dev *dev = priv->pci_dev; q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL); if (!q->txb) return -ENOMEM; q->bd = dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count, &q->q.dma_addr, GFP_KERNEL); if (!q->bd) { IPW_ERROR("dma_alloc_coherent(%zd) failed\n", sizeof(q->bd[0]) * count); kfree(q->txb); q->txb = NULL; return -ENOMEM; } ipw_queue_init(priv, &q->q, count, read, write, base, size); return 0; } /* * Free one TFD, those at index [txq->q.last_used]. * Do NOT advance any indexes * * @param dev * @param txq */ static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, struct clx2_tx_queue *txq) { struct tfd_frame *bd = &txq->bd[txq->q.last_used]; struct pci_dev *dev = priv->pci_dev; int i; /* classify bd */ if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) /* nothing to cleanup after for host commands */ return; /* sanity check */ if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { IPW_ERROR("Too many chunks: %i\n", le32_to_cpu(bd->u.data.num_chunks)); /* @todo issue fatal error, it is quite serious situation */ return; } /* unmap chunks if any */ for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { dma_unmap_single(&dev->dev, le32_to_cpu(bd->u.data.chunk_ptr[i]), le16_to_cpu(bd->u.data.chunk_len[i]), DMA_TO_DEVICE); if (txq->txb[txq->q.last_used]) { libipw_txb_free(txq->txb[txq->q.last_used]); txq->txb[txq->q.last_used] = NULL; } } } /* * Deallocate DMA queue. * * Empty queue by removing and destroying all BD's. * Free all buffers. * * @param dev * @param q */ static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) { struct clx2_queue *q = &txq->q; struct pci_dev *dev = priv->pci_dev; if (q->n_bd == 0) return; /* first, empty all BD's */ for (; q->first_empty != q->last_used; q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { ipw_queue_tx_free_tfd(priv, txq); } /* free buffers belonging to queue itself */ dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, q->dma_addr); kfree(txq->txb); /* 0 fill whole structure */ memset(txq, 0, sizeof(*txq)); } /* * Destroy all DMA queues and structures * * @param priv */ static void ipw_tx_queue_free(struct ipw_priv *priv) { /* Tx CMD queue */ ipw_queue_tx_free(priv, &priv->txq_cmd); /* Tx queues */ ipw_queue_tx_free(priv, &priv->txq[0]); ipw_queue_tx_free(priv, &priv->txq[1]); ipw_queue_tx_free(priv, &priv->txq[2]); ipw_queue_tx_free(priv, &priv->txq[3]); } static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) { /* First 3 bytes are manufacturer */ bssid[0] = priv->mac_addr[0]; bssid[1] = priv->mac_addr[1]; bssid[2] = priv->mac_addr[2]; /* Last bytes are random */ get_random_bytes(&bssid[3], ETH_ALEN - 3); bssid[0] &= 0xfe; /* clear multicast bit */ bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ } static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) { struct ipw_station_entry entry; int i; for (i = 0; i < priv->num_stations; i++) { if (ether_addr_equal(priv->stations[i], bssid)) { /* Another node is active in network */ priv->missed_adhoc_beacons = 0; if (!(priv->config & CFG_STATIC_CHANNEL)) /* when other nodes drop out, we drop out */ priv->config &= ~CFG_ADHOC_PERSIST; return i; } } if (i == MAX_STATIONS) return IPW_INVALID_STATION; IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); entry.reserved = 0; entry.support_mode = 0; memcpy(entry.mac_addr, bssid, ETH_ALEN); memcpy(priv->stations[i], bssid, ETH_ALEN); ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), &entry, sizeof(entry)); priv->num_stations++; return i; } static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) { int i; for (i = 0; i < priv->num_stations; i++) if (ether_addr_equal(priv->stations[i], bssid)) return i; return IPW_INVALID_STATION; } static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) { int err; if (priv->status & STATUS_ASSOCIATING) { IPW_DEBUG_ASSOC("Disassociating while associating.\n"); schedule_work(&priv->disassociate); return; } if (!(priv->status & STATUS_ASSOCIATED)) { IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); return; } IPW_DEBUG_ASSOC("Disassociation attempt from %pM " "on channel %d.\n", priv->assoc_request.bssid, priv->assoc_request.channel); priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); priv->status |= STATUS_DISASSOCIATING; if (quiet) priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; else priv->assoc_request.assoc_type = HC_DISASSOCIATE; err = ipw_send_associate(priv, &priv->assoc_request); if (err) { IPW_DEBUG_HC("Attempt to send [dis]associate command " "failed.\n"); return; } } static int ipw_disassociate(void *data) { struct ipw_priv *priv = data; if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) return 0; ipw_send_disassociate(data, 0); netif_carrier_off(priv->net_dev); return 1; } static void ipw_bg_disassociate(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, disassociate); mutex_lock(&priv->mutex); ipw_disassociate(priv); mutex_unlock(&priv->mutex); } static void ipw_system_config(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, system_config); #ifdef CONFIG_IPW2200_PROMISCUOUS if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { priv->sys_config.accept_all_data_frames = 1; priv->sys_config.accept_non_directed_frames = 1; priv->sys_config.accept_all_mgmt_bcpr = 1; priv->sys_config.accept_all_mgmt_frames = 1; } #endif ipw_send_system_config(priv); } struct ipw_status_code { u16 status; const char *reason; }; static const struct ipw_status_code ipw_status_codes[] = { {0x00, "Successful"}, {0x01, "Unspecified failure"}, {0x0A, "Cannot support all requested capabilities in the " "Capability information field"}, {0x0B, "Reassociation denied due to inability to confirm that " "association exists"}, {0x0C, "Association denied due to reason outside the scope of this " "standard"}, {0x0D, "Responding station does not support the specified authentication " "algorithm"}, {0x0E, "Received an Authentication frame with authentication sequence " "transaction sequence number out of expected sequence"}, {0x0F, "Authentication rejected because of challenge failure"}, {0x10, "Authentication rejected due to timeout waiting for next " "frame in sequence"}, {0x11, "Association denied because AP is unable to handle additional " "associated stations"}, {0x12, "Association denied due to requesting station not supporting all " "of the datarates in the BSSBasicServiceSet Parameter"}, {0x13, "Association denied due to requesting station not supporting " "short preamble operation"}, {0x14, "Association denied due to requesting station not supporting " "PBCC encoding"}, {0x15, "Association denied due to requesting station not supporting " "channel agility"}, {0x19, "Association denied due to requesting station not supporting " "short slot operation"}, {0x1A, "Association denied due to requesting station not supporting " "DSSS-OFDM operation"}, {0x28, "Invalid Information Element"}, {0x29, "Group Cipher is not valid"}, {0x2A, "Pairwise Cipher is not valid"}, {0x2B, "AKMP is not valid"}, {0x2C, "Unsupported RSN IE version"}, {0x2D, "Invalid RSN IE Capabilities"}, {0x2E, "Cipher suite is rejected per security policy"}, }; static const char *ipw_get_status_code(u16 status) { int i; for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) if (ipw_status_codes[i].status == (status & 0xff)) return ipw_status_codes[i].reason; return "Unknown status value."; } static inline void average_init(struct average *avg) { memset(avg, 0, sizeof(*avg)); } #define DEPTH_RSSI 8 #define DEPTH_NOISE 16 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) { return ((depth-1)*prev_avg + val)/depth; } static void average_add(struct average *avg, s16 val) { avg->sum -= avg->entries[avg->pos]; avg->sum += val; avg->entries[avg->pos++] = val; if (unlikely(avg->pos == AVG_ENTRIES)) { avg->init = 1; avg->pos = 0; } } static s16 average_value(struct average *avg) { if (!unlikely(avg->init)) { if (avg->pos) return avg->sum / avg->pos; return 0; } return avg->sum / AVG_ENTRIES; } static void ipw_reset_stats(struct ipw_priv *priv) { u32 len = sizeof(u32); priv->quality = 0; average_init(&priv->average_missed_beacons); priv->exp_avg_rssi = -60; priv->exp_avg_noise = -85 + 0x100; priv->last_rate = 0; priv->last_missed_beacons = 0; priv->last_rx_packets = 0; priv->last_tx_packets = 0; priv->last_tx_failures = 0; /* Firmware managed, reset only when NIC is restarted, so we have to * normalize on the current value */ ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &priv->last_rx_err, &len); ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &priv->last_tx_failures, &len); /* Driver managed, reset with each association */ priv->missed_adhoc_beacons = 0; priv->missed_beacons = 0; priv->tx_packets = 0; priv->rx_packets = 0; } static u32 ipw_get_max_rate(struct ipw_priv *priv) { u32 i = 0x80000000; u32 mask = priv->rates_mask; /* If currently associated in B mode, restrict the maximum * rate match to B rates */ if (priv->assoc_request.ieee_mode == IPW_B_MODE) mask &= LIBIPW_CCK_RATES_MASK; /* TODO: Verify that the rate is supported by the current rates * list. */ while (i && !(mask & i)) i >>= 1; switch (i) { case LIBIPW_CCK_RATE_1MB_MASK: return 1000000; case LIBIPW_CCK_RATE_2MB_MASK: return 2000000; case LIBIPW_CCK_RATE_5MB_MASK: return 5500000; case LIBIPW_OFDM_RATE_6MB_MASK: return 6000000; case LIBIPW_OFDM_RATE_9MB_MASK: return 9000000; case LIBIPW_CCK_RATE_11MB_MASK: return 11000000; case LIBIPW_OFDM_RATE_12MB_MASK: return 12000000; case LIBIPW_OFDM_RATE_18MB_MASK: return 18000000; case LIBIPW_OFDM_RATE_24MB_MASK: return 24000000; case LIBIPW_OFDM_RATE_36MB_MASK: return 36000000; case LIBIPW_OFDM_RATE_48MB_MASK: return 48000000; case LIBIPW_OFDM_RATE_54MB_MASK: return 54000000; } if (priv->ieee->mode == IEEE_B) return 11000000; else return 54000000; } static u32 ipw_get_current_rate(struct ipw_priv *priv) { u32 rate, len = sizeof(rate); int err; if (!(priv->status & STATUS_ASSOCIATED)) return 0; if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, &len); if (err) { IPW_DEBUG_INFO("failed querying ordinals.\n"); return 0; } } else return ipw_get_max_rate(priv); switch (rate) { case IPW_TX_RATE_1MB: return 1000000; case IPW_TX_RATE_2MB: return 2000000; case IPW_TX_RATE_5MB: return 5500000; case IPW_TX_RATE_6MB: return 6000000; case IPW_TX_RATE_9MB: return 9000000; case IPW_TX_RATE_11MB: return 11000000; case IPW_TX_RATE_12MB: return 12000000; case IPW_TX_RATE_18MB: return 18000000; case IPW_TX_RATE_24MB: return 24000000; case IPW_TX_RATE_36MB: return 36000000; case IPW_TX_RATE_48MB: return 48000000; case IPW_TX_RATE_54MB: return 54000000; } return 0; } #define IPW_STATS_INTERVAL (2 * HZ) static void ipw_gather_stats(struct ipw_priv *priv) { u32 rx_err, rx_err_delta, rx_packets_delta; u32 tx_failures, tx_failures_delta, tx_packets_delta; u32 missed_beacons_percent, missed_beacons_delta; u32 quality = 0; u32 len = sizeof(u32); s16 rssi; u32 beacon_quality, signal_quality, tx_quality, rx_quality, rate_quality; u32 max_rate; if (!(priv->status & STATUS_ASSOCIATED)) { priv->quality = 0; return; } /* Update the statistics */ ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, &priv->missed_beacons, &len); missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; priv->last_missed_beacons = priv->missed_beacons; if (priv->assoc_request.beacon_interval) { missed_beacons_percent = missed_beacons_delta * (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / (IPW_STATS_INTERVAL * 10); } else { missed_beacons_percent = 0; } average_add(&priv->average_missed_beacons, missed_beacons_percent); ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); rx_err_delta = rx_err - priv->last_rx_err; priv->last_rx_err = rx_err; ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); tx_failures_delta = tx_failures - priv->last_tx_failures; priv->last_tx_failures = tx_failures; rx_packets_delta = priv->rx_packets - priv->last_rx_packets; priv->last_rx_packets = priv->rx_packets; tx_packets_delta = priv->tx_packets - priv->last_tx_packets; priv->last_tx_packets = priv->tx_packets; /* Calculate quality based on the following: * * Missed beacon: 100% = 0, 0% = 70% missed * Rate: 60% = 1Mbs, 100% = Max * Rx and Tx errors represent a straight % of total Rx/Tx * RSSI: 100% = > -50, 0% = < -80 * Rx errors: 100% = 0, 0% = 50% missed * * The lowest computed quality is used. * */ #define BEACON_THRESHOLD 5 beacon_quality = 100 - missed_beacons_percent; if (beacon_quality < BEACON_THRESHOLD) beacon_quality = 0; else beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / (100 - BEACON_THRESHOLD); IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", beacon_quality, missed_beacons_percent); priv->last_rate = ipw_get_current_rate(priv); max_rate = ipw_get_max_rate(priv); rate_quality = priv->last_rate * 40 / max_rate + 60; IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", rate_quality, priv->last_rate / 1000000); if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) rx_quality = 100 - (rx_err_delta * 100) / (rx_packets_delta + rx_err_delta); else rx_quality = 100; IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", rx_quality, rx_err_delta, rx_packets_delta); if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) tx_quality = 100 - (tx_failures_delta * 100) / (tx_packets_delta + tx_failures_delta); else tx_quality = 100; IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", tx_quality, tx_failures_delta, tx_packets_delta); rssi = priv->exp_avg_rssi; signal_quality = (100 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - (priv->ieee->perfect_rssi - rssi) * (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + 62 * (priv->ieee->perfect_rssi - rssi))) / ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); if (signal_quality > 100) signal_quality = 100; else if (signal_quality < 1) signal_quality = 0; IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", signal_quality, rssi); quality = min(rx_quality, signal_quality); quality = min(tx_quality, quality); quality = min(rate_quality, quality); quality = min(beacon_quality, quality); if (quality == beacon_quality) IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", quality); if (quality == rate_quality) IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", quality); if (quality == tx_quality) IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", quality); if (quality == rx_quality) IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", quality); if (quality == signal_quality) IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", quality); priv->quality = quality; schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); } static void ipw_bg_gather_stats(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, gather_stats.work); mutex_lock(&priv->mutex); ipw_gather_stats(priv); mutex_unlock(&priv->mutex); } /* Missed beacon behavior: * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. * roaming_threshold -> disassociate_threshold, scan and roam for better signal. * Above disassociate threshold, give up and stop scanning. * Roaming is disabled if disassociate_threshold <= roaming_threshold */ static void ipw_handle_missed_beacon(struct ipw_priv *priv, int missed_count) { priv->notif_missed_beacons = missed_count; if (missed_count > priv->disassociate_threshold && priv->status & STATUS_ASSOCIATED) { /* If associated and we've hit the missed * beacon threshold, disassociate, turn * off roaming, and abort any active scans */ IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "Missed beacon: %d - disassociate\n", missed_count); priv->status &= ~STATUS_ROAMING; if (priv->status & STATUS_SCANNING) { IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, "Aborting scan with missed beacon.\n"); schedule_work(&priv->abort_scan); } schedule_work(&priv->disassociate); return; } if (priv->status & STATUS_ROAMING) { /* If we are currently roaming, then just * print a debug statement... */ IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "Missed beacon: %d - roam in progress\n", missed_count); return; } if (roaming && (missed_count > priv->roaming_threshold && missed_count <= priv->disassociate_threshold)) { /* If we are not already roaming, set the ROAM * bit in the status and kick off a scan. * This can happen several times before we reach * disassociate_threshold. */ IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "Missed beacon: %d - initiate " "roaming\n", missed_count); if (!(priv->status & STATUS_ROAMING)) { priv->status |= STATUS_ROAMING; if (!(priv->status & STATUS_SCANNING)) schedule_delayed_work(&priv->request_scan, 0); } return; } if (priv->status & STATUS_SCANNING && missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { /* Stop scan to keep fw from getting * stuck (only if we aren't roaming -- * otherwise we'll never scan more than 2 or 3 * channels..) */ IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, "Aborting scan with missed beacon.\n"); schedule_work(&priv->abort_scan); } IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); } static void ipw_scan_event(struct work_struct *work) { union iwreq_data wrqu; struct ipw_priv *priv = container_of(work, struct ipw_priv, scan_event.work); wrqu.data.length = 0; wrqu.data.flags = 0; wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); } static void handle_scan_event(struct ipw_priv *priv) { /* Only userspace-requested scan completion events go out immediately */ if (!priv->user_requested_scan) { schedule_delayed_work(&priv->scan_event, round_jiffies_relative(msecs_to_jiffies(4000))); } else { priv->user_requested_scan = 0; mod_delayed_work(system_wq, &priv->scan_event, 0); } } /* * Handle host notification packet. * Called from interrupt routine */ static void ipw_rx_notification(struct ipw_priv *priv, struct ipw_rx_notification *notif) { u16 size = le16_to_cpu(notif->size); IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); switch (notif->subtype) { case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ struct notif_association *assoc = ¬if->u.assoc; switch (assoc->state) { case CMAS_ASSOCIATED:{ IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "associated: '%*pE' %pM\n", priv->essid_len, priv->essid, priv->bssid); switch (priv->ieee->iw_mode) { case IW_MODE_INFRA: memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); break; case IW_MODE_ADHOC: memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); /* clear out the station table */ priv->num_stations = 0; IPW_DEBUG_ASSOC ("queueing adhoc check\n"); schedule_delayed_work( &priv->adhoc_check, le16_to_cpu(priv-> assoc_request. beacon_interval)); break; } priv->status &= ~STATUS_ASSOCIATING; priv->status |= STATUS_ASSOCIATED; schedule_work(&priv->system_config); #ifdef CONFIG_IPW2200_QOS #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) if ((priv->status & STATUS_AUTH) && (IPW_GET_PACKET_STYPE(¬if->u.raw) == IEEE80211_STYPE_ASSOC_RESP)) { if ((sizeof (struct libipw_assoc_response) <= size) && (size <= 2314)) { struct libipw_rx_stats stats = { .len = size - 1, }; IPW_DEBUG_QOS ("QoS Associate " "size %d\n", size); libipw_rx_mgt(priv-> ieee, (struct libipw_hdr_4addr *) ¬if->u.raw, &stats); } } #endif schedule_work(&priv->link_up); break; } case CMAS_AUTHENTICATED:{ if (priv-> status & (STATUS_ASSOCIATED | STATUS_AUTH)) { struct notif_authenticate *auth = ¬if->u.auth; IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n", priv->essid_len, priv->essid, priv->bssid, le16_to_cpu(auth->status), ipw_get_status_code (le16_to_cpu (auth->status))); priv->status &= ~(STATUS_ASSOCIATING | STATUS_AUTH | STATUS_ASSOCIATED); schedule_work(&priv->link_down); break; } IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "authenticated: '%*pE' %pM\n", priv->essid_len, priv->essid, priv->bssid); break; } case CMAS_INIT:{ if (priv->status & STATUS_AUTH) { struct libipw_assoc_response *resp; resp = (struct libipw_assoc_response *)¬if->u.raw; IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "association failed (0x%04X): %s\n", le16_to_cpu(resp->status), ipw_get_status_code (le16_to_cpu (resp->status))); } IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid, priv->bssid); priv->status &= ~(STATUS_DISASSOCIATING | STATUS_ASSOCIATING | STATUS_ASSOCIATED | STATUS_AUTH); if (priv->assoc_network && (priv->assoc_network-> capability & WLAN_CAPABILITY_IBSS)) ipw_remove_current_network (priv); schedule_work(&priv->link_down); break; } case CMAS_RX_ASSOC_RESP: break; default: IPW_ERROR("assoc: unknown (%d)\n", assoc->state); break; } break; } case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ struct notif_authenticate *auth = ¬if->u.auth; switch (auth->state) { case CMAS_AUTHENTICATED: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "authenticated: '%*pE' %pM\n", priv->essid_len, priv->essid, priv->bssid); priv->status |= STATUS_AUTH; break; case CMAS_INIT: if (priv->status & STATUS_AUTH) { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "authentication failed (0x%04X): %s\n", le16_to_cpu(auth->status), ipw_get_status_code(le16_to_cpu (auth-> status))); } IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "deauthenticated: '%*pE' %pM\n", priv->essid_len, priv->essid, priv->bssid); priv->status &= ~(STATUS_ASSOCIATING | STATUS_AUTH | STATUS_ASSOCIATED); schedule_work(&priv->link_down); break; case CMAS_TX_AUTH_SEQ_1: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_1\n"); break; case CMAS_RX_AUTH_SEQ_2: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_2\n"); break; case CMAS_AUTH_SEQ_1_PASS: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); break; case CMAS_AUTH_SEQ_1_FAIL: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); break; case CMAS_TX_AUTH_SEQ_3: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_3\n"); break; case CMAS_RX_AUTH_SEQ_4: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); break; case CMAS_AUTH_SEQ_2_PASS: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); break; case CMAS_AUTH_SEQ_2_FAIL: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); break; case CMAS_TX_ASSOC: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "TX_ASSOC\n"); break; case CMAS_RX_ASSOC_RESP: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); break; case CMAS_ASSOCIATED: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "ASSOCIATED\n"); break; default: IPW_DEBUG_NOTIF("auth: failure - %d\n", auth->state); break; } break; } case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ struct notif_channel_result *x = ¬if->u.channel_result; if (size == sizeof(*x)) { IPW_DEBUG_SCAN("Scan result for channel %d\n", x->channel_num); } else { IPW_DEBUG_SCAN("Scan result of wrong size %d " "(should be %zd)\n", size, sizeof(*x)); } break; } case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ struct notif_scan_complete *x = ¬if->u.scan_complete; if (size == sizeof(*x)) { IPW_DEBUG_SCAN ("Scan completed: type %d, %d channels, " "%d status\n", x->scan_type, x->num_channels, x->status); } else { IPW_ERROR("Scan completed of wrong size %d " "(should be %zd)\n", size, sizeof(*x)); } priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); wake_up_interruptible(&priv->wait_state); cancel_delayed_work(&priv->scan_check); if (priv->status & STATUS_EXIT_PENDING) break; priv->ieee->scans++; #ifdef CONFIG_IPW2200_MONITOR if (priv->ieee->iw_mode == IW_MODE_MONITOR) { priv->status |= STATUS_SCAN_FORCED; schedule_delayed_work(&priv->request_scan, 0); break; } priv->status &= ~STATUS_SCAN_FORCED; #endif /* CONFIG_IPW2200_MONITOR */ /* Do queued direct scans first */ if (priv->status & STATUS_DIRECT_SCAN_PENDING) schedule_delayed_work(&priv->request_direct_scan, 0); if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING | STATUS_ROAMING | STATUS_DISASSOCIATING))) schedule_work(&priv->associate); else if (priv->status & STATUS_ROAMING) { if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) /* If a scan completed and we are in roam mode, then * the scan that completed was the one requested as a * result of entering