// SPDX-License-Identifier: ISC /* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. */ #include "mac.h" #include #include #include #include #include #include #include "hif.h" #include "core.h" #include "debug.h" #include "wmi.h" #include "htt.h" #include "txrx.h" #include "testmode.h" #include "wmi-tlv.h" #include "wmi-ops.h" #include "wow.h" #include "leds.h" /*********/ /* Rates */ /*********/ static struct ieee80211_rate ath10k_rates[] = { { .bitrate = 10, .hw_value = ATH10K_HW_RATE_CCK_LP_1M }, { .bitrate = 20, .hw_value = ATH10K_HW_RATE_CCK_LP_2M, .hw_value_short = ATH10K_HW_RATE_CCK_SP_2M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = ATH10K_HW_RATE_CCK_LP_5_5M, .hw_value_short = ATH10K_HW_RATE_CCK_SP_5_5M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = ATH10K_HW_RATE_CCK_LP_11M, .hw_value_short = ATH10K_HW_RATE_CCK_SP_11M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M }, { .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M }, { .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M }, { .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M }, { .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M }, { .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M }, { .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M }, { .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M }, }; static struct ieee80211_rate ath10k_rates_rev2[] = { { .bitrate = 10, .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_1M }, { .bitrate = 20, .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_2M, .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_2M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_5_5M, .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_5_5M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_11M, .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_11M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M }, { .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M }, { .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M }, { .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M }, { .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M }, { .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M }, { .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M }, { .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M }, }; static const struct cfg80211_sar_freq_ranges ath10k_sar_freq_ranges[] = { {.start_freq = 2402, .end_freq = 2494 }, {.start_freq = 5170, .end_freq = 5875 }, }; static const struct cfg80211_sar_capa ath10k_sar_capa = { .type = NL80211_SAR_TYPE_POWER, .num_freq_ranges = (ARRAY_SIZE(ath10k_sar_freq_ranges)), .freq_ranges = &ath10k_sar_freq_ranges[0], }; #define ATH10K_MAC_FIRST_OFDM_RATE_IDX 4 #define ath10k_a_rates (ath10k_rates + ATH10K_MAC_FIRST_OFDM_RATE_IDX) #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - \ ATH10K_MAC_FIRST_OFDM_RATE_IDX) #define ath10k_g_rates (ath10k_rates + 0) #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates)) #define ath10k_g_rates_rev2 (ath10k_rates_rev2 + 0) #define ath10k_g_rates_rev2_size (ARRAY_SIZE(ath10k_rates_rev2)) #define ath10k_wmi_legacy_rates ath10k_rates static bool ath10k_mac_bitrate_is_cck(int bitrate) { switch (bitrate) { case 10: case 20: case 55: case 110: return true; } return false; } static u8 ath10k_mac_bitrate_to_rate(int bitrate) { return DIV_ROUND_UP(bitrate, 5) | (ath10k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0); } u8 ath10k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband, u8 hw_rate, bool cck) { const struct ieee80211_rate *rate; int i; for (i = 0; i < sband->n_bitrates; i++) { rate = &sband->bitrates[i]; if (ath10k_mac_bitrate_is_cck(rate->bitrate) != cck) continue; if (rate->hw_value == hw_rate) return i; else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE && rate->hw_value_short == hw_rate) return i; } return 0; } u8 ath10k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband, u32 bitrate) { int i; for (i = 0; i < sband->n_bitrates; i++) if (sband->bitrates[i].bitrate == bitrate) return i; return 0; } static int ath10k_mac_get_rate_hw_value(int bitrate) { int i; u8 hw_value_prefix = 0; if (ath10k_mac_bitrate_is_cck(bitrate)) hw_value_prefix = WMI_RATE_PREAMBLE_CCK << 6; for (i = 0; i < ARRAY_SIZE(ath10k_rates); i++) { if (ath10k_rates[i].bitrate == bitrate) return hw_value_prefix | ath10k_rates[i].hw_value; } return -EINVAL; } static int ath10k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss) { switch ((mcs_map >> (2 * nss)) & 0x3) { case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1; case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1; case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1; } return 0; } static u32 ath10k_mac_max_ht_nss(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN]) { int nss; for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--) if (ht_mcs_mask[nss]) return nss + 1; return 1; } static u32 ath10k_mac_max_vht_nss(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX]) { int nss; for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--) if (vht_mcs_mask[nss]) return nss + 1; return 1; } int ath10k_mac_ext_resource_config(struct ath10k *ar, u32 val) { enum wmi_host_platform_type platform_type; int ret; if (test_bit(WMI_SERVICE_TX_MODE_DYNAMIC, ar->wmi.svc_map)) platform_type = WMI_HOST_PLATFORM_LOW_PERF; else platform_type = WMI_HOST_PLATFORM_HIGH_PERF; ret = ath10k_wmi_ext_resource_config(ar, platform_type, val); if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "failed to configure ext resource: %d\n", ret); return ret; } return 0; } /**********/ /* Crypto */ /**********/ static int ath10k_send_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr, u32 flags) { struct ath10k *ar = arvif->ar; struct wmi_vdev_install_key_arg arg = { .vdev_id = arvif->vdev_id, .key_idx = key->keyidx, .key_len = key->keylen, .key_data = key->key, .key_flags = flags, .macaddr = macaddr, }; lockdep_assert_held(&arvif->ar->conf_mutex); switch (key->cipher) { case WLAN_CIPHER_SUITE_CCMP: arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM]; key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; break; case WLAN_CIPHER_SUITE_TKIP: arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_TKIP]; arg.key_txmic_len = 8; arg.key_rxmic_len = 8; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_WEP]; break; case WLAN_CIPHER_SUITE_CCMP_256: arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM]; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_GCM]; key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_AES_CMAC: WARN_ON(1); return -EINVAL; default: ath10k_warn(ar, "cipher %d is not supported\n", key->cipher); return -EOPNOTSUPP; } if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; if (cmd == DISABLE_KEY) { arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_NONE]; arg.key_data = NULL; } return ath10k_wmi_vdev_install_key(arvif->ar, &arg); } static int ath10k_install_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr, u32 flags) { struct ath10k *ar = arvif->ar; int ret; unsigned long time_left; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->install_key_done); if (arvif->nohwcrypt) return 1; ret = ath10k_send_key(arvif, key, cmd, macaddr, flags); if (ret) return ret; time_left = wait_for_completion_timeout(&ar->install_key_done, 3 * HZ); if (time_left == 0) return -ETIMEDOUT; return 0; } static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif, const u8 *addr) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int ret; int i; u32 flags; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(arvif->vif->type != NL80211_IFTYPE_AP && arvif->vif->type != NL80211_IFTYPE_ADHOC && arvif->vif->type != NL80211_IFTYPE_MESH_POINT)) return -EINVAL; spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, addr); spin_unlock_bh(&ar->data_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) { if (arvif->wep_keys[i] == NULL) continue; switch (arvif->vif->type) { case NL80211_IFTYPE_AP: flags = WMI_KEY_PAIRWISE; if (arvif->def_wep_key_idx == i) flags |= WMI_KEY_TX_USAGE; ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY, addr, flags); if (ret < 0) return ret; break; case NL80211_IFTYPE_ADHOC: ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY, addr, WMI_KEY_PAIRWISE); if (ret < 0) return ret; ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY, addr, WMI_KEY_GROUP); if (ret < 0) return ret; break; default: WARN_ON(1); return -EINVAL; } spin_lock_bh(&ar->data_lock); peer->keys[i] = arvif->wep_keys[i]; spin_unlock_bh(&ar->data_lock); } /* In some cases (notably with static WEP IBSS with multiple keys) * multicast Tx becomes broken. Both pairwise and groupwise keys are * installed already. Using WMI_KEY_TX_USAGE in different combinations * didn't seem help. Using def_keyid vdev parameter seems to be * effective so use that. * * FIXME: Revisit. Perhaps this can be done in a less hacky way. */ if (arvif->vif->type != NL80211_IFTYPE_ADHOC) return 0; if (arvif->def_wep_key_idx == -1) return 0; ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, arvif->ar->wmi.vdev_param->def_keyid, arvif->def_wep_key_idx); if (ret) { ath10k_warn(ar, "failed to re-set def wpa key idxon vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_clear_peer_keys(struct ath10k_vif *arvif, const u8 *addr) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int first_errno = 0; int ret; int i; u32 flags = 0; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, addr); spin_unlock_bh(&ar->data_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] == NULL) continue; /* key flags are not required to delete the key */ ret = ath10k_install_key(arvif, peer->keys[i], DISABLE_KEY, addr, flags); if (ret < 0 && first_errno == 0) first_errno = ret; if (ret < 0) ath10k_warn(ar, "failed to remove peer wep key %d: %d\n", i, ret); spin_lock_bh(&ar->data_lock); peer->keys[i] = NULL; spin_unlock_bh(&ar->data_lock); } return first_errno; } bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr, u8 keyidx) { struct ath10k_peer *peer; int i; lockdep_assert_held(&ar->data_lock); /* We don't know which vdev this peer belongs to, * since WMI doesn't give us that information. * * FIXME: multi-bss needs to be handled. */ peer = ath10k_peer_find(ar, 0, addr); if (!peer) return false; for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] && peer->keys[i]->keyidx == keyidx) return true; } return false; } static int ath10k_clear_vdev_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; u8 addr[ETH_ALEN]; int first_errno = 0; int ret; int i; u32 flags = 0; lockdep_assert_held(&ar->conf_mutex); for (;;) { /* since ath10k_install_key we can't hold data_lock all the * time, so we try to remove the keys incrementally */ spin_lock_bh(&ar->data_lock); i = 0; list_for_each_entry(peer, &ar->peers, list) { for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] == key) { ether_addr_copy(addr, peer->addr); peer->keys[i] = NULL; break; } } if (i < ARRAY_SIZE(peer->keys)) break; } spin_unlock_bh(&ar->data_lock); if (i == ARRAY_SIZE(peer->keys)) break; /* key flags are not required to delete the key */ ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, flags); if (ret < 0 && first_errno == 0) first_errno = ret; if (ret) ath10k_warn(ar, "failed to remove key for %pM: %d\n", addr, ret); } return first_errno; } static int ath10k_mac_vif_update_wep_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int ret; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(peer, &ar->peers, list) { if (ether_addr_equal(peer->addr, arvif->vif->addr)) continue; if (ether_addr_equal(peer->addr, arvif->bssid)) continue; if (peer->keys[key->keyidx] == key) continue; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vif vdev %i update key %i needs update\n", arvif->vdev_id, key->keyidx); ret = ath10k_install_peer_wep_keys(arvif, peer->addr); if (ret) { ath10k_warn(ar, "failed to update wep keys on vdev %i for peer %pM: %d\n", arvif->vdev_id, peer->addr, ret); return ret; } } return 0; } /*********************/ /* General utilities */ /*********************/ static inline enum wmi_phy_mode chan_to_phymode(const struct cfg80211_chan_def *chandef) { enum wmi_phy_mode phymode = MODE_UNKNOWN; switch (chandef->chan->band) { case NL80211_BAND_2GHZ: switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM) phymode = MODE_11B; else phymode = MODE_11G; break; case NL80211_CHAN_WIDTH_20: phymode = MODE_11NG_HT20; break; case NL80211_CHAN_WIDTH_40: phymode = MODE_11NG_HT40; break; default: phymode = MODE_UNKNOWN; break; } break; case NL80211_BAND_5GHZ: switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: phymode = MODE_11A; break; case NL80211_CHAN_WIDTH_20: phymode = MODE_11NA_HT20; break; case NL80211_CHAN_WIDTH_40: phymode = MODE_11NA_HT40; break; case NL80211_CHAN_WIDTH_80: phymode = MODE_11AC_VHT80; break; case NL80211_CHAN_WIDTH_160: phymode = MODE_11AC_VHT160; break; case NL80211_CHAN_WIDTH_80P80: phymode = MODE_11AC_VHT80_80; break; default: phymode = MODE_UNKNOWN; break; } break; default: break; } WARN_ON(phymode == MODE_UNKNOWN); return phymode; } static u8 ath10k_parse_mpdudensity(u8 mpdudensity) { /* * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to * 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } int ath10k_mac_vif_chan(struct ieee80211_vif *vif, struct cfg80211_chan_def *def) { struct ieee80211_chanctx_conf *conf; rcu_read_lock(); conf = rcu_dereference(vif->bss_conf.chanctx_conf); if (!conf) { rcu_read_unlock(); return -ENOENT; } *def = conf->def; rcu_read_unlock(); return 0; } static void ath10k_mac_num_chanctxs_iter(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *conf, void *data) { int *num = data; (*num)++; } static int ath10k_mac_num_chanctxs(struct ath10k *ar) { int num = 0; ieee80211_iter_chan_contexts_atomic(ar->hw, ath10k_mac_num_chanctxs_iter, &num); return num; } static void ath10k_mac_get_any_chandef_iter(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *conf, void *data) { struct cfg80211_chan_def **def = data; *def = &conf->def; } static void ath10k_wait_for_peer_delete_done(struct ath10k *ar, u32 vdev_id, const u8 *addr) { unsigned long time_left; int ret; if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) { ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); if (ret) { ath10k_warn(ar, "failed wait for peer deleted"); return; } time_left = wait_for_completion_timeout(&ar->peer_delete_done, 5 * HZ); if (!time_left) ath10k_warn(ar, "Timeout in receiving peer delete response\n"); } } static int ath10k_peer_create(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 vdev_id, const u8 *addr, enum wmi_peer_type peer_type) { struct ath10k_peer *peer; int ret; lockdep_assert_held(&ar->conf_mutex); /* Each vdev consumes a peer entry as well. */ if (ar->num_peers + list_count_nodes(&ar->arvifs) >= ar->max_num_peers) return -ENOBUFS; ret = ath10k_wmi_peer_create(ar, vdev_id, addr, peer_type); if (ret) { ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n", addr, vdev_id, ret); return ret; } ret = ath10k_wait_for_peer_created(ar, vdev_id, addr); if (ret) { ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n", addr, vdev_id, ret); return ret; } spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, vdev_id, addr); if (!peer) { spin_unlock_bh(&ar->data_lock); ath10k_warn(ar, "failed to find peer %pM on vdev %i after creation\n", addr, vdev_id); ath10k_wait_for_peer_delete_done(ar, vdev_id, addr); return -ENOENT; } peer->vif = vif; peer->sta = sta; spin_unlock_bh(&ar->data_lock); ar->num_peers++; return 0; } static int ath10k_mac_set_kickout(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 param; int ret; param = ar->wmi.pdev_param->sta_kickout_th; ret = ath10k_wmi_pdev_set_param(ar, param, ATH10K_KICKOUT_THRESHOLD); if (ret) { ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MIN_IDLE); if (ret) { ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MAX_IDLE); if (ret) { ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MAX_UNRESPONSIVE); if (ret) { ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value) { struct ath10k *ar = arvif->ar; u32 vdev_param; vdev_param = ar->wmi.vdev_param->rts_threshold; return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); } static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_peer_delete(ar, vdev_id, addr); if (ret) return ret; ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); if (ret) return ret; if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) { unsigned long time_left; time_left = wait_for_completion_timeout (&ar->peer_delete_done, 5 * HZ); if (!time_left) { ath10k_warn(ar, "Timeout in receiving peer delete response\n"); return -ETIMEDOUT; } } ar->num_peers--; return 0; } static void ath10k_peer_map_cleanup(struct ath10k *ar, struct ath10k_peer *peer) { int peer_id, i; lockdep_assert_held(&ar->conf_mutex); for_each_set_bit(peer_id, peer->peer_ids, ATH10K_MAX_NUM_PEER_IDS) { ar->peer_map[peer_id] = NULL; } /* Double check that peer is properly un-referenced from * the peer_map */ for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) { if (ar->peer_map[i] == peer) { ath10k_warn(ar, "removing stale peer_map entry for %pM (ptr %pK idx %d)\n", peer->addr, peer, i); ar->peer_map[i] = NULL; } } list_del(&peer->list); kfree(peer); ar->num_peers--; } static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id) { struct ath10k_peer *peer, *tmp; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(peer, tmp, &ar->peers, list) { if (peer->vdev_id != vdev_id) continue; ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n", peer->addr, vdev_id); ath10k_peer_map_cleanup(ar, peer); } spin_unlock_bh(&ar->data_lock); } static void ath10k_peer_cleanup_all(struct ath10k *ar) { struct ath10k_peer *peer, *tmp; int i; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(peer, tmp, &ar->peers, list) { list_del(&peer->list); kfree(peer); } for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) ar->peer_map[i] = NULL; spin_unlock_bh(&ar->data_lock); ar->num_peers = 0; ar->num_stations = 0; } static int ath10k_mac_tdls_peer_update(struct ath10k *ar, u32 vdev_id, struct ieee80211_sta *sta, enum wmi_tdls_peer_state state) { int ret; struct wmi_tdls_peer_update_cmd_arg arg = {}; struct wmi_tdls_peer_capab_arg cap = {}; struct wmi_channel_arg chan_arg = {}; lockdep_assert_held(&ar->conf_mutex); arg.vdev_id = vdev_id; arg.peer_state = state; ether_addr_copy(arg.addr, sta->addr); cap.peer_max_sp = sta->max_sp; cap.peer_uapsd_queues = sta->uapsd_queues; if (state == WMI_TDLS_PEER_STATE_CONNECTED && !sta->tdls_initiator) cap.is_peer_responder = 1; ret = ath10k_wmi_tdls_peer_update(ar, &arg, &cap, &chan_arg); if (ret) { ath10k_warn(ar, "failed to update tdls peer %pM on vdev %i: %i\n", arg.addr, vdev_id, ret); return ret; } return 0; } /************************/ /* Interface management */ /************************/ void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->data_lock); if (!arvif->beacon) return; if (!arvif->beacon_buf) dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr, arvif->beacon->len, DMA_TO_DEVICE); if (WARN_ON(arvif->beacon_state != ATH10K_BEACON_SCHEDULED && arvif->beacon_state != ATH10K_BEACON_SENT)) return; dev_kfree_skb_any(arvif->beacon); arvif->beacon = NULL; arvif->beacon_state = ATH10K_BEACON_SCHEDULED; } static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->data_lock); ath10k_mac_vif_beacon_free(arvif); if (arvif->beacon_buf) { if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) kfree(arvif->beacon_buf); else dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, arvif->beacon_buf, arvif->beacon_paddr); arvif->beacon_buf = NULL; } } static inline int ath10k_vdev_setup_sync(struct ath10k *ar) { unsigned long time_left; lockdep_assert_held(&ar->conf_mutex); if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) return -ESHUTDOWN; time_left = wait_for_completion_timeout(&ar->vdev_setup_done, ATH10K_VDEV_SETUP_TIMEOUT_HZ); if (time_left == 0) return -ETIMEDOUT; return ar->last_wmi_vdev_start_status; } static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id) { struct cfg80211_chan_def *chandef = NULL; struct ieee80211_channel *channel = NULL; struct wmi_vdev_start_request_arg arg = {}; int ret = 0; lockdep_assert_held(&ar->conf_mutex); ieee80211_iter_chan_contexts_atomic(ar->hw, ath10k_mac_get_any_chandef_iter, &chandef); if (WARN_ON_ONCE(!chandef)) return -ENOENT; channel = chandef->chan; arg.vdev_id = vdev_id; arg.channel.freq = channel->center_freq; arg.channel.band_center_freq1 = chandef->center_freq1; arg.channel.band_center_freq2 = chandef->center_freq2; /* TODO setup this dynamically, what in case we * don't have any vifs? */ arg.channel.mode = chan_to_phymode(chandef); arg.channel.