roam... so, schedule the * roam work */ schedule_work(&priv->roam); else /* Don't schedule if we aborted the scan */ priv->status &= ~STATUS_ROAMING; } else if (priv->status & STATUS_SCAN_PENDING) schedule_delayed_work(&priv->request_scan, 0); else if (priv->config & CFG_BACKGROUND_SCAN && priv->status & STATUS_ASSOCIATED) schedule_delayed_work(&priv->request_scan, round_jiffies_relative(HZ)); /* Send an empty event to user space. * We don't send the received data on the event because * it would require us to do complex transcoding, and * we want to minimise the work done in the irq handler * Use a request to extract the data. * Also, we generate this even for any scan, regardless * on how the scan was initiated. User space can just * sync on periodic scan to get fresh data... * Jean II */ if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) handle_scan_event(priv); break; } case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ struct notif_frag_length *x = ¬if->u.frag_len; if (size == sizeof(*x)) IPW_ERROR("Frag length: %d\n", le16_to_cpu(x->frag_length)); else IPW_ERROR("Frag length of wrong size %d " "(should be %zd)\n", size, sizeof(*x)); break; } case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ struct notif_link_deterioration *x = ¬if->u.link_deterioration; if (size == sizeof(*x)) { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "link deterioration: type %d, cnt %d\n", x->silence_notification_type, x->silence_count); memcpy(&priv->last_link_deterioration, x, sizeof(*x)); } else { IPW_ERROR("Link Deterioration of wrong size %d " "(should be %zd)\n", size, sizeof(*x)); } break; } case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ IPW_ERROR("Dino config\n"); if (priv->hcmd && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); break; } case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ struct notif_beacon_state *x = ¬if->u.beacon_state; if (size != sizeof(*x)) { IPW_ERROR ("Beacon state of wrong size %d (should " "be %zd)\n", size, sizeof(*x)); break; } if (le32_to_cpu(x->state) == HOST_NOTIFICATION_STATUS_BEACON_MISSING) ipw_handle_missed_beacon(priv, le32_to_cpu(x-> number)); break; } case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; if (size == sizeof(*x)) { IPW_ERROR("TGi Tx Key: state 0x%02x sec type " "0x%02x station %d\n", x->key_state, x->security_type, x->station_index); break; } IPW_ERROR ("TGi Tx Key of wrong size %d (should be %zd)\n", size, sizeof(*x)); break; } case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ struct notif_calibration *x = ¬if->u.calibration; if (size == sizeof(*x)) { memcpy(&priv->calib, x, sizeof(*x)); IPW_DEBUG_INFO("TODO: Calibration\n"); break; } IPW_ERROR ("Calibration of wrong size %d (should be %zd)\n", size, sizeof(*x)); break; } case HOST_NOTIFICATION_NOISE_STATS:{ if (size == sizeof(u32)) { priv->exp_avg_noise = exponential_average(priv->exp_avg_noise, (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), DEPTH_NOISE); break; } IPW_ERROR ("Noise stat is wrong size %d (should be %zd)\n", size, sizeof(u32)); break; } default: IPW_DEBUG_NOTIF("Unknown notification: " "subtype=%d,flags=0x%2x,size=%d\n", notif->subtype, notif->flags, size); } } /* * Destroys all DMA structures and initialise them again * * @param priv * @return error code */ static int ipw_queue_reset(struct ipw_priv *priv) { int rc = 0; /* @todo customize queue sizes */ int nTx = 64, nTxCmd = 8; ipw_tx_queue_free(priv); /* Tx CMD queue */ rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, IPW_TX_CMD_QUEUE_READ_INDEX, IPW_TX_CMD_QUEUE_WRITE_INDEX, IPW_TX_CMD_QUEUE_BD_BASE, IPW_TX_CMD_QUEUE_BD_SIZE); if (rc) { IPW_ERROR("Tx Cmd queue init failed\n"); goto error; } /* Tx queue(s) */ rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, IPW_TX_QUEUE_0_READ_INDEX, IPW_TX_QUEUE_0_WRITE_INDEX, IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); if (rc) { IPW_ERROR("Tx 0 queue init failed\n"); goto error; } rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, IPW_TX_QUEUE_1_READ_INDEX, IPW_TX_QUEUE_1_WRITE_INDEX, IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); if (rc) { IPW_ERROR("Tx 1 queue init failed\n"); goto error; } rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, IPW_TX_QUEUE_2_READ_INDEX, IPW_TX_QUEUE_2_WRITE_INDEX, IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); if (rc) { IPW_ERROR("Tx 2 queue init failed\n"); goto error; } rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, IPW_TX_QUEUE_3_READ_INDEX, IPW_TX_QUEUE_3_WRITE_INDEX, IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); if (rc) { IPW_ERROR("Tx 3 queue init failed\n"); goto error; } /* statistics */ priv->rx_bufs_min = 0; priv->rx_pend_max = 0; return rc; error: ipw_tx_queue_free(priv); return rc; } /* * Reclaim Tx queue entries no more used by NIC. * * When FW advances 'R' index, all entries between old and * new 'R' index need to be reclaimed. As result, some free space * forms. If there is enough free space (> low mark), wake Tx queue. * * @note Need to protect against garbage in 'R' index * @param priv * @param txq * @param qindex * @return Number of used entries remains in the queue */ static int ipw_queue_tx_reclaim(struct ipw_priv *priv, struct clx2_tx_queue *txq, int qindex) { u32 hw_tail; int used; struct clx2_queue *q = &txq->q; hw_tail = ipw_read32(priv, q->reg_r); if (hw_tail >= q->n_bd) { IPW_ERROR ("Read index for DMA queue (%d) is out of range [0-%d)\n", hw_tail, q->n_bd); goto done; } for (; q->last_used != hw_tail; q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { ipw_queue_tx_free_tfd(priv, txq); priv->tx_packets++; } done: if ((ipw_tx_queue_space(q) > q->low_mark) && (qindex >= 0)) netif_wake_queue(priv->net_dev); used = q->first_empty - q->last_used; if (used < 0) used += q->n_bd; return used; } static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf, int len, int sync) { struct clx2_tx_queue *txq = &priv->txq_cmd; struct clx2_queue *q = &txq->q; struct tfd_frame *tfd; if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { IPW_ERROR("No space for Tx\n"); return -EBUSY; } tfd = &txq->bd[q->first_empty]; txq->txb[q->first_empty] = NULL; memset(tfd, 0, sizeof(*tfd)); tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; priv->hcmd_seq++; tfd->u.cmd.index = hcmd; tfd->u.cmd.length = len; memcpy(tfd->u.cmd.payload, buf, len); q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); ipw_write32(priv, q->reg_w, q->first_empty); _ipw_read32(priv, 0x90); return 0; } /* * Rx theory of operation * * The host allocates 32 DMA target addresses and passes the host address * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is * 0 to 31 * * Rx Queue Indexes * The host/firmware share two index registers for managing the Rx buffers. * * The READ index maps to the first position that the firmware may be writing * to -- the driver can read up to (but not including) this position and get * good data. * The READ index is managed by the firmware once the card is enabled. * * The WRITE index maps to the last position the driver has read from -- the * position preceding WRITE is the last slot the firmware can place a packet. * * The queue is empty (no good data) if WRITE = READ - 1, and is full if * WRITE = READ. * * During initialization the host sets up the READ queue position to the first * INDEX position, and WRITE to the last (READ - 1 wrapped) * * When the firmware places a packet in a buffer it will advance the READ index * and fire the RX interrupt. The driver can then query the READ index and * process as many packets as possible, moving the WRITE index forward as it * resets the Rx queue buffers with new memory. * * The management in the driver is as follows: * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled * to replensish the ipw->rxq->rx_free. * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the * ipw->rxq is replenished and the READ INDEX is updated (updating the * 'processed' and 'read' driver indexes as well) * + A received packet is processed and handed to the kernel network stack, * detached from the ipw->rxq. The driver 'processed' index is updated. * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there * were enough free buffers and RX_STALLED is set it is cleared. * * * Driver sequence: * * ipw_rx_queue_alloc() Allocates rx_free * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls * ipw_rx_queue_restock * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx * queue, updates firmware pointers, and updates * the WRITE index. If insufficient rx_free buffers * are available, schedules ipw_rx_queue_replenish * * -- enable interrupts -- * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the * READ INDEX, detaching the SKB from the pool. * Moves the packet buffer from queue to rx_used. * Calls ipw_rx_queue_restock to refill any empty * slots. * ... * */ /* * If there are slots in the RX queue that need to be restocked, * and we have free pre-allocated buffers, fill the ranks as much * as we can pulling from rx_free. * * This moves the 'write' index forward to catch up with 'processed', and * also updates the memory address in the firmware to reference the new * target buffer. */ static void ipw_rx_queue_restock(struct ipw_priv *priv) { struct ipw_rx_queue *rxq = priv->rxq; struct list_head *element; struct ipw_rx_mem_buffer *rxb; unsigned long flags; int write; spin_lock_irqsave(&rxq->lock, flags); write = rxq->write; while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { element = rxq->rx_free.next; rxb = list_entry(element, struct ipw_rx_mem_buffer, list); list_del(element); ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, rxb->dma_addr); rxq->queue[rxq->write] = rxb; rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; rxq->free_count--; } spin_unlock_irqrestore(&rxq->lock, flags); /* If the pre-allocated buffer pool is dropping low, schedule to * refill it */ if (rxq->free_count <= RX_LOW_WATERMARK) schedule_work(&priv->rx_replenish); /* If we've added more space for the firmware to place data, tell it */ if (write != rxq->write) ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); } /* * Move all used packet from rx_used to rx_free, allocating a new SKB for each. * Also restock the Rx queue via ipw_rx_queue_restock. * * This is called as a scheduled work item (except for during initialization) */ static void ipw_rx_queue_replenish(void *data) { struct ipw_priv *priv = data; struct ipw_rx_queue *rxq = priv->rxq; struct list_head *element; struct ipw_rx_mem_buffer *rxb; unsigned long flags; spin_lock_irqsave(&rxq->lock, flags); while (!list_empty(&rxq->rx_used)) { element = rxq->rx_used.next; rxb = list_entry(element, struct ipw_rx_mem_buffer, list); rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); if (!rxb->skb) { printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", priv->net_dev->name); /* We don't reschedule replenish work here -- we will * call the restock method and if it still needs * more buffers it will schedule replenish */ break; } list_del(element); rxb->dma_addr = dma_map_single(&priv->pci_dev->dev, rxb->skb->data, IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); list_add_tail(&rxb->list, &rxq->rx_free); rxq->free_count++; } spin_unlock_irqrestore(&rxq->lock, flags); ipw_rx_queue_restock(priv); } static void ipw_bg_rx_queue_replenish(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, rx_replenish); mutex_lock(&priv->mutex); ipw_rx_queue_replenish(priv); mutex_unlock(&priv->mutex); } /* Assumes that the skb field of the buffers in 'pool' is kept accurate. * If an SKB has been detached, the POOL needs to have its SKB set to NULL * This free routine walks the list of POOL entries and if SKB is set to * non NULL it is unmapped and freed */ static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) { int i; if (!rxq) return; for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { if (rxq->pool[i].skb != NULL) { dma_unmap_single(&priv->pci_dev->dev, rxq->pool[i].dma_addr, IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); dev_kfree_skb(rxq->pool[i].skb); } } kfree(rxq); } static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) { struct ipw_rx_queue *rxq; int i; rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); if (unlikely(!rxq)) { IPW_ERROR("memory allocation failed\n"); return NULL; } spin_lock_init(&rxq->lock); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) list_add_tail(&rxq->pool[i].list, &rxq->rx_used); /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->free_count = 0; return rxq; } static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) { rate &= ~LIBIPW_BASIC_RATE_MASK; if (ieee_mode == IEEE_A) { switch (rate) { case LIBIPW_OFDM_RATE_6MB: return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_9MB: return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_12MB: return priv-> rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_18MB: return priv-> rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_24MB: return priv-> rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_36MB: return priv-> rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_48MB: return priv-> rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_54MB: return priv-> rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; default: return 0; } } /* B and G mixed */ switch (rate) { case LIBIPW_CCK_RATE_1MB: return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; case LIBIPW_CCK_RATE_2MB: return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; case LIBIPW_CCK_RATE_5MB: return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; case LIBIPW_CCK_RATE_11MB: return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; } /* If we are limited to B modulations, bail at this point */ if (ieee_mode == IEEE_B) return 0; /* G */ switch (rate) { case LIBIPW_OFDM_RATE_6MB: return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_9MB: return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_12MB: return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_18MB: return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_24MB: return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_36MB: return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_48MB: return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; case LIBIPW_OFDM_RATE_54MB: return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; } return 0; } static int ipw_compatible_rates(struct ipw_priv *priv, const struct libipw_network *network, struct ipw_supported_rates *rates) { int num_rates, i; memset(rates, 0, sizeof(*rates)); num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); rates->num_rates = 0; for (i = 0; i < num_rates; i++) { if (!ipw_is_rate_in_mask(priv, network->mode, network->rates[i])) { if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { IPW_DEBUG_SCAN("Adding masked mandatory " "rate %02X\n", network->rates[i]); rates->supported_rates[rates->num_rates++] = network->rates[i]; continue; } IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", network->rates[i], priv->rates_mask); continue; } rates->supported_rates[rates->num_rates++] = network->rates[i]; } num_rates = min(network->rates_ex_len, (u8) (IPW_MAX_RATES - num_rates)); for (i = 0; i < num_rates; i++) { if (!ipw_is_rate_in_mask(priv, network->mode, network->rates_ex[i])) { if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { IPW_DEBUG_SCAN("Adding masked mandatory " "rate %02X\n", network->rates_ex[i]); rates->supported_rates[rates->num_rates++] = network->rates[i]; continue; } IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", network->rates_ex[i], priv->rates_mask); continue; } rates->supported_rates[rates->num_rates++] = network->rates_ex[i]; } return 1; } static void ipw_copy_rates(struct ipw_supported_rates *dest, const struct ipw_supported_rates *src) { u8 i; for (i = 0; i < src->num_rates; i++) dest->supported_rates[i] = src->supported_rates[i]; dest->num_rates = src->num_rates; } /* TODO: Look at sniffed packets in the air to determine if the basic rate * mask should ever be used -- right now all callers to add the scan rates are * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, u8 modulation, u32 rate_mask) { u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? LIBIPW_BASIC_RATE_MASK : 0; if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | LIBIPW_CCK_RATE_5MB; if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | LIBIPW_CCK_RATE_11MB; } static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, u8 modulation, u32 rate_mask) { u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? LIBIPW_BASIC_RATE_MASK : 0; if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | LIBIPW_OFDM_RATE_6MB; if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_OFDM_RATE_9MB; if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | LIBIPW_OFDM_RATE_12MB; if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_OFDM_RATE_18MB; if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | LIBIPW_OFDM_RATE_24MB; if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_OFDM_RATE_36MB; if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_OFDM_RATE_48MB; if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) rates->supported_rates[rates->num_rates++] = LIBIPW_OFDM_RATE_54MB; } struct ipw_network_match { struct libipw_network *network; struct ipw_supported_rates rates; }; static int ipw_find_adhoc_network(struct ipw_priv *priv, struct ipw_network_match *match, struct libipw_network *network, int roaming) { struct ipw_supported_rates rates; /* Verify that this network's capability is compatible with the * current mode (AdHoc or Infrastructure) */ if ((priv->ieee->iw_mode == IW_MODE_ADHOC && !(network->capability & WLAN_CAPABILITY_IBSS))) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n", network->ssid_len, network->ssid, network->bssid); return 0; } if (unlikely(roaming)) { /* If we are roaming, then ensure check if this is a valid * network to try and roam to */ if ((network->ssid_len != match->network->ssid_len) || memcmp(network->ssid, match->network->ssid, network->ssid_len)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", network->ssid_len, network->ssid, network->bssid); return 0; } } else { /* If an ESSID has been configured then compare the broadcast * ESSID to ours */ if ((priv->config & CFG_STATIC_ESSID) && ((network->ssid_len != priv->essid_len) || memcmp(network->ssid, priv->essid, min(network->ssid_len, priv->essid_len)))) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", network->ssid_len, network->ssid, network->bssid, priv->essid_len, priv->essid); return 0; } } /* If the old network rate is better than this one, don't bother * testing everything else. */ if (network->time_stamp[0] < match->network->time_stamp[0]) { IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", match->network->ssid_len, match->network->ssid); return 0; } else if (network->time_stamp[1] < match->network->time_stamp[1]) { IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n", match->network->ssid_len, match->network->ssid); return 0; } /* Now go through and see if the requested network is valid... */ if (priv->ieee->scan_age != 0 && time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n", network->ssid_len, network->ssid, network->bssid, jiffies_to_msecs(jiffies - network->last_scanned)); return 0; } if ((priv->config & CFG_STATIC_CHANNEL) && (network->channel != priv->channel)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", network->ssid_len, network->ssid, network->bssid, network->channel, priv->channel); return 0; } /* Verify privacy compatibility */ if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", network->ssid_len, network->ssid, network->bssid, priv-> capability & CAP_PRIVACY_ON ? "on" : "off", network-> capability & WLAN_CAPABILITY_PRIVACY ? "on" : "off"); return 0; } if (ether_addr_equal(network->bssid, priv->bssid)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n", network->ssid_len, network->ssid, network->bssid, priv->bssid); return 0; } /* Filter out any incompatible freq / mode combinations */ if (!libipw_is_valid_mode(priv->ieee, network->mode)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", network->ssid_len, network->ssid, network->bssid); return 0; } /* Ensure that the rates supported by the driver are compatible with * this AP, including verification of basic rates (mandatory) */ if (!ipw_compatible_rates(priv, network, &rates)) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", network->ssid_len, network->ssid, network->bssid); return 0; } if (rates.num_rates == 0) { IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n", network->ssid_len, network->ssid, network->bssid); return 0; } /* TODO: Perform any further minimal comparititive tests. We do not * want to put too much policy logic here; intelligent scan selection * should occur within a generic IEEE 802.11 user space tool. */ /* Set up 'new' AP to this network */ ipw_copy_rates(&match->rates, &rates); match->network = network; IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n", network->ssid_len, network->ssid, network->bssid); return 1; } static void ipw_merge_adhoc_network(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, merge_networks); struct libipw_network *network = NULL; struct ipw_network_match match = { .network = priv->assoc_network }; if ((priv->status & STATUS_ASSOCIATED) && (priv->ieee->iw_mode == IW_MODE_ADHOC)) { /* First pass through ROAM process -- look for a better * network */ unsigned long flags; spin_lock_irqsave(&priv->ieee->lock, flags); list_for_each_entry(network, &priv->ieee->network_list, list) { if (network != priv->assoc_network) ipw_find_adhoc_network(priv, &match, network, 1); } spin_unlock_irqrestore(&priv->ieee->lock, flags); if (match.network == priv->assoc_network) { IPW_DEBUG_MERGE("No better ADHOC in this network to " "merge to.\n"); return; } mutex_lock(&priv->mutex); if (priv->ieee->iw_mode == IW_MODE_ADHOC) { IPW_DEBUG_MERGE("remove network %*pE\n", priv->essid_len, priv->essid); ipw_remove_current_network(priv); } ipw_disassociate(priv); priv->assoc_network = match.network; mutex_unlock(&priv->mutex); return; } } static int ipw_best_network(struct ipw_priv *priv, struct ipw_network_match *match, struct libipw_network *network, int roaming) { struct ipw_supported_rates rates; /* Verify that this network's capability is compatible with the * current mode (AdHoc or Infrastructure) */ if ((priv->ieee->iw_mode == IW_MODE_INFRA && !(network->capability & WLAN_CAPABILITY_ESS)) || (priv->ieee->iw_mode == IW_MODE_ADHOC && !(network->capability & WLAN_CAPABILITY_IBSS))) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n", network->ssid_len, network->ssid, network->bssid); return 0; } if (unlikely(roaming)) { /* If we are roaming, then ensure check if this is a valid * network to try and roam to */ if ((network->ssid_len != match->network->ssid_len) || memcmp(network->ssid, match->network->ssid, network->ssid_len)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n", network->ssid_len, network->ssid, network->bssid); return 0; } } else { /* If an ESSID has been configured then compare the broadcast * ESSID to ours */ if ((priv->config & CFG_STATIC_ESSID) && ((network->ssid_len != priv->essid_len) || memcmp(network->ssid, priv->essid, min(network->ssid_len, priv->essid_len)))) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n", network->ssid_len, network->ssid, network->bssid, priv->essid_len, priv->essid); return 0; } } /* If the old network rate is better than this one, don't bother * testing everything else. */ if (match->network && match->network->stats.rssi > network->stats.rssi) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n", network->ssid_len, network->ssid, network->bssid, match->network->ssid_len, match->network->ssid, match->network->bssid); return 0; } /* If this network has already had an association attempt within the * last 3 seconds, do not try and associate again... */ if (network->last_associate && time_after(network->last_associate + (HZ * 3UL), jiffies)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n", network->ssid_len, network->ssid, network->bssid, jiffies_to_msecs(jiffies - network->last_associate)); return 0; } /* Now go through and see if the requested network is valid... */ if (priv->ieee->scan_age != 0 && time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n", network->ssid_len, network->ssid, network->bssid, jiffies_to_msecs(jiffies - network->last_scanned)); return 0; } if ((priv->config & CFG_STATIC_CHANNEL) && (network->channel != priv->channel)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n", network->ssid_len, network->ssid, network->bssid, network->channel, priv->channel); return 0; } /* Verify privacy compatibility */ if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n", network->ssid_len, network->ssid, network->bssid, priv->capability & CAP_PRIVACY_ON ? "on" : "off", network->capability & WLAN_CAPABILITY_PRIVACY ? "on" : "off"); return 0; } if ((priv->config & CFG_STATIC_BSSID) && !ether_addr_equal(network->bssid, priv->bssid)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n", network->ssid_len, network->ssid, network->bssid, priv->bssid); return 0; } /* Filter out any incompatible freq / mode combinations */ if (!libipw_is_valid_mode(priv->ieee, network->mode)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n", network->ssid_len, network->ssid, network->bssid); return 0; } /* Filter out invalid channel in current GEO */ if (!libipw_is_valid_channel(priv->ieee, network->channel)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n", network->ssid_len, network->ssid, network->bssid); return 0; } /* Ensure that the rates supported by the driver are compatible with * this AP, including verification of basic rates (mandatory) */ if (!ipw_compatible_rates(priv, network, &rates)) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n", network->ssid_len, network->ssid, network->bssid); return 0; } if (rates.num_rates == 0) { IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n", network->ssid_len, network->ssid, network->bssid); return 0; } /* TODO: Perform any further minimal comparititive tests. We do not * want to put too much policy logic here; intelligent scan selection * should occur within a generic IEEE 802.11 user space tool. */ /* Set up 'new' AP to this network */ ipw_copy_rates(&match->rates, &rates); match->network = network; IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n", network->ssid_len, network->ssid, network->bssid); return 1; } static void ipw_adhoc_create(struct ipw_priv *priv, struct libipw_network *network) { const struct libipw_geo *geo = libipw_get_geo(priv->ieee); int i; /* * For the purposes of scanning, we can set our wireless mode * to trigger scans across combinations of bands, but when it * comes to creating a new ad-hoc network, we have tell the FW * exactly which band to use. * * We also have the possibility of an invalid channel for the * chossen band. Attempting to create a new ad-hoc network * with an invalid channel for wireless mode will trigger a * FW fatal error. * */ switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { case LIBIPW_52GHZ_BAND: network->mode = IEEE_A; i = libipw_channel_to_index(priv->ieee, priv->channel); BUG_ON(i == -1); if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { IPW_WARNING("Overriding invalid channel\n"); priv->channel = geo->a[0].channel; } break; case LIBIPW_24GHZ_BAND: if (priv->ieee->mode & IEEE_G) network->mode = IEEE_G; else network->mode = IEEE_B; i = libipw_channel_to_index(priv->ieee, priv->channel); BUG_ON(i == -1); if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { IPW_WARNING("Overriding invalid channel\n"); priv->channel = geo->bg[0].channel; } break; default: IPW_WARNING("Overriding invalid channel\n"); if (priv->ieee->mode & IEEE_A) { network->mode = IEEE_A; priv->channel = geo->a[0].channel; } else if (priv->ieee->mode & IEEE_G) { network->mode = IEEE_G; priv->channel = geo->bg[0].channel; } else { network->mode = IEEE_B; priv->channel = geo->bg[0].channel; } break; } network->channel = priv->channel; priv->config |= CFG_ADHOC_PERSIST; ipw_create_bssid(priv, network->bssid); network->ssid_len = priv->essid_len; memcpy(network->ssid, priv->essid, priv->essid_len); memset(&network->stats, 0, sizeof(network->stats)); network->capability = WLAN_CAPABILITY_IBSS; if (!(priv->config & CFG_PREAMBLE_LONG)) network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; if (priv->capability & CAP_PRIVACY_ON) network->capability |= WLAN_CAPABILITY_PRIVACY; network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); memcpy(network->rates, priv->rates.supported_rates, network->rates_len); network->rates_ex_len = priv->rates.num_rates - network->rates_len; memcpy(network->rates_ex, &priv->rates.supported_rates[network->rates_len], network->rates_ex_len); network->last_scanned = 0; network->flags = 0; network->last_associate = 0; network->time_stamp[0] = 0; network->time_stamp[1] = 0; network->beacon_interval = 100; /* Default */ network->listen_interval = 10; /* Default */ network->atim_window = 0; /* Default */ network->wpa_ie_len = 0; network->rsn_ie_len = 0; } static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) { struct ipw_tgi_tx_key key; if (!(priv->ieee->sec.flags & (1 << index))) return; key.key_id = index; memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); key.security_type = type; key.station_index = 0; /* always 0 for BSS */ key.flags = 0; /* 0 for new key; previous value of counter (after fatal error) */ key.tx_counter[0] = cpu_to_le32(0); key.tx_counter[1] = cpu_to_le32(0); ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); } static void ipw_send_wep_keys(struct ipw_priv *priv, int type) { struct ipw_wep_key key; int i; key.cmd_id = DINO_CMD_WEP_KEY; key.seq_num = 0; /* Note: AES keys cannot be set for multiple times. * Only set it at the first time. */ for (i = 0; i < 4; i++) { key.key_index = i | type; if (!(priv->ieee->sec.flags & (1 << i))) { key.key_size = 0; continue; } key.key_size = priv->ieee->sec.key_sizes[i]; memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); } } static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) { if (priv->ieee->host_encrypt) return; switch (level) { case SEC_LEVEL_3: priv->sys_config.disable_unicast_decryption = 0; priv->ieee->host_decrypt = 0; break; case SEC_LEVEL_2: priv->sys_config.disable_unicast_decryption = 1; priv->ieee->host_decrypt = 1; break; case SEC_LEVEL_1: priv->sys_config.disable_unicast_decryption = 0; priv->ieee->host_decrypt = 0; break; case SEC_LEVEL_0: priv->sys_config.disable_unicast_decryption = 1; break; default: break; } } static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) { if (priv->ieee->host_encrypt) return; switch (level) { case SEC_LEVEL_3: priv->sys_config.disable_multicast_decryption = 0; break; case SEC_LEVEL_2: priv->sys_config.disable_multicast_decryption = 1; break; case SEC_LEVEL_1: priv->sys_config.disable_multicast_decryption = 0; break; case SEC_LEVEL_0: priv->sys_config.disable_multicast_decryption = 1; break; default: break; } } static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) { switch (priv->ieee->sec.level) { case SEC_LEVEL_3: if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) ipw_send_tgi_tx_key(priv, DCT_FLAG_EXT_SECURITY_CCM, priv->ieee->sec.active_key); if (!priv->ieee->host_mc_decrypt) ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); break; case SEC_LEVEL_2: if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) ipw_send_tgi_tx_key(priv, DCT_FLAG_EXT_SECURITY_TKIP, priv->ieee->sec.active_key); break; case SEC_LEVEL_1: ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); break; case SEC_LEVEL_0: default: break; } } static void ipw_adhoc_check(void *data) { struct ipw_priv *priv = data; if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && !(priv->config & CFG_ADHOC_PERSIST)) { IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "Missed beacon: %d - disassociate\n", priv->missed_adhoc_beacons); ipw_remove_current_network(priv); ipw_disassociate(priv); return; } schedule_delayed_work(&priv->adhoc_check, le16_to_cpu(priv->assoc_request.beacon_interval)); } static void ipw_bg_adhoc_check(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, adhoc_check.work); mutex_lock(&priv->mutex); ipw_adhoc_check(priv); mutex_unlock(&priv->mutex); } static void ipw_debug_config(struct ipw_priv *priv) { IPW_DEBUG_INFO("Scan completed, no valid APs matched " "[CFG 0x%08X]\n", priv->config); if (priv->config & CFG_STATIC_CHANNEL) IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); else IPW_DEBUG_INFO("Channel unlocked.\n"); if (priv->config & CFG_STATIC_ESSID) IPW_DEBUG_INFO("ESSID locked to '%*pE'\n", priv->essid_len, priv->essid); else IPW_DEBUG_INFO("ESSID unlocked.\n"); if (priv->config & CFG_STATIC_BSSID) IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); else IPW_DEBUG_INFO("BSSID unlocked.\n"); if (priv->capability & CAP_PRIVACY_ON) IPW_DEBUG_INFO("PRIVACY on\n"); else IPW_DEBUG_INFO("PRIVACY off\n"); IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); } static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) { /* TODO: Verify that this works... */ struct ipw_fixed_rate fr; u32 reg; u16 mask = 0; u16 new_tx_rates = priv->rates_mask; /* Identify 'current FW band' and match it with the fixed * Tx rates */ switch (priv->ieee->freq_band) { case LIBIPW_52GHZ_BAND: /* A only */ /* IEEE_A */ if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { /* Invalid fixed rate mask */ IPW_DEBUG_WX ("invalid fixed rate mask in ipw_set_fixed_rate\n"); new_tx_rates = 0; break; } new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; break; default: /* 2.4Ghz or Mixed */ /* IEEE_B */ if (mode == IEEE_B) { if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { /* Invalid fixed rate mask */ IPW_DEBUG_WX ("invalid fixed rate mask in ipw_set_fixed_rate\n"); new_tx_rates = 0; } break; } /* IEEE_G */ if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | LIBIPW_OFDM_RATES_MASK)) { /* Invalid fixed rate mask */ IPW_DEBUG_WX ("invalid fixed rate mask in ipw_set_fixed_rate\n"); new_tx_rates = 0; break; } if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; } if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; } if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; } new_tx_rates |= mask; break; } fr.tx_rates = cpu_to_le16(new_tx_rates); reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); ipw_write_reg32(priv, reg, *(u32 *) & fr); } static void ipw_abort_scan(struct ipw_priv *priv) { int err; if (priv->status & STATUS_SCAN_ABORTING) { IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); return; } priv->status |= STATUS_SCAN_ABORTING; err = ipw_send_scan_abort(priv); if (err) IPW_DEBUG_HC("Request to abort scan failed.\n"); } static void ipw_add_scan_channels(struct ipw_priv *priv, struct ipw_scan_request_ext *scan, int scan_type) { int channel_index = 0; const struct libipw_geo *geo; int i; geo = libipw_get_geo(priv->ieee); if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { int start = channel_index; for (i = 0; i < geo->a_channels; i++) { if ((priv->status & STATUS_ASSOCIATED) && geo->a[i].channel == priv->channel) continue; channel_index++; scan->channels_list[channel_index] = geo->a[i].channel; ipw_set_scan_type(scan, channel_index, geo->a[i]. flags & LIBIPW_CH_PASSIVE_ONLY ? IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : scan_type); } if (start != channel_index) { scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | (channel_index - start); channel_index++; } } if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { int start = channel_index; if (priv->config & CFG_SPEED_SCAN) { int index; u8 channels[LIBIPW_24GHZ_CHANNELS] = { /* nop out the list */ [0] = 0 }; u8 channel; while (channel_index < IPW_SCAN_CHANNELS - 1) { channel = priv->speed_scan[priv->speed_scan_pos]; if (channel == 0) { priv->speed_scan_pos = 0; channel = priv->speed_scan[0]; } if ((priv->status & STATUS_ASSOCIATED) && channel == priv->channel) { priv->speed_scan_pos++; continue; } /* If this channel has already been * added in scan, break from loop * and this will be the first channel * in the next scan. */ if (channels[channel - 1] != 0) break; channels[channel - 1] = 1; priv->speed_scan_pos++; channel_index++; scan->channels_list[channel_index] = channel; index = libipw_channel_to_index(priv->ieee, channel); ipw_set_scan_type(scan, channel_index, geo->bg[index]. flags & LIBIPW_CH_PASSIVE_ONLY ? IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : scan_type); } } else { for (i = 0; i < geo->bg_channels; i++) { if ((priv->status & STATUS_ASSOCIATED) && geo->bg[i].channel == priv->channel) continue; channel_index++; scan->channels_list[channel_index] = geo->bg[i].channel; ipw_set_scan_type(scan, channel_index, geo->bg[i]. flags & LIBIPW_CH_PASSIVE_ONLY ? IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : scan_type); } } if (start != channel_index) { scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | (channel_index - start); } } } static int ipw_passive_dwell_time(struct ipw_priv *priv) { /* staying on passive channels longer than the DTIM interval during a * scan, while associated, causes the firmware to cancel the scan * without notification. Hence, don't stay on passive channels longer * than the beacon interval. */ if (priv->status & STATUS_ASSOCIATED && priv->assoc_network->beacon_interval > 10) return priv->assoc_network->beacon_interval - 10; else return 120; } static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) { struct ipw_scan_request_ext scan; int err = 0, scan_type; if (!(priv->status & STATUS_INIT) || (priv->status & STATUS_EXIT_PENDING)) return 0; mutex_lock(&priv->mutex); if (direct && (priv->direct_scan_ssid_len == 0)) { IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); priv->status &= ~STATUS_DIRECT_SCAN_PENDING; goto done; } if (priv->status & STATUS_SCANNING) { IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : STATUS_SCAN_PENDING; goto done; } if (!(priv->status & STATUS_SCAN_FORCED) && priv->status & STATUS_SCAN_ABORTING) { IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : STATUS_SCAN_PENDING; goto done; } if (priv->status & STATUS_RF_KILL_MASK) { IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : STATUS_SCAN_PENDING; goto done; } memset(&scan, 0, sizeof(scan)); scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); if (type == IW_SCAN_TYPE_PASSIVE) { IPW_DEBUG_WX("use passive scanning\n"); scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(ipw_passive_dwell_time(priv)); ipw_add_scan_channels(priv, &scan, scan_type); goto send_request; } /* Use active scan by default. */ if (priv->config & CFG_SPEED_SCAN) scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = cpu_to_le16(30); else scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = cpu_to_le16(20); scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = cpu_to_le16(20); scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(ipw_passive_dwell_time(priv)); scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); #ifdef CONFIG_IPW2200_MONITOR if (priv->ieee->iw_mode == IW_MODE_MONITOR) { u8 channel; u8 band = 0; switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { case LIBIPW_52GHZ_BAND: band = (u8) (IPW_A_MODE << 6) | 1; channel = priv->channel; break; case LIBIPW_24GHZ_BAND: band = (u8) (IPW_B_MODE << 6) | 1; channel = priv->channel; break; default: band = (u8) (IPW_B_MODE << 6) | 1; channel = 9; break; } scan.channels_list[0] = band; scan.channels_list[1] = channel; ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); /* NOTE: The card will sit on this channel for this time * period. Scan aborts are timing sensitive and frequently * result in firmware restarts. As such, it is best to * set a small dwell_time here and just keep re-issuing * scans. Otherwise fast channel hopping will not actually * hop channels. * * TODO: Move SPEED SCAN support to all modes and bands */ scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(2000); } else { #endif /* CONFIG_IPW2200_MONITOR */ /* Honor direct scans first, otherwise if we are roaming make * this a direct scan for the current network. Finally, * ensure that every other scan is a fast channel hop scan */ if (direct) { err = ipw_send_ssid(priv, priv->direct_scan_ssid, priv->direct_scan_ssid_len); if (err) { IPW_DEBUG_HC("Attempt to send SSID command " "failed\n"); goto done; } scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; } else if ((priv->status & STATUS_ROAMING) || (!(priv->status & STATUS_ASSOCIATED) && (priv->config & CFG_STATIC_ESSID) && (le32_to_cpu(scan.full_scan_index) % 2))) { err = ipw_send_ssid(priv, priv->essid, priv->essid_len); if (err) { IPW_DEBUG_HC("Attempt to send SSID command " "failed.\n"); goto done; } scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; } else scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; ipw_add_scan_channels(priv, &scan, scan_type); #ifdef CONFIG_IPW2200_MONITOR } #endif send_request: err = ipw_send_scan_request_ext(priv, &scan); if (err) { IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); goto done; } priv->status |= STATUS_SCANNING; if (direct) { priv->status &= ~STATUS_DIRECT_SCAN_PENDING; priv->direct_scan_ssid_len = 0; } else priv->status &= ~STATUS_SCAN_PENDING; schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); done: mutex_unlock(&priv->mutex); return err; } static void ipw_request_passive_scan(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, request_passive_scan.work); ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); } static void ipw_request_scan(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, request_scan.work); ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); } static void ipw_request_direct_scan(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, request_direct_scan.work); ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); } static void ipw_bg_abort_scan(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, abort_scan); mutex_lock(&priv->mutex); ipw_abort_scan(priv); mutex_unlock(&priv->mutex); } static int ipw_wpa_enable(struct ipw_priv *priv, int value) { /* This is called when wpa_supplicant loads and closes the driver * interface. */ priv->ieee->wpa_enabled = value; return 0; } static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) { struct libipw_device *ieee = priv->ieee; struct libipw_security sec = { .flags = SEC_AUTH_MODE, }; int ret = 0; if (value & IW_AUTH_ALG_SHARED_KEY) { sec.auth_mode = WLAN_AUTH_SHARED_KEY; ieee->open_wep = 0; } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { sec.auth_mode = WLAN_AUTH_OPEN; ieee->open_wep = 1; } else if (value & IW_AUTH_ALG_LEAP) { sec.auth_mode = WLAN_AUTH_LEAP; ieee->open_wep = 1; } else return -EINVAL; if (ieee->set_security) ieee->set_security(ieee->dev, &sec); else ret = -EOPNOTSUPP; return ret; } static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len) { /* make sure WPA is enabled */ ipw_wpa_enable(priv, 1); } static int ipw_set_rsn_capa(struct ipw_priv *priv, char *capabilities, int length) { IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, capabilities); } /* * WE-18 support */ static int ipw_wx_get_name(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { strcpy(wrqu->name, "IEEE 802.11"); return 0; } /* SIOCSIWGENIE */ static int ipw_wx_set_genie(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct libipw_device *ieee = priv->ieee; u8 *buf; int err = 0; if (wrqu->data.length > MAX_WPA_IE_LEN || (wrqu->data.length && extra == NULL)) return -EINVAL; if (wrqu->data.length) { buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto out; } kfree(ieee->wpa_ie); ieee->wpa_ie = buf; ieee->wpa_ie_len = wrqu->data.length; } else { kfree(ieee->wpa_ie); ieee->wpa_ie = NULL; ieee->wpa_ie_len = 0; } ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); out: return err; } /* SIOCGIWGENIE */ static int ipw_wx_get_genie(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct libipw_device *ieee = priv->ieee; int err = 0; if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { wrqu->data.length = 0; goto out; } if (wrqu->data.length < ieee->wpa_ie_len) { err = -E2BIG; goto out; } wrqu->data.length = ieee->wpa_ie_len; memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); out: return err; } static int wext_cipher2level(int cipher) { switch (cipher) { case IW_AUTH_CIPHER_NONE: return SEC_LEVEL_0; case IW_AUTH_CIPHER_WEP40: case IW_AUTH_CIPHER_WEP104: return SEC_LEVEL_1; case IW_AUTH_CIPHER_TKIP: return SEC_LEVEL_2; case IW_AUTH_CIPHER_CCMP: return SEC_LEVEL_3; default: return -1; } } /* SIOCSIWAUTH */ static int ipw_wx_set_auth(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct libipw_device *ieee = priv->ieee; struct iw_param *param = &wrqu->param; struct libipw_crypt_data *crypt; unsigned long flags; int ret = 0; switch (param->flags & IW_AUTH_INDEX) { case IW_AUTH_WPA_VERSION: break; case IW_AUTH_CIPHER_PAIRWISE: ipw_set_hw_decrypt_unicast(priv, wext_cipher2level(param->value)); break; case IW_AUTH_CIPHER_GROUP: ipw_set_hw_decrypt_multicast(priv, wext_cipher2level(param->value)); break; case IW_AUTH_KEY_MGMT: /* * ipw2200 does not use these parameters */ break; case IW_AUTH_TKIP_COUNTERMEASURES: crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) break; flags = crypt->ops->get_flags(crypt->priv); if (param->value) flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; else flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; crypt->ops->set_flags(flags, crypt->priv); break; case IW_AUTH_DROP_UNENCRYPTED:{ /* HACK: * * wpa_supplicant calls set_wpa_enabled when the driver * is loaded and unloaded, regardless of if WPA is being * used. No other calls are made which can be used to * determine if encryption will be used or not prior to * association being expected. If encryption is not being * used, drop_unencrypted is set to false, else true -- we * can use this to determine if the CAP_PRIVACY_ON bit should * be set. */ struct libipw_security sec = { .flags = SEC_ENABLED, .enabled = param->value, }; priv->ieee->drop_unencrypted = param->value; /* We only change SEC_LEVEL for open mode. Others * are set by ipw_wpa_set_encryption. */ if (!param->value) { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_0; } else { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_1; } if (priv->ieee->set_security) priv->ieee->set_security(priv->ieee->dev, &sec); break; } case IW_AUTH_80211_AUTH_ALG: ret = ipw_wpa_set_auth_algs(priv, param->value); break; case IW_AUTH_WPA_ENABLED: ret = ipw_wpa_enable(priv, param->value); ipw_disassociate(priv); break; case IW_AUTH_RX_UNENCRYPTED_EAPOL: ieee->ieee802_1x = param->value; break; case IW_AUTH_PRIVACY_INVOKED: ieee->privacy_invoked = param->value; break; default: return -EOPNOTSUPP; } return ret; } /* SIOCGIWAUTH */ static int ipw_wx_get_auth(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct libipw_device *ieee = priv->ieee; struct libipw_crypt_data *crypt; struct iw_param *param = &wrqu->param; switch (param->flags & IW_AUTH_INDEX) { case IW_AUTH_WPA_VERSION: case IW_AUTH_CIPHER_PAIRWISE: case IW_AUTH_CIPHER_GROUP: case IW_AUTH_KEY_MGMT: /* * wpa_supplicant will control these internally */ return -EOPNOTSUPP; case IW_AUTH_TKIP_COUNTERMEASURES: crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; if (!crypt || !crypt->ops->get_flags) break; param->value = (crypt->ops->get_flags(crypt->priv) & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; break; case IW_AUTH_DROP_UNENCRYPTED: param->value = ieee->drop_unencrypted; break; case IW_AUTH_80211_AUTH_ALG: param->value = ieee->sec.auth_mode; break; case IW_AUTH_WPA_ENABLED: param->value = ieee->wpa_enabled; break; case IW_AUTH_RX_UNENCRYPTED_EAPOL: param->value = ieee->ieee802_1x; break; case IW_AUTH_ROAMING_CONTROL: case IW_AUTH_PRIVACY_INVOKED: param->value = ieee->privacy_invoked; break; default: return -EOPNOTSUPP; } return 0; } /* SIOCSIWENCODEEXT */ static int ipw_wx_set_encodeext(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; if (hwcrypto) { if (ext->alg == IW_ENCODE_ALG_TKIP) { /* IPW HW can't build TKIP MIC, host decryption still needed */ if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) priv->ieee->host_mc_decrypt = 1; else { priv->ieee->host_encrypt = 0; priv->ieee->host_encrypt_msdu = 1; priv->ieee->host_decrypt = 1; } } else { priv->ieee->host_encrypt = 0; priv->ieee->host_encrypt_msdu = 0; priv->ieee->host_decrypt = 0; priv->ieee->host_mc_decrypt = 0; } } return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); } /* SIOCGIWENCODEEXT */ static int ipw_wx_get_encodeext(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); } /* SIOCSIWMLME */ static int ipw_wx_set_mlme(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct iw_mlme *mlme = (struct iw_mlme *)extra; switch (mlme->cmd) { case IW_MLME_DEAUTH: /* silently ignore */ break; case IW_MLME_DISASSOC: ipw_disassociate(priv); break; default: return -EOPNOTSUPP; } return 0; } #ifdef CONFIG_IPW2200_QOS /* QoS */ /* * get the modulation type of the current network or * the card current mode */ static u8 ipw_qos_current_mode(struct ipw_priv * priv) { u8 mode = 0; if (priv->status & STATUS_ASSOCIATED) { unsigned long flags; spin_lock_irqsave(&priv->ieee->lock, flags); mode = priv->assoc_network->mode; spin_unlock_irqrestore(&priv->ieee->lock, flags); } else { mode = priv->ieee->mode; } IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); return mode; } /* * Handle management frame beacon and probe response */ static int ipw_qos_handle_probe_response(struct ipw_priv *priv, int active_network, struct libipw_network *network) { u32 size = sizeof(struct libipw_qos_parameters); if (network->capability & WLAN_CAPABILITY_IBSS) network->qos_data.active = network->qos_data.supported; if (network->flags & NETWORK_HAS_QOS_MASK) { if (active_network && (network->flags & NETWORK_HAS_QOS_PARAMETERS)) network->qos_data.active = network->qos_data.supported; if ((network->qos_data.active == 1) && (active_network == 1) && (network->flags & NETWORK_HAS_QOS_PARAMETERS) && (network->qos_data.old_param_count != network->qos_data.param_count)) { network->qos_data.old_param_count = network->qos_data.param_count; schedule_work(&priv->qos_activate); IPW_DEBUG_QOS("QoS parameters change call " "qos_activate\n"); } } else { if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) memcpy(&network->qos_data.parameters, &def_parameters_CCK, size); else memcpy(&network->qos_data.parameters, &def_parameters_OFDM, size); if ((network->qos_data.active == 1) && (active_network == 1)) { IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); schedule_work(&priv->qos_activate); } network->qos_data.active = 0; network->qos_data.supported = 0; } if ((priv->status & STATUS_ASSOCIATED) && (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { if (!ether_addr_equal(network->bssid, priv->bssid)) if (network->capability & WLAN_CAPABILITY_IBSS) if ((network->ssid_len == priv->assoc_network->ssid_len) && !memcmp(network->ssid, priv->assoc_network->ssid, network->ssid_len)) { schedule_work(&priv->merge_networks); } } return 0; } /* * This function set up the firmware to support QoS. It sends * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO */ static int ipw_qos_activate(struct ipw_priv *priv, struct libipw_qos_data *qos_network_data) { int err; struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; struct libipw_qos_parameters *active_one = NULL; u32 size = sizeof(struct libipw_qos_parameters); u32 burst_duration; int i; u8 type; type = ipw_qos_current_mode(priv); active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); if (qos_network_data == NULL) { if (type == IEEE_B) { IPW_DEBUG_QOS("QoS activate network mode %d\n", type); active_one = &def_parameters_CCK; } else active_one = &def_parameters_OFDM; memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); burst_duration = ipw_qos_get_burst_duration(priv); for (i = 0; i < QOS_QUEUE_NUM; i++) qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = cpu_to_le16(burst_duration); } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { if (type == IEEE_B) { IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n", type); if (priv->qos_data.qos_enable == 0) active_one = &def_parameters_CCK; else active_one = priv->qos_data.def_qos_parm_CCK; } else { if (priv->qos_data.qos_enable == 0) active_one = &def_parameters_OFDM; else active_one = priv->qos_data.def_qos_parm_OFDM; } memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); } else { unsigned long flags; int active; spin_lock_irqsave(&priv->ieee->lock, flags); active_one = &(qos_network_data->parameters); qos_network_data->old_param_count = qos_network_data->param_count; memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); active = qos_network_data->supported; spin_unlock_irqrestore(&priv->ieee->lock, flags); if (active == 0) { burst_duration = ipw_qos_get_burst_duration(priv); for (i = 0; i < QOS_QUEUE_NUM; i++) qos_parameters[QOS_PARAM_SET_ACTIVE]. tx_op_limit[i] = cpu_to_le16(burst_duration); } } IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); err = ipw_send_qos_params_command(priv, &qos_parameters[0]); if (err) IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); return err; } /* * send IPW_CMD_WME_INFO to the firmware */ static int ipw_qos_set_info_element(struct ipw_priv *priv) { int ret = 0; struct libipw_qos_information_element qos_info; if (priv == NULL) return -1; qos_info.elementID = QOS_ELEMENT_ID; qos_info.length = sizeof(struct libipw_qos_information_element) - 2; qos_info.version = QOS_VERSION_1; qos_info.ac_info = 0; memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); qos_info.qui_type = QOS_OUI_TYPE; qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; ret = ipw_send_qos_info_command(priv, &qos_info); if (ret != 0) { IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); } return ret; } /* * Set the QoS parameter with the association request structure */ static int ipw_qos_association(struct ipw_priv *priv, struct libipw_network *network) { int err = 0; struct libipw_qos_data *qos_data = NULL; struct libipw_qos_data ibss_data = { .supported = 1, .active = 1, }; switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); qos_data = &ibss_data; break; case IW_MODE_INFRA: qos_data = &network->qos_data; break; default: BUG(); break; } err = ipw_qos_activate(priv, qos_data); if (err) { priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; return err; } if (priv->qos_data.qos_enable && qos_data->supported) { IPW_DEBUG_QOS("QoS will be enabled for this association\n"); priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; return ipw_qos_set_info_element(priv); } return 0; } /* * handling the beaconing responses. if we get different QoS setting * off the network from the associated setting, adjust the QoS * setting */ static void ipw_qos_association_resp(struct ipw_priv *priv, struct libipw_network *network) { unsigned long flags; u32 size = sizeof(struct libipw_qos_parameters); int set_qos_param = 0; if ((priv == NULL) || (network == NULL) || (priv->assoc_network == NULL)) return; if (!(priv->status & STATUS_ASSOCIATED)) return; if ((priv->ieee->iw_mode != IW_MODE_INFRA)) return; spin_lock_irqsave(&priv->ieee->lock, flags); if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { memcpy(&priv->assoc_network->qos_data, &network->qos_data, sizeof(struct libipw_qos_data)); priv->assoc_network->qos_data.active = 1; if ((network->qos_data.old_param_count != network->qos_data.param_count)) { set_qos_param = 1; network->qos_data.old_param_count = network->qos_data.param_count; } } else { if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) memcpy(&priv->assoc_network->qos_data.parameters, &def_parameters_CCK, size); else memcpy(&priv->assoc_network->qos_data.parameters, &def_parameters_OFDM, size); priv->assoc_network->qos_data.active = 0; priv->assoc_network->qos_data.supported = 0; set_qos_param = 1; } spin_unlock_irqrestore(&priv->ieee->lock, flags); if (set_qos_param == 1) schedule_work(&priv->qos_activate); } static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) { u32 ret = 0; if (!priv) return 0; if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) ret = priv->qos_data.burst_duration_CCK; else ret = priv->qos_data.burst_duration_OFDM; return ret; } /* * Initialize the setting of QoS global */ static void ipw_qos_init(struct ipw_priv *priv, int enable, int burst_enable, u32 burst_duration_CCK, u32 burst_duration_OFDM) { priv->qos_data.qos_enable = enable; if (priv->qos_data.qos_enable) { priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; IPW_DEBUG_QOS("QoS is enabled\n"); } else { priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; IPW_DEBUG_QOS("QoS is not enabled\n"); } priv->qos_data.burst_enable = burst_enable; if (burst_enable) { priv->qos_data.burst_duration_CCK = burst_duration_CCK; priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; } else { priv->qos_data.burst_duration_CCK = 0; priv->qos_data.burst_duration_OFDM = 0; } } /* * map the packet priority to the right TX Queue */ static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) { if (priority > 7 || !priv->qos_data.qos_enable) priority = 0; return from_priority_to_tx_queue[priority] - 1; } static int ipw_is_qos_active(struct net_device *dev, struct sk_buff *skb) { struct ipw_priv *priv = libipw_priv(dev); struct libipw_qos_data *qos_data = NULL; int active, supported; u8 *daddr = skb->data + ETH_ALEN; int unicast = !is_multicast_ether_addr(daddr); if (!(priv->status & STATUS_ASSOCIATED)) return 0; qos_data = &priv->assoc_network->qos_data; if (priv->ieee->iw_mode == IW_MODE_ADHOC) { if (unicast == 0) qos_data->active = 0; else qos_data->active = qos_data->supported; } active = qos_data->active; supported = qos_data->supported; IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " "unicast %d\n", priv->qos_data.qos_enable, active, supported, unicast); if (active && priv->qos_data.qos_enable) return 1; return 0; } /* * add QoS parameter to the TX command */ static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, u16 priority, struct tfd_data *tfd) { int tx_queue_id = 0; tx_queue_id = from_priority_to_tx_queue[priority] - 1; tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); } return 0; } /* * background support to run QoS activate functionality */ static void ipw_bg_qos_activate(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, qos_activate); mutex_lock(&priv->mutex); if (priv->status & STATUS_ASSOCIATED) ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); mutex_unlock(&priv->mutex); } static int ipw_handle_probe_response(struct net_device *dev, struct libipw_probe_response *resp, struct libipw_network *network) { struct ipw_priv *priv = libipw_priv(dev); int active_network = ((priv->status & STATUS_ASSOCIATED) && (network == priv->assoc_network)); ipw_qos_handle_probe_response(priv, active_network, network); return 0; } static int ipw_handle_beacon(struct net_device *dev, struct libipw_beacon *resp, struct libipw_network *network) { struct ipw_priv *priv = libipw_priv(dev); int active_network = ((priv->status & STATUS_ASSOCIATED) && (network == priv->assoc_network)); ipw_qos_handle_probe_response(priv, active_network, network); return 0; } static int ipw_handle_assoc_response(struct net_device *dev, struct libipw_assoc_response *resp, struct libipw_network *network) { struct ipw_priv *priv = libipw_priv(dev); ipw_qos_association_resp(priv, network); return 0; } static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters *qos_param) { return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, sizeof(*qos_param) * 3, qos_param); } static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element *qos_param) { return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), qos_param); } #endif /* CONFIG_IPW2200_QOS */ static int ipw_associate_network(struct ipw_priv *priv, struct libipw_network *network, struct ipw_supported_rates *rates, int roaming) { int err; if (priv->config & CFG_FIXED_RATE) ipw_set_fixed_rate(priv, network->mode); if (!(priv->config & CFG_STATIC_ESSID)) { priv->essid_len = min(network->ssid_len, (u8) IW_ESSID_MAX_SIZE); memcpy(priv->essid, network->ssid, priv->essid_len); } network->last_associate = jiffies; memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); priv->assoc_request.channel = network->channel; priv->assoc_request.auth_key = 0; if ((priv->capability & CAP_PRIVACY_ON) && (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { priv->assoc_request.auth_type = AUTH_SHARED_KEY; priv->assoc_request.auth_key = priv->ieee->sec.active_key; if (priv->ieee->sec.level == SEC_LEVEL_1) ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); } else if ((priv->capability & CAP_PRIVACY_ON) && (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) priv->assoc_request.auth_type = AUTH_LEAP; else priv->assoc_request.auth_type = AUTH_OPEN; if (priv->ieee->wpa_ie_len) { priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, priv->ieee->wpa_ie_len); } /* * It is valid for our ieee device to support multiple modes, but * when it comes to associating to a given network we have to choose * just one mode. */ if (network->mode & priv->ieee->mode & IEEE_A) priv->assoc_request.ieee_mode = IPW_A_MODE; else if (network->mode & priv->ieee->mode & IEEE_G) priv->assoc_request.ieee_mode = IPW_G_MODE; else if (network->mode & priv->ieee->mode & IEEE_B) priv->assoc_request.ieee_mode = IPW_B_MODE; priv->assoc_request.capability = cpu_to_le16(network->capability); if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) && !(priv->config & CFG_PREAMBLE_LONG)) { priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; } else { priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; /* Clear the short preamble if we won't be supporting it */ priv->assoc_request.capability &= ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); } /* Clear capability bits that aren't used in Ad Hoc */ if (priv->ieee->iw_mode == IW_MODE_ADHOC) priv->assoc_request.capability &= ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", roaming ? "Rea" : "A", priv->essid_len, priv->essid, network->channel, ipw_modes[priv->assoc_request.ieee_mode], rates->num_rates, (priv->assoc_request.preamble_length == DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", priv->capability & CAP_PRIVACY_ON ? "on " : "off", priv->capability & CAP_PRIVACY_ON ? (priv->capability & CAP_SHARED_KEY ? "(shared)" : "(open)") : "", priv->capability & CAP_PRIVACY_ON ? " key=" : "", priv->capability & CAP_PRIVACY_ON ? '1' + priv->ieee->sec.active_key : '.', priv->capability & CAP_PRIVACY_ON ? '.' : ' '); priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { priv->assoc_request.assoc_type = HC_IBSS_START; priv->assoc_request.assoc_tsf_msw = 0; priv->assoc_request.assoc_tsf_lsw = 0; } else { if (unlikely(roaming)) priv->assoc_request.assoc_type = HC_REASSOCIATE; else priv->assoc_request.assoc_type = HC_ASSOCIATE; priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); } memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); if (priv->ieee->iw_mode == IW_MODE_ADHOC) { eth_broadcast_addr(priv->assoc_request.dest); priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); } else { memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); priv->assoc_request.atim_window = 0; } priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); err = ipw_send_ssid(priv, priv->essid, priv->essid_len); if (err) { IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); return err; } rates->ieee_mode = priv->assoc_request.ieee_mode; rates->purpose = IPW_RATE_CONNECT; ipw_send_supported_rates(priv, rates); if (priv->assoc_request.ieee_mode == IPW_G_MODE) priv->sys_config.dot11g_auto_detection = 1; else priv->sys_config.dot11g_auto_detection = 0; if (priv->ieee->iw_mode == IW_MODE_ADHOC) priv->sys_config.answer_broadcast_ssid_probe = 1; else priv->sys_config.answer_broadcast_ssid_probe = 0; err = ipw_send_system_config(priv); if (err) { IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); return err; } IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); if (err) { IPW_DEBUG_HC("Attempt to send associate command failed.\n"); return err; } /* * If preemption is enabled, it is possible for the association * to complete before we return from ipw_send_associate. Therefore * we have to be sure and update our priviate data first. */ priv->channel = network->channel; memcpy(priv->bssid, network->bssid, ETH_ALEN); priv->status |= STATUS_ASSOCIATING; priv->status &= ~STATUS_SECURITY_UPDATED; priv->assoc_network = network; #ifdef CONFIG_IPW2200_QOS ipw_qos_association(priv, network); #endif err = ipw_send_associate(priv, &priv->assoc_request); if (err) { IPW_DEBUG_HC("Attempt to send associate command failed.\n"); return err; } IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n", priv->essid_len, priv->essid, priv->bssid); return 0; } static void ipw_roam(void *data) { struct ipw_priv *priv = data; struct libipw_network *network = NULL; struct ipw_network_match match = { .network = priv->assoc_network }; /* The roaming process is as follows: * * 1. Missed beacon threshold triggers the roaming process by * setting the status ROAM bit and requesting a scan. * 2. When the scan completes, it schedules the ROAM work * 3. The ROAM work looks at all of the known networks for one that * is a better network than the currently associated. If none * found, the ROAM process is over (ROAM bit cleared) * 4. If a better network is found, a disassociation request is * sent. * 5. When the disassociation completes, the roam work is again * scheduled. The second time through, the driver is no longer * associated, and the newly selected network is sent an * association request. * 6. At this point ,the roaming process is complete and the ROAM * status bit is cleared. */ /* If we are no longer associated, and the roaming bit is no longer * set, then we are not actively roaming, so just return */ if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) return; if (priv->status & STATUS_ASSOCIATED) { /* First pass through ROAM process -- look for a better * network */ unsigned long flags; u8 rssi = priv->assoc_network->stats.rssi; priv->assoc_network->stats.rssi = -128; spin_lock_irqsave(&priv->ieee->lock, flags); list_for_each_entry(network, &priv->ieee->network_list, list) { if (network != priv->assoc_network) ipw_best_network(priv, &match, network, 1); } spin_unlock_irqrestore(&priv->ieee->lock, flags); priv->assoc_network->stats.rssi = rssi; if (match.network == priv->assoc_network) { IPW_DEBUG_ASSOC("No better APs in this network to " "roam to.\n"); priv->status &= ~STATUS_ROAMING; ipw_debug_config(priv); return; } ipw_send_disassociate(priv, 1); priv->assoc_network = match.network; return; } /* Second pass through ROAM process -- request association */ ipw_compatible_rates(priv, priv->assoc_network, &match.rates); ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); priv->status &= ~STATUS_ROAMING; } static void ipw_bg_roam(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, roam); mutex_lock(&priv->mutex); ipw_roam(priv); mutex_unlock(&priv->mutex); } static int ipw_associate(void *data) { struct ipw_priv *priv = data; struct libipw_network *network = NULL; struct ipw_network_match match = { .network = NULL }; struct ipw_supported_rates *rates; struct list_head *element; unsigned long flags; if (priv->ieee->iw_mode == IW_MODE_MONITOR) { IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); return 0; } if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { IPW_DEBUG_ASSOC("Not attempting association (already in " "progress)\n"); return 0; } if (priv->status & STATUS_DISASSOCIATING) { IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n"); schedule_work(&priv->associate); return 0; } if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { IPW_DEBUG_ASSOC("Not attempting association (scanning or not " "initialized)\n"); return 0; } if (!(priv->config & CFG_ASSOCIATE) && !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); return 0; } /* Protect our use of the network_list */ spin_lock_irqsave(&priv->ieee->lock, flags); list_for_each_entry(network, &priv->ieee->network_list, list) ipw_best_network(priv, &match, network, 0); network = match.network; rates = &match.rates; if (network == NULL && priv->ieee->iw_mode == IW_MODE_ADHOC && priv->config & CFG_ADHOC_CREATE && priv->config & CFG_STATIC_ESSID && priv->config & CFG_STATIC_CHANNEL) { /* Use oldest network if the free list is empty */ if (list_empty(&priv->ieee->network_free_list)) { struct libipw_network *oldest = NULL; struct libipw_network *target; list_for_each_entry(target, &priv->ieee->network_list, list) { if ((oldest == NULL) || (target->last_scanned < oldest->last_scanned)) oldest = target; } /* If there are no more slots, expire the oldest */ list_del(&oldest->list); target = oldest; IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n", target->ssid_len, target->ssid, target->bssid); list_add_tail(&target->list, &priv->ieee->network_free_list); } element = priv->ieee->network_free_list.next; network = list_entry(element, struct libipw_network, list); ipw_adhoc_create(priv, network); rates = &priv->rates; list_del(element); list_add_tail(&network->list, &priv->ieee->network_list); } spin_unlock_irqrestore(&priv->ieee->lock, flags); /* If we reached the end of the list, then we don't have any valid * matching APs */ if (!network) { ipw_debug_config(priv); if (!(priv->status & STATUS_SCANNING)) { if (!(priv->config & CFG_SPEED_SCAN)) schedule_delayed_work(&priv->request_scan, SCAN_INTERVAL); else schedule_delayed_work(&priv->request_scan, 0); } return 0; } ipw_associate_network(priv, network, rates, 0); return 1; } static void ipw_bg_associate(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, associate); mutex_lock(&priv->mutex); ipw_associate(priv); mutex_unlock(&priv->mutex); } static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, struct sk_buff *skb) { struct ieee80211_hdr *hdr; u16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = le16_to_cpu(hdr->frame_control); if (!(fc & IEEE80211_FCTL_PROTECTED)) return; fc &= ~IEEE80211_FCTL_PROTECTED; hdr->frame_control = cpu_to_le16(fc); switch (priv->ieee->sec.level) { case SEC_LEVEL_3: /* Remove CCMP HDR */ memmove(skb->data + LIBIPW_3ADDR_LEN, skb->data + LIBIPW_3ADDR_LEN + 8, skb->len - LIBIPW_3ADDR_LEN - 8); skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ break; case SEC_LEVEL_2: break; case SEC_LEVEL_1: /* Remove IV */ memmove(skb->data + LIBIPW_3ADDR_LEN, skb->data + LIBIPW_3ADDR_LEN + 4, skb->len - LIBIPW_3ADDR_LEN - 4); skb_trim(skb, skb->len - 8); /* IV + ICV */ break; case SEC_LEVEL_0: break; default: printk(KERN_ERR "Unknown security level %d\n", priv->ieee->sec.level); break; } } static void ipw_handle_data_packet(struct ipw_priv *priv, struct ipw_rx_mem_buffer *rxb, struct libipw_rx_stats *stats) { struct net_device *dev = priv->net_dev; struct libipw_hdr_4addr *hdr; struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; /* We received data from the HW, so stop the watchdog */ netif_trans_update(dev); /* We only process data packets if the * interface is open */ if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { dev->stats.rx_errors++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); return; } else if (unlikely(!netif_running(priv->net_dev))) { dev->stats.rx_dropped++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); return; } /* Advance skb->data to the start of the actual payload */ skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); /* Set the size of the skb to the size of the frame */ skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ hdr = (struct libipw_hdr_4addr *)rxb->skb->data; if (priv->ieee->iw_mode != IW_MODE_MONITOR && (is_multicast_ether_addr(hdr->addr1) ? !