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); arg.channel.min_power = 0; arg.channel.max_power = channel->max_power * 2; arg.channel.max_reg_power = channel->max_reg_power * 2; arg.channel.max_antenna_gain = channel->max_antenna_gain; reinit_completion(&ar->vdev_setup_done); reinit_completion(&ar->vdev_delete_done); ret = ath10k_wmi_vdev_start(ar, &arg); if (ret) { ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n", vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i start: %d\n", vdev_id, ret); return ret; } ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr); if (ret) { ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n", vdev_id, ret); goto vdev_stop; } ar->monitor_vdev_id = vdev_id; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n", ar->monitor_vdev_id); return 0; vdev_stop: ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n", ar->monitor_vdev_id, ret); return ret; } static int ath10k_monitor_vdev_stop(struct ath10k *ar) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id); if (ret) ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n", ar->monitor_vdev_id, ret); reinit_completion(&ar->vdev_setup_done); reinit_completion(&ar->vdev_delete_done); ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath10k_warn(ar, "failed to request monitor vdev %i stop: %d\n", ar->monitor_vdev_id, ret); ret = ath10k_vdev_setup_sync(ar); if (ret) ath10k_warn(ar, "failed to synchronize monitor vdev %i stop: %d\n", ar->monitor_vdev_id, ret); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n", ar->monitor_vdev_id); return ret; } static int ath10k_monitor_vdev_create(struct ath10k *ar) { int bit, ret = 0; lockdep_assert_held(&ar->conf_mutex); if (ar->free_vdev_map == 0) { ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n"); return -ENOMEM; } bit = __ffs64(ar->free_vdev_map); ar->monitor_vdev_id = bit; ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id, WMI_VDEV_TYPE_MONITOR, 0, ar->mac_addr); if (ret) { ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n", ar->monitor_vdev_id, ret); return ret; } ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n", ar->monitor_vdev_id); return 0; } static int ath10k_monitor_vdev_delete(struct ath10k *ar) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id); if (ret) { ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n", ar->monitor_vdev_id, ret); return ret; } ar->free_vdev_map |= 1LL << ar->monitor_vdev_id; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n", ar->monitor_vdev_id); return ret; } static int ath10k_monitor_start(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_monitor_vdev_create(ar); if (ret) { ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret); return ret; } ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id); if (ret) { ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret); ath10k_monitor_vdev_delete(ar); return ret; } ar->monitor_started = true; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n"); return 0; } static int ath10k_monitor_stop(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_monitor_vdev_stop(ar); if (ret) { ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret); return ret; } ret = ath10k_monitor_vdev_delete(ar); if (ret) { ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret); return ret; } ar->monitor_started = false; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n"); return 0; } static bool ath10k_mac_monitor_vdev_is_needed(struct ath10k *ar) { int num_ctx; /* At least one chanctx is required to derive a channel to start * monitor vdev on. */ num_ctx = ath10k_mac_num_chanctxs(ar); if (num_ctx == 0) return false; /* If there's already an existing special monitor interface then don't * bother creating another monitor vdev. */ if (ar->monitor_arvif) return false; return ar->monitor || (!test_bit(ATH10K_FW_FEATURE_ALLOWS_MESH_BCAST, ar->running_fw->fw_file.fw_features) && (ar->filter_flags & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) || test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); } static bool ath10k_mac_monitor_vdev_is_allowed(struct ath10k *ar) { int num_ctx; num_ctx = ath10k_mac_num_chanctxs(ar); /* FIXME: Current interface combinations and cfg80211/mac80211 code * shouldn't allow this but make sure to prevent handling the following * case anyway since multi-channel DFS hasn't been tested at all. */ if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags) && num_ctx > 1) return false; return true; } static int ath10k_monitor_recalc(struct ath10k *ar) { bool needed; bool allowed; int ret; lockdep_assert_held(&ar->conf_mutex); needed = ath10k_mac_monitor_vdev_is_needed(ar); allowed = ath10k_mac_monitor_vdev_is_allowed(ar); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor recalc started? %d needed? %d allowed? %d\n", ar->monitor_started, needed, allowed); if (WARN_ON(needed && !allowed)) { if (ar->monitor_started) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopping disallowed monitor\n"); ret = ath10k_monitor_stop(ar); if (ret) ath10k_warn(ar, "failed to stop disallowed monitor: %d\n", ret); /* not serious */ } return -EPERM; } if (needed == ar->monitor_started) return 0; if (needed) return ath10k_monitor_start(ar); else return ath10k_monitor_stop(ar); } static bool ath10k_mac_can_set_cts_prot(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (!arvif->is_started) { ath10k_dbg(ar, ATH10K_DBG_MAC, "defer cts setup, vdev is not ready yet\n"); return false; } return true; } static int ath10k_mac_set_cts_prot(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 vdev_param; lockdep_assert_held(&ar->conf_mutex); vdev_param = ar->wmi.vdev_param->protection_mode; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_protection %d\n", arvif->vdev_id, arvif->use_cts_prot); return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->use_cts_prot ? 1 : 0); } static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 vdev_param, rts_cts = 0; lockdep_assert_held(&ar->conf_mutex); vdev_param = ar->wmi.vdev_param->enable_rtscts; rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET); if (arvif->num_legacy_stations > 0) rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES, WMI_RTSCTS_PROFILE); else rts_cts |= SM(WMI_RTSCTS_FOR_SECOND_RATESERIES, WMI_RTSCTS_PROFILE); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n", arvif->vdev_id, rts_cts); return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rts_cts); } static int ath10k_start_cac(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ret = ath10k_monitor_recalc(ar); if (ret) { ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret); clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); return ret; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n", ar->monitor_vdev_id); return 0; } static int ath10k_stop_cac(struct ath10k *ar) { lockdep_assert_held(&ar->conf_mutex); /* CAC is not running - do nothing */ if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) return 0; clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ath10k_monitor_stop(ar); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n"); return 0; } static void ath10k_mac_has_radar_iter(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *conf, void *data) { bool *ret = data; if (!*ret && conf->radar_enabled) *ret = true; } static bool ath10k_mac_has_radar_enabled(struct ath10k *ar) { bool has_radar = false; ieee80211_iter_chan_contexts_atomic(ar->hw, ath10k_mac_has_radar_iter, &has_radar); return has_radar; } static void ath10k_recalc_radar_detection(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_stop_cac(ar); if (!ath10k_mac_has_radar_enabled(ar)) return; if (ar->num_started_vdevs > 0) return; ret = ath10k_start_cac(ar); if (ret) { /* * Not possible to start CAC on current channel so starting * radiation is not allowed, make this channel DFS_UNAVAILABLE * by indicating that radar was detected. */ ath10k_warn(ar, "failed to start CAC: %d\n", ret); ieee80211_radar_detected(ar->hw, NULL); } } static int ath10k_vdev_stop(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); reinit_completion(&ar->vdev_delete_done); ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id); if (ret) { ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn(ar, "failed to synchronize setup for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } WARN_ON(ar->num_started_vdevs == 0); if (ar->num_started_vdevs != 0) { ar->num_started_vdevs--; ath10k_recalc_radar_detection(ar); } return ret; } static int ath10k_vdev_start_restart(struct ath10k_vif *arvif, const struct cfg80211_chan_def *chandef, bool restart) { struct ath10k *ar = arvif->ar; struct wmi_vdev_start_request_arg arg = {}; int ret = 0; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); reinit_completion(&ar->vdev_delete_done); arg.vdev_id = arvif->vdev_id; arg.dtim_period = arvif->dtim_period; arg.bcn_intval = arvif->beacon_interval; arg.channel.freq = chandef->chan->center_freq; arg.channel.band_center_freq1 = chandef->center_freq1; arg.channel.band_center_freq2 = chandef->center_freq2; arg.channel.mode = chan_to_phymode(chandef); arg.channel.min_power = 0; arg.channel.max_power = chandef->chan->max_power * 2; arg.channel.max_reg_power = chandef->chan->max_reg_power * 2; arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain; if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { arg.ssid = arvif->u.ap.ssid; arg.ssid_len = arvif->u.ap.ssid_len; arg.hidden_ssid = arvif->u.ap.hidden_ssid; /* For now allow DFS for AP mode */ arg.channel.chan_radar = !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { arg.ssid = arvif->vif->cfg.ssid; arg.ssid_len = arvif->vif->cfg.ssid_len; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d start center_freq %d phymode %s\n", arg.vdev_id, arg.channel.freq, ath10k_wmi_phymode_str(arg.channel.mode)); if (restart) ret = ath10k_wmi_vdev_restart(ar, &arg); else ret = ath10k_wmi_vdev_start(ar, &arg); if (ret) { ath10k_warn(ar, "failed to start WMI vdev %i: %d\n", arg.vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn(ar, "failed to synchronize setup for vdev %i restart %d: %d\n", arg.vdev_id, restart, ret); return ret; } ar->num_started_vdevs++; ath10k_recalc_radar_detection(ar); return ret; } static int ath10k_vdev_start(struct ath10k_vif *arvif, const struct cfg80211_chan_def *def) { return ath10k_vdev_start_restart(arvif, def, false); } static int ath10k_vdev_restart(struct ath10k_vif *arvif, const struct cfg80211_chan_def *def) { return ath10k_vdev_start_restart(arvif, def, true); } static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif, struct sk_buff *bcn) { struct ath10k *ar = arvif->ar; struct ieee80211_mgmt *mgmt; const u8 *p2p_ie; int ret; if (arvif->vif->type != NL80211_IFTYPE_AP || !arvif->vif->p2p) return 0; mgmt = (void *)bcn->data; p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, mgmt->u.beacon.variable, bcn->len - (mgmt->u.beacon.variable - bcn->data)); if (!p2p_ie) return -ENOENT; ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie); if (ret) { ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui, u8 oui_type, size_t ie_offset) { size_t len; const u8 *next; const u8 *end; u8 *ie; if (WARN_ON(skb->len < ie_offset)) return -EINVAL; ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type, skb->data + ie_offset, skb->len - ie_offset); if (!ie) return -ENOENT; len = ie[1] + 2; end = skb->data + skb->len; next = ie + len; if (WARN_ON(next > end)) return -EINVAL; memmove(ie, next, end - next); skb_trim(skb, skb->len - len); return 0; } static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct ieee80211_hw *hw = ar->hw; struct ieee80211_vif *vif = arvif->vif; struct ieee80211_mutable_offsets offs = {}; struct sk_buff *bcn; int ret; if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) return 0; if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) return 0; bcn = ieee80211_beacon_get_template(hw, vif, &offs, 0); if (!bcn) { ath10k_warn(ar, "failed to get beacon template from mac80211\n"); return -EPERM; } ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn); if (ret) { ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret); kfree_skb(bcn); return ret; } /* P2P IE is inserted by firmware automatically (as configured above) * so remove it from the base beacon template to avoid duplicate P2P * IEs in beacon frames. */ ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, offsetof(struct ieee80211_mgmt, u.beacon.variable)); ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0, 0, NULL, 0); kfree_skb(bcn); if (ret) { ath10k_warn(ar, "failed to submit beacon template command: %d\n", ret); return ret; } return 0; } static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct ieee80211_hw *hw = ar->hw; struct ieee80211_vif *vif = arvif->vif; struct sk_buff *prb; int ret; if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) return 0; if (arvif->vdev_type != WMI_VDEV_TYPE_AP) return 0; /* For mesh, probe response and beacon share the same template */ if (ieee80211_vif_is_mesh(vif)) return 0; prb = ieee80211_proberesp_get(hw, vif); if (!prb) { ath10k_warn(ar, "failed to get probe resp template from mac80211\n"); return -EPERM; } ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb); kfree_skb(prb); if (ret) { ath10k_warn(ar, "failed to submit probe resp template command: %d\n", ret); return ret; } return 0; } static int ath10k_mac_vif_fix_hidden_ssid(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct cfg80211_chan_def def; int ret; /* When originally vdev is started during assign_vif_chanctx() some * information is missing, notably SSID. Firmware revisions with beacon * offloading require the SSID to be provided during vdev (re)start to * handle hidden SSID properly. * * Vdev restart must be done after vdev has been both started and * upped. Otherwise some firmware revisions (at least 10.2) fail to * deliver vdev restart response event causing timeouts during vdev * syncing in ath10k. * * Note: The vdev down/up and template reinstallation could be skipped * since only wmi-tlv firmware are known to have beacon offload and * wmi-tlv doesn't seem to misbehave like 10.2 wrt vdev restart * response delivery. It's probably more robust to keep it as is. */ if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) return 0; if (WARN_ON(!arvif->is_started)) return -EINVAL; if (WARN_ON(!arvif->is_up)) return -EINVAL; if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def))) return -EINVAL; ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) { ath10k_warn(ar, "failed to bring down ap vdev %i: %d\n", arvif->vdev_id, ret); return ret; } /* Vdev down reset beacon & presp templates. Reinstall them. Otherwise * firmware will crash upon vdev up. */ ret = ath10k_mac_setup_bcn_tmpl(arvif); if (ret) { ath10k_warn(ar, "failed to update beacon template: %d\n", ret); return ret; } ret = ath10k_mac_setup_prb_tmpl(arvif); if (ret) { ath10k_warn(ar, "failed to update presp template: %d\n", ret); return ret; } ret = ath10k_vdev_restart(arvif, &def); if (ret) { ath10k_warn(ar, "failed to restart ap vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to bring up ap vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static void ath10k_control_beaconing(struct ath10k_vif *arvif, struct ieee80211_bss_conf *info) { struct ath10k *ar = arvif->ar; int ret = 0; lockdep_assert_held(&arvif->ar->conf_mutex); if (!info->enable_beacon) { ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) ath10k_warn(ar, "failed to down vdev_id %i: %d\n", arvif->vdev_id, ret); arvif->is_up = false; spin_lock_bh(&arvif->ar->data_lock); ath10k_mac_vif_beacon_free(arvif); spin_unlock_bh(&arvif->ar->data_lock); return; } arvif->tx_seq_no = 0x1000; arvif->aid = 0; ether_addr_copy(arvif->bssid, info->bssid); ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to bring up vdev %d: %i\n", arvif->vdev_id, ret); return; } arvif->is_up = true; ret = ath10k_mac_vif_fix_hidden_ssid(arvif); if (ret) { ath10k_warn(ar, "failed to fix hidden ssid for vdev %i, expect trouble: %d\n", arvif->vdev_id, ret); return; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id); } static void ath10k_control_ibss(struct ath10k_vif *arvif, struct ieee80211_vif *vif) { struct ath10k *ar = arvif->ar; u32 vdev_param; int ret = 0; lockdep_assert_held(&arvif->ar->conf_mutex); if (!vif->cfg.ibss_joined) { if (is_zero_ether_addr(arvif->bssid)) return; eth_zero_addr(arvif->bssid); return; } vdev_param = arvif->ar->wmi.vdev_param->atim_window; ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param, ATH10K_DEFAULT_ATIM); if (ret) ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n", arvif->vdev_id, ret); } static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 param; u32 value; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (arvif->u.sta.uapsd) value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER; else value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n", value, arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 param; u32 value; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (arvif->u.sta.uapsd) value = WMI_STA_PS_PSPOLL_COUNT_UAPSD; else value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; param = WMI_STA_PS_PARAM_PSPOLL_COUNT; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n", value, arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_num_vifs_started(struct ath10k *ar) { struct ath10k_vif *arvif; int num = 0; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) if (arvif->is_started) num++; return num; } static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct ieee80211_vif *vif = arvif->vif; struct ieee80211_conf *conf = &ar->hw->conf; enum wmi_sta_powersave_param param; enum wmi_sta_ps_mode psmode; int ret; int ps_timeout; bool enable_ps; lockdep_assert_held(&arvif->ar->conf_mutex); if (arvif->vif->type != NL80211_IFTYPE_STATION) return 0; enable_ps = arvif->ps; if (enable_ps && ath10k_mac_num_vifs_started(ar) > 1 && !test_bit(ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT, ar->running_fw->fw_file.fw_features)) { ath10k_warn(ar, "refusing to enable ps on vdev %i: not supported by fw\n", arvif->vdev_id); enable_ps = false; } if (!arvif->is_started) { /* mac80211 can update vif powersave state while disconnected. * Firmware doesn't behave nicely and consumes more power than * necessary if PS is disabled on a non-started vdev. Hence * force-enable PS for non-running vdevs. */ psmode = WMI_STA_PS_MODE_ENABLED; } else if (enable_ps) { psmode = WMI_STA_PS_MODE_ENABLED; param = WMI_STA_PS_PARAM_INACTIVITY_TIME; ps_timeout = conf->dynamic_ps_timeout; if (ps_timeout == 0) { /* Firmware doesn't like 0 */ ps_timeout = ieee80211_tu_to_usec( vif->bss_conf.beacon_int) / 1000; } ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, ps_timeout); if (ret) { ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n", arvif->vdev_id, ret); return ret; } } else { psmode = WMI_STA_PS_MODE_DISABLED; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n", arvif->vdev_id, psmode ? "enable" : "disable"); ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode); if (ret) { ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n", psmode, arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct wmi_sta_keepalive_arg arg = {}; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; if (!test_bit(WMI_SERVICE_STA_KEEP_ALIVE, ar->wmi.svc_map)) return 0; /* Some firmware revisions have a bug and ignore the `enabled` field. * Instead use the interval to disable the keepalive. */ arg.vdev_id = arvif->vdev_id; arg.enabled = 1; arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME; arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE; ret = ath10k_wmi_sta_keepalive(ar, &arg); if (ret) { ath10k_warn(ar, "failed to submit keepalive on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static void ath10k_mac_vif_ap_csa_count_down(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct ieee80211_vif *vif = arvif->vif; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (WARN_ON(!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))) return; if (arvif->vdev_type != WMI_VDEV_TYPE_AP) return; if (!vif->bss_conf.csa_active) return; if (!arvif->is_up) return; if (!ieee80211_beacon_cntdwn_is_complete(vif, 0)) { ieee80211_beacon_update_cntdwn(vif, 0); ret = ath10k_mac_setup_bcn_tmpl(arvif); if (ret) ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n", ret); ret = ath10k_mac_setup_prb_tmpl(arvif); if (ret) ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n", ret); } else { ieee80211_csa_finish(vif, 0); } } static void ath10k_mac_vif_ap_csa_work(struct work_struct *work) { struct ath10k_vif *arvif = container_of(work, struct ath10k_vif, ap_csa_work); struct ath10k *ar = arvif->ar; mutex_lock(&ar->conf_mutex); ath10k_mac_vif_ap_csa_count_down(arvif); mutex_unlock(&ar->conf_mutex); } static void ath10k_mac_handle_beacon_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct sk_buff *skb = data; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ath10k_vif *arvif = (void *)vif->drv_priv; if (vif->type != NL80211_IFTYPE_STATION) return; if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid)) return; cancel_delayed_work(&arvif->connection_loss_work); } void ath10k_mac_handle_beacon(struct ath10k *ar, struct sk_buff *skb) { ieee80211_iterate_active_interfaces_atomic(ar->hw, ATH10K_ITER_NORMAL_FLAGS, ath10k_mac_handle_beacon_iter, skb); } static void ath10k_mac_handle_beacon_miss_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { u32 *vdev_id = data; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k *ar = arvif->ar; struct ieee80211_hw *hw = ar->hw; if (arvif->vdev_id != *vdev_id) return; if (!arvif->is_up) return; ieee80211_beacon_loss(vif); /* Firmware doesn't report beacon loss events repeatedly. If AP probe * (done by mac80211) succeeds but beacons do not resume then it * doesn't make sense to continue operation. Queue connection loss work * which can be cancelled when beacon is received. */ ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work, ATH10K_CONNECTION_LOSS_HZ); } void ath10k_mac_handle_beacon_miss(struct ath10k *ar, u32 vdev_id) { ieee80211_iterate_active_interfaces_atomic(ar->hw, ATH10K_ITER_NORMAL_FLAGS, ath10k_mac_handle_beacon_miss_iter, &vdev_id); } static void ath10k_mac_vif_sta_connection_loss_work(struct work_struct *work) { struct ath10k_vif *arvif = container_of(work, struct ath10k_vif, connection_loss_work.work); struct ieee80211_vif *vif = arvif->vif; if (!arvif->is_up) return; ieee80211_connection_loss(vif); } /**********************/ /* Station management */ /**********************/ static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar, struct ieee80211_vif *vif) { /* Some firmware revisions have unstable STA powersave when listen * interval is set too high (e.g. 5). The symptoms are firmware doesn't * generate NullFunc frames properly even if buffered frames have been * indicated in Beacon TIM. Firmware would seldom wake up to pull * buffered frames. Often pinging the device from AP would simply fail. * * As a workaround set it to 1. */ if (vif->type == NL80211_IFTYPE_STATION) return 1; return ar->hw->conf.listen_interval; } static void ath10k_peer_assoc_h_basic(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ath10k_vif *arvif = (void *)vif->drv_priv; u32 aid; lockdep_assert_held(&ar->conf_mutex); if (vif->type == NL80211_IFTYPE_STATION) aid = vif->cfg.aid; else aid = sta->aid; ether_addr_copy(arg->addr, sta->addr); arg->vdev_id = arvif->vdev_id; arg->peer_aid = aid; arg->peer_flags |= arvif->ar->wmi.peer_flags->auth; arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif); arg->peer_num_spatial_streams = 1; arg->peer_caps = vif->bss_conf.assoc_capability; } static void ath10k_peer_assoc_h_crypto(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ieee80211_bss_conf *info = &vif->bss_conf; struct cfg80211_chan_def def; struct cfg80211_bss *bss; const u8 *rsnie = NULL; const u8 *wpaie = NULL; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) return; bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, vif->cfg.ssid_len ? vif->cfg.ssid : NULL, vif->cfg.ssid_len, IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY); if (bss) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); ies = rcu_dereference(bss->ies); wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, ies->data, ies->len); rcu_read_unlock(); cfg80211_put_bss(ar->hw->wiphy, bss); } /* FIXME: base on RSN IE/WPA IE is a correct idea? */ if (rsnie || wpaie) { ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__); arg->peer_flags |= ar->wmi.peer_flags->need_ptk_4_way; } if (wpaie) { ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__); arg->peer_flags |= ar->wmi.peer_flags->need_gtk_2_way; } if (sta->mfp && test_bit(ATH10K_FW_FEATURE_MFP_SUPPORT, ar->running_fw->fw_file.fw_features)) { arg->peer_flags |= ar->wmi.peer_flags->pmf; } } static void ath10k_peer_assoc_h_rates(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; struct cfg80211_chan_def def; const struct ieee80211_supported_band *sband; const struct ieee80211_rate *rates; enum nl80211_band band; u32 ratemask; u8 rate; int i; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) return; band = def.chan->band; sband = ar->hw->wiphy->bands[band]; ratemask = sta->deflink.supp_rates[band]; ratemask &= arvif->bitrate_mask.control[band].legacy; rates = sband->bitrates; rateset->num_rates = 0; for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { if (!(ratemask & 1)) continue; rate = ath10k_mac_bitrate_to_rate(rates->bitrate); rateset->rates[rateset->num_rates] = rate; rateset->num_rates++; } } static bool ath10k_peer_assoc_h_ht_masked(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN]) { int nss; for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++) if (ht_mcs_mask[nss]) return false; return true; } static bool ath10k_peer_assoc_h_vht_masked(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX]) { int nss; for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) if (vht_mcs_mask[nss]) return false; return true; } static void ath10k_peer_assoc_h_ht(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct cfg80211_chan_def def; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; int i, n; u8 max_nss; u32 stbc; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) return; if (!ht_cap->ht_supported) return; band = def.chan->band; ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; if (ath10k_peer_assoc_h_ht_masked(ht_mcs_mask) && ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) return; arg->peer_flags |= ar->wmi.peer_flags->ht; arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + ht_cap->ampdu_factor)) - 1; arg->peer_mpdu_density = ath10k_parse_mpdudensity(ht_cap->ampdu_density); arg->peer_ht_caps = ht_cap->cap; arg->peer_rate_caps |= WMI_RC_HT_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) arg->peer_flags |= ar->wmi.peer_flags->ldbc; if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) { arg->peer_flags |= ar->wmi.peer_flags->bw40; arg->peer_rate_caps |= WMI_RC_CW40_FLAG; } if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) { if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20) arg->peer_rate_caps |= WMI_RC_SGI_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40) arg->peer_rate_caps |= WMI_RC_SGI_FLAG; } if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG; arg->peer_flags |= ar->wmi.peer_flags->stbc; } if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc = stbc << WMI_RC_RX_STBC_FLAG_S; arg->peer_rate_caps |= stbc; arg->peer_flags |= ar->wmi.peer_flags->stbc; } if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) arg->peer_rate_caps |= WMI_RC_TS_FLAG; else if (ht_cap->mcs.rx_mask[1]) arg->peer_rate_caps |= WMI_RC_DS_FLAG; for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++) if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) && (ht_mcs_mask[i / 8] & BIT(i % 8))) { max_nss = (i / 8) + 1; arg->peer_ht_rates.rates[n++] = i; } /* * This is a workaround for HT-enabled STAs which break the spec * and have no HT capabilities RX mask (no HT RX MCS map). * * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. * * Firmware asserts if such situation occurs. */ if (n == 0) { arg->peer_ht_rates.num_rates = 8; for (i = 0; i < arg->peer_ht_rates.num_rates; i++) arg->peer_ht_rates.rates[i] = i; } else { arg->peer_ht_rates.num_rates = n; arg->peer_num_spatial_streams = min(sta->deflink.rx_nss, max_nss); } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n", arg->addr, arg->peer_ht_rates.num_rates, arg->peer_num_spatial_streams); } static int ath10k_peer_assoc_qos_ap(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta) { u32 uapsd = 0; u32 max_sp = 0; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (sta->wme && sta->uapsd_queues) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n", sta->uapsd_queues, sta->max_sp); if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) max_sp = sta->max_sp; ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_UAPSD, uapsd); if (ret) { ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_MAX_SP, max_sp); if (ret) { ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } /* TODO setup this based on STA listen interval and * beacon interval. Currently we don't know * sta->listen_interval - mac80211 patch required. * Currently use 10 seconds */ ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_AGEOUT_TIME, 10); if (ret) { ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } } return 0; } static u16 ath10k_peer_assoc_h_vht_limit(u16 tx_mcs_set, const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX]) { int idx_limit; int nss; u16 mcs_map; u16 mcs; for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) { mcs_map = ath10k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) & vht_mcs_limit[nss]; if (mcs_map) idx_limit = fls(mcs_map) - 1; else idx_limit = -1; switch (idx_limit) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: default: /* see ath10k_mac_can_set_bitrate_mask() */ WARN_ON(1); fallthrough; case -1: mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED; break; case 7: mcs = IEEE80211_VHT_MCS_SUPPORT_0_7; break; case 8: mcs = IEEE80211_VHT_MCS_SUPPORT_0_8; break; case 9: mcs = IEEE80211_VHT_MCS_SUPPORT_0_9; break; } tx_mcs_set &= ~(0x3 << (nss * 2)); tx_mcs_set |= mcs << (nss * 2); } return tx_mcs_set; } static u32 get_160mhz_nss_from_maxrate(int rate) { u32 nss; switch (rate) { case 780: nss = 1; break; case 1560: nss = 2; break; case 2106: nss = 3; /* not support MCS9 from spec*/ break; case 3120: nss = 4; break; default: nss = 1; } return nss; } static void ath10k_peer_assoc_h_vht(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_hw_params *hw = &ar->hw_params; struct cfg80211_chan_def def; enum nl80211_band band; const u16 *vht_mcs_mask; u8 ampdu_factor; u8 max_nss, vht_mcs; int i; if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) return; if (!vht_cap->vht_supported) return; band = def.chan->band; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; if (ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) return; arg->peer_flags |= ar->wmi.peer_flags->vht; if (def.chan->band == NL80211_BAND_2GHZ) arg->peer_flags |= ar->wmi.peer_flags->vht_2g; arg->peer_vht_caps = vht_cap->cap; ampdu_factor = (vht_cap->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to * zero in VHT IE. Using it would result in degraded throughput. * arg->peer_max_mpdu at this point contains HT max_mpdu so keep * it if VHT max_mpdu is smaller. */ arg->peer_max_mpdu = max(arg->peer_max_mpdu, (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1); if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) arg->peer_flags |= ar->wmi.peer_flags->bw80; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) arg->peer_flags |= ar->wmi.peer_flags->bw160; /* Calculate peer NSS capability from VHT capabilities if STA * supports VHT. */ for (i = 0, max_nss = 0, vht_mcs = 0; i < NL80211_VHT_NSS_MAX; i++) { vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >> (2 * i) & 3; if ((vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) && vht_mcs_mask[i]) max_nss = i + 1; } arg->peer_num_spatial_streams = min(sta->deflink.rx_nss, max_nss); arg->peer_vht_rates.rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest); arg->peer_vht_rates.rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); arg->peer_vht_rates.tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest); arg->peer_vht_rates.tx_mcs_set = ath10k_peer_assoc_h_vht_limit( __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask); /* Configure bandwidth-NSS mapping to FW * for the chip's tx chains setting on 160Mhz bw */ if (arg->peer_phymode == MODE_11AC_VHT160 || arg->peer_phymode == MODE_11AC_VHT80_80) { u32 rx_nss; u32 max_rate; max_rate = arg->peer_vht_rates.rx_max_rate; rx_nss = get_160mhz_nss_from_maxrate(max_rate); if (rx_nss == 0) rx_nss = arg->peer_num_spatial_streams; else rx_nss = min(arg->peer_num_spatial_streams, rx_nss); max_rate = hw->vht160_mcs_tx_highest; rx_nss = min(rx_nss, get_160mhz_nss_from_maxrate(max_rate)); arg->peer_bw_rxnss_override = FIELD_PREP(WMI_PEER_NSS_MAP_ENABLE, 1) | FIELD_PREP(WMI_PEER_NSS_160MHZ_MASK, (rx_nss - 1)); if (arg->peer_phymode == MODE_11AC_VHT80_80) { arg->peer_bw_rxnss_override |= FIELD_PREP(WMI_PEER_NSS_80_80MHZ_MASK, (rx_nss - 1)); } } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x peer_rx_nss_override 0x%x\n", sta->addr, arg->peer_max_mpdu, arg->peer_flags, arg->peer_bw_rxnss_override); } static void ath10k_peer_assoc_h_qos(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ath10k_vif *arvif = (void *)vif->drv_priv; switch (arvif->vdev_type) { case WMI_VDEV_TYPE_AP: if (sta->wme) arg->peer_flags |= arvif->ar->wmi.peer_flags->qos; if (sta->wme && sta->uapsd_queues) { arg->peer_flags |= arvif->ar->wmi.peer_flags->apsd; arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG; } break; case WMI_VDEV_TYPE_STA: if (sta->wme) arg->peer_flags |= arvif->ar->wmi.peer_flags->qos; break; case WMI_VDEV_TYPE_IBSS: if (sta->wme) arg->peer_flags |= arvif->ar->wmi.peer_flags->qos; break; default: break; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n", sta->addr, !!(arg->peer_flags & arvif->ar->wmi.peer_flags->qos)); } static bool ath10k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta) { return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >> ATH10K_MAC_FIRST_OFDM_RATE_IDX; } static enum wmi_phy_mode ath10k_mac_get_phymode_vht(struct ath10k *ar, struct ieee80211_sta *sta) { struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { switch (vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: return MODE_11AC_VHT160; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: return MODE_11AC_VHT80_80; default: /* not sure if this is a valid case? */ return MODE_11AC_VHT160; } } if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) return MODE_11AC_VHT80; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) return MODE_11AC_VHT40; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) return MODE_11AC_VHT20; return MODE_UNKNOWN; } static void ath10k_peer_assoc_h_phymode(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct cfg80211_chan_def def; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; enum wmi_phy_mode phymode = MODE_UNKNOWN; if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) return; band = def.chan->band; ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; switch (band) { case NL80211_BAND_2GHZ: if (sta->deflink.vht_cap.vht_supported && !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11AC_VHT40; else phymode = MODE_11AC_VHT20; } else if (sta->deflink.ht_cap.ht_supported && !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11NG_HT40; else phymode = MODE_11NG_HT20; } else if (ath10k_mac_sta_has_ofdm_only(sta)) { phymode = MODE_11G; } else { phymode = MODE_11B; } break; case NL80211_BAND_5GHZ: /* * Check VHT first. */ if (sta->deflink.vht_cap.vht_supported && !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) { phymode = ath10k_mac_get_phymode_vht(ar, sta); } else if (sta->deflink.ht_cap.ht_supported && !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) { if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) phymode = MODE_11NA_HT40; else phymode = MODE_11NA_HT20; } else { phymode = MODE_11A; } break; default: break; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n", sta->addr, ath10k_wmi_phymode_str(phymode)); arg->peer_phymode = phymode; WARN_ON(phymode == MODE_UNKNOWN); } static int ath10k_peer_assoc_prepare(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { lockdep_assert_held(&ar->conf_mutex); memset(arg, 0, sizeof(*arg)); ath10k_peer_assoc_h_basic(ar, vif, sta, arg); ath10k_peer_assoc_h_crypto(ar, vif, sta, arg); ath10k_peer_assoc_h_rates(ar, vif, sta, arg); ath10k_peer_assoc_h_ht(ar, vif, sta, arg); ath10k_peer_assoc_h_phymode(ar, vif, sta, arg); ath10k_peer_assoc_h_vht(ar, vif, sta, arg); ath10k_peer_assoc_h_qos(ar, vif, sta, arg); return 0; } static const u32 ath10k_smps_map[] = { [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, }; static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif, const u8 *addr, const struct ieee80211_sta_ht_cap *ht_cap) { int smps; if (!ht_cap->ht_supported) return 0; smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; if (smps >= ARRAY_SIZE(ath10k_smps_map)) return -EINVAL; return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr, ar->wmi.peer_param->smps_state, ath10k_smps_map[smps]); } static int ath10k_mac_vif_recalc_txbf(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta_vht_cap vht_cap) { struct ath10k_vif *arvif = (void *)vif->drv_priv; int ret; u32 param; u32 value; if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_AFTER_ASSOC) return 0; if (!(ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) return 0; param = ar->wmi.vdev_param->txbf; value = 0; if (WARN_ON(param == WMI_VDEV_PARAM_UNSUPPORTED)) return 0; /* The following logic is correct. If a remote STA advertises support * for being a beamformer then we should enable us being a beamformee. */ if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) { if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE; } if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) { if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER; } if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE) value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER) value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to submit vdev param txbf 0x%x: %d\n", value, ret); return ret; } return 0; } static bool ath10k_mac_is_connected(struct ath10k *ar) { struct ath10k_vif *arvif; list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA) return true; } return false; } static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower) { int ret; u32 param; int tx_power_2g, tx_power_5g; bool connected; lockdep_assert_held(&ar->conf_mutex); /* ath10k internally uses unit of 0.5 dBm so multiply by 2 */ tx_power_2g = txpower * 2; tx_power_5g = txpower * 2; connected = ath10k_mac_is_connected(ar); if (connected && ar->tx_power_2g_limit) if (tx_power_2g > ar->tx_power_2g_limit) tx_power_2g = ar->tx_power_2g_limit; if (connected && ar->tx_power_5g_limit) if (tx_power_5g > ar->tx_power_5g_limit) tx_power_5g = ar->tx_power_5g_limit; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower 2g: %d, 5g: %d\n", tx_power_2g, tx_power_5g); param = ar->wmi.pdev_param->txpower_limit2g; ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_2g); if (ret) { ath10k_warn(ar, "failed to set 2g txpower %d: %d\n", tx_power_2g, ret); return ret; } param = ar->wmi.pdev_param->txpower_limit5g; ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_5g); if (ret) { ath10k_warn(ar, "failed to set 5g txpower %d: %d\n", tx_power_5g, ret); return ret; } return 0; } static int ath10k_mac_txpower_recalc(struct ath10k *ar) { struct ath10k_vif *arvif; int ret, txpower = -1; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { /* txpower not initialized yet? */ if (arvif->txpower == INT_MIN) continue; if (txpower == -1) txpower = arvif->txpower; else txpower = min(txpower, arvif->txpower); } if (txpower == -1) return 0; ret = ath10k_mac_txpower_setup(ar, txpower); if (ret) { ath10k_warn(ar, "failed to setup tx power %d: %d\n", txpower, ret); return ret; } return 0; } static int ath10k_mac_set_sar_power(struct ath10k *ar) { if (!ar->hw_params.dynamic_sar_support) return -EOPNOTSUPP; if (!ath10k_mac_is_connected(ar)) return 0; /* if connected, then arvif->txpower must be valid */ return ath10k_mac_txpower_recalc(ar); } static int ath10k_mac_set_sar_specs(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { const struct cfg80211_sar_sub_specs *sub_specs; struct ath10k *ar = hw->priv; u32 i; int ret; mutex_lock(&ar->conf_mutex); if (!ar->hw_params.dynamic_sar_support) { ret = -EOPNOTSUPP; goto err; } if (!sar || sar->type != NL80211_SAR_TYPE_POWER || sar->num_sub_specs == 0) { ret = -EINVAL; goto err; } sub_specs = sar->sub_specs; /* 0dbm is not a practical value for ath10k, so use 0 * as no SAR limitation on it. */ ar->tx_power_2g_limit = 0; ar->tx_power_5g_limit = 0; /* note the power is in 0.25dbm unit, while ath10k uses * 0.5dbm unit. */ for (i = 0; i < sar->num_sub_specs; i++) { if (sub_specs->freq_range_index == 0) ar->tx_power_2g_limit = sub_specs->power / 2; else if (sub_specs->freq_range_index == 1) ar->tx_power_5g_limit = sub_specs->power / 2; sub_specs++; } ret = ath10k_mac_set_sar_power(ar); if (ret) { ath10k_warn(ar, "failed to set sar power: %d", ret); goto err; } err: mutex_unlock(&ar->conf_mutex); return ret; } /* can be called only in mac80211 callbacks due to `key_count` usage */ static void ath10k_bss_assoc(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ieee80211_sta_ht_cap ht_cap; struct ieee80211_sta_vht_cap