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) ipw_rebuild_decrypted_skb(priv, rxb->skb); if (!libipw_rx(priv->ieee, rxb->skb, stats)) dev->stats.rx_errors++; else { /* libipw_rx succeeded, so it now owns the SKB */ rxb->skb = NULL; __ipw_led_activity_on(priv); } } #ifdef CONFIG_IPW2200_RADIOTAP static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, struct ipw_rx_mem_buffer *rxb, struct libipw_rx_stats *stats) { struct net_device *dev = priv->net_dev; struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; struct ipw_rx_frame *frame = &pkt->u.frame; /* initial pull of some data */ u16 received_channel = frame->received_channel; u8 antennaAndPhy = frame->antennaAndPhy; s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ u16 pktrate = frame->rate; /* Magic struct that slots into the radiotap header -- no reason * to build this manually element by element, we can write it much * more efficiently than we can parse it. ORDER MATTERS HERE */ struct ipw_rt_hdr *ipw_rt; unsigned short len = le16_to_cpu(pkt->u.frame.length); /* We received data from the HW, so stop the watchdog */ netif_trans_update(dev); /* We only process data packets if the * interface is open */ if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { dev->stats.rx_errors++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); return; } else if (unlikely(!netif_running(priv->net_dev))) { dev->stats.rx_dropped++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); return; } /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use * that now */ if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { /* FIXME: Should alloc bigger skb instead */ dev->stats.rx_dropped++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); return; } /* copy the frame itself */ memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), rxb->skb->data + IPW_RX_FRAME_SIZE, len); ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ /* Big bitfield of all the fields we provide in radiotap */ ipw_rt->rt_hdr.it_present = cpu_to_le32( (1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | (1 << IEEE80211_RADIOTAP_ANTENNA)); /* Zero the flags, we'll add to them as we go */ ipw_rt->rt_flags = 0; ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | frame->parent_tsf[2] << 16 | frame->parent_tsf[1] << 8 | frame->parent_tsf[0]); /* Convert signal to DBM */ ipw_rt->rt_dbmsignal = antsignal; ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); /* Convert the channel data and set the flags */ ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); if (received_channel > 14) { /* 802.11a */ ipw_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); } else if (antennaAndPhy & 32) { /* 802.11b */ ipw_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); } else { /* 802.11g */ ipw_rt->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); } /* set the rate in multiples of 500k/s */ switch (pktrate) { case IPW_TX_RATE_1MB: ipw_rt->rt_rate = 2; break; case IPW_TX_RATE_2MB: ipw_rt->rt_rate = 4; break; case IPW_TX_RATE_5MB: ipw_rt->rt_rate = 10; break; case IPW_TX_RATE_6MB: ipw_rt->rt_rate = 12; break; case IPW_TX_RATE_9MB: ipw_rt->rt_rate = 18; break; case IPW_TX_RATE_11MB: ipw_rt->rt_rate = 22; break; case IPW_TX_RATE_12MB: ipw_rt->rt_rate = 24; break; case IPW_TX_RATE_18MB: ipw_rt->rt_rate = 36; break; case IPW_TX_RATE_24MB: ipw_rt->rt_rate = 48; break; case IPW_TX_RATE_36MB: ipw_rt->rt_rate = 72; break; case IPW_TX_RATE_48MB: ipw_rt->rt_rate = 96; break; case IPW_TX_RATE_54MB: ipw_rt->rt_rate = 108; break; default: ipw_rt->rt_rate = 0; break; } /* antenna number */ ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ /* set the preamble flag if we have it */ if ((antennaAndPhy & 64)) ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; /* Set the size of the skb to the size of the frame */ skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); if (!libipw_rx(priv->ieee, rxb->skb, stats)) dev->stats.rx_errors++; else { /* libipw_rx succeeded, so it now owns the SKB */ rxb->skb = NULL; /* no LED during capture */ } } #endif #ifdef CONFIG_IPW2200_PROMISCUOUS #define libipw_is_probe_response(fc) \ ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) #define libipw_is_management(fc) \ ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) #define libipw_is_control(fc) \ ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) #define libipw_is_data(fc) \ ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) #define libipw_is_assoc_request(fc) \ ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) #define libipw_is_reassoc_request(fc) \ ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, struct ipw_rx_mem_buffer *rxb, struct libipw_rx_stats *stats) { struct net_device *dev = priv->prom_net_dev; struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; struct ipw_rx_frame *frame = &pkt->u.frame; struct ipw_rt_hdr *ipw_rt; /* First cache any information we need before we overwrite * the information provided in the skb from the hardware */ struct ieee80211_hdr *hdr; u16 channel = frame->received_channel; u8 phy_flags = frame->antennaAndPhy; s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; s8 noise = (s8) le16_to_cpu(frame->noise); u8 rate = frame->rate; unsigned short len = le16_to_cpu(pkt->u.frame.length); struct sk_buff *skb; int hdr_only = 0; u16 filter = priv->prom_priv->filter; /* If the filter is set to not include Rx frames then return */ if (filter & IPW_PROM_NO_RX) return; /* We received data from the HW, so stop the watchdog */ netif_trans_update(dev); if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { dev->stats.rx_errors++; IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); return; } /* We only process data packets if the interface is open */ if (unlikely(!netif_running(dev))) { dev->stats.rx_dropped++; IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); return; } /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use * that now */ if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { /* FIXME: Should alloc bigger skb instead */ dev->stats.rx_dropped++; IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); return; } hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { if (filter & IPW_PROM_NO_MGMT) return; if (filter & IPW_PROM_MGMT_HEADER_ONLY) hdr_only = 1; } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { if (filter & IPW_PROM_NO_CTL) return; if (filter & IPW_PROM_CTL_HEADER_ONLY) hdr_only = 1; } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { if (filter & IPW_PROM_NO_DATA) return; if (filter & IPW_PROM_DATA_HEADER_ONLY) hdr_only = 1; } /* Copy the SKB since this is for the promiscuous side */ skb = skb_copy(rxb->skb, GFP_ATOMIC); if (skb == NULL) { IPW_ERROR("skb_clone failed for promiscuous copy.\n"); return; } /* copy the frame data to write after where the radiotap header goes */ ipw_rt = (void *)skb->data; if (hdr_only) len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); memcpy(ipw_rt->payload, hdr, len); ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ /* Set the size of the skb to the size of the frame */ skb_put(skb, sizeof(*ipw_rt) + len); /* Big bitfield of all the fields we provide in radiotap */ ipw_rt->rt_hdr.it_present = cpu_to_le32( (1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | (1 << IEEE80211_RADIOTAP_ANTENNA)); /* Zero the flags, we'll add to them as we go */ ipw_rt->rt_flags = 0; ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | frame->parent_tsf[2] << 16 | frame->parent_tsf[1] << 8 | frame->parent_tsf[0]); /* Convert to DBM */ ipw_rt->rt_dbmsignal = signal; ipw_rt->rt_dbmnoise = noise; /* Convert the channel data and set the flags */ ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); if (channel > 14) { /* 802.11a */ ipw_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); } else if (phy_flags & (1 << 5)) { /* 802.11b */ ipw_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); } else { /* 802.11g */ ipw_rt->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); } /* set the rate in multiples of 500k/s */ switch (rate) { case IPW_TX_RATE_1MB: ipw_rt->rt_rate = 2; break; case IPW_TX_RATE_2MB: ipw_rt->rt_rate = 4; break; case IPW_TX_RATE_5MB: ipw_rt->rt_rate = 10; break; case IPW_TX_RATE_6MB: ipw_rt->rt_rate = 12; break; case IPW_TX_RATE_9MB: ipw_rt->rt_rate = 18; break; case IPW_TX_RATE_11MB: ipw_rt->rt_rate = 22; break; case IPW_TX_RATE_12MB: ipw_rt->rt_rate = 24; break; case IPW_TX_RATE_18MB: ipw_rt->rt_rate = 36; break; case IPW_TX_RATE_24MB: ipw_rt->rt_rate = 48; break; case IPW_TX_RATE_36MB: ipw_rt->rt_rate = 72; break; case IPW_TX_RATE_48MB: ipw_rt->rt_rate = 96; break; case IPW_TX_RATE_54MB: ipw_rt->rt_rate = 108; break; default: ipw_rt->rt_rate = 0; break; } /* antenna number */ ipw_rt->rt_antenna = (phy_flags & 3); /* set the preamble flag if we have it */ if (phy_flags & (1 << 6)) ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { dev->stats.rx_errors++; dev_kfree_skb_any(skb); } } #endif static int is_network_packet(struct ipw_priv *priv, struct libipw_hdr_4addr *header) { /* Filter incoming packets to determine if they are targeted toward * this network, discarding packets coming from ourselves */ switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ /* packets from our adapter are dropped (echo) */ if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr)) return 0; /* {broad,multi}cast packets to our BSSID go through */ if (is_multicast_ether_addr(header->addr1)) return ether_addr_equal(header->addr3, priv->bssid); /* packets to our adapter go through */ return ether_addr_equal(header->addr1, priv->net_dev->dev_addr); case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ /* packets from our adapter are dropped (echo) */ if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr)) return 0; /* {broad,multi}cast packets to our BSS go through */ if (is_multicast_ether_addr(header->addr1)) return ether_addr_equal(header->addr2, priv->bssid); /* packets to our adapter go through */ return ether_addr_equal(header->addr1, priv->net_dev->dev_addr); } return 1; } #define IPW_PACKET_RETRY_TIME HZ static int is_duplicate_packet(struct ipw_priv *priv, struct libipw_hdr_4addr *header) { u16 sc = le16_to_cpu(header->seq_ctl); u16 seq = WLAN_GET_SEQ_SEQ(sc); u16 frag = WLAN_GET_SEQ_FRAG(sc); u16 *last_seq, *last_frag; unsigned long *last_time; switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: { struct list_head *p; struct ipw_ibss_seq *entry = NULL; u8 *mac = header->addr2; int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; list_for_each(p, &priv->ibss_mac_hash[index]) { entry = list_entry(p, struct ipw_ibss_seq, list); if (ether_addr_equal(entry->mac, mac)) break; } if (p == &priv->ibss_mac_hash[index]) { entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) { IPW_ERROR ("Cannot malloc new mac entry\n"); return 0; } memcpy(entry->mac, mac, ETH_ALEN); entry->seq_num = seq; entry->frag_num = frag; entry->packet_time = jiffies; list_add(&entry->list, &priv->ibss_mac_hash[index]); return 0; } last_seq = &entry->seq_num; last_frag = &entry->frag_num; last_time = &entry->packet_time; break; } case IW_MODE_INFRA: last_seq = &priv->last_seq_num; last_frag = &priv->last_frag_num; last_time = &priv->last_packet_time; break; default: return 0; } if ((*last_seq == seq) && time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { if (*last_frag == frag) goto drop; if (*last_frag + 1 != frag) /* out-of-order fragment */ goto drop; } else *last_seq = seq; *last_frag = frag; *last_time = jiffies; return 0; drop: /* Comment this line now since we observed the card receives * duplicate packets but the FCTL_RETRY bit is not set in the * IBSS mode with fragmentation enabled. BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ return 1; } static void ipw_handle_mgmt_packet(struct ipw_priv *priv, struct ipw_rx_mem_buffer *rxb, struct libipw_rx_stats *stats) { struct sk_buff *skb = rxb->skb; struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) (skb->data + IPW_RX_FRAME_SIZE); libipw_rx_mgt(priv->ieee, header, stats); if (priv->ieee->iw_mode == IW_MODE_ADHOC && ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == IEEE80211_STYPE_PROBE_RESP) || (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == IEEE80211_STYPE_BEACON))) { if (ether_addr_equal(header->addr3, priv->bssid)) ipw_add_station(priv, header->addr2); } if (priv->config & CFG_NET_STATS) { IPW_DEBUG_HC("sending stat packet\n"); /* Set the size of the skb to the size of the full * ipw header and 802.11 frame */ skb_put(skb, le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE); /* Advance past the ipw packet header to the 802.11 frame */ skb_pull(skb, IPW_RX_FRAME_SIZE); /* Push the libipw_rx_stats before the 802.11 frame */ memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); skb->dev = priv->ieee->dev; /* Point raw at the libipw_stats */ skb_reset_mac_header(skb); skb->pkt_type = PACKET_OTHERHOST; skb->protocol = cpu_to_be16(ETH_P_80211_STATS); memset(skb->cb, 0, sizeof(rxb->skb->cb)); netif_rx(skb); rxb->skb = NULL; } } /* * Main entry function for receiving a packet with 80211 headers. This * should be called when ever the FW has notified us that there is a new * skb in the receive queue. */ static void ipw_rx(struct ipw_priv *priv) { struct ipw_rx_mem_buffer *rxb; struct ipw_rx_packet *pkt; struct libipw_hdr_4addr *header; u32 r, i; u8 network_packet; u8 fill_rx = 0; r = ipw_read32(priv, IPW_RX_READ_INDEX); ipw_read32(priv, IPW_RX_WRITE_INDEX); i = priv->rxq->read; if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) fill_rx = 1; while (i != r) { rxb = priv->rxq->queue[i]; if (unlikely(rxb == NULL)) { printk(KERN_CRIT "Queue not allocated!\n"); break; } priv->rxq->queue[i] = NULL; dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr, IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); pkt = (struct ipw_rx_packet *)rxb->skb->data; IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", pkt->header.message_type, pkt->header.rx_seq_num, pkt->header.control_bits); switch (pkt->header.message_type) { case RX_FRAME_TYPE: /* 802.11 frame */ { struct libipw_rx_stats stats = { .rssi = pkt->u.frame.rssi_dbm - IPW_RSSI_TO_DBM, .signal = pkt->u.frame.rssi_dbm - IPW_RSSI_TO_DBM + 0x100, .noise = le16_to_cpu(pkt->u.frame.noise), .rate = pkt->u.frame.rate, .mac_time = jiffies, .received_channel = pkt->u.frame.received_channel, .freq = (pkt->u.frame. control & (1 << 0)) ? LIBIPW_24GHZ_BAND : LIBIPW_52GHZ_BAND, .len = le16_to_cpu(pkt->u.frame.length), }; if (stats.rssi != 0) stats.mask |= LIBIPW_STATMASK_RSSI; if (stats.signal != 0) stats.mask |= LIBIPW_STATMASK_SIGNAL; if (stats.noise != 0) stats.mask |= LIBIPW_STATMASK_NOISE; if (stats.rate != 0) stats.mask |= LIBIPW_STATMASK_RATE; priv->rx_packets++; #ifdef CONFIG_IPW2200_PROMISCUOUS if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) ipw_handle_promiscuous_rx(priv, rxb, &stats); #endif #ifdef CONFIG_IPW2200_MONITOR if (priv->ieee->iw_mode == IW_MODE_MONITOR) { #ifdef CONFIG_IPW2200_RADIOTAP ipw_handle_data_packet_monitor(priv, rxb, &stats); #else ipw_handle_data_packet(priv, rxb, &stats); #endif break; } #endif header = (struct libipw_hdr_4addr *)(rxb->skb-> data + IPW_RX_FRAME_SIZE); /* TODO: Check Ad-Hoc dest/source and make sure * that we are actually parsing these packets * correctly -- we should probably use the * frame control of the packet and disregard * the current iw_mode */ network_packet = is_network_packet(priv, header); if (network_packet && priv->assoc_network) { priv->assoc_network->stats.rssi = stats.rssi; priv->exp_avg_rssi = exponential_average(priv->exp_avg_rssi, stats.rssi, DEPTH_RSSI); } IPW_DEBUG_RX("Frame: len=%u\n", le16_to_cpu(pkt->u.frame.length)); if (le16_to_cpu(pkt->u.frame.length) < libipw_get_hdrlen(le16_to_cpu( header->frame_ctl))) { IPW_DEBUG_DROP ("Received packet is too small. " "Dropping.\n"); priv->net_dev->stats.rx_errors++; priv->wstats.discard.misc++; break; } switch (WLAN_FC_GET_TYPE (le16_to_cpu(header->frame_ctl))) { case IEEE80211_FTYPE_MGMT: ipw_handle_mgmt_packet(priv, rxb, &stats); break; case IEEE80211_FTYPE_CTL: break; case IEEE80211_FTYPE_DATA: if (unlikely(!network_packet || is_duplicate_packet(priv, header))) { IPW_DEBUG_DROP("Dropping: " "%pM, " "%pM, " "%pM\n", header->addr1, header->addr2, header->addr3); break; } ipw_handle_data_packet(priv, rxb, &stats); break; } break; } case RX_HOST_NOTIFICATION_TYPE:{ IPW_DEBUG_RX ("Notification: subtype=%02X flags=%02X size=%d\n", pkt->u.notification.subtype, pkt->u.notification.flags, le16_to_cpu(pkt->u.notification.size)); ipw_rx_notification(priv, &pkt->u.notification); break; } default: IPW_DEBUG_RX("Bad Rx packet of type %d\n", pkt->header.message_type); break; } /* For now we just don't re-use anything. We can tweak this * later to try and re-use notification packets and SKBs that * fail to Rx correctly */ if (rxb->skb != NULL) { dev_kfree_skb_any(rxb->skb); rxb->skb = NULL; } dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr, IPW_RX_BUF_SIZE, DMA_FROM_DEVICE); list_add_tail(&rxb->list, &priv->rxq->rx_used); i = (i + 1) % RX_QUEUE_SIZE; /* If there are a lot of unsued frames, restock the Rx queue * so the ucode won't assert */ if (fill_rx) { priv->rxq->read = i; ipw_rx_queue_replenish(priv); } } /* Backtrack one entry */ priv->rxq->read = i; ipw_rx_queue_restock(priv); } #define DEFAULT_RTS_THRESHOLD 2304U #define MIN_RTS_THRESHOLD 1U #define MAX_RTS_THRESHOLD 2304U #define DEFAULT_BEACON_INTERVAL 100U #define DEFAULT_SHORT_RETRY_LIMIT 7U #define DEFAULT_LONG_RETRY_LIMIT 4U /* * ipw_sw_reset * @option: options to control different reset behaviour * 0 = reset everything except the 'disable' module_param * 1 = reset everything and print out driver info (for probe only) * 2 = reset everything */ static int ipw_sw_reset(struct ipw_priv *priv, int option) { int band, modulation; int old_mode = priv->ieee->iw_mode; /* Initialize module parameter values here */ priv->config = 0; /* We default to disabling the LED code as right now it causes * too many systems to lock up... */ if (!led_support) priv->config |= CFG_NO_LED; if (associate) priv->config |= CFG_ASSOCIATE; else IPW_DEBUG_INFO("Auto associate disabled.\n"); if (auto_create) priv->config |= CFG_ADHOC_CREATE; else IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); priv->config &= ~CFG_STATIC_ESSID; priv->essid_len = 0; memset(priv->essid, 0, IW_ESSID_MAX_SIZE); if (disable && option) { priv->status |= STATUS_RF_KILL_SW; IPW_DEBUG_INFO("Radio disabled.\n"); } if (default_channel != 0) { priv->config |= CFG_STATIC_CHANNEL; priv->channel = default_channel; IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); /* TODO: Validate that provided channel is in range */ } #ifdef CONFIG_IPW2200_QOS ipw_qos_init(priv, qos_enable, qos_burst_enable, burst_duration_CCK, burst_duration_OFDM); #endif /* CONFIG_IPW2200_QOS */ switch (network_mode) { case 1: priv->ieee->iw_mode = IW_MODE_ADHOC; priv->net_dev->type = ARPHRD_ETHER; break; #ifdef CONFIG_IPW2200_MONITOR case 2: priv->ieee->iw_mode = IW_MODE_MONITOR; #ifdef CONFIG_IPW2200_RADIOTAP priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; #else priv->net_dev->type = ARPHRD_IEEE80211; #endif break; #endif default: case 0: priv->net_dev->type = ARPHRD_ETHER; priv->ieee->iw_mode = IW_MODE_INFRA; break; } if (hwcrypto) { priv->ieee->host_encrypt = 0; priv->ieee->host_encrypt_msdu = 0; priv->ieee->host_decrypt = 0; priv->ieee->host_mc_decrypt = 0; } IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); /* IPW2200/2915 is abled to do hardware fragmentation. */ priv->ieee->host_open_frag = 0; if ((priv->pci_dev->device == 0x4223) || (priv->pci_dev->device == 0x4224)) { if (option == 1) printk(KERN_INFO DRV_NAME ": Detected Intel PRO/Wireless 2915ABG Network " "Connection\n"); priv->ieee->abg_true = 1; band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; modulation = LIBIPW_OFDM_MODULATION | LIBIPW_CCK_MODULATION; priv->adapter = IPW_2915ABG; priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; } else { if (option == 1) printk(KERN_INFO DRV_NAME ": Detected Intel PRO/Wireless 2200BG Network " "Connection\n"); priv->ieee->abg_true = 0; band = LIBIPW_24GHZ_BAND; modulation = LIBIPW_OFDM_MODULATION | LIBIPW_CCK_MODULATION; priv->adapter = IPW_2200BG; priv->ieee->mode = IEEE_G | IEEE_B; } priv->ieee->freq_band = band; priv->ieee->modulation = modulation; priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; priv->rts_threshold = DEFAULT_RTS_THRESHOLD; priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; /* If power management is turned on, default to AC mode */ priv->power_mode = IPW_POWER_AC; priv->tx_power = IPW_TX_POWER_DEFAULT; return old_mode == priv->ieee->iw_mode; } /* * This file defines the Wireless Extension handlers. It does not * define any methods of hardware manipulation and relies on the * functions defined in ipw_main to provide the HW interaction. * * The exception to this is the use of the ipw_get_ordinal() * function used to poll the hardware vs. making unnecessary calls. * */ static int ipw_set_channel(struct ipw_priv *priv, u8 channel) { if (channel == 0) { IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); priv->config &= ~CFG_STATIC_CHANNEL; IPW_DEBUG_ASSOC("Attempting to associate with new " "parameters.\n"); ipw_associate(priv); return 0; } priv->config |= CFG_STATIC_CHANNEL; if (priv->channel == channel) { IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", channel); return 0; } IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); priv->channel = channel; #ifdef CONFIG_IPW2200_MONITOR if (priv->ieee->iw_mode == IW_MODE_MONITOR) { int i; if (priv->status & STATUS_SCANNING) { IPW_DEBUG_SCAN("Scan abort triggered due to " "channel change.\n"); ipw_abort_scan(priv); } for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) udelay(10); if (priv->status & STATUS_SCANNING) IPW_DEBUG_SCAN("Still scanning...\n"); else IPW_DEBUG_SCAN("Took %dms to abort current scan\n", 1000 - i); return 0; } #endif /* CONFIG_IPW2200_MONITOR */ /* Network configuration changed -- force [re]association */ IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); if (!ipw_disassociate(priv)) ipw_associate(priv); return 0; } static int ipw_wx_set_freq(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); const struct libipw_geo *geo = libipw_get_geo(priv->ieee); struct iw_freq *fwrq = &wrqu->freq; int ret = 0, i; u8 channel, flags; int band; if (fwrq->m == 0) { IPW_DEBUG_WX("SET Freq/Channel -> any\n"); mutex_lock(&priv->mutex); ret = ipw_set_channel(priv, 0); mutex_unlock(&priv->mutex); return ret; } /* if setting by freq convert to channel */ if (fwrq->e == 1) { channel = libipw_freq_to_channel(priv->ieee, fwrq->m); if (channel == 0) return -EINVAL; } else channel = fwrq->m; if (!