vht_cap; struct wmi_peer_assoc_complete_arg peer_arg; struct ieee80211_sta *ap_sta; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n", arvif->vdev_id, arvif->bssid, arvif->aid); rcu_read_lock(); ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); if (!ap_sta) { ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n", bss_conf->bssid, arvif->vdev_id); rcu_read_unlock(); return; } /* ap_sta must be accessed only within rcu section which must be left * before calling ath10k_setup_peer_smps() which might sleep. */ ht_cap = ap_sta->deflink.ht_cap; vht_cap = ap_sta->deflink.vht_cap; ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg); if (ret) { ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n", bss_conf->bssid, arvif->vdev_id, ret); rcu_read_unlock(); return; } rcu_read_unlock(); ret = ath10k_wmi_peer_assoc(ar, &peer_arg); if (ret) { ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n", bss_conf->bssid, arvif->vdev_id, ret); return; } ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap); if (ret) { ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n", arvif->vdev_id, ret); return; } ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap); if (ret) { ath10k_warn(ar, "failed to recalc txbf for vdev %i on bss %pM: %d\n", arvif->vdev_id, bss_conf->bssid, ret); return; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up (associated) bssid %pM aid %d\n", arvif->vdev_id, bss_conf->bssid, vif->cfg.aid); WARN_ON(arvif->is_up); arvif->aid = vif->cfg.aid; ether_addr_copy(arvif->bssid, bss_conf->bssid); ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->peer_stats_info_enable, 1); if (ret) ath10k_warn(ar, "failed to enable peer stats info: %d\n", ret); ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to set vdev %d up: %d\n", arvif->vdev_id, ret); return; } arvif->is_up = true; ath10k_mac_set_sar_power(ar); /* Workaround: Some firmware revisions (tested with qca6174 * WLAN.RM.2.0-00073) have buggy powersave state machine and must be * poked with peer param command. */ ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid, ar->wmi.peer_param->dummy_var, 1); if (ret) { ath10k_warn(ar, "failed to poke peer %pM param for ps workaround on vdev %i: %d\n", arvif->bssid, arvif->vdev_id, ret); return; } } static void ath10k_bss_disassoc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ieee80211_sta_vht_cap vht_cap = {}; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n", arvif->vdev_id, arvif->bssid); ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) ath10k_warn(ar, "failed to down vdev %i: %d\n", arvif->vdev_id, ret); arvif->def_wep_key_idx = -1; ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap); if (ret) { ath10k_warn(ar, "failed to recalc txbf for vdev %i: %d\n", arvif->vdev_id, ret); return; } arvif->is_up = false; ath10k_mac_txpower_recalc(ar); cancel_delayed_work_sync(&arvif->connection_loss_work); } static int ath10k_new_peer_tid_config(struct ath10k *ar, struct ieee80211_sta *sta, struct ath10k_vif *arvif) { struct wmi_per_peer_per_tid_cfg_arg arg = {}; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; bool config_apply; int ret, i; for (i = 0; i < ATH10K_TID_MAX; i++) { config_apply = false; if (arvif->retry_long[i] || arvif->ampdu[i] || arvif->rate_ctrl[i] || arvif->rtscts[i]) { config_apply = true; arg.tid = i; arg.vdev_id = arvif->vdev_id; arg.retry_count = arvif->retry_long[i]; arg.aggr_control = arvif->ampdu[i]; arg.rate_ctrl = arvif->rate_ctrl[i]; arg.rcode_flags = arvif->rate_code[i]; if (arvif->rtscts[i]) arg.ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG; else arg.ext_tid_cfg_bitmap = 0; arg.rtscts_ctrl = arvif->rtscts[i]; } if (arvif->noack[i]) { arg.ack_policy = arvif->noack[i]; arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE; arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE; config_apply = true; } /* Assign default value(-1) to newly connected station. * This is to identify station specific tid configuration not * configured for the station. */ arsta->retry_long[i] = -1; arsta->noack[i] = -1; arsta->ampdu[i] = -1; if (!config_apply) continue; ether_addr_copy(arg.peer_macaddr.addr, sta->addr); ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg); if (ret) { ath10k_warn(ar, "failed to set per tid retry/aggr config for sta %pM: %d\n", sta->addr, ret); return ret; } memset(&arg, 0, sizeof(arg)); } return 0; } static int ath10k_station_assoc(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool reassoc) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct wmi_peer_assoc_complete_arg peer_arg; int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg); if (ret) { ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); return ret; } ret = ath10k_wmi_peer_assoc(ar, &peer_arg); if (ret) { ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } /* Re-assoc is run only to update supported rates for given station. It * doesn't make much sense to reconfigure the peer completely. */ if (!reassoc) { ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, &sta->deflink.ht_cap); if (ret) { ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta); if (ret) { ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } if (!sta->wme) { arvif->num_legacy_stations++; ret = ath10k_recalc_rtscts_prot(arvif); if (ret) { ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } } /* Plumb cached keys only for static WEP */ if ((arvif->def_wep_key_idx != -1) && (!sta->tdls)) { ret = ath10k_install_peer_wep_keys(arvif, sta->addr); if (ret) { ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } } } if (!test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) return ret; return ath10k_new_peer_tid_config(ar, sta, arvif); } static int ath10k_station_disassoc(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath10k_vif *arvif = (void *)vif->drv_priv; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (!sta->wme) { arvif->num_legacy_stations--; ret = ath10k_recalc_rtscts_prot(arvif); if (ret) { ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } } ret = ath10k_clear_peer_keys(arvif, sta->addr); if (ret) { ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return ret; } /**************/ /* Regulatory */ /**************/ static int ath10k_update_channel_list(struct ath10k *ar) { struct ieee80211_hw *hw = ar->hw; struct ieee80211_supported_band **bands; enum nl80211_band band; struct ieee80211_channel *channel; struct wmi_scan_chan_list_arg arg = {0}; struct wmi_channel_arg *ch; bool passive; int len; int ret; int i; lockdep_assert_held(&ar->conf_mutex); bands = hw->wiphy->bands; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { if (bands[band]->channels[i].flags & IEEE80211_CHAN_DISABLED) continue; arg.n_channels++; } } len = sizeof(struct wmi_channel_arg) * arg.n_channels; arg.channels = kzalloc(len, GFP_KERNEL); if (!arg.channels) return -ENOMEM; ch = arg.channels; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { channel = &bands[band]->channels[i]; if (channel->flags & IEEE80211_CHAN_DISABLED) continue; ch->allow_ht = true; /* FIXME: when should we really allow VHT? */ ch->allow_vht = true; ch->allow_ibss = !(channel->flags & IEEE80211_CHAN_NO_IR); ch->ht40plus = !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS); ch->chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); passive = channel->flags & IEEE80211_CHAN_NO_IR; ch->passive = passive; /* the firmware is ignoring the "radar" flag of the * channel and is scanning actively using Probe Requests * on "Radar detection"/DFS channels which are not * marked as "available" */ ch->passive |= ch->chan_radar; ch->freq = channel->center_freq; ch->band_center_freq1 = channel->center_freq; ch->min_power = 0; ch->max_power = channel->max_power * 2; ch->max_reg_power = channel->max_reg_power * 2; ch->max_antenna_gain = channel->max_antenna_gain; ch->reg_class_id = 0; /* FIXME */ /* FIXME: why use only legacy modes, why not any * HT/VHT modes? Would that even make any * difference? */ if (channel->band == NL80211_BAND_2GHZ) ch->mode = MODE_11G; else ch->mode = MODE_11A; if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN)) continue; ath10k_dbg(ar, ATH10K_DBG_WMI, "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", ch - arg.channels, arg.n_channels, ch->freq, ch->max_power, ch->max_reg_power, ch->max_antenna_gain, ch->mode); ch++; } } ret = ath10k_wmi_scan_chan_list(ar, &arg); kfree(arg.channels); return ret; } static enum wmi_dfs_region ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: return WMI_UNINIT_DFS_DOMAIN; case NL80211_DFS_FCC: return WMI_FCC_DFS_DOMAIN; case NL80211_DFS_ETSI: return WMI_ETSI_DFS_DOMAIN; case NL80211_DFS_JP: return WMI_MKK4_DFS_DOMAIN; } return WMI_UNINIT_DFS_DOMAIN; } static void ath10k_regd_update(struct ath10k *ar) { struct reg_dmn_pair_mapping *regpair; int ret; enum wmi_dfs_region wmi_dfs_reg; enum nl80211_dfs_regions nl_dfs_reg; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_update_channel_list(ar); if (ret) ath10k_warn(ar, "failed to update channel list: %d\n", ret); regpair = ar->ath_common.regulatory.regpair; if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { nl_dfs_reg = ar->dfs_detector->region; wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg); } else { wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN; } /* Target allows setting up per-band regdomain but ath_common provides * a combined one only */ ret = ath10k_wmi_pdev_set_regdomain(ar, regpair->reg_domain, regpair->reg_domain, /* 2ghz */ regpair->reg_domain, /* 5ghz */ regpair->reg_2ghz_ctl, regpair->reg_5ghz_ctl, wmi_dfs_reg); if (ret) ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret); } static void ath10k_mac_update_channel_list(struct ath10k *ar, struct ieee80211_supported_band *band) { int i; if (ar->low_5ghz_chan && ar->high_5ghz_chan) { for (i = 0; i < band->n_channels; i++) { if (band->channels[i].center_freq < ar->low_5ghz_chan || band->channels[i].center_freq > ar->high_5ghz_chan) band->channels[i].flags |= IEEE80211_CHAN_DISABLED; } } } static void ath10k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath10k *ar = hw->priv; bool result; ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory); if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n", request->dfs_region); result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector, request->dfs_region); if (!result) ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n", request->dfs_region); } mutex_lock(&ar->conf_mutex); if (ar->state == ATH10K_STATE_ON) ath10k_regd_update(ar); mutex_unlock(&ar->conf_mutex); if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) ath10k_mac_update_channel_list(ar, ar->hw->wiphy->bands[NL80211_BAND_5GHZ]); } static void ath10k_stop_radar_confirmation(struct ath10k *ar) { spin_lock_bh(&ar->data_lock); ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_STOPPED; spin_unlock_bh(&ar->data_lock); cancel_work_sync(&ar->radar_confirmation_work); } /***************/ /* TX handlers */ /***************/ enum ath10k_mac_tx_path { ATH10K_MAC_TX_HTT, ATH10K_MAC_TX_HTT_MGMT, ATH10K_MAC_TX_WMI_MGMT, ATH10K_MAC_TX_UNKNOWN, }; void ath10k_mac_tx_lock(struct ath10k *ar, int reason) { lockdep_assert_held(&ar->htt.tx_lock); WARN_ON(reason >= ATH10K_TX_PAUSE_MAX); ar->tx_paused |= BIT(reason); ieee80211_stop_queues(ar->hw); } static void ath10k_mac_tx_unlock_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k *ar = data; struct ath10k_vif *arvif = (void *)vif->drv_priv; if (arvif->tx_paused) return; ieee80211_wake_queue(ar->hw, arvif->vdev_id); } void ath10k_mac_tx_unlock(struct ath10k *ar, int reason) { lockdep_assert_held(&ar->htt.tx_lock); WARN_ON(reason >= ATH10K_TX_PAUSE_MAX); ar->tx_paused &= ~BIT(reason); if (ar->tx_paused) return; ieee80211_iterate_active_interfaces_atomic(ar->hw, ATH10K_ITER_RESUME_FLAGS, ath10k_mac_tx_unlock_iter, ar); ieee80211_wake_queue(ar->hw, ar->hw->offchannel_tx_hw_queue); } void ath10k_mac_vif_tx_lock(struct ath10k_vif *arvif, int reason) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->htt.tx_lock); WARN_ON(reason >= BITS_PER_LONG); arvif->tx_paused |= BIT(reason); ieee80211_stop_queue(ar->hw, arvif->vdev_id); } void ath10k_mac_vif_tx_unlock(struct ath10k_vif *arvif, int reason) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->htt.tx_lock); WARN_ON(reason >= BITS_PER_LONG); arvif->tx_paused &= ~BIT(reason); if (ar->tx_paused) return; if (arvif->tx_paused) return; ieee80211_wake_queue(ar->hw, arvif->vdev_id); } static void ath10k_mac_vif_handle_tx_pause(struct ath10k_vif *arvif, enum wmi_tlv_tx_pause_id pause_id, enum wmi_tlv_tx_pause_action action) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->htt.tx_lock); switch (action) { case WMI_TLV_TX_PAUSE_ACTION_STOP: ath10k_mac_vif_tx_lock(arvif, pause_id); break; case WMI_TLV_TX_PAUSE_ACTION_WAKE: ath10k_mac_vif_tx_unlock(arvif, pause_id); break; default: ath10k_dbg(ar, ATH10K_DBG_BOOT, "received unknown tx pause action %d on vdev %i, ignoring\n", action, arvif->vdev_id); break; } } struct ath10k_mac_tx_pause { u32 vdev_id; enum wmi_tlv_tx_pause_id pause_id; enum wmi_tlv_tx_pause_action action; }; static void ath10k_mac_handle_tx_pause_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_mac_tx_pause *arg = data; if (arvif->vdev_id != arg->vdev_id) return; ath10k_mac_vif_handle_tx_pause(arvif, arg->pause_id, arg->action); } void ath10k_mac_handle_tx_pause_vdev(struct ath10k *ar, u32 vdev_id, enum wmi_tlv_tx_pause_id pause_id, enum wmi_tlv_tx_pause_action action) { struct ath10k_mac_tx_pause arg = { .vdev_id = vdev_id, .pause_id = pause_id, .action = action, }; spin_lock_bh(&ar->htt.tx_lock); ieee80211_iterate_active_interfaces_atomic(ar->hw, ATH10K_ITER_RESUME_FLAGS, ath10k_mac_handle_tx_pause_iter, &arg); spin_unlock_bh(&ar->htt.tx_lock); } static enum ath10k_hw_txrx_mode ath10k_mac_tx_h_get_txmode(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (void *)skb->data; const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); __le16 fc = hdr->frame_control; if (IEEE80211_SKB_CB(skb)->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) return ATH10K_HW_TXRX_ETHERNET; if (!vif || vif->type == NL80211_IFTYPE_MONITOR) return ATH10K_HW_TXRX_RAW; if (ieee80211_is_mgmt(fc)) return ATH10K_HW_TXRX_MGMT; /* Workaround: * * NullFunc frames are mostly used to ping if a client or AP are still * reachable and responsive. This implies tx status reports must be * accurate - otherwise either mac80211 or userspace (e.g. hostapd) can * come to a conclusion that the other end disappeared and tear down * BSS connection or it can never disconnect from BSS/client (which is * the case). * * Firmware with HTT older than 3.0 delivers incorrect tx status for * NullFunc frames to driver. However there's a HTT Mgmt Tx command * which seems to deliver correct tx reports for NullFunc frames. The * downside of using it is it ignores client powersave state so it can * end up disconnecting sleeping clients in AP mode. It should fix STA * mode though because AP don't sleep. */ if (ar->htt.target_version_major < 3 && (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)) && !test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->running_fw->fw_file.fw_features)) return ATH10K_HW_TXRX_MGMT; /* Workaround: * * Some wmi-tlv firmwares for qca6174 have broken Tx key selection for * NativeWifi txmode - it selects AP key instead of peer key. It seems * to work with Ethernet txmode so use it. * * FIXME: Check if raw mode works with TDLS. */ if (ieee80211_is_data_present(fc) && sta && sta->tdls) return ATH10K_HW_TXRX_ETHERNET; if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) || skb_cb->flags & ATH10K_SKB_F_RAW_TX) return ATH10K_HW_TXRX_RAW; return ATH10K_HW_TXRX_NATIVE_WIFI; } static bool ath10k_tx_h_use_hwcrypto(struct ieee80211_vif *vif, struct sk_buff *skb) { const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); const struct ieee80211_hdr *hdr = (void *)skb->data; const u32 mask = IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_INJECTED; if (!ieee80211_has_protected(hdr->frame_control)) return false; if ((info->flags & mask) == mask) return false; if (vif) return !((struct ath10k_vif *)vif->drv_priv)->nohwcrypt; return true; } /* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS * Control in the header. */ static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (void *)skb->data; struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); u8 *qos_ctl; if (!ieee80211_is_data_qos(hdr->frame_control)) return; qos_ctl = ieee80211_get_qos_ctl(hdr); memmove(skb->data + IEEE80211_QOS_CTL_LEN, skb->data, (void *)qos_ctl - (void *)skb->data); skb_pull(skb, IEEE80211_QOS_CTL_LEN); /* Some firmware revisions don't handle sending QoS NullFunc well. * These frames are mainly used for CQM purposes so it doesn't really * matter whether QoS NullFunc or NullFunc are sent. */ hdr = (void *)skb->data; if (ieee80211_is_qos_nullfunc(hdr->frame_control)) cb->flags &= ~ATH10K_SKB_F_QOS; hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA); } static void ath10k_tx_h_8023(struct sk_buff *skb) { struct ieee80211_hdr *hdr; struct rfc1042_hdr *rfc1042; struct ethhdr *eth; size_t hdrlen; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; __be16 type; hdr = (void *)skb->data; hdrlen = ieee80211_hdrlen(hdr->frame_control); rfc1042 = (void *)skb->data + hdrlen; ether_addr_copy(da, ieee80211_get_DA(hdr)); ether_addr_copy(sa, ieee80211_get_SA(hdr)); type = rfc1042->snap_type; skb_pull(skb, hdrlen + sizeof(*rfc1042)); skb_push(skb, sizeof(*eth)); eth = (void *)skb->data; ether_addr_copy(eth->h_dest, da); ether_addr_copy(eth->h_source, sa); eth->h_proto = type; } static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, struct ieee80211_vif *vif, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath10k_vif *arvif = (void *)vif->drv_priv; /* This is case only for P2P_GO */ if (vif->type != NL80211_IFTYPE_AP || !vif->p2p) return; if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) { spin_lock_bh(&ar->data_lock); if (arvif->u.ap.noa_data) if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) skb_put_data(skb, arvif->u.ap.noa_data, arvif->u.ap.noa_len); spin_unlock_bh(&ar->data_lock); } } static void ath10k_mac_tx_h_fill_cb(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_txq *txq, struct ieee80211_sta *sta, struct sk_buff *skb, u16 airtime) { struct ieee80211_hdr *hdr = (void *)skb->data; struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool is_data = ieee80211_is_data(hdr->frame_control) || ieee80211_is_data_qos(hdr->frame_control); struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_sta *arsta; u8 tid, *qos_ctl; bool noack = false; cb->flags = 0; if (info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { cb->flags |= ATH10K_SKB_F_QOS; /* Assume data frames are QoS */ goto finish_cb_fill; } if (!ath10k_tx_h_use_hwcrypto(vif, skb)) cb->flags |= ATH10K_SKB_F_NO_HWCRYPT; if (ieee80211_is_mgmt(hdr->frame_control)) cb->flags |= ATH10K_SKB_F_MGMT; if (ieee80211_is_data_qos(hdr->frame_control)) { cb->flags |= ATH10K_SKB_F_QOS; qos_ctl = ieee80211_get_qos_ctl(hdr); tid = (*qos_ctl) & IEEE80211_QOS_CTL_TID_MASK; if (arvif->noack[tid] == WMI_PEER_TID_CONFIG_NOACK) noack = true; if (sta) { arsta = (struct ath10k_sta *)sta->drv_priv; if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_NOACK) noack = true; if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_ACK) noack = false; } if (noack) cb->flags |= ATH10K_SKB_F_NOACK_TID; } /* Data frames encrypted in software will be posted to firmware * with tx encap mode set to RAW. Ex: Multicast traffic generated * for a specific VLAN group will always be encrypted in software. */ if (is_data && ieee80211_has_protected(hdr->frame_control) && !info->control.hw_key) { cb->flags |= ATH10K_SKB_F_NO_HWCRYPT; cb->flags |= ATH10K_SKB_F_RAW_TX; } finish_cb_fill: cb->vif = vif; cb->txq = txq; cb->airtime_est = airtime; if (sta) { arsta = (struct ath10k_sta *)sta->drv_priv; spin_lock_bh(&ar->data_lock); cb->ucast_cipher = arsta->ucast_cipher; spin_unlock_bh(&ar->data_lock); } } bool ath10k_mac_tx_frm_has_freq(struct ath10k *ar) { /* FIXME: Not really sure since when the behaviour changed. At some * point new firmware stopped requiring creation of peer entries for * offchannel tx (and actually creating them causes issues with wmi-htc * tx credit replenishment and reliability). Assuming it's at least 3.4 * because that's when the `freq` was introduced to TX_FRM HTT command. */ return (ar->htt.target_version_major >= 3 && ar->htt.target_version_minor >= 4 && ar->running_fw->fw_file.htt_op_version == ATH10K_FW_HTT_OP_VERSION_TLV); } static int ath10k_mac_tx_wmi_mgmt(struct ath10k *ar, struct sk_buff *skb) { struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue; if (skb_queue_len_lockless(q) >= ATH10K_MAX_NUM_MGMT_PENDING) { ath10k_warn(ar, "wmi mgmt tx queue is full\n"); return -ENOSPC; } skb_queue_tail(q, skb); ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work); return 0; } static enum ath10k_mac_tx_path ath10k_mac_tx_h_get_txpath(struct ath10k *ar, struct sk_buff *skb, enum ath10k_hw_txrx_mode txmode) { switch (txmode) { case ATH10K_HW_TXRX_RAW: case ATH10K_HW_TXRX_NATIVE_WIFI: case ATH10K_HW_TXRX_ETHERNET: return ATH10K_MAC_TX_HTT; case ATH10K_HW_TXRX_MGMT: if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->running_fw->fw_file.fw_features) || test_bit(WMI_SERVICE_MGMT_TX_WMI, ar->wmi.svc_map)) return ATH10K_MAC_TX_WMI_MGMT; else if (ar->htt.target_version_major >= 3) return ATH10K_MAC_TX_HTT; else return ATH10K_MAC_TX_HTT_MGMT; } return ATH10K_MAC_TX_UNKNOWN; } static int ath10k_mac_tx_submit(struct ath10k *ar, enum ath10k_hw_txrx_mode txmode, enum ath10k_mac_tx_path txpath, struct sk_buff *skb) { struct ath10k_htt *htt = &ar->htt; int ret = -EINVAL; switch (txpath) { case ATH10K_MAC_TX_HTT: ret = ath10k_htt_tx(htt, txmode, skb); break; case ATH10K_MAC_TX_HTT_MGMT: ret = ath10k_htt_mgmt_tx(htt, skb); break; case ATH10K_MAC_TX_WMI_MGMT: ret = ath10k_mac_tx_wmi_mgmt(ar, skb); break; case ATH10K_MAC_TX_UNKNOWN: WARN_ON_ONCE(1); ret = -EINVAL; break; } if (ret) { ath10k_warn(ar, "failed to transmit packet, dropping: %d\n", ret); ieee80211_free_txskb(ar->hw, skb); } return ret; } /* This function consumes the sk_buff regardless of return value as far as * caller is concerned so no freeing is necessary afterwards. */ static int ath10k_mac_tx(struct ath10k *ar, struct ieee80211_vif *vif, enum ath10k_hw_txrx_mode txmode, enum ath10k_mac_tx_path txpath, struct sk_buff *skb, bool noque_offchan) { struct ieee80211_hw *hw = ar->hw; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); int ret; /* We should disable CCK RATE due to P2P */ if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE) ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n"); switch (txmode) { case ATH10K_HW_TXRX_MGMT: case ATH10K_HW_TXRX_NATIVE_WIFI: ath10k_tx_h_nwifi(hw, skb); ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb); ath10k_tx_h_seq_no(vif, skb); break; case ATH10K_HW_TXRX_ETHERNET: /* Convert 802.11->802.3 header only if the frame was earlier * encapsulated to 802.11 by mac80211. Otherwise pass it as is. */ if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) ath10k_tx_h_8023(skb); break; case ATH10K_HW_TXRX_RAW: if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) && !