(band = libipw_is_valid_channel(priv->ieee, channel))) return -EINVAL; if (priv->ieee->iw_mode == IW_MODE_ADHOC) { i = libipw_channel_to_index(priv->ieee, channel); if (i == -1) return -EINVAL; flags = (band == LIBIPW_24GHZ_BAND) ? geo->bg[i].flags : geo->a[i].flags; if (flags & LIBIPW_CH_PASSIVE_ONLY) { IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); return -EINVAL; } } IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); mutex_lock(&priv->mutex); ret = ipw_set_channel(priv, channel); mutex_unlock(&priv->mutex); return ret; } static int ipw_wx_get_freq(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); wrqu->freq.e = 0; /* If we are associated, trying to associate, or have a statically * configured CHANNEL then return that; otherwise return ANY */ mutex_lock(&priv->mutex); if (priv->config & CFG_STATIC_CHANNEL || priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { int i; i = libipw_channel_to_index(priv->ieee, priv->channel); BUG_ON(i == -1); wrqu->freq.e = 1; switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { case LIBIPW_52GHZ_BAND: wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; break; case LIBIPW_24GHZ_BAND: wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; break; default: BUG(); } } else wrqu->freq.m = 0; mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); return 0; } static int ipw_wx_set_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int err = 0; IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); switch (wrqu->mode) { #ifdef CONFIG_IPW2200_MONITOR case IW_MODE_MONITOR: #endif case IW_MODE_ADHOC: case IW_MODE_INFRA: break; case IW_MODE_AUTO: wrqu->mode = IW_MODE_INFRA; break; default: return -EINVAL; } if (wrqu->mode == priv->ieee->iw_mode) return 0; mutex_lock(&priv->mutex); ipw_sw_reset(priv, 0); #ifdef CONFIG_IPW2200_MONITOR if (priv->ieee->iw_mode == IW_MODE_MONITOR) priv->net_dev->type = ARPHRD_ETHER; if (wrqu->mode == IW_MODE_MONITOR) #ifdef CONFIG_IPW2200_RADIOTAP priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; #else priv->net_dev->type = ARPHRD_IEEE80211; #endif #endif /* CONFIG_IPW2200_MONITOR */ /* Free the existing firmware and reset the fw_loaded * flag so ipw_load() will bring in the new firmware */ free_firmware(); priv->ieee->iw_mode = wrqu->mode; schedule_work(&priv->adapter_restart); mutex_unlock(&priv->mutex); return err; } static int ipw_wx_get_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->mode = priv->ieee->iw_mode; IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); mutex_unlock(&priv->mutex); return 0; } /* Values are in microsecond */ static const s32 timeout_duration[] = { 350000, 250000, 75000, 37000, 25000, }; static const s32 period_duration[] = { 400000, 700000, 1000000, 1000000, 1000000 }; static int ipw_wx_get_range(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct iw_range *range = (struct iw_range *)extra; const struct libipw_geo *geo = libipw_get_geo(priv->ieee); int i = 0, j; wrqu->data.length = sizeof(*range); memset(range, 0, sizeof(*range)); /* 54Mbs == ~27 Mb/s real (802.11g) */ range->throughput = 27 * 1000 * 1000; range->max_qual.qual = 100; /* TODO: Find real max RSSI and stick here */ range->max_qual.level = 0; range->max_qual.noise = 0; range->max_qual.updated = 7; /* Updated all three */ range->avg_qual.qual = 70; /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ range->avg_qual.level = 0; /* FIXME to real average level */ range->avg_qual.noise = 0; range->avg_qual.updated = 7; /* Updated all three */ mutex_lock(&priv->mutex); range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); for (i = 0; i < range->num_bitrates; i++) range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 500000; range->max_rts = DEFAULT_RTS_THRESHOLD; range->min_frag = MIN_FRAG_THRESHOLD; range->max_frag = MAX_FRAG_THRESHOLD; range->encoding_size[0] = 5; range->encoding_size[1] = 13; range->num_encoding_sizes = 2; range->max_encoding_tokens = WEP_KEYS; /* Set the Wireless Extension versions */ range->we_version_compiled = WIRELESS_EXT; range->we_version_source = 18; i = 0; if (priv->ieee->mode & (IEEE_B | IEEE_G)) { for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) continue; range->freq[i].i = geo->bg[j].channel; range->freq[i].m = geo->bg[j].freq * 100000; range->freq[i].e = 1; i++; } } if (priv->ieee->mode & IEEE_A) { for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) continue; range->freq[i].i = geo->a[j].channel; range->freq[i].m = geo->a[j].freq * 100000; range->freq[i].e = 1; i++; } } range->num_channels = i; range->num_frequency = i; mutex_unlock(&priv->mutex); /* Event capability (kernel + driver) */ range->event_capa[0] = (IW_EVENT_CAPA_K_0 | IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | IW_EVENT_CAPA_MASK(SIOCGIWAP) | IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); range->event_capa[1] = IW_EVENT_CAPA_K_1; range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; IPW_DEBUG_WX("GET Range\n"); return 0; } static int ipw_wx_set_wap(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) return -EINVAL; mutex_lock(&priv->mutex); if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) || is_zero_ether_addr(wrqu->ap_addr.sa_data)) { /* we disable mandatory BSSID association */ IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); priv->config &= ~CFG_STATIC_BSSID; IPW_DEBUG_ASSOC("Attempting to associate with new " "parameters.\n"); ipw_associate(priv); mutex_unlock(&priv->mutex); return 0; } priv->config |= CFG_STATIC_BSSID; if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) { IPW_DEBUG_WX("BSSID set to current BSSID.\n"); mutex_unlock(&priv->mutex); return 0; } IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", wrqu->ap_addr.sa_data); memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); /* Network configuration changed -- force [re]association */ IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); if (!ipw_disassociate(priv)) ipw_associate(priv); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_wap(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); /* If we are associated, trying to associate, or have a statically * configured BSSID then return that; otherwise return ANY */ mutex_lock(&priv->mutex); if (priv->config & CFG_STATIC_BSSID || priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { wrqu->ap_addr.sa_family = ARPHRD_ETHER; memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); } else eth_zero_addr(wrqu->ap_addr.sa_data); IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_set_essid(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int length; mutex_lock(&priv->mutex); if (!wrqu->essid.flags) { IPW_DEBUG_WX("Setting ESSID to ANY\n"); ipw_disassociate(priv); priv->config &= ~CFG_STATIC_ESSID; ipw_associate(priv); mutex_unlock(&priv->mutex); return 0; } length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); priv->config |= CFG_STATIC_ESSID; if (priv->essid_len == length && !memcmp(priv->essid, extra, length) && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { IPW_DEBUG_WX("ESSID set to current ESSID.\n"); mutex_unlock(&priv->mutex); return 0; } IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length); priv->essid_len = length; memcpy(priv->essid, extra, priv->essid_len); /* Network configuration changed -- force [re]association */ IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); if (!ipw_disassociate(priv)) ipw_associate(priv); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_essid(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); /* If we are associated, trying to associate, or have a statically * configured ESSID then return that; otherwise return ANY */ mutex_lock(&priv->mutex); if (priv->config & CFG_STATIC_ESSID || priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { IPW_DEBUG_WX("Getting essid: '%*pE'\n", priv->essid_len, priv->essid); memcpy(extra, priv->essid, priv->essid_len); wrqu->essid.length = priv->essid_len; wrqu->essid.flags = 1; /* active */ } else { IPW_DEBUG_WX("Getting essid: ANY\n"); wrqu->essid.length = 0; wrqu->essid.flags = 0; /* active */ } mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_set_nick(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); IPW_DEBUG_WX("Setting nick to '%s'\n", extra); if (wrqu->data.length > IW_ESSID_MAX_SIZE) return -E2BIG; mutex_lock(&priv->mutex); wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick)); memset(priv->nick, 0, sizeof(priv->nick)); memcpy(priv->nick, extra, wrqu->data.length); IPW_DEBUG_TRACE("<<\n"); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_nick(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); IPW_DEBUG_WX("Getting nick\n"); mutex_lock(&priv->mutex); wrqu->data.length = strlen(priv->nick); memcpy(extra, priv->nick, wrqu->data.length); wrqu->data.flags = 1; /* active */ mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_set_sens(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int err = 0; IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); mutex_lock(&priv->mutex); if (wrqu->sens.fixed == 0) { priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; goto out; } if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { err = -EINVAL; goto out; } priv->roaming_threshold = wrqu->sens.value; priv->disassociate_threshold = 3*wrqu->sens.value; out: mutex_unlock(&priv->mutex); return err; } static int ipw_wx_get_sens(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->sens.fixed = 1; wrqu->sens.value = priv->roaming_threshold; mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); return 0; } static int ipw_wx_set_rate(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { /* TODO: We should use semaphores or locks for access to priv */ struct ipw_priv *priv = libipw_priv(dev); u32 target_rate = wrqu->bitrate.value; u32 fixed, mask; /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ /* value = X, fixed = 1 means only rate X */ /* value = X, fixed = 0 means all rates lower equal X */ if (target_rate == -1) { fixed = 0; mask = LIBIPW_DEFAULT_RATES_MASK; /* Now we should reassociate */ goto apply; } mask = 0; fixed = wrqu->bitrate.fixed; if (target_rate == 1000000 || !fixed) mask |= LIBIPW_CCK_RATE_1MB_MASK; if (target_rate == 1000000) goto apply; if (target_rate == 2000000 || !fixed) mask |= LIBIPW_CCK_RATE_2MB_MASK; if (target_rate == 2000000) goto apply; if (target_rate == 5500000 || !fixed) mask |= LIBIPW_CCK_RATE_5MB_MASK; if (target_rate == 5500000) goto apply; if (target_rate == 6000000 || !fixed) mask |= LIBIPW_OFDM_RATE_6MB_MASK; if (target_rate == 6000000) goto apply; if (target_rate == 9000000 || !fixed) mask |= LIBIPW_OFDM_RATE_9MB_MASK; if (target_rate == 9000000) goto apply; if (target_rate == 11000000 || !fixed) mask |= LIBIPW_CCK_RATE_11MB_MASK; if (target_rate == 11000000) goto apply; if (target_rate == 12000000 || !fixed) mask |= LIBIPW_OFDM_RATE_12MB_MASK; if (target_rate == 12000000) goto apply; if (target_rate == 18000000 || !fixed) mask |= LIBIPW_OFDM_RATE_18MB_MASK; if (target_rate == 18000000) goto apply; if (target_rate == 24000000 || !fixed) mask |= LIBIPW_OFDM_RATE_24MB_MASK; if (target_rate == 24000000) goto apply; if (target_rate == 36000000 || !fixed) mask |= LIBIPW_OFDM_RATE_36MB_MASK; if (target_rate == 36000000) goto apply; if (target_rate == 48000000 || !fixed) mask |= LIBIPW_OFDM_RATE_48MB_MASK; if (target_rate == 48000000) goto apply; if (target_rate == 54000000 || !fixed) mask |= LIBIPW_OFDM_RATE_54MB_MASK; if (target_rate == 54000000) goto apply; IPW_DEBUG_WX("invalid rate specified, returning error\n"); return -EINVAL; apply: IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", mask, fixed ? "fixed" : "sub-rates"); mutex_lock(&priv->mutex); if (mask == LIBIPW_DEFAULT_RATES_MASK) { priv->config &= ~CFG_FIXED_RATE; ipw_set_fixed_rate(priv, priv->ieee->mode); } else priv->config |= CFG_FIXED_RATE; if (priv->rates_mask == mask) { IPW_DEBUG_WX("Mask set to current mask.\n"); mutex_unlock(&priv->mutex); return 0; } priv->rates_mask = mask; /* Network configuration changed -- force [re]association */ IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); if (!ipw_disassociate(priv)) ipw_associate(priv); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_rate(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->bitrate.value = priv->last_rate; wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); return 0; } static int ipw_wx_set_rts(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); if (wrqu->rts.disabled || !wrqu->rts.fixed) priv->rts_threshold = DEFAULT_RTS_THRESHOLD; else { if (wrqu->rts.value < MIN_RTS_THRESHOLD || wrqu->rts.value > MAX_RTS_THRESHOLD) { mutex_unlock(&priv->mutex); return -EINVAL; } priv->rts_threshold = wrqu->rts.value; } ipw_send_rts_threshold(priv, priv->rts_threshold); mutex_unlock(&priv->mutex); IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); return 0; } static int ipw_wx_get_rts(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->rts.value = priv->rts_threshold; wrqu->rts.fixed = 0; /* no auto select */ wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); return 0; } static int ipw_wx_set_txpow(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int err = 0; mutex_lock(&priv->mutex); if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { err = -EINPROGRESS; goto out; } if (!wrqu->power.fixed) wrqu->power.value = IPW_TX_POWER_DEFAULT; if (wrqu->power.flags != IW_TXPOW_DBM) { err = -EINVAL; goto out; } if ((wrqu->power.value > IPW_TX_POWER_MAX) || (wrqu->power.value < IPW_TX_POWER_MIN)) { err = -EINVAL; goto out; } priv->tx_power = wrqu->power.value; err = ipw_set_tx_power(priv); out: mutex_unlock(&priv->mutex); return err; } static int ipw_wx_get_txpow(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->power.value = priv->tx_power; wrqu->power.fixed = 1; wrqu->power.flags = IW_TXPOW_DBM; wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET TX Power -> %s %d\n", wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); return 0; } static int ipw_wx_set_frag(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); if (wrqu->frag.disabled || !wrqu->frag.fixed) priv->ieee->fts = DEFAULT_FTS; else { if (wrqu->frag.value < MIN_FRAG_THRESHOLD || wrqu->frag.value > MAX_FRAG_THRESHOLD) { mutex_unlock(&priv->mutex); return -EINVAL; } priv->ieee->fts = wrqu->frag.value & ~0x1; } ipw_send_frag_threshold(priv, wrqu->frag.value); mutex_unlock(&priv->mutex); IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); return 0; } static int ipw_wx_get_frag(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->frag.value = priv->ieee->fts; wrqu->frag.fixed = 0; /* no auto select */ wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); return 0; } static int ipw_wx_set_retry(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) return -EINVAL; if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) return 0; if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) return -EINVAL; mutex_lock(&priv->mutex); if (wrqu->retry.flags & IW_RETRY_SHORT) priv->short_retry_limit = (u8) wrqu->retry.value; else if (wrqu->retry.flags & IW_RETRY_LONG) priv->long_retry_limit = (u8) wrqu->retry.value; else { priv->short_retry_limit = (u8) wrqu->retry.value; priv->long_retry_limit = (u8) wrqu->retry.value; } ipw_send_retry_limit(priv, priv->short_retry_limit, priv->long_retry_limit); mutex_unlock(&priv->mutex); IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", priv->short_retry_limit, priv->long_retry_limit); return 0; } static int ipw_wx_get_retry(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); wrqu->retry.disabled = 0; if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { mutex_unlock(&priv->mutex); return -EINVAL; } if (wrqu->retry.flags & IW_RETRY_LONG) { wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; wrqu->retry.value = priv->long_retry_limit; } else if (wrqu->retry.flags & IW_RETRY_SHORT) { wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; wrqu->retry.value = priv->short_retry_limit; } else { wrqu->retry.flags = IW_RETRY_LIMIT; wrqu->retry.value = priv->short_retry_limit; } mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); return 0; } static int ipw_wx_set_scan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); struct iw_scan_req *req = (struct iw_scan_req *)extra; struct delayed_work *work = NULL; mutex_lock(&priv->mutex); priv->user_requested_scan = 1; if (wrqu->data.length == sizeof(struct iw_scan_req)) { if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { int len = min((int)req->essid_len, (int)sizeof(priv->direct_scan_ssid)); memcpy(priv->direct_scan_ssid, req->essid, len); priv->direct_scan_ssid_len = len; work = &priv->request_direct_scan; } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { work = &priv->request_passive_scan; } } else { /* Normal active broadcast scan */ work = &priv->request_scan; } mutex_unlock(&priv->mutex); IPW_DEBUG_WX("Start scan\n"); schedule_delayed_work(work, 0); return 0; } static int ipw_wx_get_scan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); } static int ipw_wx_set_encode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *key) { struct ipw_priv *priv = libipw_priv(dev); int ret; u32 cap = priv->capability; mutex_lock(&priv->mutex); ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); /* In IBSS mode, we need to notify the firmware to update * the beacon info after we changed the capability. */ if (cap != priv->capability && priv->ieee->iw_mode == IW_MODE_ADHOC && priv->status & STATUS_ASSOCIATED) ipw_disassociate(priv); mutex_unlock(&priv->mutex); return ret; } static int ipw_wx_get_encode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *key) { struct ipw_priv *priv = libipw_priv(dev); return libipw_wx_get_encode(priv->ieee, info, wrqu, key); } static int ipw_wx_set_power(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int err; mutex_lock(&priv->mutex); if (wrqu->power.disabled) { priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); if (err) { IPW_DEBUG_WX("failed setting power mode.\n"); mutex_unlock(&priv->mutex); return err; } IPW_DEBUG_WX("SET Power Management Mode -> off\n"); mutex_unlock(&priv->mutex); return 0; } switch (wrqu->power.flags & IW_POWER_MODE) { case IW_POWER_ON: /* If not specified */ case IW_POWER_MODE: /* If set all mask */ case IW_POWER_ALL_R: /* If explicitly state all */ break; default: /* Otherwise we don't support it */ IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", wrqu->power.flags); mutex_unlock(&priv->mutex); return -EOPNOTSUPP; } /* If the user hasn't specified a power management mode yet, default * to BATTERY */ if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; else priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); if (err) { IPW_DEBUG_WX("failed setting power mode.\n"); mutex_unlock(&priv->mutex); return err; } IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_power(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); if (!(priv->power_mode & IPW_POWER_ENABLED)) wrqu->power.disabled = 1; else wrqu->power.disabled = 0; mutex_unlock(&priv->mutex); IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); return 0; } static int ipw_wx_set_powermode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int mode = *(int *)extra; int err; mutex_lock(&priv->mutex); if ((mode < 1) || (mode > IPW_POWER_LIMIT)) mode = IPW_POWER_AC; if (IPW_POWER_LEVEL(priv->power_mode) != mode) { err = ipw_send_power_mode(priv, mode); if (err) { IPW_DEBUG_WX("failed setting power mode.\n"); mutex_unlock(&priv->mutex); return err; } priv->power_mode = IPW_POWER_ENABLED | mode; } mutex_unlock(&priv->mutex); return 0; } #define MAX_WX_STRING 80 static int ipw_wx_get_powermode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int level = IPW_POWER_LEVEL(priv->power_mode); char *p = extra; p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level); switch (level) { case IPW_POWER_AC: p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); break; case IPW_POWER_BATTERY: p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); break; default: p += scnprintf(p, MAX_WX_STRING - (p - extra), "(Timeout %dms, Period %dms)", timeout_duration[level - 1] / 1000, period_duration[level - 1] / 1000); } if (!(priv->power_mode & IPW_POWER_ENABLED)) p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF"); wrqu->data.length = p - extra + 1; return 0; } static int ipw_wx_set_wireless_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int mode = *(int *)extra; u8 band = 0, modulation = 0; if (mode == 0 || mode & ~IEEE_MODE_MASK) { IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); return -EINVAL; } mutex_lock(&priv->mutex); if (priv->adapter == IPW_2915ABG) { priv->ieee->abg_true = 1; if (mode & IEEE_A) { band |= LIBIPW_52GHZ_BAND; modulation |= LIBIPW_OFDM_MODULATION; } else priv->ieee->abg_true = 0; } else { if (mode & IEEE_A) { IPW_WARNING("Attempt to set 2200BG into " "802.11a mode\n"); mutex_unlock(&priv->mutex); return -EINVAL; } priv->ieee->abg_true = 0; } if (mode & IEEE_B) { band |= LIBIPW_24GHZ_BAND; modulation |= LIBIPW_CCK_MODULATION; } else priv->ieee->abg_true = 0; if (mode & IEEE_G) { band |= LIBIPW_24GHZ_BAND; modulation |= LIBIPW_OFDM_MODULATION; } else priv->ieee->abg_true = 0; priv->ieee->mode = mode; priv->ieee->freq_band = band; priv->ieee->modulation = modulation; init_supported_rates(priv, &priv->rates); /* Network configuration changed -- force [re]association */ IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); if (!ipw_disassociate(priv)) { ipw_send_supported_rates(priv, &priv->rates); ipw_associate(priv); } /* Update the band LEDs */ ipw_led_band_on(priv); IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", mode & IEEE_A ? 'a' : '.', mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_wireless_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); switch (priv->ieee->mode) { case IEEE_A: strscpy_pad(extra, "802.11a (1)", MAX_WX_STRING); break; case IEEE_B: strscpy_pad(extra, "802.11b (2)", MAX_WX_STRING); break; case IEEE_A | IEEE_B: strscpy_pad(extra, "802.11ab (3)", MAX_WX_STRING); break; case IEEE_G: strscpy_pad(extra, "802.11g (4)", MAX_WX_STRING); break; case IEEE_A | IEEE_G: strscpy_pad(extra, "802.11ag (5)", MAX_WX_STRING); break; case IEEE_B | IEEE_G: strscpy_pad(extra, "802.11bg (6)", MAX_WX_STRING); break; case IEEE_A | IEEE_B | IEEE_G: strscpy_pad(extra, "802.11abg (7)", MAX_WX_STRING); break; default: strscpy_pad(extra, "unknown", MAX_WX_STRING); break; } IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); wrqu->data.length = strlen(extra) + 1; mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_set_preamble(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int mode = *(int *)extra; mutex_lock(&priv->mutex); /* Switching from SHORT -> LONG requires a disassociation */ if (mode == 1) { if (!(priv->config & CFG_PREAMBLE_LONG)) { priv->config |= CFG_PREAMBLE_LONG; /* Network configuration changed -- force [re]association */ IPW_DEBUG_ASSOC ("[re]association triggered due to preamble change.\n"); if (!ipw_disassociate(priv)) ipw_associate(priv); } goto done; } if (mode == 0) { priv->config &= ~CFG_PREAMBLE_LONG; goto done; } mutex_unlock(&priv->mutex); return -EINVAL; done: mutex_unlock(&priv->mutex); return 0; } static int ipw_wx_get_preamble(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); mutex_lock(&priv->mutex); if (priv->config & CFG_PREAMBLE_LONG) snprintf(wrqu->name, IFNAMSIZ, "long (1)"); else snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); mutex_unlock(&priv->mutex); return 0; } #ifdef CONFIG_IPW2200_MONITOR static int ipw_wx_set_monitor(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); int *parms = (int *)extra; int enable = (parms[0] > 0); mutex_lock(&priv->mutex); IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); if (enable) { if (priv->ieee->iw_mode != IW_MODE_MONITOR) { #ifdef CONFIG_IPW2200_RADIOTAP priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; #else priv->net_dev->type = ARPHRD_IEEE80211; #endif schedule_work(&priv->adapter_restart); } ipw_set_channel(priv, parms[1]); } else { if (priv->ieee->iw_mode != IW_MODE_MONITOR) { mutex_unlock(&priv->mutex); return 0; } priv->net_dev->type = ARPHRD_ETHER; schedule_work(&priv->adapter_restart); } mutex_unlock(&priv->mutex); return 0; } #endif /* CONFIG_IPW2200_MONITOR */ static int ipw_wx_reset(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); IPW_DEBUG_WX("RESET\n"); schedule_work(&priv->adapter_restart); return 0; } static int ipw_wx_sw_reset(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = libipw_priv(dev); union iwreq_data wrqu_sec = { .encoding = { .flags = IW_ENCODE_DISABLED, }, }; int ret; IPW_DEBUG_WX("SW_RESET\n"); mutex_lock(&priv->mutex); ret = ipw_sw_reset(priv, 2); if (!ret) { free_firmware(); ipw_adapter_restart(priv); } /* The SW reset bit might have been toggled on by the 'disable' * module parameter, so take appropriate action */ ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); mutex_unlock(&priv->mutex); libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); mutex_lock(&priv->mutex); if (!(priv->status & STATUS_RF_KILL_MASK)) { /* Configuration likely changed -- force [re]association */ IPW_DEBUG_ASSOC("[re]association triggered due to sw " "reset.\n"); if (!ipw_disassociate(priv)) ipw_associate(priv); } mutex_unlock(&priv->mutex); return 0; } /* Rebase the WE IOCTLs to zero for the handler array */ static iw_handler ipw_wx_handlers[] = { IW_HANDLER(SIOCGIWNAME, ipw_wx_get_name), IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), IW_HANDLER(SIOCSIWSPY, ipw_wx_set_spy), IW_HANDLER(SIOCGIWSPY, ipw_wx_get_spy), IW_HANDLER(SIOCSIWTHRSPY, ipw_wx_set_thrspy), IW_HANDLER(SIOCGIWTHRSPY, ipw_wx_get_thrspy), IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), }; enum { IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, IPW_PRIV_GET_POWER, IPW_PRIV_SET_MODE, IPW_PRIV_GET_MODE, IPW_PRIV_SET_PREAMBLE, IPW_PRIV_GET_PREAMBLE, IPW_PRIV_RESET, IPW_PRIV_SW_RESET, #ifdef CONFIG_IPW2200_MONITOR IPW_PRIV_SET_MONITOR, #endif }; static struct iw_priv_args ipw_priv_args[] = { { .cmd = IPW_PRIV_SET_POWER, .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, .name = "set_power"}, { .cmd = IPW_PRIV_GET_POWER, .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, .name = "get_power"}, { .cmd = IPW_PRIV_SET_MODE, .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, .name = "set_mode"}, { .cmd = IPW_PRIV_GET_MODE, .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, .name = "get_mode"}, { .cmd = IPW_PRIV_SET_PREAMBLE, .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, .name = "set_preamble"}, { .cmd = IPW_PRIV_GET_PREAMBLE, .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, .name = "get_preamble"}, { IPW_PRIV_RESET, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, { IPW_PRIV_SW_RESET, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, #ifdef CONFIG_IPW2200_MONITOR { IPW_PRIV_SET_MONITOR, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, #endif /* CONFIG_IPW2200_MONITOR */ }; static iw_handler ipw_priv_handler[] = { ipw_wx_set_powermode, ipw_wx_get_powermode, ipw_wx_set_wireless_mode, ipw_wx_get_wireless_mode, ipw_wx_set_preamble, ipw_wx_get_preamble, ipw_wx_reset, ipw_wx_sw_reset, #ifdef CONFIG_IPW2200_MONITOR ipw_wx_set_monitor, #endif }; static const struct iw_handler_def ipw_wx_handler_def = { .standard = ipw_wx_handlers, .num_standard = ARRAY_SIZE(ipw_wx_handlers), .num_private = ARRAY_SIZE(ipw_priv_handler), .num_private_args = ARRAY_SIZE(ipw_priv_args), .private = ipw_priv_handler, .private_args = ipw_priv_args, .get_wireless_stats = ipw_get_wireless_stats, }; /* * Get wireless statistics. * Called by /proc/net/wireless * Also called by SIOCGIWSTATS */ static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) { struct ipw_priv *priv = libipw_priv(dev); struct iw_statistics *wstats; wstats = &priv->wstats; /* if hw is disabled, then ipw_get_ordinal() can't be called. * netdev->get_wireless_stats seems to be called before fw is * initialized. STATUS_ASSOCIATED will only be set if the hw is up * and associated; if not associcated, the values are all meaningless * anyway, so set them all to NULL and INVALID */ if (!(priv->status & STATUS_ASSOCIATED)) { wstats->miss.beacon = 0; wstats->discard.retries = 0; wstats->qual.qual = 0; wstats->qual.level = 0; wstats->qual.noise = 0; wstats->qual.updated = 7; wstats->qual.updated |= IW_QUAL_NOISE_INVALID | IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; return wstats; } wstats->qual.qual = priv->quality; wstats->qual.level = priv->exp_avg_rssi; wstats->qual.noise = priv->exp_avg_noise; wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; wstats->miss.beacon = average_value(&priv->average_missed_beacons); wstats->discard.retries = priv->last_tx_failures; wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) goto fail_get_ordinal; wstats->discard.retries += tx_retry; */ return wstats; } /* net device stuff */ static void init_sys_config(struct ipw_sys_config *sys_config) { memset(sys_config, 0, sizeof(struct ipw_sys_config)); sys_config->bt_coexistence = 0; sys_config->answer_broadcast_ssid_probe = 0; sys_config->accept_all_data_frames = 0; sys_config->accept_non_directed_frames = 1; sys_config->exclude_unicast_unencrypted = 0; sys_config->disable_unicast_decryption = 1; sys_config->exclude_multicast_unencrypted = 0; sys_config->disable_multicast_decryption = 1; if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) antenna = CFG_SYS_ANTENNA_BOTH; sys_config->antenna_diversity = antenna; sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ sys_config->dot11g_auto_detection = 0; sys_config->enable_cts_to_self = 0; sys_config->bt_coexist_collision_thr = 0; sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ sys_config->silence_threshold = 0x1e; } static int ipw_net_open(struct net_device *dev) { IPW_DEBUG_INFO("dev->open\n"); netif_start_queue(dev); return 0; } static int ipw_net_stop(struct net_device *dev) { IPW_DEBUG_INFO("dev->close\n"); netif_stop_queue(dev); return 0; } /* todo: modify to send one tfd per fragment instead of using chunking. otherwise we need to heavily modify the libipw_skb_to_txb. */ static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, int pri) { struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) txb->fragments[0]->data; int i = 0; struct tfd_frame *tfd; #ifdef CONFIG_IPW2200_QOS int tx_id = ipw_get_tx_queue_number(priv, pri); struct clx2_tx_queue *txq = &priv->txq[tx_id]; #else struct clx2_tx_queue *txq = &priv->txq[0]; #endif struct clx2_queue *q = &txq->q; u8 id, hdr_len, unicast; int fc; if (!(priv->status & STATUS_ASSOCIATED)) goto drop; hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: unicast = !is_multicast_ether_addr(hdr->addr1); id = ipw_find_station(priv, hdr->addr1); if (id == IPW_INVALID_STATION) { id = ipw_add_station(priv, hdr->addr1); if (id == IPW_INVALID_STATION) { IPW_WARNING("Attempt to send data to " "invalid cell: %pM\n", hdr->addr1); goto drop; } } break; case IW_MODE_INFRA: default: unicast = !is_multicast_ether_addr(hdr->addr3); id = 0; break; } tfd = &txq->bd[q->first_empty]; txq->txb[q->first_empty] = txb; memset(tfd, 0, sizeof(*tfd)); tfd->u.data.station_number = id; tfd->control_flags.message_type = TX_FRAME_TYPE; tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; tfd->u.data.cmd_id = DINO_CMD_TX; tfd->u.data.len = cpu_to_le16(txb->payload_size); if (priv->assoc_request.ieee_mode == IPW_B_MODE) tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; else tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; fc = le16_to_cpu(hdr->frame_ctl); hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); if (likely(unicast)) tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; if (txb->encrypted && !priv->ieee->host_encrypt) { switch (priv->ieee->sec.level) { case SEC_LEVEL_3: tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); /* XXX: ACK flag must be set for CCMP even if it * is a multicast/broadcast packet, because CCMP * group communication encrypted by GTK is * actually done by the AP. */ if (!unicast) tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; tfd->u.data.key_index = 0; tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; break; case SEC_LEVEL_2: tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; break; case SEC_LEVEL_1: tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= 40) tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; else tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; break; case SEC_LEVEL_0: break; default: printk(KERN_ERR "Unknown security level %d\n", priv->ieee->sec.level); break; } } else /* No hardware encryption */ tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; #ifdef CONFIG_IPW2200_QOS if (fc & IEEE80211_STYPE_QOS_DATA) ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); #endif /* CONFIG_IPW2200_QOS */ /* payload */ tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), txb->nr_frags)); IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", i, le32_to_cpu(tfd->u.data.num_chunks), txb->fragments[i]->len - hdr_len); IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", i, tfd->u.data.num_chunks, txb->fragments[i]->len - hdr_len); printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, txb->fragments[i]->len - hdr_len); tfd->u.data.chunk_ptr[i] = cpu_to_le32(dma_map_single(&priv->pci_dev->dev, txb->fragments[i]->data + hdr_len, txb->fragments[i]->len - hdr_len, DMA_TO_DEVICE)); tfd->u.data.chunk_len[i] = cpu_to_le16(txb->fragments[i]->len - hdr_len); } if (i != txb->nr_frags) { struct sk_buff *skb; u16 remaining_bytes = 0; int j; for (j = i; j < txb->nr_frags; j++) remaining_bytes += txb->fragments[j]->len - hdr_len; printk(KERN_INFO "Trying to reallocate for %d bytes\n", remaining_bytes); skb = alloc_skb(remaining_bytes, GFP_ATOMIC); if (skb != NULL) { tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); for (j = i; j < txb->nr_frags; j++) { int size = txb->fragments[j]->len - hdr_len; printk(KERN_INFO "Adding frag %d %d...\n", j, size); skb_put_data(skb, txb->fragments[j]->data + hdr_len, size); } dev_kfree_skb_any(txb->fragments[i]); txb->fragments[i] = skb; tfd->u.data.chunk_ptr[i] = cpu_to_le32(dma_map_single(&priv->pci_dev->dev, skb->data, remaining_bytes, DMA_TO_DEVICE)); le32_add_cpu(&tfd->u.data.num_chunks, 1); } } /* kick DMA */ q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); ipw_write32(priv, q->reg_w, q->first_empty); if (ipw_tx_queue_space(q) < q->high_mark) netif_stop_queue(priv->net_dev); return NETDEV_TX_OK; drop: IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); libipw_txb_free(txb); return NETDEV_TX_OK; } static int ipw_net_is_queue_full(struct net_device *dev, int pri) { struct ipw_priv *priv = libipw_priv(dev); #ifdef CONFIG_IPW2200_QOS int tx_id = ipw_get_tx_queue_number(priv, pri); struct clx2_tx_queue *txq = &priv->txq[tx_id]; #else struct clx2_tx_queue *txq = &priv->txq[0]; #endif /* CONFIG_IPW2200_QOS */ if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) return 1; return 0; } #ifdef CONFIG_IPW2200_PROMISCUOUS static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, struct libipw_txb *txb) { struct libipw_rx_stats dummystats; struct ieee80211_hdr *hdr; u8 n; u16 filter = priv->prom_priv->filter; int hdr_only = 0; if (filter & IPW_PROM_NO_TX) return; memset(&dummystats, 0, sizeof(dummystats)); /* Filtering of fragment chains is done against the first fragment */ hdr = (void *)txb->fragments[0]->data; if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { if (filter & IPW_PROM_NO_MGMT) return; if (filter & IPW_PROM_MGMT_HEADER_ONLY) hdr_only = 1; } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { if (filter & IPW_PROM_NO_CTL) return; if (filter & IPW_PROM_CTL_HEADER_ONLY) hdr_only = 1; } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { if (filter & IPW_PROM_NO_DATA) return; if (filter & IPW_PROM_DATA_HEADER_ONLY) hdr_only = 1; } for(n=0; nnr_frags; ++n) { struct sk_buff *src = txb->fragments[n]; struct sk_buff *dst; struct ieee80211_radiotap_header *rt_hdr; int len; if (hdr_only) { hdr = (void *)src->data; len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); } else len = src->len; dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC); if (!dst) continue; rt_hdr = skb_put(dst, sizeof(*rt_hdr)); rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; rt_hdr->it_pad = 0; rt_hdr->it_present = 0; /* after all, it's just an idea */ rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( ieee80211chan2mhz(priv->channel)); if (priv->channel > 14) /* 802.11a */ *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ); else if (priv->ieee->mode == IEEE_B) /* 802.11b */ *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ); else /* 802.11g */ *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); rt_hdr->it_len = cpu_to_le16(dst->len); skb_copy_from_linear_data(src, skb_put(dst, len), len); if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) dev_kfree_skb_any(dst); } } #endif static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, struct net_device *dev, int pri) { struct ipw_priv *priv = libipw_priv(dev); unsigned long flags; netdev_tx_t ret; IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); spin_lock_irqsave(&priv->lock, flags); #ifdef CONFIG_IPW2200_PROMISCUOUS if (rtap_iface && netif_running(priv->prom_net_dev)) ipw_handle_promiscuous_tx(priv, txb); #endif ret = ipw_tx_skb(priv, txb, pri); if (ret == NETDEV_TX_OK) __ipw_led_activity_on(priv); spin_unlock_irqrestore(&priv->lock, flags); return ret; } static void ipw_net_set_multicast_list(struct net_device *dev) { } static int ipw_net_set_mac_address(struct net_device *dev, void *p) { struct ipw_priv *priv = libipw_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; mutex_lock(&priv->mutex); priv->config |= CFG_CUSTOM_MAC; memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); printk(KERN_INFO "%s: Setting MAC to %pM\n", priv->net_dev->name, priv->mac_addr); schedule_work(&priv->adapter_restart); mutex_unlock(&priv->mutex); return 0; } static void ipw_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct ipw_priv *p = libipw_priv(dev); char vers[64]; u32 len; strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); len = sizeof(vers); ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); strscpy(info->fw_version, vers, sizeof(info->fw_version)); strscpy(info->bus_info, pci_name(p->pci_dev), sizeof(info->bus_info)); } static u32 ipw_ethtool_get_link(struct net_device *dev) { struct ipw_priv *priv = libipw_priv(dev); return (priv->status & STATUS_ASSOCIATED) != 0; } static int ipw_ethtool_get_eeprom_len(struct net_device *dev) { return IPW_EEPROM_IMAGE_SIZE; } static int ipw_ethtool_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * bytes) { struct ipw_priv *p = libipw_priv(dev); if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) return -EINVAL; mutex_lock(&p->mutex); memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); mutex_unlock(&p->mutex); return 0; } static int ipw_ethtool_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * bytes) { struct ipw_priv *p = libipw_priv(dev); int i; if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) return -EINVAL; mutex_lock(&p->mutex); memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); mutex_unlock(&p->mutex); return 0; } static const struct ethtool_ops ipw_ethtool_ops = { .get_link = ipw_ethtool_get_link, .get_drvinfo = ipw_ethtool_get_drvinfo, .get_eeprom_len = ipw_ethtool_get_eeprom_len, .get_eeprom = ipw_ethtool_get_eeprom, .set_eeprom = ipw_ethtool_set_eeprom, }; static irqreturn_t ipw_isr(int irq, void *data) { struct ipw_priv *priv = data; u32 inta, inta_mask; if (!priv) return IRQ_NONE; spin_lock(&priv->irq_lock); if (!(priv->status & STATUS_INT_ENABLED)) { /* IRQ is disabled */ goto none; } inta = ipw_read32(priv, IPW_INTA_RW); inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); if (inta == 0xFFFFFFFF) { /* Hardware disappeared */ IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); goto none; } if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { /* Shared interrupt */ goto none; } /* tell the device to stop sending interrupts */ __ipw_disable_interrupts(priv); /* ack current interrupts */ inta &= (IPW_INTA_MASK_ALL & inta_mask); ipw_write32(priv, IPW_INTA_RW, inta); /* Cache INTA value for our tasklet */ priv->isr_inta = inta; tasklet_schedule(&priv->irq_tasklet); spin_unlock(&priv->irq_lock); return IRQ_HANDLED; none: spin_unlock(&priv->irq_lock); return IRQ_NONE; } static void ipw_rf_kill(void *adapter) { struct ipw_priv *priv = adapter; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (rf_kill_active(priv)) { IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); schedule_delayed_work(&priv->rf_kill, 2 * HZ); goto exit_unlock; } /* RF Kill is now disabled, so bring the device back up */ if (!(priv->status & STATUS_RF_KILL_MASK)) { IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " "device\n"); /* we can not do an adapter restart while inside an irq lock */ schedule_work(&priv->adapter_restart); } else IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " "enabled\n"); exit_unlock: spin_unlock_irqrestore(&priv->lock, flags); } static void ipw_bg_rf_kill(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, rf_kill.work); mutex_lock(&priv->mutex); ipw_rf_kill(priv); mutex_unlock(&priv->mutex); } static void ipw_link_up(struct ipw_priv *priv) { priv->last_seq_num = -1; priv->last_frag_num = -1; priv->last_packet_time = 0; netif_carrier_on(priv->net_dev); cancel_delayed_work(&priv->request_scan); cancel_delayed_work(&priv->request_direct_scan); cancel_delayed_work(&priv->request_passive_scan); cancel_delayed_work(&priv->scan_event); ipw_reset_stats(priv); /* Ensure the rate is updated immediately */ priv->last_rate = ipw_get_current_rate(priv); ipw_gather_stats(priv); ipw_led_link_up(priv); notify_wx_assoc_event(priv); if (priv->config & CFG_BACKGROUND_SCAN) schedule_delayed_work(&priv->request_scan, HZ); } static void ipw_bg_link_up(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, link_up); mutex_lock(&priv->mutex); ipw_link_up(priv); mutex_unlock(&priv->mutex); } static void ipw_link_down(struct ipw_priv *priv) { ipw_led_link_down(priv); netif_carrier_off(priv->net_dev); notify_wx_assoc_event(priv); /* Cancel any queued work ... */ cancel_delayed_work(&priv->request_scan); cancel_delayed_work(&priv->request_direct_scan); cancel_delayed_work(&priv->request_passive_scan); cancel_delayed_work(&priv->adhoc_check); cancel_delayed_work(&priv->gather_stats); ipw_reset_stats(priv); if (!(priv->status & STATUS_EXIT_PENDING)) { /* Queue up another scan... */ schedule_delayed_work(&priv->request_scan, 0); } else cancel_delayed_work(&priv->scan_event); } static void ipw_bg_link_down(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, link_down); mutex_lock(&priv->mutex); ipw_link_down(priv); mutex_unlock(&priv->mutex); } static void ipw_setup_deferred_work(struct ipw_priv *priv) { init_waitqueue_head(&priv->wait_command_queue); init_waitqueue_head(&priv->wait_state); INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); INIT_WORK(&priv->associate, ipw_bg_associate); INIT_WORK(&priv->disassociate, ipw_bg_disassociate); INIT_WORK(&priv->system_config, ipw_system_config); INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); INIT_WORK(&priv->up, ipw_bg_up); INIT_WORK(&priv->down, ipw_bg_down); INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); INIT_WORK(&priv->roam, ipw_bg_roam); INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); INIT_WORK(&priv->link_up, ipw_bg_link_up); INIT_WORK(&priv->link_down, ipw_bg_link_down); INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); #ifdef CONFIG_IPW2200_QOS INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); #endif /* CONFIG_IPW2200_QOS */ tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet); } static void shim__set_security(struct net_device *dev, struct libipw_security *sec) { struct ipw_priv *priv = libipw_priv(dev); int i; for (i = 0; i < 4; i++) { if (sec->flags & (1 << i)) { priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; if (sec->key_sizes[i] == 0) priv->ieee->sec.flags &= ~(1 << i); else { memcpy(priv->ieee->sec.keys[i], sec->keys[i], sec->key_sizes[i]); priv->ieee->sec.flags |= (1 << i); } priv->status |= STATUS_SECURITY_UPDATED; } else if (sec->level != SEC_LEVEL_1) priv->ieee->sec.flags &= ~(1 << i); } if (sec->flags & SEC_ACTIVE_KEY) { priv->ieee->sec.active_key = sec->active_key; priv->ieee->sec.flags |= SEC_ACTIVE_KEY; priv->status |= STATUS_SECURITY_UPDATED; } else priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; if ((sec->flags & SEC_AUTH_MODE) && (priv->ieee->sec.auth_mode != sec->auth_mode)) { priv->ieee->sec.auth_mode = sec->auth_mode; priv->ieee->sec.flags |= SEC_AUTH_MODE; if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) priv->capability |= CAP_SHARED_KEY; else priv->capability &= ~CAP_SHARED_KEY; priv->status |= STATUS_SECURITY_UPDATED; } if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { priv->ieee->sec.flags |= SEC_ENABLED; priv->ieee->sec.enabled = sec->enabled; priv->status |= STATUS_SECURITY_UPDATED; if (sec->enabled) priv->capability |= CAP_PRIVACY_ON; else priv->capability &= ~CAP_PRIVACY_ON; } if (sec->flags & SEC_ENCRYPT) priv->ieee->sec.encrypt = sec->encrypt; if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { priv->ieee->sec.level = sec->level; priv->ieee->sec.flags |= SEC_LEVEL; priv->status |= STATUS_SECURITY_UPDATED; } if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) ipw_set_hwcrypto_keys(priv); /* To match current functionality of ipw2100 (which works well w/ * various supplicants, we don't force a disassociate if the * privacy capability changes ... */ #if 0 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && (((priv->assoc_request.capability & cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || (!(priv->assoc_request.capability & cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { IPW_DEBUG_ASSOC("Disassociating due to capability " "change.\n"); ipw_disassociate(priv); } #endif } static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *rates) { /* TODO: Mask out rates based on priv->rates_mask */ memset(rates, 0, sizeof(*rates)); /* configure supported rates */ switch (priv->ieee->freq_band) { case LIBIPW_52GHZ_BAND: rates->ieee_mode = IPW_A_MODE; rates->purpose = IPW_RATE_CAPABILITIES; ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, LIBIPW_OFDM_DEFAULT_RATES_MASK); break; default: /* Mixed or 2.4Ghz */ rates->ieee_mode = IPW_G_MODE; rates->purpose = IPW_RATE_CAPABILITIES; ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, LIBIPW_CCK_DEFAULT_RATES_MASK); if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, LIBIPW_OFDM_DEFAULT_RATES_MASK); } break; } return 0; } static int ipw_config(struct ipw_priv *priv) { /* This is only called from ipw_up, which resets/reloads the firmware so, we don't need to first disable the card before we configure it */ if (ipw_set_tx_power(priv)) goto error; /* initialize adapter address */ if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) goto error; /* set basic system config settings */ init_sys_config(&priv->sys_config); /* Support Bluetooth if we have BT h/w on board, and user wants to. * Does not support BT priority yet (don't abort or defer our Tx) */ if (bt_coexist) { unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) priv->sys_config.bt_coexistence |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; if (bt_caps & EEPROM_SKU_CAP_BT_OOB) priv->sys_config.bt_coexistence |= CFG_BT_COEXISTENCE_OOB; } #ifdef CONFIG_IPW2200_PROMISCUOUS if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { priv->sys_config.accept_all_data_frames = 1; priv->sys_config.accept_non_directed_frames = 1; priv->sys_config.accept_all_mgmt_bcpr = 1; priv->sys_config.accept_all_mgmt_frames = 1; } #endif if (priv->ieee->iw_mode == IW_MODE_ADHOC) priv->sys_config.answer_broadcast_ssid_probe = 1; else priv->sys_config.answer_broadcast_ssid_probe = 0; if (ipw_send_system_config(priv)) goto error; init_supported_rates(priv, &priv->rates); if (ipw_send_supported_rates(priv, &priv->rates)) goto error; /* Set request-to-send threshold */ if (priv->rts_threshold) { if (ipw_send_rts_threshold(priv, priv->rts_threshold)) goto error; } #ifdef CONFIG_IPW2200_QOS IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); ipw_qos_activate(priv, NULL); #endif /* CONFIG_IPW2200_QOS */ if (ipw_set_random_seed(priv)) goto error; /* final state transition to the RUN state */ if (ipw_send_host_complete(priv)) goto error; priv->status |= STATUS_INIT; ipw_led_init(priv); ipw_led_radio_on(priv); priv->notif_missed_beacons = 0; /* Set hardware WEP key if it is configured. */ if ((priv->capability & CAP_PRIVACY_ON) && (priv->ieee->sec.level == SEC_LEVEL_1) && !