(skb_cb->flags & ATH10K_SKB_F_RAW_TX)) { WARN_ON_ONCE(1); ieee80211_free_txskb(hw, skb); return -EOPNOTSUPP; } } if (!noque_offchan && info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) { if (!ath10k_mac_tx_frm_has_freq(ar)) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac queued offchannel skb %pK len %d\n", skb, skb->len); skb_queue_tail(&ar->offchan_tx_queue, skb); ieee80211_queue_work(hw, &ar->offchan_tx_work); return 0; } } ret = ath10k_mac_tx_submit(ar, txmode, txpath, skb); if (ret) { ath10k_warn(ar, "failed to submit frame: %d\n", ret); return ret; } return 0; } void ath10k_offchan_tx_purge(struct ath10k *ar) { struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->offchan_tx_queue); if (!skb) break; ieee80211_free_txskb(ar->hw, skb); } } void ath10k_offchan_tx_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work); struct ath10k_peer *peer; struct ath10k_vif *arvif; enum ath10k_hw_txrx_mode txmode; enum ath10k_mac_tx_path txpath; struct ieee80211_hdr *hdr; struct ieee80211_vif *vif; struct ieee80211_sta *sta; struct sk_buff *skb; const u8 *peer_addr; int vdev_id; int ret; unsigned long time_left; bool tmp_peer_created = false; /* FW requirement: We must create a peer before FW will send out * an offchannel frame. Otherwise the frame will be stuck and * never transmitted. We delete the peer upon tx completion. * It is unlikely that a peer for offchannel tx will already be * present. However it may be in some rare cases so account for that. * Otherwise we might remove a legitimate peer and break stuff. */ for (;;) { skb = skb_dequeue(&ar->offchan_tx_queue); if (!skb) break; mutex_lock(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %pK len %d\n", skb, skb->len); hdr = (struct ieee80211_hdr *)skb->data; peer_addr = ieee80211_get_DA(hdr); spin_lock_bh(&ar->data_lock); vdev_id = ar->scan.vdev_id; peer = ath10k_peer_find(ar, vdev_id, peer_addr); spin_unlock_bh(&ar->data_lock); if (peer) { ath10k_warn(ar, "peer %pM on vdev %d already present\n", peer_addr, vdev_id); } else { ret = ath10k_peer_create(ar, NULL, NULL, vdev_id, peer_addr, WMI_PEER_TYPE_DEFAULT); if (ret) ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n", peer_addr, vdev_id, ret); tmp_peer_created = (ret == 0); } spin_lock_bh(&ar->data_lock); reinit_completion(&ar->offchan_tx_completed); ar->offchan_tx_skb = skb; spin_unlock_bh(&ar->data_lock); /* It's safe to access vif and sta - conf_mutex guarantees that * sta_state() and remove_interface() are locked exclusively * out wrt to this offchannel worker. */ arvif = ath10k_get_arvif(ar, vdev_id); if (arvif) { vif = arvif->vif; sta = ieee80211_find_sta(vif, peer_addr); } else { vif = NULL; sta = NULL; } txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb); txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode); ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, true); if (ret) { ath10k_warn(ar, "failed to transmit offchannel frame: %d\n", ret); /* not serious */ } time_left = wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ); if (time_left == 0) ath10k_warn(ar, "timed out waiting for offchannel skb %pK, len: %d\n", skb, skb->len); if (!peer && tmp_peer_created) { ret = ath10k_peer_delete(ar, vdev_id, peer_addr); if (ret) ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n", peer_addr, vdev_id, ret); } mutex_unlock(&ar->conf_mutex); } } void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar) { struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); if (!skb) break; ieee80211_free_txskb(ar->hw, skb); } } void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work); struct sk_buff *skb; dma_addr_t paddr; int ret; for (;;) { skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); if (!skb) break; if (test_bit(ATH10K_FW_FEATURE_MGMT_TX_BY_REF, ar->running_fw->fw_file.fw_features)) { paddr = dma_map_single(ar->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(ar->dev, paddr)) { ieee80211_free_txskb(ar->hw, skb); continue; } ret = ath10k_wmi_mgmt_tx_send(ar, skb, paddr); if (ret) { ath10k_warn(ar, "failed to transmit management frame by ref via WMI: %d\n", ret); /* remove this msdu from idr tracking */ ath10k_wmi_cleanup_mgmt_tx_send(ar, skb); dma_unmap_single(ar->dev, paddr, skb->len, DMA_TO_DEVICE); ieee80211_free_txskb(ar->hw, skb); } } else { ret = ath10k_wmi_mgmt_tx(ar, skb); if (ret) { ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n", ret); ieee80211_free_txskb(ar->hw, skb); } } } } static void ath10k_mac_txq_init(struct ieee80211_txq *txq) { struct ath10k_txq *artxq; if (!txq) return; artxq = (void *)txq->drv_priv; INIT_LIST_HEAD(&artxq->list); } static void ath10k_mac_txq_unref(struct ath10k *ar, struct ieee80211_txq *txq) { struct ath10k_skb_cb *cb; struct sk_buff *msdu; int msdu_id; if (!txq) return; spin_lock_bh(&ar->htt.tx_lock); idr_for_each_entry(&ar->htt.pending_tx, msdu, msdu_id) { cb = ATH10K_SKB_CB(msdu); if (cb->txq == txq) cb->txq = NULL; } spin_unlock_bh(&ar->htt.tx_lock); } struct ieee80211_txq *ath10k_mac_txq_lookup(struct ath10k *ar, u16 peer_id, u8 tid) { struct ath10k_peer *peer; lockdep_assert_held(&ar->data_lock); peer = ar->peer_map[peer_id]; if (!peer) return NULL; if (peer->removed) return NULL; if (peer->sta) return peer->sta->txq[tid]; else if (peer->vif) return peer->vif->txq; else return NULL; } static bool ath10k_mac_tx_can_push(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ath10k *ar = hw->priv; struct ath10k_txq *artxq = (void *)txq->drv_priv; /* No need to get locks */ if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) return true; if (ar->htt.num_pending_tx < ar->htt.tx_q_state.num_push_allowed) return true; if (artxq->num_fw_queued < artxq->num_push_allowed) return true; return false; } /* Return estimated airtime in microsecond, which is calculated using last * reported TX rate. This is just a rough estimation because host driver has no * knowledge of the actual transmit rate, retries or aggregation. If actual * airtime can be reported by firmware, then delta between estimated and actual * airtime can be adjusted from deficit. */ #define IEEE80211_ATF_OVERHEAD 100 /* IFS + some slot time */ #define IEEE80211_ATF_OVERHEAD_IFS 16 /* IFS only */ static u16 ath10k_mac_update_airtime(struct ath10k *ar, struct ieee80211_txq *txq, struct sk_buff *skb) { struct ath10k_sta *arsta; u32 pktlen; u16 airtime = 0; if (!txq || !txq->sta) return airtime; if (test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map)) return airtime; spin_lock_bh(&ar->data_lock); arsta = (struct ath10k_sta *)txq->sta->drv_priv; pktlen = skb->len + 38; /* Assume MAC header 30, SNAP 8 for most case */ if (arsta->last_tx_bitrate) { /* airtime in us, last_tx_bitrate in 100kbps */ airtime = (pktlen * 8 * (1000 / 100)) / arsta->last_tx_bitrate; /* overhead for media access time and IFS */ airtime += IEEE80211_ATF_OVERHEAD_IFS; } else { /* This is mostly for throttle excessive BC/MC frames, and the * airtime/rate doesn't need be exact. Airtime of BC/MC frames * in 2G get some discount, which helps prevent very low rate * frames from being blocked for too long. */ airtime = (pktlen * 8 * (1000 / 100)) / 60; /* 6M */ airtime += IEEE80211_ATF_OVERHEAD; } spin_unlock_bh(&ar->data_lock); return airtime; } int ath10k_mac_tx_push_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ath10k *ar = hw->priv; struct ath10k_htt *htt = &ar->htt; struct ath10k_txq *artxq = (void *)txq->drv_priv; struct ieee80211_vif *vif = txq->vif; struct ieee80211_sta *sta = txq->sta; enum ath10k_hw_txrx_mode txmode; enum ath10k_mac_tx_path txpath; struct sk_buff *skb; struct ieee80211_hdr *hdr; size_t skb_len; bool is_mgmt, is_presp; int ret; u16 airtime; spin_lock_bh(&ar->htt.tx_lock); ret = ath10k_htt_tx_inc_pending(htt); spin_unlock_bh(&ar->htt.tx_lock); if (ret) return ret; skb = ieee80211_tx_dequeue_ni(hw, txq); if (!skb) { spin_lock_bh(&ar->htt.tx_lock); ath10k_htt_tx_dec_pending(htt); spin_unlock_bh(&ar->htt.tx_lock); return -ENOENT; } airtime = ath10k_mac_update_airtime(ar, txq, skb); ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime); skb_len = skb->len; txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb); txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode); is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT); if (is_mgmt) { hdr = (struct ieee80211_hdr *)skb->data; is_presp = ieee80211_is_probe_resp(hdr->frame_control); spin_lock_bh(&ar->htt.tx_lock); ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp); if (ret) { ath10k_htt_tx_dec_pending(htt); spin_unlock_bh(&ar->htt.tx_lock); return ret; } spin_unlock_bh(&ar->htt.tx_lock); } ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false); if (unlikely(ret)) { ath10k_warn(ar, "failed to push frame: %d\n", ret); spin_lock_bh(&ar->htt.tx_lock); ath10k_htt_tx_dec_pending(htt); if (is_mgmt) ath10k_htt_tx_mgmt_dec_pending(htt); spin_unlock_bh(&ar->htt.tx_lock); return ret; } spin_lock_bh(&ar->htt.tx_lock); artxq->num_fw_queued++; spin_unlock_bh(&ar->htt.tx_lock); return skb_len; } static int ath10k_mac_schedule_txq(struct ieee80211_hw *hw, u32 ac) { struct ieee80211_txq *txq; int ret = 0; ieee80211_txq_schedule_start(hw, ac); while ((txq = ieee80211_next_txq(hw, ac))) { while (ath10k_mac_tx_can_push(hw, txq)) { ret = ath10k_mac_tx_push_txq(hw, txq); if (ret < 0) break; } ieee80211_return_txq(hw, txq, false); ath10k_htt_tx_txq_update(hw, txq); if (ret == -EBUSY) break; } ieee80211_txq_schedule_end(hw, ac); return ret; } void ath10k_mac_tx_push_pending(struct ath10k *ar) { struct ieee80211_hw *hw = ar->hw; u32 ac; if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH) return; if (ar->htt.num_pending_tx >= (ar->htt.max_num_pending_tx / 2)) return; rcu_read_lock(); for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (ath10k_mac_schedule_txq(hw, ac) == -EBUSY) break; } rcu_read_unlock(); } EXPORT_SYMBOL(ath10k_mac_tx_push_pending); /************/ /* Scanning */ /************/ void __ath10k_scan_finish(struct ath10k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: break; case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: if (ar->scan.is_roc && ar->scan.roc_notify) ieee80211_remain_on_channel_expired(ar->hw); fallthrough; case ATH10K_SCAN_STARTING: if (!ar->scan.is_roc) { struct cfg80211_scan_info info = { .aborted = ((ar->scan.state == ATH10K_SCAN_ABORTING) || (ar->scan.state == ATH10K_SCAN_STARTING)), }; ieee80211_scan_completed(ar->hw, &info); } ar->scan.state = ATH10K_SCAN_IDLE; ar->scan_channel = NULL; ar->scan.roc_freq = 0; ath10k_offchan_tx_purge(ar); cancel_delayed_work(&ar->scan.timeout); complete(&ar->scan.completed); break; } } void ath10k_scan_finish(struct ath10k *ar) { spin_lock_bh(&ar->data_lock); __ath10k_scan_finish(ar); spin_unlock_bh(&ar->data_lock); } static int ath10k_scan_stop(struct ath10k *ar) { struct wmi_stop_scan_arg arg = { .req_id = 1, /* FIXME */ .req_type = WMI_SCAN_STOP_ONE, .u.scan_id = ATH10K_SCAN_ID, }; int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_stop_scan(ar, &arg); if (ret) { ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret); goto out; } ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ); if (ret == 0) { ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n"); ret = -ETIMEDOUT; } else if (ret > 0) { ret = 0; } out: /* Scan state should be updated upon scan completion but in case * firmware fails to deliver the event (for whatever reason) it is * desired to clean up scan state anyway. Firmware may have just * dropped the scan completion event delivery due to transport pipe * being overflown with data and/or it can recover on its own before * next scan request is submitted. */ spin_lock_bh(&ar->data_lock); if (ar->scan.state != ATH10K_SCAN_IDLE) __ath10k_scan_finish(ar); spin_unlock_bh(&ar->data_lock); return ret; } static void ath10k_scan_abort(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: /* This can happen if timeout worker kicked in and called * abortion while scan completion was being processed. */ break; case ATH10K_SCAN_STARTING: case ATH10K_SCAN_ABORTING: ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n", ath10k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH10K_SCAN_RUNNING: ar->scan.state = ATH10K_SCAN_ABORTING; spin_unlock_bh(&ar->data_lock); ret = ath10k_scan_stop(ar); if (ret) ath10k_warn(ar, "failed to abort scan: %d\n", ret); spin_lock_bh(&ar->data_lock); break; } spin_unlock_bh(&ar->data_lock); } void ath10k_scan_timeout_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, scan.timeout.work); mutex_lock(&ar->conf_mutex); ath10k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); } static int ath10k_start_scan(struct ath10k *ar, const struct wmi_start_scan_arg *arg) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_start_scan(ar, arg); if (ret) return ret; ret = wait_for_completion_timeout(&ar->scan.started, 1 * HZ); if (ret == 0) { ret = ath10k_scan_stop(ar); if (ret) ath10k_warn(ar, "failed to stop scan: %d\n", ret); return -ETIMEDOUT; } /* If we failed to start the scan, return error code at * this point. This is probably due to some issue in the * firmware, but no need to wedge the driver due to that... */ spin_lock_bh(&ar->data_lock); if (ar->scan.state == ATH10K_SCAN_IDLE) { spin_unlock_bh(&ar->data_lock); return -EINVAL; } spin_unlock_bh(&ar->data_lock); return 0; } /**********************/ /* mac80211 callbacks */ /**********************/ static void ath10k_mac_op_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ath10k *ar = hw->priv; struct ath10k_htt *htt = &ar->htt; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct ieee80211_sta *sta = control->sta; struct ieee80211_txq *txq = NULL; enum ath10k_hw_txrx_mode txmode; enum ath10k_mac_tx_path txpath; bool is_htt; bool is_mgmt; int ret; u16 airtime; airtime = ath10k_mac_update_airtime(ar, txq, skb); ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime); txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb); txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode); is_htt = (txpath == ATH10K_MAC_TX_HTT || txpath == ATH10K_MAC_TX_HTT_MGMT); is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT); if (is_htt) { bool is_presp = false; spin_lock_bh(&ar->htt.tx_lock); if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) { struct ieee80211_hdr *hdr = (void *)skb->data; is_presp = ieee80211_is_probe_resp(hdr->frame_control); } ret = ath10k_htt_tx_inc_pending(htt); if (ret) { ath10k_warn(ar, "failed to increase tx pending count: %d, dropping\n", ret); spin_unlock_bh(&ar->htt.tx_lock); ieee80211_free_txskb(ar->hw, skb); return; } ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp); if (ret) { ath10k_dbg(ar, ATH10K_DBG_MAC, "failed to increase tx mgmt pending count: %d, dropping\n", ret); ath10k_htt_tx_dec_pending(htt); spin_unlock_bh(&ar->htt.tx_lock); ieee80211_free_txskb(ar->hw, skb); return; } spin_unlock_bh(&ar->htt.tx_lock); } ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false); if (ret) { ath10k_warn(ar, "failed to transmit frame: %d\n", ret); if (is_htt) { spin_lock_bh(&ar->htt.tx_lock); ath10k_htt_tx_dec_pending(htt); if (is_mgmt) ath10k_htt_tx_mgmt_dec_pending(htt); spin_unlock_bh(&ar->htt.tx_lock); } return; } } static void ath10k_mac_op_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ath10k *ar = hw->priv; int ret; u8 ac = txq->ac; ath10k_htt_tx_txq_update(hw, txq); if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH) return; spin_lock_bh(&ar->queue_lock[ac]); ieee80211_txq_schedule_start(hw, ac); txq = ieee80211_next_txq(hw, ac); if (!txq) goto out; while (ath10k_mac_tx_can_push(hw, txq)) { ret = ath10k_mac_tx_push_txq(hw, txq); if (ret < 0) break; } ieee80211_return_txq(hw, txq, false); ath10k_htt_tx_txq_update(hw, txq); out: ieee80211_txq_schedule_end(hw, ac); spin_unlock_bh(&ar->queue_lock[ac]); } /* Must not be called with conf_mutex held as workers can use that also. */ void ath10k_drain_tx(struct ath10k *ar) { lockdep_assert_not_held(&ar->conf_mutex); /* make sure rcu-protected mac80211 tx path itself is drained */ synchronize_net(); ath10k_offchan_tx_purge(ar); ath10k_mgmt_over_wmi_tx_purge(ar); cancel_work_sync(&ar->offchan_tx_work); cancel_work_sync(&ar->wmi_mgmt_tx_work); } void ath10k_halt(struct ath10k *ar) { struct ath10k_vif *arvif; lockdep_assert_held(&ar->conf_mutex); clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ar->filter_flags = 0; ar->monitor = false; ar->monitor_arvif = NULL; if (ar->monitor_started) ath10k_monitor_stop(ar); ar->monitor_started = false; ar->tx_paused = 0; ath10k_scan_finish(ar); ath10k_peer_cleanup_all(ar); ath10k_stop_radar_confirmation(ar); ath10k_core_stop(ar); ath10k_hif_power_down(ar); spin_lock_bh(&ar->data_lock); list_for_each_entry(arvif, &ar->arvifs, list) ath10k_mac_vif_beacon_cleanup(arvif); spin_unlock_bh(&ar->data_lock); } static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); *tx_ant = ar->cfg_tx_chainmask; *rx_ant = ar->cfg_rx_chainmask; mutex_unlock(&ar->conf_mutex); return 0; } static bool ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg) { /* It is not clear that allowing gaps in chainmask * is helpful. Probably it will not do what user * is hoping for, so warn in that case. */ if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0) return true; ath10k_warn(ar, "mac %s antenna chainmask is invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n", dbg, cm); return false; } static int ath10k_mac_get_vht_cap_bf_sts(struct ath10k *ar) { int nsts = ar->vht_cap_info; nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; /* If firmware does not deliver to host number of space-time * streams supported, assume it support up to 4 BF STS and return * the value for VHT CAP: nsts-1) */ if (nsts == 0) return 3; return nsts; } static int ath10k_mac_get_vht_cap_bf_sound_dim(struct ath10k *ar) { int sound_dim = ar->vht_cap_info; sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; /* If the sounding dimension is not advertised by the firmware, * let's use a default value of 1 */ if (sound_dim == 0) return 1; return sound_dim; } static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar) { struct ieee80211_sta_vht_cap vht_cap = {0}; struct ath10k_hw_params *hw = &ar->hw_params; u16 mcs_map; u32 val; int i; vht_cap.vht_supported = 1; vht_cap.cap = ar->vht_cap_info; if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) { val = ath10k_mac_get_vht_cap_bf_sts(ar); val <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; val &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; vht_cap.cap |= val; } if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) { val = ath10k_mac_get_vht_cap_bf_sound_dim(ar); val <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; val &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; vht_cap.cap |= val; } mcs_map = 0; for (i = 0; i < 8; i++) { if ((i < ar->num_rf_chains) && (ar->cfg_tx_chainmask & BIT(i))) mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); else mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); } if (ar->cfg_tx_chainmask <= 1) vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC; vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); /* If we are supporting 160Mhz or 80+80, then the NIC may be able to do * a restricted NSS for 160 or 80+80 vs what it can do for 80Mhz. Give * user-space a clue if that is the case. */ if ((vht_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) && (hw->vht160_mcs_rx_highest != 0 || hw->vht160_mcs_tx_highest != 0)) { vht_cap.vht_mcs.rx_highest = cpu_to_le16(hw->vht160_mcs_rx_highest); vht_cap.vht_mcs.tx_highest = cpu_to_le16(hw->vht160_mcs_tx_highest); } return vht_cap; } static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar) { int i; struct ieee80211_sta_ht_cap ht_cap = {0}; if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED)) return ht_cap; ht_cap.ht_supported = 1; ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; ht_cap.cap |= WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) { u32 smps; smps = WLAN_HT_CAP_SM_PS_DYNAMIC; smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; ht_cap.cap |= smps; } if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC && (ar->cfg_tx_chainmask > 1)) ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) { u32 stbc; stbc = ar->ht_cap_info; stbc &= WMI_HT_CAP_RX_STBC; stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc &= IEEE80211_HT_CAP_RX_STBC; ht_cap.cap |= stbc; } if (ar->ht_cap_info & WMI_HT_CAP_LDPC || (ar->ht_cap_info & WMI_HT_CAP_RX_LDPC && (ar->ht_cap_info & WMI_HT_CAP_TX_LDPC))) ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT) ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; /* max AMSDU is implicitly taken from vht_cap_info */ if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; for (i = 0; i < ar->num_rf_chains; i++) { if (ar->cfg_rx_chainmask & BIT(i)) ht_cap.mcs.rx_mask[i] = 0xFF; } ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; return ht_cap; } static void ath10k_mac_setup_ht_vht_cap(struct ath10k *ar) { struct ieee80211_supported_band *band; struct ieee80211_sta_vht_cap vht_cap; struct ieee80211_sta_ht_cap ht_cap; ht_cap = ath10k_get_ht_cap(ar); vht_cap = ath10k_create_vht_cap(ar); if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { band = &ar->mac.sbands[NL80211_BAND_2GHZ]; band->ht_cap = ht_cap; } if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { band = &ar->mac.sbands[NL80211_BAND_5GHZ]; band->ht_cap = ht_cap; band->vht_cap = vht_cap; } } static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant) { int ret; bool is_valid_tx_chain_mask, is_valid_rx_chain_mask; lockdep_assert_held(&ar->conf_mutex); is_valid_tx_chain_mask = ath10k_check_chain_mask(ar, tx_ant, "tx"); is_valid_rx_chain_mask = ath10k_check_chain_mask(ar, rx_ant, "rx"); if (!is_valid_tx_chain_mask || !is_valid_rx_chain_mask) return -EINVAL; ar->cfg_tx_chainmask = tx_ant; ar->cfg_rx_chainmask = rx_ant; if ((ar->state != ATH10K_STATE_ON) && (ar->state != ATH10K_STATE_RESTARTED)) return 0; ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask, tx_ant); if (ret) { ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n", ret, tx_ant); return ret; } ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask, rx_ant); if (ret) { ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n", ret, rx_ant); return ret; } /* Reload HT/VHT capability */ ath10k_mac_setup_ht_vht_cap(ar); return 0; } static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = __ath10k_set_antenna(ar, tx_ant, rx_ant); mutex_unlock(&ar->conf_mutex); return ret; } static int __ath10k_fetch_bb_timing_dt(struct ath10k *ar, struct wmi_bb_timing_cfg_arg *bb_timing) { struct device_node *node; const char *fem_name; int ret; node = ar->dev->of_node; if (!node) return -ENOENT; ret = of_property_read_string_index(node, "ext-fem-name", 0, &fem_name); if (ret) return -ENOENT; /* * If external Front End module used in hardware, then default base band timing * parameter cannot be used since they were fine tuned for reference hardware, * so choosing different value suitable for that external FEM. */ if (!strcmp("microsemi-lx5586", fem_name)) { bb_timing->bb_tx_timing = 0x00; bb_timing->bb_xpa_timing = 0x0101; } else { return -ENOENT; } ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot bb_tx_timing 0x%x bb_xpa_timing 0x%x\n", bb_timing->bb_tx_timing, bb_timing->bb_xpa_timing); return 0; } static int ath10k_mac_rfkill_config(struct ath10k *ar) { u32 param; int ret; if (ar->hw_values->rfkill_pin == 0) { ath10k_warn(ar, "ath10k does not support hardware rfkill with this device\n"); return -EOPNOTSUPP; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac rfkill_pin %d rfkill_cfg %d rfkill_on_level %d", ar->hw_values->rfkill_pin, ar->hw_values->rfkill_cfg, ar->hw_values->rfkill_on_level); param = FIELD_PREP(WMI_TLV_RFKILL_CFG_RADIO_LEVEL, ar->hw_values->rfkill_on_level) | FIELD_PREP(WMI_TLV_RFKILL_CFG_GPIO_PIN_NUM, ar->hw_values->rfkill_pin) | FIELD_PREP(WMI_TLV_RFKILL_CFG_PIN_AS_GPIO, ar->hw_values->rfkill_cfg); ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rfkill_config, param); if (ret) { ath10k_warn(ar, "failed to set rfkill config 0x%x: %d\n", param, ret); return ret; } return 0; } int ath10k_mac_rfkill_enable_radio(struct ath10k *ar, bool enable) { enum wmi_tlv_rfkill_enable_radio param; int ret; if (enable) param = WMI_TLV_RFKILL_ENABLE_RADIO_ON; else param = WMI_TLV_RFKILL_ENABLE_RADIO_OFF; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac rfkill enable %d", param); ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rfkill_enable, param); if (ret) { ath10k_warn(ar, "failed to set rfkill enable param %d: %d\n", param, ret); return ret; } return 0; } static int ath10k_start(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; u32 param; int ret = 0; struct wmi_bb_timing_cfg_arg bb_timing = {0}; /* * This makes sense only when restarting hw. It is harmless to call * unconditionally. This is necessary to make sure no HTT/WMI tx * commands will be submitted while restarting. */ ath10k_drain_tx(ar); mutex_lock(&ar->conf_mutex); switch (ar->state) { case ATH10K_STATE_OFF: ar->state = ATH10K_STATE_ON; break; case ATH10K_STATE_RESTARTING: ar->state = ATH10K_STATE_RESTARTED; break; case ATH10K_STATE_ON: case ATH10K_STATE_RESTARTED: case ATH10K_STATE_WEDGED: WARN_ON(1); ret = -EINVAL; goto err; case ATH10K_STATE_UTF: ret = -EBUSY; goto err; } spin_lock_bh(&ar->data_lock); if (ar->hw_rfkill_on) { ar->hw_rfkill_on = false; spin_unlock_bh(&ar->data_lock); goto err; } spin_unlock_bh(&ar->data_lock); ret = ath10k_hif_power_up(ar, ATH10K_FIRMWARE_MODE_NORMAL); if (ret) { ath10k_err(ar, "Could not init hif: %d\n", ret); goto err_off; } ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL, &ar->normal_mode_fw); if (ret) { ath10k_err(ar, "Could not init core: %d\n", ret); goto err_power_down; } if (ar->sys_cap_info & WMI_TLV_SYS_CAP_INFO_RFKILL) { ret = ath10k_mac_rfkill_config(ar); if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "failed to configure rfkill: %d", ret); goto err_core_stop; } } param = ar->wmi.pdev_param->pmf_qos; ret = ath10k_wmi_pdev_set_param(ar, param, 1); if (ret) { ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret); goto err_core_stop; } param = ar->wmi.pdev_param->dynamic_bw; ret = ath10k_wmi_pdev_set_param(ar, param, 1); if (ret) { ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret); goto err_core_stop; } if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) { ret = ath10k_wmi_scan_prob_req_oui(ar, ar->mac_addr); if (ret) { ath10k_err(ar, "failed to set prob req oui: %i\n", ret); goto err_core_stop; } } if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) { ret = ath10k_wmi_adaptive_qcs(ar, true); if (ret) { ath10k_warn(ar, "failed to enable adaptive qcs: %d\n", ret); goto err_core_stop; } } if (test_bit(WMI_SERVICE_BURST, ar->wmi.svc_map)) { param = ar->wmi.pdev_param->burst_enable; ret = ath10k_wmi_pdev_set_param(ar, param, 0); if (ret) { ath10k_warn(ar, "failed to disable burst: %d\n", ret); goto err_core_stop; } } param = ar->wmi.pdev_param->idle_ps_config; ret = ath10k_wmi_pdev_set_param(ar, param, 1); if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "failed to enable idle_ps_config: %d\n", ret); goto err_core_stop; } __ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask); /* * By default FW set ARP frames ac to voice (6). In that case ARP * exchange is not working properly for UAPSD enabled AP. ARP requests * which arrives with access category 0 are processed by network stack * and send back with access category 0, but FW changes access category * to 6. Set ARP frames access category to best effort (0) solves * this problem. */ param = ar->wmi.pdev_param->arp_ac_override; ret = ath10k_wmi_pdev_set_param(ar, param, 0); if (ret) { ath10k_warn(ar, "failed to set arp ac override parameter: %d\n", ret); goto err_core_stop; } if (test_bit(ATH10K_FW_FEATURE_SUPPORTS_ADAPTIVE_CCA, ar->running_fw->fw_file.fw_features)) { ret = ath10k_wmi_pdev_enable_adaptive_cca(ar, 1, WMI_CCA_DETECT_LEVEL_AUTO, WMI_CCA_DETECT_MARGIN_AUTO); if (ret) { ath10k_warn(ar, "failed to enable adaptive cca: %d\n", ret); goto err_core_stop; } } param = ar->wmi.pdev_param->ani_enable; ret = ath10k_wmi_pdev_set_param(ar, param, 1); if (ret) { ath10k_warn(ar, "failed to enable ani by default: %d\n", ret); goto err_core_stop; } ar->ani_enabled = true; if (ath10k_peer_stats_enabled(ar)) { param = ar->wmi.pdev_param->peer_stats_update_period; ret = ath10k_wmi_pdev_set_param(ar, param, PEER_DEFAULT_STATS_UPDATE_PERIOD); if (ret) { ath10k_warn(ar, "failed to set peer stats period : %d\n", ret); goto err_core_stop; } } param = ar->wmi.pdev_param->enable_btcoex; if (test_bit(WMI_SERVICE_COEX_GPIO, ar->wmi.svc_map) && test_bit(ATH10K_FW_FEATURE_BTCOEX_PARAM, ar->running_fw->fw_file.fw_features) && ar->coex_support) { ret = ath10k_wmi_pdev_set_param(ar, param, 0); if (ret) { ath10k_warn(ar, "failed to set btcoex param: %d\n", ret); goto err_core_stop; } clear_bit(ATH10K_FLAG_BTCOEX, &ar->dev_flags); } if (test_bit(WMI_SERVICE_BB_TIMING_CONFIG_SUPPORT, ar->wmi.svc_map)) { ret = __ath10k_fetch_bb_timing_dt(ar, &bb_timing); if (!ret) { ret = ath10k_wmi_pdev_bb_timing(ar, &bb_timing); if (ret) { ath10k_warn(ar, "failed to set bb timings: %d\n", ret); goto err_core_stop; } } } ar->num_started_vdevs = 0; ath10k_regd_update(ar); ath10k_spectral_start(ar); ath10k_thermal_set_throttling(ar); ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_IDLE; mutex_unlock(&ar->conf_mutex); return 0; err_core_stop: ath10k_core_stop(ar); err_power_down: ath10k_hif_power_down(ar); err_off: ar->state = ATH10K_STATE_OFF; err: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_stop(struct ieee80211_hw *hw, bool suspend) { struct ath10k *ar = hw->priv; u32 opt; ath10k_drain_tx(ar); mutex_lock(&ar->conf_mutex); if (ar->state != ATH10K_STATE_OFF) { if (!ar->hw_rfkill_on) { /* If the current driver state is RESTARTING but not yet * fully RESTARTED because of incoming suspend event, * then ath10k_halt() is already called via * ath10k_core_restart() and should not be called here. */ if (ar->state != ATH10K_STATE_RESTARTING) { ath10k_halt(ar); } else { /* Suspending here, because when in RESTARTING * state, ath10k_core_stop() skips * ath10k_wait_for_suspend(). */ opt = WMI_PDEV_SUSPEND_AND_DISABLE_INTR; ath10k_wait_for_suspend(ar, opt); } } ar->state = ATH10K_STATE_OFF; } mutex_unlock(&ar->conf_mutex); cancel_work_sync(&ar->set_coverage_class_work); cancel_delayed_work_sync(&ar->scan.timeout); cancel_work_sync(&ar->restart_work); } static int ath10k_config_ps(struct ath10k *ar) { struct ath10k_vif *arvif; int ret = 0; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ret = ath10k_mac_vif_setup_ps(arvif); if (ret) { ath10k_warn(ar, "failed to setup powersave: %d\n", ret); break; } } return ret; } static int ath10k_config(struct ieee80211_hw *hw, u32 changed) { struct ath10k *ar = hw->priv; struct ieee80211_conf *conf = &hw->conf; int ret = 0; mutex_lock(&ar->conf_mutex); if (changed & IEEE80211_CONF_CHANGE_PS) ath10k_config_ps(ar); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { ar->monitor = conf->flags & IEEE80211_CONF_MONITOR; ret = ath10k_monitor_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); } mutex_unlock(&ar->conf_mutex); return ret; } static u32 get_nss_from_chainmask(u16 chain_mask) { if ((chain_mask & 0xf) == 0xf) return 4; else if ((chain_mask & 0x7) == 0x7) return 3; else if ((chain_mask & 0x3) == 0x3) return 2; return 1; } static int ath10k_mac_set_txbf_conf(struct ath10k_vif *arvif) { u32 value = 0; struct ath10k *ar = arvif->ar; int nsts; int sound_dim; if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_BEFORE_ASSOC) return 0; nsts = ath10k_mac_get_vht_cap_bf_sts(ar); if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET); sound_dim = ath10k_mac_get_vht_cap_bf_sound_dim(ar); if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET); if (!value) return 0; if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFER | WMI_VDEV_PARAM_TXBF_SU_TX_BFER); if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFEE | WMI_VDEV_PARAM_TXBF_SU_TX_BFEE); return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, ar->wmi.vdev_param->txbf, value); } static void ath10k_update_vif_offload(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k *ar = hw->priv; u32 vdev_param; int ret; if (ath10k_frame_mode != ATH10K_HW_TXRX_ETHERNET || ar->wmi.vdev_param->tx_encap_type == WMI_VDEV_PARAM_UNSUPPORTED || (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP)) vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; vdev_param = ar->wmi.vdev_param->tx_encap_type; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ATH10K_HW_TXRX_NATIVE_WIFI); /* 10.X firmware does not support this VDEV parameter. Do not warn */ if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n", arvif->vdev_id, ret); } } /* * TODO: * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE, * because we will send mgmt frames without CCK. This requirement * for P2P_FIND/GO_NEG should be handled by checking CCK flag * in the TX packet. */ static int ath10k_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_peer *peer; enum wmi_sta_powersave_param param; int ret = 0; u32 value; int bit; int i; u32 vdev_param; vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; mutex_lock(&ar->conf_mutex); memset(arvif, 0, sizeof(*arvif)); ath10k_mac_txq_init(vif->txq); arvif->ar = ar; arvif->vif = vif; INIT_LIST_HEAD(&arvif->list); INIT_WORK(&arvif->ap_csa_work, ath10k_mac_vif_ap_csa_work); INIT_DELAYED_WORK(&arvif->connection_loss_work, ath10k_mac_vif_sta_connection_loss_work); for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) { arvif->bitrate_mask.control[i].legacy = 0xffffffff; memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff, sizeof(arvif->bitrate_mask.control[i].ht_mcs)); memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff, sizeof(arvif->bitrate_mask.control[i].vht_mcs)); } if (ar->num_peers >= ar->max_num_peers) { ath10k_warn(ar, "refusing vdev creation due to insufficient peer entry resources in firmware\n"); ret = -ENOBUFS; goto err; } if (ar->free_vdev_map == 0) { ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n"); ret = -EBUSY; goto err; } bit = __ffs64(ar->free_vdev_map); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n", bit, ar->free_vdev_map); arvif->vdev_id = bit; arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype(ar, WMI_VDEV_SUBTYPE_NONE); switch (vif->type) { case NL80211_IFTYPE_P2P_DEVICE: arvif->vdev_type = WMI_VDEV_TYPE_STA; arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype (ar, WMI_VDEV_SUBTYPE_P2P_DEVICE); break; case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_STATION: arvif->vdev_type = WMI_VDEV_TYPE_STA; if (vif->p2p) arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype (ar, WMI_VDEV_SUBTYPE_P2P_CLIENT); break; case NL80211_IFTYPE_ADHOC: arvif->vdev_type = WMI_VDEV_TYPE_IBSS; break; case NL80211_IFTYPE_MESH_POINT: if (test_bit(WMI_SERVICE_MESH_11S, ar->wmi.svc_map)) { arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype (ar, WMI_VDEV_SUBTYPE_MESH_11S); } else if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) { ret = -EINVAL; ath10k_warn(ar, "must load driver with rawmode=1 to add mesh interfaces\n"); goto err; } arvif->vdev_type = WMI_VDEV_TYPE_AP; break; case NL80211_IFTYPE_AP: arvif->vdev_type = WMI_VDEV_TYPE_AP; if (vif->p2p) arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype (ar, WMI_VDEV_SUBTYPE_P2P_GO); break; case NL80211_IFTYPE_MONITOR: arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; break; default: WARN_ON(1); break; } /* Using vdev_id as queue number will make it very easy to do per-vif * tx queue locking. This shouldn't wrap due to interface combinations * but do a modulo for correctness sake and prevent using offchannel tx * queues for regular vif tx. */ vif->cab_queue = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1); for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++) vif->hw_queue[i] = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1); /* Some firmware revisions don't wait for beacon tx completion before * sending another SWBA event. This could lead to hardware using old * (freed) beacon data in some cases, e.g. tx credit starvation * combined with missed TBTT. This is very rare. * * On non-IOMMU-enabled hosts this could be a possible security issue * because hw could beacon some random data on the air. On * IOMMU-enabled hosts DMAR faults would occur in most cases and target * device would crash. * * Since there are no beacon tx completions (implicit nor explicit) * propagated to host the only workaround for this is to allocate a * DMA-coherent buffer for a lifetime of a vif and use it for all * beacon tx commands. Worst case for this approach is some beacons may * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap. */ if (vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MESH_POINT || vif->type == NL80211_IFTYPE_AP) { if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) { arvif->beacon_buf = kmalloc(IEEE80211_MAX_FRAME_LEN, GFP_KERNEL); /* Using a kernel pointer in place of a dma_addr_t * token can lead to undefined behavior if that * makes it into cache management functions. Use a * known-invalid address token instead, which * avoids the warning and makes it easier to catch * bugs if it does end up getting used. */ arvif->beacon_paddr = DMA_MAPPING_ERROR; } else { arvif->beacon_buf = dma_alloc_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, &arvif->beacon_paddr, GFP_ATOMIC); } if (!arvif->beacon_buf) { ret = -ENOMEM; ath10k_warn(ar, "failed to allocate beacon buffer: %d\n", ret); goto err; } } if (test_bit(ATH10K_FLAG_HW_CRYPTO_DISABLED, &ar->dev_flags)) arvif->nohwcrypt = true; if (arvif->nohwcrypt && !