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) ipw_set_hwcrypto_keys(priv); return 0; error: return -EIO; } /* * NOTE: * * These tables have been tested in conjunction with the * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. * * Altering this values, using it on other hardware, or in geographies * not intended for resale of the above mentioned Intel adapters has * not been tested. * * Remember to update the table in README.ipw2200 when changing this * table. * */ static const struct libipw_geo ipw_geos[] = { { /* Restricted */ "---", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, }, { /* Custom US/Canada */ "ZZF", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, .a_channels = 8, .a = {{5180, 36}, {5200, 40}, {5220, 44}, {5240, 48}, {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, }, { /* Rest of World */ "ZZD", .bg_channels = 13, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12}, {2472, 13}}, }, { /* Custom USA & Europe & High */ "ZZA", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, .a_channels = 13, .a = {{5180, 36}, {5200, 40}, {5220, 44}, {5240, 48}, {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, {5745, 149}, {5765, 153}, {5785, 157}, {5805, 161}, {5825, 165}}, }, { /* Custom NA & Europe */ "ZZB", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, .a_channels = 13, .a = {{5180, 36}, {5200, 40}, {5220, 44}, {5240, 48}, {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, }, { /* Custom Japan */ "ZZC", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, .a_channels = 4, .a = {{5170, 34}, {5190, 38}, {5210, 42}, {5230, 46}}, }, { /* Custom */ "ZZM", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, }, { /* Europe */ "ZZE", .bg_channels = 13, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12}, {2472, 13}}, .a_channels = 19, .a = {{5180, 36}, {5200, 40}, {5220, 44}, {5240, 48}, {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, }, { /* Custom Japan */ "ZZJ", .bg_channels = 14, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12}, {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, .a_channels = 4, .a = {{5170, 34}, {5190, 38}, {5210, 42}, {5230, 46}}, }, { /* Rest of World */ "ZZR", .bg_channels = 14, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12}, {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | LIBIPW_CH_PASSIVE_ONLY}}, }, { /* High Band */ "ZZH", .bg_channels = 13, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, .a_channels = 4, .a = {{5745, 149}, {5765, 153}, {5785, 157}, {5805, 161}}, }, { /* Custom Europe */ "ZZG", .bg_channels = 13, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12}, {2472, 13}}, .a_channels = 4, .a = {{5180, 36}, {5200, 40}, {5220, 44}, {5240, 48}}, }, { /* Europe */ "ZZK", .bg_channels = 13, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}, {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, .a_channels = 24, .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, }, { /* Europe */ "ZZL", .bg_channels = 11, .bg = {{2412, 1}, {2417, 2}, {2422, 3}, {2427, 4}, {2432, 5}, {2437, 6}, {2442, 7}, {2447, 8}, {2452, 9}, {2457, 10}, {2462, 11}}, .a_channels = 13, .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, } }; static void ipw_set_geo(struct ipw_priv *priv) { int j; for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], ipw_geos[j].name, 3)) break; } if (j == ARRAY_SIZE(ipw_geos)) { IPW_WARNING("SKU [%c%c%c] not recognized.\n", priv->eeprom[EEPROM_COUNTRY_CODE + 0], priv->eeprom[EEPROM_COUNTRY_CODE + 1], priv->eeprom[EEPROM_COUNTRY_CODE + 2]); j = 0; } libipw_set_geo(priv->ieee, &ipw_geos[j]); } #define MAX_HW_RESTARTS 5 static int ipw_up(struct ipw_priv *priv) { int rc, i; /* Age scan list entries found before suspend */ if (priv->suspend_time) { libipw_networks_age(priv->ieee, priv->suspend_time); priv->suspend_time = 0; } if (priv->status & STATUS_EXIT_PENDING) return -EIO; if (cmdlog && !priv->cmdlog) { priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), GFP_KERNEL); if (priv->cmdlog == NULL) { IPW_ERROR("Error allocating %d command log entries.\n", cmdlog); return -ENOMEM; } else { priv->cmdlog_len = cmdlog; } } for (i = 0; i < MAX_HW_RESTARTS; i++) { /* Load the microcode, firmware, and eeprom. * Also start the clocks. */ rc = ipw_load(priv); if (rc) { IPW_ERROR("Unable to load firmware: %d\n", rc); return rc; } ipw_init_ordinals(priv); if (!(priv->config & CFG_CUSTOM_MAC)) eeprom_parse_mac(priv, priv->mac_addr); eth_hw_addr_set(priv->net_dev, priv->mac_addr); ipw_set_geo(priv); if (priv->status & STATUS_RF_KILL_SW) { IPW_WARNING("Radio disabled by module parameter.\n"); return 0; } else if (rf_kill_active(priv)) { IPW_WARNING("Radio Frequency Kill Switch is On:\n" "Kill switch must be turned off for " "wireless networking to work.\n"); schedule_delayed_work(&priv->rf_kill, 2 * HZ); return 0; } rc = ipw_config(priv); if (!rc) { IPW_DEBUG_INFO("Configured device on count %i\n", i); /* If configure to try and auto-associate, kick * off a scan. */ schedule_delayed_work(&priv->request_scan, 0); return 0; } IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", i, MAX_HW_RESTARTS); /* We had an error bringing up the hardware, so take it * all the way back down so we can try again */ ipw_down(priv); } /* tried to restart and config the device for as long as our * patience could withstand */ IPW_ERROR("Unable to initialize device after %d attempts.\n", i); return -EIO; } static void ipw_bg_up(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, up); mutex_lock(&priv->mutex); ipw_up(priv); mutex_unlock(&priv->mutex); } static void ipw_deinit(struct ipw_priv *priv) { int i; if (priv->status & STATUS_SCANNING) { IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); ipw_abort_scan(priv); } if (priv->status & STATUS_ASSOCIATED) { IPW_DEBUG_INFO("Disassociating during shutdown.\n"); ipw_disassociate(priv); } ipw_led_shutdown(priv); /* Wait up to 1s for status to change to not scanning and not * associated (disassociation can take a while for a ful 802.11 * exchange */ for (i = 1000; i && (priv->status & (STATUS_DISASSOCIATING | STATUS_ASSOCIATED | STATUS_SCANNING)); i--) udelay(10); if (priv->status & (STATUS_DISASSOCIATING | STATUS_ASSOCIATED | STATUS_SCANNING)) IPW_DEBUG_INFO("Still associated or scanning...\n"); else IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); /* Attempt to disable the card */ ipw_send_card_disable(priv, 0); priv->status &= ~STATUS_INIT; } static void ipw_down(struct ipw_priv *priv) { int exit_pending = priv->status & STATUS_EXIT_PENDING; priv->status |= STATUS_EXIT_PENDING; if (ipw_is_init(priv)) ipw_deinit(priv); /* Wipe out the EXIT_PENDING status bit if we are not actually * exiting the module */ if (!exit_pending) priv->status &= ~STATUS_EXIT_PENDING; /* tell the device to stop sending interrupts */ ipw_disable_interrupts(priv); /* Clear all bits but the RF Kill */ priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; netif_carrier_off(priv->net_dev); ipw_stop_nic(priv); ipw_led_radio_off(priv); } static void ipw_bg_down(struct work_struct *work) { struct ipw_priv *priv = container_of(work, struct ipw_priv, down); mutex_lock(&priv->mutex); ipw_down(priv); mutex_unlock(&priv->mutex); } static int ipw_wdev_init(struct net_device *dev) { int i, rc = 0; struct ipw_priv *priv = libipw_priv(dev); const struct libipw_geo *geo = libipw_get_geo(priv->ieee); struct wireless_dev *wdev = &priv->ieee->wdev; memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); /* fill-out priv->ieee->bg_band */ if (geo->bg_channels) { struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; bg_band->band = NL80211_BAND_2GHZ; bg_band->n_channels = geo->bg_channels; bg_band->channels = kcalloc(geo->bg_channels, sizeof(struct ieee80211_channel), GFP_KERNEL); if (!bg_band->channels) { rc = -ENOMEM; goto out; } /* translate geo->bg to bg_band.channels */ for (i = 0; i < geo->bg_channels; i++) { bg_band->channels[i].band = NL80211_BAND_2GHZ; bg_band->channels[i].center_freq = geo->bg[i].freq; bg_band->channels[i].hw_value = geo->bg[i].channel; bg_band->channels[i].max_power = geo->bg[i].max_power; if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) bg_band->channels[i].flags |= IEEE80211_CHAN_NO_IR; if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) bg_band->channels[i].flags |= IEEE80211_CHAN_NO_IR; if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) bg_band->channels[i].flags |= IEEE80211_CHAN_RADAR; /* No equivalent for LIBIPW_CH_80211H_RULES, LIBIPW_CH_UNIFORM_SPREADING, or LIBIPW_CH_B_ONLY... */ } /* point at bitrate info */ bg_band->bitrates = ipw2200_bg_rates; bg_band->n_bitrates = ipw2200_num_bg_rates; wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band; } /* fill-out priv->ieee->a_band */ if (geo->a_channels) { struct ieee80211_supported_band *a_band = &priv->ieee->a_band; a_band->band = NL80211_BAND_5GHZ; a_band->n_channels = geo->a_channels; a_band->channels = kcalloc(geo->a_channels, sizeof(struct ieee80211_channel), GFP_KERNEL); if (!a_band->channels) { rc = -ENOMEM; goto out; } /* translate geo->a to a_band.channels */ for (i = 0; i < geo->a_channels; i++) { a_band->channels[i].band = NL80211_BAND_5GHZ; a_band->channels[i].center_freq = geo->a[i].freq; a_band->channels[i].hw_value = geo->a[i].channel; a_band->channels[i].max_power = geo->a[i].max_power; if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) a_band->channels[i].flags |= IEEE80211_CHAN_NO_IR; if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) a_band->channels[i].flags |= IEEE80211_CHAN_NO_IR; if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) a_band->channels[i].flags |= IEEE80211_CHAN_RADAR; /* No equivalent for LIBIPW_CH_80211H_RULES, LIBIPW_CH_UNIFORM_SPREADING, or LIBIPW_CH_B_ONLY... */ } /* point at bitrate info */ a_band->bitrates = ipw2200_a_rates; a_band->n_bitrates = ipw2200_num_a_rates; wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band; } wdev->wiphy->cipher_suites = ipw_cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites); set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); /* With that information in place, we can now register the wiphy... */ rc = wiphy_register(wdev->wiphy); if (rc) goto out; return 0; out: kfree(priv->ieee->a_band.channels); kfree(priv->ieee->bg_band.channels); return rc; } /* PCI driver stuff */ static const struct pci_device_id card_ids[] = { {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, {PCI_VDEVICE(INTEL, 0x104f), 0}, {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, card_ids); static struct attribute *ipw_sysfs_entries[] = { &dev_attr_rf_kill.attr, &dev_attr_direct_dword.attr, &dev_attr_indirect_byte.attr, &dev_attr_indirect_dword.attr, &dev_attr_mem_gpio_reg.attr, &dev_attr_command_event_reg.attr, &dev_attr_nic_type.attr, &dev_attr_status.attr, &dev_attr_cfg.attr, &dev_attr_error.attr, &dev_attr_event_log.attr, &dev_attr_cmd_log.attr, &dev_attr_eeprom_delay.attr, &dev_attr_ucode_version.attr, &dev_attr_rtc.attr, &dev_attr_scan_age.attr, &dev_attr_led.attr, &dev_attr_speed_scan.attr, &dev_attr_net_stats.attr, &dev_attr_channels.attr, #ifdef CONFIG_IPW2200_PROMISCUOUS &dev_attr_rtap_iface.attr, &dev_attr_rtap_filter.attr, #endif NULL }; static const struct attribute_group ipw_attribute_group = { .name = NULL, /* put in device directory */ .attrs = ipw_sysfs_entries, }; #ifdef CONFIG_IPW2200_PROMISCUOUS static int ipw_prom_open(struct net_device *dev) { struct ipw_prom_priv *prom_priv = libipw_priv(dev); struct ipw_priv *priv = prom_priv->priv; IPW_DEBUG_INFO("prom dev->open\n"); netif_carrier_off(dev); if (priv->ieee->iw_mode != IW_MODE_MONITOR) { priv->sys_config.accept_all_data_frames = 1; priv->sys_config.accept_non_directed_frames = 1; priv->sys_config.accept_all_mgmt_bcpr = 1; priv->sys_config.accept_all_mgmt_frames = 1; ipw_send_system_config(priv); } return 0; } static int ipw_prom_stop(struct net_device *dev) { struct ipw_prom_priv *prom_priv = libipw_priv(dev); struct ipw_priv *priv = prom_priv->priv; IPW_DEBUG_INFO("prom dev->stop\n"); if (priv->ieee->iw_mode != IW_MODE_MONITOR) { priv->sys_config.accept_all_data_frames = 0; priv->sys_config.accept_non_directed_frames = 0; priv->sys_config.accept_all_mgmt_bcpr = 0; priv->sys_config.accept_all_mgmt_frames = 0; ipw_send_system_config(priv); } return 0; } static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { IPW_DEBUG_INFO("prom dev->xmit\n"); dev_kfree_skb(skb); return NETDEV_TX_OK; } static const struct net_device_ops ipw_prom_netdev_ops = { .ndo_open = ipw_prom_open, .ndo_stop = ipw_prom_stop, .ndo_start_xmit = ipw_prom_hard_start_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int ipw_prom_alloc(struct ipw_priv *priv) { int rc = 0; if (priv->prom_net_dev) return -EPERM; priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); if (priv->prom_net_dev == NULL) return -ENOMEM; priv->prom_priv = libipw_priv(priv->prom_net_dev); priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); priv->prom_priv->priv = priv; strcpy(priv->prom_net_dev->name, "rtap%d"); eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr); priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; priv->prom_net_dev->min_mtu = 68; priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN; priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); rc = register_netdev(priv->prom_net_dev); if (rc) { free_libipw(priv->prom_net_dev, 1); priv->prom_net_dev = NULL; return rc; } return 0; } static void ipw_prom_free(struct ipw_priv *priv) { if (!priv->prom_net_dev) return; unregister_netdev(priv->prom_net_dev); free_libipw(priv->prom_net_dev, 1); priv->prom_net_dev = NULL; } #endif static const struct net_device_ops ipw_netdev_ops = { .ndo_open = ipw_net_open, .ndo_stop = ipw_net_stop, .ndo_set_rx_mode = ipw_net_set_multicast_list, .ndo_set_mac_address = ipw_net_set_mac_address, .ndo_start_xmit = libipw_xmit, .ndo_validate_addr = eth_validate_addr, }; static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = 0; struct net_device *net_dev; void __iomem *base; u32 length, val; struct ipw_priv *priv; int i; net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); if (net_dev == NULL) { err = -ENOMEM; goto out; } priv = libipw_priv(net_dev); priv->ieee = netdev_priv(net_dev); priv->net_dev = net_dev; priv->pci_dev = pdev; ipw_debug_level = debug; spin_lock_init(&priv->irq_lock); spin_lock_init(&priv->lock); for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); mutex_init(&priv->mutex); if (pci_enable_device(pdev)) { err = -ENODEV; goto out_free_libipw; } pci_set_master(pdev); err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (!err) err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); goto out_pci_disable_device; } pci_set_drvdata(pdev, priv); err = pci_request_regions(pdev, DRV_NAME); if (err) goto out_pci_disable_device; /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); length = pci_resource_len(pdev, 0); priv->hw_len = length; base = pci_ioremap_bar(pdev, 0); if (!base) { err = -ENODEV; goto out_pci_release_regions; } priv->hw_base = base; IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); IPW_DEBUG_INFO("pci_resource_base = %p\n", base); ipw_setup_deferred_work(priv); ipw_sw_reset(priv, 1); err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); if (err) { IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); goto out_iounmap; } SET_NETDEV_DEV(net_dev, &pdev->dev); mutex_lock(&priv->mutex); priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; priv->ieee->set_security = shim__set_security; priv->ieee->is_queue_full = ipw_net_is_queue_full; #ifdef CONFIG_IPW2200_QOS priv->ieee->is_qos_active = ipw_is_qos_active; priv->ieee->handle_probe_response = ipw_handle_beacon; priv->ieee->handle_beacon = ipw_handle_probe_response; priv->ieee->handle_assoc_response = ipw_handle_assoc_response; #endif /* CONFIG_IPW2200_QOS */ priv->ieee->perfect_rssi = -20; priv->ieee->worst_rssi = -85; net_dev->netdev_ops = &ipw_netdev_ops; priv->ieee->spy_enabled = true; net_dev->wireless_handlers = &ipw_wx_handler_def; net_dev->ethtool_ops = &ipw_ethtool_ops; net_dev->min_mtu = 68; net_dev->max_mtu = LIBIPW_DATA_LEN; err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); if (err) { IPW_ERROR("failed to create sysfs device attributes\n"); mutex_unlock(&priv->mutex); goto out_release_irq; } if (ipw_up(priv)) { mutex_unlock(&priv->mutex); err = -EIO; goto out_remove_sysfs; } mutex_unlock(&priv->mutex); err = ipw_wdev_init(net_dev); if (err) { IPW_ERROR("failed to register wireless device\n"); goto out_remove_sysfs; } err = register_netdev(net_dev); if (err) { IPW_ERROR("failed to register network device\n"); goto out_unregister_wiphy; } #ifdef CONFIG_IPW2200_PROMISCUOUS if (rtap_iface) { err = ipw_prom_alloc(priv); if (err) { IPW_ERROR("Failed to register promiscuous network " "device (error %d).\n", err); unregister_netdev(priv->net_dev); goto out_unregister_wiphy; } } #endif printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " "channels, %d 802.11a channels)\n", priv->ieee->geo.name, priv->ieee->geo.bg_channels, priv->ieee->geo.a_channels); return 0; out_unregister_wiphy: wiphy_unregister(priv->ieee->wdev.wiphy); kfree(priv->ieee->a_band.channels); kfree(priv->ieee->bg_band.channels); out_remove_sysfs: sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); out_release_irq: free_irq(pdev->irq, priv); out_iounmap: iounmap(priv->hw_base); out_pci_release_regions: pci_release_regions(pdev); out_pci_disable_device: pci_disable_device(pdev); out_free_libipw: free_libipw(priv->net_dev, 0); out: return err; } static void ipw_pci_remove(struct pci_dev *pdev) { struct ipw_priv *priv = pci_get_drvdata(pdev); struct list_head *p, *q; int i; if (!priv) return; mutex_lock(&priv->mutex); priv->status |= STATUS_EXIT_PENDING; ipw_down(priv); sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); mutex_unlock(&priv->mutex); unregister_netdev(priv->net_dev); if (priv->rxq) { ipw_rx_queue_free(priv, priv->rxq); priv->rxq = NULL; } ipw_tx_queue_free(priv); if (priv->cmdlog) { kfree(priv->cmdlog); priv->cmdlog = NULL; } /* make sure all works are inactive */ cancel_delayed_work_sync(&priv->adhoc_check); cancel_work_sync(&priv->associate); cancel_work_sync(&priv->disassociate); cancel_work_sync(&priv->system_config); cancel_work_sync(&priv->rx_replenish); cancel_work_sync(&priv->adapter_restart); cancel_delayed_work_sync(&priv->rf_kill); cancel_work_sync(&priv->up); cancel_work_sync(&priv->down); cancel_delayed_work_sync(&priv->request_scan); cancel_delayed_work_sync(&priv->request_direct_scan); cancel_delayed_work_sync(&priv->request_passive_scan); cancel_delayed_work_sync(&priv->scan_event); cancel_delayed_work_sync(&priv->gather_stats); cancel_work_sync(&priv->abort_scan); cancel_work_sync(&priv->roam); cancel_delayed_work_sync(&priv->scan_check); cancel_work_sync(&priv->link_up); cancel_work_sync(&priv->link_down); cancel_delayed_work_sync(&priv->led_link_on); cancel_delayed_work_sync(&priv->led_link_off); cancel_delayed_work_sync(&priv->led_act_off); cancel_work_sync(&priv->merge_networks); /* Free MAC hash list for ADHOC */ for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { list_del(p); kfree(list_entry(p, struct ipw_ibss_seq, list)); } } kfree(priv->error); priv->error = NULL; #ifdef CONFIG_IPW2200_PROMISCUOUS ipw_prom_free(priv); #endif free_irq(pdev->irq, priv); iounmap(priv->hw_base); pci_release_regions(pdev); pci_disable_device(pdev); /* wiphy_unregister needs to be here, before free_libipw */ wiphy_unregister(priv->ieee->wdev.wiphy); kfree(priv->ieee->a_band.channels); kfree(priv->ieee->bg_band.channels); free_libipw(priv->net_dev, 0); free_firmware(); } static int __maybe_unused ipw_pci_suspend(struct device *dev_d) { struct ipw_priv *priv = dev_get_drvdata(dev_d); struct net_device *dev = priv->net_dev; printk(KERN_INFO "%s: Going into suspend...\n", dev->name); /* Take down the device; powers it off, etc. */ ipw_down(priv); /* Remove the PRESENT state of the device */ netif_device_detach(dev); priv->suspend_at = ktime_get_boottime_seconds(); return 0; } static int __maybe_unused ipw_pci_resume(struct device *dev_d) { struct pci_dev *pdev = to_pci_dev(dev_d); struct ipw_priv *priv = pci_get_drvdata(pdev); struct net_device *dev = priv->net_dev; u32 val; printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); /* * Suspend/Resume resets the PCI configuration space, so we have to * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries * from interfering with C3 CPU state. pci_restore_state won't help * here since it only restores the first 64 bytes pci config header. */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); /* Set the device back into the PRESENT state; this will also wake * the queue of needed */ netif_device_attach(dev); priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at; /* Bring the device back up */ schedule_work(&priv->up); return 0; } static void ipw_pci_shutdown(struct pci_dev *pdev) { struct ipw_priv *priv = pci_get_drvdata(pdev); /* Take down the device; powers it off, etc. */ ipw_down(priv); pci_disable_device(pdev); } static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume); /* driver initialization stuff */ static struct pci_driver ipw_driver = { .name = DRV_NAME, .id_table = card_ids, .probe = ipw_pci_probe, .remove = ipw_pci_remove, .driver.pm = &ipw_pci_pm_ops, .shutdown = ipw_pci_shutdown, }; static int __init ipw_init(void) { int ret; printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); ret = pci_register_driver(&ipw_driver); if (ret) { IPW_ERROR("Unable to initialize PCI module\n"); return ret; } ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); if (ret) { IPW_ERROR("Unable to create driver sysfs file\n"); pci_unregister_driver(&ipw_driver); return ret; } return ret; } static void __exit ipw_exit(void) { driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); pci_unregister_driver(&ipw_driver); } module_param(disable, int, 0444); MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); module_param(associate, int, 0444); MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); module_param(auto_create, int, 0444); MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); module_param_named(led, led_support, int, 0444); MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "debug output mask"); module_param_named(channel, default_channel, int, 0444); MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); #ifdef CONFIG_IPW2200_PROMISCUOUS module_param(rtap_iface, int, 0444); MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); #endif #ifdef CONFIG_IPW2200_QOS module_param(qos_enable, int, 0444); MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities"); module_param(qos_burst_enable, int, 0444); MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); module_param(qos_no_ack_mask, int, 0444); MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); module_param(burst_duration_CCK, int, 0444); MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); module_param(burst_duration_OFDM, int, 0444); MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); #endif /* CONFIG_IPW2200_QOS */ #ifdef CONFIG_IPW2200_MONITOR module_param_named(mode, network_mode, int, 0444); MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); #else module_param_named(mode, network_mode, int, 0444); MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); #endif module_param(bt_coexist, int, 0444); MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); module_param(hwcrypto, int, 0444); MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); module_param(cmdlog, int, 0444); MODULE_PARM_DESC(cmdlog, "allocate a ring buffer for logging firmware commands"); module_param(roaming, int, 0444); MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); module_param(antenna, int, 0444); MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); module_exit(ipw_exit); module_init(ipw_init);