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) { ret = -EINVAL; ath10k_warn(ar, "cryptmode module param needed for sw crypto\n"); goto err; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n", arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, arvif->beacon_buf ? "single-buf" : "per-skb"); ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, vif->addr); if (ret) { ath10k_warn(ar, "failed to create WMI vdev %i: %d\n", arvif->vdev_id, ret); goto err; } if (test_bit(WMI_SERVICE_VDEV_DISABLE_4_ADDR_SRC_LRN_SUPPORT, ar->wmi.svc_map)) { vdev_param = ar->wmi.vdev_param->disable_4addr_src_lrn; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, WMI_VDEV_DISABLE_4_ADDR_SRC_LRN); if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "failed to disable 4addr src lrn vdev %i: %d\n", arvif->vdev_id, ret); } } ar->free_vdev_map &= ~(1LL << arvif->vdev_id); spin_lock_bh(&ar->data_lock); list_add(&arvif->list, &ar->arvifs); spin_unlock_bh(&ar->data_lock); /* It makes no sense to have firmware do keepalives. mac80211 already * takes care of this with idle connection polling. */ ret = ath10k_mac_vif_disable_keepalive(arvif); if (ret) { ath10k_warn(ar, "failed to disable keepalive on vdev %i: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } arvif->def_wep_key_idx = -1; ath10k_update_vif_offload(hw, vif); /* Configuring number of spatial stream for monitor interface is causing * target assert in qca9888 and qca6174. */ if (ar->cfg_tx_chainmask && (vif->type != NL80211_IFTYPE_MONITOR)) { u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask); vdev_param = ar->wmi.vdev_param->nss; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss); if (ret) { ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n", arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret); goto err_vdev_delete; } } if (arvif->vdev_type == WMI_VDEV_TYPE_AP || arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { ret = ath10k_peer_create(ar, vif, NULL, arvif->vdev_id, vif->addr, WMI_PEER_TYPE_DEFAULT); if (ret) { ath10k_warn(ar, "failed to create vdev %i peer for AP/IBSS: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, vif->addr); if (!peer) { ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n", vif->addr, arvif->vdev_id); spin_unlock_bh(&ar->data_lock); ret = -ENOENT; goto err_peer_delete; } arvif->peer_id = find_first_bit(peer->peer_ids, ATH10K_MAX_NUM_PEER_IDS); spin_unlock_bh(&ar->data_lock); } else { arvif->peer_id = HTT_INVALID_PEERID; } if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { ret = ath10k_mac_set_kickout(arvif); if (ret) { ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } } if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { param = WMI_STA_PS_PARAM_RX_WAKE_POLICY; value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif); if (ret) { ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } ret = ath10k_mac_vif_recalc_ps_poll_count(arvif); if (ret) { ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } } ret = ath10k_mac_set_txbf_conf(arvif); if (ret) { ath10k_warn(ar, "failed to set txbf for vdev %d: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold); if (ret) { ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } arvif->txpower = vif->bss_conf.txpower; ret = ath10k_mac_txpower_recalc(ar); if (ret) { ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); goto err_peer_delete; } if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) { vdev_param = ar->wmi.vdev_param->rtt_responder_role; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->ftm_responder); /* It is harmless to not set FTM role. Do not warn */ if (ret && ret != -EOPNOTSUPP) ath10k_warn(ar, "failed to set vdev %i FTM Responder: %d\n", arvif->vdev_id, ret); } if (vif->type == NL80211_IFTYPE_MONITOR) { ar->monitor_arvif = arvif; ret = ath10k_monitor_recalc(ar); if (ret) { ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); goto err_peer_delete; } } spin_lock_bh(&ar->htt.tx_lock); if (!ar->tx_paused) ieee80211_wake_queue(ar->hw, arvif->vdev_id); spin_unlock_bh(&ar->htt.tx_lock); mutex_unlock(&ar->conf_mutex); return 0; err_peer_delete: if (arvif->vdev_type == WMI_VDEV_TYPE_AP || arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr); ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id, vif->addr); } err_vdev_delete: ath10k_wmi_vdev_delete(ar, arvif->vdev_id); ar->free_vdev_map |= 1LL << arvif->vdev_id; spin_lock_bh(&ar->data_lock); list_del(&arvif->list); spin_unlock_bh(&ar->data_lock); err: if (arvif->beacon_buf) { if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) kfree(arvif->beacon_buf); else dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, arvif->beacon_buf, arvif->beacon_paddr); arvif->beacon_buf = NULL; } mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_mac_vif_tx_unlock_all(struct ath10k_vif *arvif) { int i; for (i = 0; i < BITS_PER_LONG; i++) ath10k_mac_vif_tx_unlock(arvif, i); } static void ath10k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_peer *peer; unsigned long time_left; int ret; int i; cancel_work_sync(&arvif->ap_csa_work); cancel_delayed_work_sync(&arvif->connection_loss_work); mutex_lock(&ar->conf_mutex); ret = ath10k_spectral_vif_stop(arvif); if (ret) ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n", arvif->vdev_id, ret); ar->free_vdev_map |= 1LL << arvif->vdev_id; spin_lock_bh(&ar->data_lock); list_del(&arvif->list); spin_unlock_bh(&ar->data_lock); if (arvif->vdev_type == WMI_VDEV_TYPE_AP || arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id, vif->addr); if (ret) ath10k_warn(ar, "failed to submit AP/IBSS self-peer removal on vdev %i: %d\n", arvif->vdev_id, ret); ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id, vif->addr); kfree(arvif->u.ap.noa_data); } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n", arvif->vdev_id); ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id); if (ret) ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n", arvif->vdev_id, ret); if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) { time_left = wait_for_completion_timeout(&ar->vdev_delete_done, ATH10K_VDEV_DELETE_TIMEOUT_HZ); if (time_left == 0) { ath10k_warn(ar, "Timeout in receiving vdev delete response\n"); goto out; } } /* Some firmware revisions don't notify host about self-peer removal * until after associated vdev is deleted. */ if (arvif->vdev_type == WMI_VDEV_TYPE_AP || arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id, vif->addr); if (ret) ath10k_warn(ar, "failed to remove AP self-peer on vdev %i: %d\n", arvif->vdev_id, ret); spin_lock_bh(&ar->data_lock); ar->num_peers--; spin_unlock_bh(&ar->data_lock); } spin_lock_bh(&ar->data_lock); for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) { peer = ar->peer_map[i]; if (!peer) continue; if (peer->vif == vif) { ath10k_warn(ar, "found vif peer %pM entry on vdev %i after it was supposedly removed\n", vif->addr, arvif->vdev_id); peer->vif = NULL; } } /* Clean this up late, less opportunity for firmware to access * DMA memory we have deleted. */ ath10k_mac_vif_beacon_cleanup(arvif); spin_unlock_bh(&ar->data_lock); ath10k_peer_cleanup(ar, arvif->vdev_id); ath10k_mac_txq_unref(ar, vif->txq); if (vif->type == NL80211_IFTYPE_MONITOR) { ar->monitor_arvif = NULL; ret = ath10k_monitor_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); } ret = ath10k_mac_txpower_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); spin_lock_bh(&ar->htt.tx_lock); ath10k_mac_vif_tx_unlock_all(arvif); spin_unlock_bh(&ar->htt.tx_lock); ath10k_mac_txq_unref(ar, vif->txq); out: mutex_unlock(&ar->conf_mutex); } /* * FIXME: Has to be verified. */ #define SUPPORTED_FILTERS \ (FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_PSPOLL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_PROBE_REQ | \ FIF_FCSFAIL) static void ath10k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct ath10k *ar = hw->priv; int ret; unsigned int supported = SUPPORTED_FILTERS; mutex_lock(&ar->conf_mutex); if (ar->hw_params.mcast_frame_registration) supported |= FIF_MCAST_ACTION; *total_flags &= supported; ar->filter_flags = *total_flags; ret = ath10k_monitor_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); mutex_unlock(&ar->conf_mutex); } static void ath10k_recalculate_mgmt_rate(struct ath10k *ar, struct ieee80211_vif *vif, struct cfg80211_chan_def *def) { struct ath10k_vif *arvif = (void *)vif->drv_priv; const struct ieee80211_supported_band *sband; u8 basic_rate_idx; int hw_rate_code; u32 vdev_param; u16 bitrate; int ret; lockdep_assert_held(&ar->conf_mutex); sband = ar->hw->wiphy->bands[def->chan->band]; basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1; bitrate = sband->bitrates[basic_rate_idx].bitrate; hw_rate_code = ath10k_mac_get_rate_hw_value(bitrate); if (hw_rate_code < 0) { ath10k_warn(ar, "bitrate not supported %d\n", bitrate); return; } vdev_param = ar->wmi.vdev_param->mgmt_rate; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, hw_rate_code); if (ret) ath10k_warn(ar, "failed to set mgmt tx rate %d\n", ret); } static void ath10k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct cfg80211_chan_def def; u32 vdev_param, pdev_param, slottime, preamble; u16 bitrate, hw_value; u8 rate, rateidx; int ret = 0, mcast_rate; enum nl80211_band band; mutex_lock(&ar->conf_mutex); if (changed & BSS_CHANGED_IBSS) ath10k_control_ibss(arvif, vif); if (changed & BSS_CHANGED_BEACON_INT) { arvif->beacon_interval = info->beacon_int; vdev_param = ar->wmi.vdev_param->beacon_interval; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->beacon_interval); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d beacon_interval %d\n", arvif->vdev_id, arvif->beacon_interval); if (ret) ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BEACON) { ath10k_dbg(ar, ATH10K_DBG_MAC, "vdev %d set beacon tx mode to staggered\n", arvif->vdev_id); pdev_param = ar->wmi.pdev_param->beacon_tx_mode; ret = ath10k_wmi_pdev_set_param(ar, pdev_param, WMI_BEACON_STAGGERED_MODE); if (ret) ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n", arvif->vdev_id, ret); ret = ath10k_mac_setup_bcn_tmpl(arvif); if (ret) ath10k_warn(ar, "failed to update beacon template: %d\n", ret); if (ieee80211_vif_is_mesh(vif)) { /* mesh doesn't use SSID but firmware needs it */ arvif->u.ap.ssid_len = 4; memcpy(arvif->u.ap.ssid, "mesh", arvif->u.ap.ssid_len); } } if (changed & BSS_CHANGED_AP_PROBE_RESP) { ret = ath10k_mac_setup_prb_tmpl(arvif); if (ret) ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n", arvif->vdev_id, ret); } if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) { arvif->dtim_period = info->dtim_period; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d dtim_period %d\n", arvif->vdev_id, arvif->dtim_period); vdev_param = ar->wmi.vdev_param->dtim_period; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->dtim_period); if (ret) ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_SSID && vif->type == NL80211_IFTYPE_AP) { arvif->u.ap.ssid_len = vif->cfg.ssid_len; if (vif->cfg.ssid_len) memcpy(arvif->u.ap.ssid, vif->cfg.ssid, vif->cfg.ssid_len); arvif->u.ap.hidden_ssid = info->hidden_ssid; } if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) ether_addr_copy(arvif->bssid, info->bssid); if (changed & BSS_CHANGED_FTM_RESPONDER && arvif->ftm_responder != info->ftm_responder && test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) { arvif->ftm_responder = info->ftm_responder; vdev_param = ar->wmi.vdev_param->rtt_responder_role; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->ftm_responder); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d ftm_responder %d:ret %d\n", arvif->vdev_id, arvif->ftm_responder, ret); } if (changed & BSS_CHANGED_BEACON_ENABLED) ath10k_control_beaconing(arvif, info); if (changed & BSS_CHANGED_ERP_CTS_PROT) { arvif->use_cts_prot = info->use_cts_prot; ret = ath10k_recalc_rtscts_prot(arvif); if (ret) ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); if (ath10k_mac_can_set_cts_prot(arvif)) { ret = ath10k_mac_set_cts_prot(arvif); if (ret) ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n", arvif->vdev_id, ret); } } if (changed & BSS_CHANGED_ERP_SLOT) { if (info->use_short_slot) slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ else slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n", arvif->vdev_id, slottime); vdev_param = ar->wmi.vdev_param->slot_time; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, slottime); if (ret) ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { if (info->use_short_preamble) preamble = WMI_VDEV_PREAMBLE_SHORT; else preamble = WMI_VDEV_PREAMBLE_LONG; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d preamble %dn", arvif->vdev_id, preamble); vdev_param = ar->wmi.vdev_param->preamble; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, preamble); if (ret) ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ASSOC) { if (vif->cfg.assoc) { /* Workaround: Make sure monitor vdev is not running * when associating to prevent some firmware revisions * (e.g. 10.1 and 10.2) from crashing. */ if (ar->monitor_started) ath10k_monitor_stop(ar); ath10k_bss_assoc(hw, vif, info); ath10k_monitor_recalc(ar); } else { ath10k_bss_disassoc(hw, vif); } } if (changed & BSS_CHANGED_TXPOWER) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n", arvif->vdev_id, info->txpower); arvif->txpower = info->txpower; ret = ath10k_mac_txpower_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); } if (changed & BSS_CHANGED_PS) { arvif->ps = vif->cfg.ps; ret = ath10k_config_ps(ar); if (ret) ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_MCAST_RATE && !ath10k_mac_vif_chan(arvif->vif, &def)) { band = def.chan->band; mcast_rate = vif->bss_conf.mcast_rate[band]; if (mcast_rate > 0) rateidx = mcast_rate - 1; else rateidx = ffs(vif->bss_conf.basic_rates) - 1; if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) rateidx += ATH10K_MAC_FIRST_OFDM_RATE_IDX; bitrate = ath10k_wmi_legacy_rates[rateidx].bitrate; hw_value = ath10k_wmi_legacy_rates[rateidx].hw_value; if (ath10k_mac_bitrate_is_cck(bitrate)) preamble = WMI_RATE_PREAMBLE_CCK; else preamble = WMI_RATE_PREAMBLE_OFDM; rate = ATH10K_HW_RATECODE(hw_value, 0, preamble); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d mcast_rate %x\n", arvif->vdev_id, rate); vdev_param = ar->wmi.vdev_param->mcast_data_rate; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate); if (ret) ath10k_warn(ar, "failed to set mcast rate on vdev %i: %d\n", arvif->vdev_id, ret); vdev_param = ar->wmi.vdev_param->bcast_data_rate; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate); if (ret) ath10k_warn(ar, "failed to set bcast rate on vdev %i: %d\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BASIC_RATES && !ath10k_mac_vif_chan(arvif->vif, &def)) ath10k_recalculate_mgmt_rate(ar, vif, &def); mutex_unlock(&ar->conf_mutex); } static void ath10k_mac_op_set_coverage_class(struct ieee80211_hw *hw, s16 value) { struct ath10k *ar = hw->priv; /* This function should never be called if setting the coverage class * is not supported on this hardware. */ if (!ar->hw_params.hw_ops->set_coverage_class) { WARN_ON_ONCE(1); return; } ar->hw_params.hw_ops->set_coverage_class(ar, value); } struct ath10k_mac_tdls_iter_data { u32 num_tdls_stations; struct ieee80211_vif *curr_vif; }; static void ath10k_mac_tdls_vif_stations_count_iter(void *data, struct ieee80211_sta *sta) { struct ath10k_mac_tdls_iter_data *iter_data = data; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ieee80211_vif *sta_vif = arsta->arvif->vif; if (sta->tdls && sta_vif == iter_data->curr_vif) iter_data->num_tdls_stations++; } static int ath10k_mac_tdls_vif_stations_count(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k_mac_tdls_iter_data data = {}; data.curr_vif = vif; ieee80211_iterate_stations_atomic(hw, ath10k_mac_tdls_vif_stations_count_iter, &data); return data.num_tdls_stations; } static int ath10k_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *hw_req) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct cfg80211_scan_request *req = &hw_req->req; struct wmi_start_scan_arg arg; int ret = 0; int i; u32 scan_timeout; mutex_lock(&ar->conf_mutex); if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) { ret = -EBUSY; goto exit; } spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); ar->scan.state = ATH10K_SCAN_STARTING; ar->scan.is_roc = false; ar->scan.vdev_id = arvif->vdev_id; ret = 0; break; case ATH10K_SCAN_STARTING: case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ret = -EBUSY; break; } spin_unlock_bh(&ar->data_lock); if (ret) goto exit; memset(&arg, 0, sizeof(arg)); ath10k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH10K_SCAN_ID; if (req->ie_len) { arg.ie_len = req->ie_len; memcpy(arg.ie, req->ie, arg.ie_len); } if (req->n_ssids) { arg.n_ssids = req->n_ssids; for (i = 0; i < arg.n_ssids; i++) { arg.ssids[i].len = req->ssids[i].ssid_len; arg.ssids[i].ssid = req->ssids[i].ssid; } } else { arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; } if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) { arg.scan_ctrl_flags |= WMI_SCAN_ADD_SPOOFED_MAC_IN_PROBE_REQ; ether_addr_copy(arg.mac_addr.addr, req->mac_addr); ether_addr_copy(arg.mac_mask.addr, req->mac_addr_mask); } if (req->n_channels) { arg.n_channels = req->n_channels; for (i = 0; i < arg.n_channels; i++) arg.channels[i] = req->channels[i]->center_freq; } /* if duration is set, default dwell times will be overwritten */ if (req->duration) { arg.dwell_time_active = req->duration; arg.dwell_time_passive = req->duration; arg.burst_duration_ms = req->duration; scan_timeout = min_t(u32, arg.max_rest_time * (arg.n_channels - 1) + (req->duration + ATH10K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) * arg.n_channels, arg.max_scan_time); } else { scan_timeout = arg.max_scan_time; } /* Add a 200ms margin to account for event/command processing */ scan_timeout += 200; ret = ath10k_start_scan(ar, &arg); if (ret) { ath10k_warn(ar, "failed to start hw scan: %d\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.state = ATH10K_SCAN_IDLE; spin_unlock_bh(&ar->data_lock); } ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, msecs_to_jiffies(scan_timeout)); exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); ath10k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); } static void ath10k_set_key_h_def_keyidx(struct ath10k *ar, struct ath10k_vif *arvif, enum set_key_cmd cmd, struct ieee80211_key_conf *key) { u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid; int ret; /* 10.1 firmware branch requires default key index to be set to group * key index after installing it. Otherwise FW/HW Txes corrupted * frames with multi-vif APs. This is not required for main firmware * branch (e.g. 636). * * This is also needed for 636 fw for IBSS-RSN to work more reliably. * * FIXME: It remains unknown if this is required for multi-vif STA * interfaces on 10.1. */ if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) return; if (key->cipher == WLAN_CIPHER_SUITE_WEP40) return; if (key->cipher == WLAN_CIPHER_SUITE_WEP104) return; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) return; if (cmd != SET_KEY) return; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, key->keyidx); if (ret) ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n", arvif->vdev_id, ret); } static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_sta *arsta; struct ath10k_peer *peer; const u8 *peer_addr; bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 || key->cipher == WLAN_CIPHER_SUITE_WEP104; int ret = 0; int ret2; u32 flags = 0; u32 flags2; /* this one needs to be done in software */ if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC || key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 || key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 || key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256) return 1; if (arvif->nohwcrypt) return 1; if (key->keyidx > WMI_MAX_KEY_INDEX) return -ENOSPC; mutex_lock(&ar->conf_mutex); if (sta) { arsta = (struct ath10k_sta *)sta->drv_priv; peer_addr = sta->addr; spin_lock_bh(&ar->data_lock); arsta->ucast_cipher = key->cipher; spin_unlock_bh(&ar->data_lock); } else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { peer_addr = vif->bss_conf.bssid; } else { peer_addr = vif->addr; } key->hw_key_idx = key->keyidx; if (is_wep) { if (cmd == SET_KEY) arvif->wep_keys[key->keyidx] = key; else arvif->wep_keys[key->keyidx] = NULL; } /* the peer should not disappear in mid-way (unless FW goes awry) since * we already hold conf_mutex. we just make sure its there now. */ spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); spin_unlock_bh(&ar->data_lock); if (!peer) { if (cmd == SET_KEY) { ath10k_warn(ar, "failed to install key for non-existent peer %pM\n", peer_addr); ret = -EOPNOTSUPP; goto exit; } else { /* if the peer doesn't exist there is no key to disable anymore */ goto exit; } } if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) flags |= WMI_KEY_PAIRWISE; else flags |= WMI_KEY_GROUP; if (is_wep) { if (cmd == DISABLE_KEY) ath10k_clear_vdev_key(arvif, key); /* When WEP keys are uploaded it's possible that there are * stations associated already (e.g. when merging) without any * keys. Static WEP needs an explicit per-peer key upload. */ if (vif->type == NL80211_IFTYPE_ADHOC && cmd == SET_KEY) ath10k_mac_vif_update_wep_key(arvif, key); /* 802.1x never sets the def_wep_key_idx so each set_key() * call changes default tx key. * * Static WEP sets def_wep_key_idx via .set_default_unicast_key * after first set_key(). */ if (cmd == SET_KEY && arvif->def_wep_key_idx == -1) flags |= WMI_KEY_TX_USAGE; } ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags); if (ret) { WARN_ON(ret > 0); ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n", arvif->vdev_id, peer_addr, ret); goto exit; } /* mac80211 sets static WEP keys as groupwise while firmware requires * them to be installed twice as both pairwise and groupwise. */ if (is_wep && !sta && vif->type == NL80211_IFTYPE_STATION) { flags2 = flags; flags2 &= ~WMI_KEY_GROUP; flags2 |= WMI_KEY_PAIRWISE; ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags2); if (ret) { WARN_ON(ret > 0); ath10k_warn(ar, "failed to install (ucast) key for vdev %i peer %pM: %d\n", arvif->vdev_id, peer_addr, ret); ret2 = ath10k_install_key(arvif, key, DISABLE_KEY, peer_addr, flags); if (ret2) { WARN_ON(ret2 > 0); ath10k_warn(ar, "failed to disable (mcast) key for vdev %i peer %pM: %d\n", arvif->vdev_id, peer_addr, ret2); } goto exit; } } ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); if (peer && cmd == SET_KEY) peer->keys[key->keyidx] = key; else if (peer && cmd == DISABLE_KEY) peer->keys[key->keyidx] = NULL; else if (peer == NULL) /* impossible unless FW goes crazy */ ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr); spin_unlock_bh(&ar->data_lock); if (sta && sta->tdls) ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, ar->wmi.peer_param->authorize, 1); else if (sta && cmd == SET_KEY && (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) ath10k_wmi_peer_set_param(ar, arvif->vdev_id, peer_addr, ar->wmi.peer_param->authorize, 1); exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_set_default_unicast_key(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int keyidx) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; int ret; mutex_lock(&arvif->ar->conf_mutex); if (arvif->ar->state != ATH10K_STATE_ON) goto unlock; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n", arvif->vdev_id, keyidx); ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, arvif->ar->wmi.vdev_param->def_keyid, keyidx); if (ret) { ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n", arvif->vdev_id, ret); goto unlock; } arvif->def_wep_key_idx = keyidx; unlock: mutex_unlock(&arvif->ar->conf_mutex); } static void ath10k_sta_rc_update_wk(struct work_struct *wk) { struct ath10k *ar; struct ath10k_vif *arvif; struct ath10k_sta *arsta; struct ieee80211_sta *sta; struct cfg80211_chan_def def; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; u32 changed, bw, nss, smps; int err; arsta = container_of(wk, struct ath10k_sta, update_wk); sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); arvif = arsta->arvif; ar = arvif->ar; if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def))) return; band = def.chan->band; ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; spin_lock_bh(&ar->data_lock); changed = arsta->changed; arsta->changed = 0; bw = arsta->bw; nss = arsta->nss; smps = arsta->smps; spin_unlock_bh(&ar->data_lock); mutex_lock(&ar->conf_mutex); nss = max_t(u32, 1, nss); nss = min(nss, max(ath10k_mac_max_ht_nss(ht_mcs_mask), ath10k_mac_max_vht_nss(vht_mcs_mask))); if (changed & IEEE80211_RC_BW_CHANGED) { enum wmi_phy_mode mode; mode = chan_to_phymode(&def); ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM peer bw %d phymode %d\n", sta->addr, bw, mode); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, ar->wmi.peer_param->phymode, mode); if (err) { ath10k_warn(ar, "failed to update STA %pM peer phymode %d: %d\n", sta->addr, mode, err); goto exit; } err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, ar->wmi.peer_param->chan_width, bw); if (err) ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n", sta->addr, bw, err); } if (changed & IEEE80211_RC_NSS_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM nss %d\n", sta->addr, nss); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, ar->wmi.peer_param->nss, nss); if (err) ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n", sta->addr, nss, err); } if (changed & IEEE80211_RC_SMPS_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM smps %d\n", sta->addr, smps); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, ar->wmi.peer_param->smps_state, smps); if (err) ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n", sta->addr, smps, err); } if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM supp rates\n", sta->addr); err = ath10k_station_assoc(ar, arvif->vif, sta, true); if (err) ath10k_warn(ar, "failed to reassociate station: %pM\n", sta->addr); } exit: mutex_unlock(&ar->conf_mutex); } static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif, struct ieee80211_sta *sta) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) return 0; if (ar->num_stations >= ar->max_num_stations) return -ENOBUFS; ar->num_stations++; return 0; } static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif, struct ieee80211_sta *sta) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) return; ar->num_stations--; } static int ath10k_sta_set_txpwr(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; int ret = 0; s16 txpwr; if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) { txpwr = 0; } else { txpwr = sta->deflink.txpwr.power; if (!txpwr) return -EINVAL; } if (txpwr > ATH10K_TX_POWER_MAX_VAL || txpwr < ATH10K_TX_POWER_MIN_VAL) return -EINVAL; mutex_lock(&ar->conf_mutex); ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, ar->wmi.peer_param->use_fixed_power, txpwr); if (ret) { ath10k_warn(ar, "failed to set tx power for station ret: %d\n", ret); goto out; } out: mutex_unlock(&ar->conf_mutex); return ret; } struct ath10k_mac_iter_tid_conf_data { struct ieee80211_vif *curr_vif; struct ath10k *ar; bool reset_config; }; static bool ath10k_mac_bitrate_mask_has_single_rate(struct ath10k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask, int *vht_num_rates) { int num_rates = 0; int i, tmp; num_rates += hweight32(mask->control[band].legacy); for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) num_rates += hweight8(mask->control[band].ht_mcs[i]); *vht_num_rates = 0; for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { tmp = hweight16(mask->control[band].vht_mcs[i]); num_rates += tmp; *vht_num_rates += tmp; } return num_rates == 1; } static int ath10k_mac_bitrate_mask_get_single_rate(struct ath10k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask, u8 *rate, u8 *nss, bool vht_only) { int rate_idx; int i; u16 bitrate; u8 preamble; u8 hw_rate; if (vht_only) goto next; if (hweight32(mask->control[band].legacy) == 1) { rate_idx = ffs(mask->control[band].legacy) - 1; if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) rate_idx += ATH10K_MAC_FIRST_OFDM_RATE_IDX; hw_rate = ath10k_wmi_legacy_rates[rate_idx].hw_value; bitrate = ath10k_wmi_legacy_rates[rate_idx].bitrate; if (ath10k_mac_bitrate_is_cck(bitrate)) preamble = WMI_RATE_PREAMBLE_CCK; else preamble = WMI_RATE_PREAMBLE_OFDM; *nss = 1; *rate = preamble << 6 | (*nss - 1) << 4 | hw_rate << 0; return 0; } for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { if (hweight8(mask->control[band].ht_mcs[i]) == 1) { *nss = i + 1; *rate = WMI_RATE_PREAMBLE_HT << 6 | (*nss - 1) << 4 | (ffs(mask->control[band].ht_mcs[i]) - 1); return 0; } } next: for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { if (hweight16(mask->control[band].vht_mcs[i]) == 1) { *nss = i + 1; *rate = WMI_RATE_PREAMBLE_VHT << 6 | (*nss - 1) << 4 | (ffs(mask->control[band].vht_mcs[i]) - 1); return 0; } } return -EINVAL; } static int ath10k_mac_validate_rate_mask(struct ath10k *ar, struct ieee80211_sta *sta, u32 rate_ctrl_flag, u8 nss) { struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; if (nss > sta->deflink.rx_nss) { ath10k_warn(ar, "Invalid nss field, configured %u limit %u\n", nss, sta->deflink.rx_nss); return -EINVAL; } if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_VHT) { if (!vht_cap->vht_supported) { ath10k_warn(ar, "Invalid VHT rate for sta %pM\n", sta->addr); return -EINVAL; } } else if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_HT) { if (!ht_cap->ht_supported || vht_cap->vht_supported) { ath10k_warn(ar, "Invalid HT rate for sta %pM\n", sta->addr); return -EINVAL; } } else { if (ht_cap->ht_supported || vht_cap->vht_supported) return -EINVAL; } return 0; } static int ath10k_mac_tid_bitrate_config(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 *rate_ctrl_flag, u8 *rate_ctrl, enum nl80211_tx_rate_setting txrate_type, const struct cfg80211_bitrate_mask *mask) { struct cfg80211_chan_def def; enum nl80211_band band; u8 nss, rate; int vht_num_rates, ret; if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) return -EINVAL; if (txrate_type == NL80211_TX_RATE_AUTOMATIC) { *rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO; *rate_ctrl_flag = 0; return 0; } band = def.chan->band; if (!ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask, &vht_num_rates)) { return -EINVAL; } ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask, &rate, &nss, false); if (ret) { ath10k_warn(ar, "failed to get single rate: %d\n", ret); return ret; } *rate_ctrl_flag = rate; if (sta && ath10k_mac_validate_rate_mask(ar, sta, *rate_ctrl_flag, nss)) return -EINVAL; if (txrate_type == NL80211_TX_RATE_FIXED) *rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_FIXED_RATE; else if (txrate_type == NL80211_TX_RATE_LIMITED && (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map))) *rate_ctrl = WMI_PEER_TID_CONFIG_RATE_UPPER_CAP; else return -EOPNOTSUPP; return 0; } static int ath10k_mac_set_tid_config(struct ath10k *ar, struct ieee80211_sta *sta, struct ieee80211_vif *vif, u32 changed, struct wmi_per_peer_per_tid_cfg_arg *arg) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_sta *arsta; int ret; if (sta) { if (!sta->wme) return -EOPNOTSUPP; arsta = (struct ath10k_sta *)sta->drv_priv; if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { if ((arsta->retry_long[arg->tid] > 0 || arsta->rate_code[arg->tid] > 0 || arsta->ampdu[arg->tid] == WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) && arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) { changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK); arg->ack_policy = 0; arg->aggr_control = 0; arg->rate_ctrl = 0; arg->rcode_flags = 0; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK || arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) { arg->aggr_control = 0; changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG); } } if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK || arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) { arg->rate_ctrl = 0; arg->rcode_flags = 0; } } ether_addr_copy(arg->peer_macaddr.addr, sta->addr); ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, arg); if (ret) return ret; /* Store the configured parameters in success case */ if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { arsta->noack[arg->tid] = arg->ack_policy; arg->ack_policy = 0; arg->aggr_control = 0; arg->rate_ctrl = 0; arg->rcode_flags = 0; } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) { arsta->retry_long[arg->tid] = arg->retry_count; arg->retry_count = 0; } if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { arsta->ampdu[arg->tid] = arg->aggr_control; arg->aggr_control = 0; } if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { arsta->rate_ctrl[arg->tid] = arg->rate_ctrl; arg->rate_ctrl = 0; arg->rcode_flags = 0; } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { arsta->rtscts[arg->tid] = arg->rtscts_ctrl; arg->ext_tid_cfg_bitmap = 0; } } else { if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { if ((arvif->retry_long[arg->tid] || arvif->rate_code[arg->tid] || arvif->ampdu[arg->tid] == WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) && arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) { changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK); } else { arvif->noack[arg->tid] = arg->ack_policy; arvif->ampdu[arg->tid] = arg->aggr_control; arvif->rate_ctrl[arg->tid] = arg->rate_ctrl; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) { if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG); else arvif->retry_long[arg->tid] = arg->retry_count; } if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) changed &= ~BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL); else arvif->ampdu[arg->tid] = arg->aggr_control; } if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) { changed &= ~(BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE)); } else { arvif->rate_ctrl[arg->tid] = arg->rate_ctrl; arvif->rate_code[arg->tid] = arg->rcode_flags; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { arvif->rtscts[arg->tid] = arg->rtscts_ctrl; arg->ext_tid_cfg_bitmap = 0; } if (changed) arvif->tid_conf_changed[arg->tid] |= changed; } return 0; } static int ath10k_mac_parse_tid_config(struct ath10k *ar, struct ieee80211_sta *sta, struct ieee80211_vif *vif, struct cfg80211_tid_cfg *tid_conf, struct wmi_per_peer_per_tid_cfg_arg *arg) { u32 changed = tid_conf->mask; int ret = 0, i = 0; if (!changed) return -EINVAL; while (i < ATH10K_TID_MAX) { if (!(tid_conf->tids & BIT(i))) { i++; continue; } arg->tid = i; if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE) { arg->ack_policy = WMI_PEER_TID_CONFIG_NOACK; arg->rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE; arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE; } else { arg->ack_policy = WMI_PEER_TID_CONFIG_ACK; arg->rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO; arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) arg->retry_count = tid_conf->retry_long; if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE) arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE; else arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE; } if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { ret = ath10k_mac_tid_bitrate_config(ar, vif, sta, &arg->rcode_flags, &arg->rate_ctrl, tid_conf->txrate_type, &tid_conf->txrate_mask); if (ret) { ath10k_warn(ar, "failed to configure bitrate mask %d\n", ret); arg->rcode_flags = 0; arg->rate_ctrl = 0; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { if (tid_conf->rtscts) arg->rtscts_ctrl = tid_conf->rtscts; arg->ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG; } ret = ath10k_mac_set_tid_config(ar, sta, vif, changed, arg); if (ret) return ret; i++; } return ret; } static int ath10k_mac_reset_tid_config(struct ath10k *ar, struct ieee80211_sta *sta, struct ath10k_vif *arvif, u8 tids) { struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct wmi_per_peer_per_tid_cfg_arg arg; int ret = 0, i = 0; arg.vdev_id = arvif->vdev_id; while (i < ATH10K_TID_MAX) { if (!(tids & BIT(i))) { i++; continue; } arg.tid = i; arg.ack_policy = WMI_PEER_TID_CONFIG_ACK; arg.retry_count = ATH10K_MAX_RETRY_COUNT; arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO; arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE; arg.rtscts_ctrl = WMI_TID_CONFIG_RTSCTS_CONTROL_ENABLE; arg.ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG; ether_addr_copy(arg.peer_macaddr.addr, sta->addr); ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg); if (ret) return ret; if (!arvif->tids_rst) { arsta->retry_long[i] = -1; arsta->noack[i] = -1; arsta->ampdu[i] = -1; arsta->rate_code[i] = -1; arsta->rate_ctrl[i] = 0; arsta->rtscts[i] = -1; } else { arvif->retry_long[i] = 0; arvif->noack[i] = 0; arvif->ampdu[i] = 0; arvif->rate_code[i] = 0; arvif->rate_ctrl[i] = 0; arvif->rtscts[i] = 0; } i++; } return ret; } static void ath10k_sta_tid_cfg_wk(struct work_struct *wk) { struct wmi_per_peer_per_tid_cfg_arg arg = {}; struct ieee80211_sta *sta; struct ath10k_sta *arsta; struct ath10k_vif *arvif; struct ath10k *ar; bool config_apply; int ret, i; u32 changed; u8 nss; arsta = container_of(wk, struct ath10k_sta, tid_config_wk); sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); arvif = arsta->arvif; ar = arvif->ar; mutex_lock(&ar->conf_mutex); if (arvif->tids_rst) { ret = ath10k_mac_reset_tid_config(ar, sta, arvif, arvif->tids_rst); goto exit; } ether_addr_copy(arg.peer_macaddr.addr, sta->addr); for (i = 0; i < ATH10K_TID_MAX; i++) { config_apply = false; changed = arvif->tid_conf_changed[i]; if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { if (arsta->noack[i] != -1) { arg.ack_policy = 0; } else { config_apply = true; arg.ack_policy = arvif->noack[i]; arg.aggr_control = arvif->ampdu[i]; arg.rate_ctrl = arvif->rate_ctrl[i]; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) { if (arsta->retry_long[i] != -1 || arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK || arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) { arg.retry_count = 0; } else { arg.retry_count = arvif->retry_long[i]; config_apply = true; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { if (arsta->ampdu[i] != -1 || arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK || arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) { arg.aggr_control = 0; } else { arg.aggr_control = arvif->ampdu[i]; config_apply = true; } } if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { nss = ATH10K_HW_NSS(arvif->rate_code[i]); ret = ath10k_mac_validate_rate_mask(ar, sta, arvif->rate_code[i], nss); if (ret && arvif->rate_ctrl[i] > WMI_TID_CONFIG_RATE_CONTROL_AUTO) { arg.rate_ctrl = 0; arg.rcode_flags = 0; } if (arsta->rate_ctrl[i] > WMI_TID_CONFIG_RATE_CONTROL_AUTO || arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK || arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) { arg.rate_ctrl = 0; arg.rcode_flags = 0; } else { arg.rate_ctrl = arvif->rate_ctrl[i]; arg.rcode_flags = arvif->rate_code[i]; config_apply = true; } } if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { if (arsta->rtscts[i]) { arg.rtscts_ctrl = 0; arg.ext_tid_cfg_bitmap = 0; } else { arg.rtscts_ctrl = arvif->rtscts[i] - 1; arg.ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG; config_apply = true; } } arg.tid = i; if (config_apply) { ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg); if (ret) ath10k_warn(ar, "failed to set per tid config for sta %pM: %d\n", sta->addr, ret); } arg.ack_policy = 0; arg.retry_count = 0; arg.aggr_control = 0; arg.rate_ctrl = 0; arg.rcode_flags = 0; } exit: mutex_unlock(&ar->conf_mutex); } static void ath10k_mac_vif_stations_tid_conf(void *data, struct ieee80211_sta *sta) { struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k_mac_iter_tid_conf_data *iter_data = data; struct ieee80211_vif *sta_vif = arsta->arvif->vif; if (sta_vif != iter_data->curr_vif || !sta->wme) return; ieee80211_queue_work(iter_data->ar->hw, &arsta->tid_config_wk); } static int ath10k_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k_peer *peer; int ret = 0; int i; if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) { memset(arsta, 0, sizeof(*arsta)); arsta->arvif = arvif; arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED; INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk); INIT_WORK(&arsta->tid_config_wk, ath10k_sta_tid_cfg_wk); for (i = 0; i < ARRAY_SIZE(sta->txq); i++) ath10k_mac_txq_init(sta->txq[i]); } /* cancel must be done outside the mutex to avoid deadlock */ if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) { cancel_work_sync(&arsta->update_wk); cancel_work_sync(&arsta->tid_config_wk); } mutex_lock(&ar->conf_mutex); if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) { /* * New station addition. */ enum wmi_peer_type peer_type = WMI_PEER_TYPE_DEFAULT; u32 num_tdls_stations; ath10k_dbg(ar, ATH10K_DBG_STA, "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n", arvif->vdev_id, sta->addr, ar->num_stations + 1, ar->max_num_stations, ar->num_peers + 1, ar->max_num_peers); num_tdls_stations = ath10k_mac_tdls_vif_stations_count(hw, vif); if (sta->tdls) { if (num_tdls_stations >= ar->max_num_tdls_vdevs) { ath10k_warn(ar, "vdev %i exceeded maximum number of tdls vdevs %i\n", arvif->vdev_id, ar->max_num_tdls_vdevs); ret = -ELNRNG; goto exit; } peer_type = WMI_PEER_TYPE_TDLS; } ret = ath10k_mac_inc_num_stations(arvif, sta); if (ret) { ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n", ar->max_num_stations); goto exit; } if (ath10k_debug_is_extd_tx_stats_enabled(ar)) { arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats), GFP_KERNEL); if (!arsta->tx_stats) { ath10k_mac_dec_num_stations(arvif, sta); ret = -ENOMEM; goto exit; } } ret = ath10k_peer_create(ar, vif, sta, arvif->vdev_id, sta->addr, peer_type); if (ret) { ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n", sta->addr, arvif->vdev_id, ret); ath10k_mac_dec_num_stations(arvif, sta); kfree(arsta->tx_stats); goto exit; } spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr); if (!peer) { ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n", vif->addr, arvif->vdev_id); spin_unlock_bh(&ar->data_lock); ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); ath10k_mac_dec_num_stations(arvif, sta); kfree(arsta->tx_stats); ret = -ENOENT; goto exit; } arsta->peer_id = find_first_bit(peer->peer_ids, ATH10K_MAX_NUM_PEER_IDS); spin_unlock_bh(&ar->data_lock); if (!sta->tdls) goto exit; ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id, WMI_TDLS_ENABLE_ACTIVE); if (ret) { ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n", arvif->vdev_id, ret); ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); ath10k_mac_dec_num_stations(arvif, sta); kfree(arsta->tx_stats); goto exit; } ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta, WMI_TDLS_PEER_STATE_PEERING); if (ret) { ath10k_warn(ar, "failed to update tdls peer %pM for vdev %d when adding a new sta: %i\n", sta->addr, arvif->vdev_id, ret); ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); ath10k_mac_dec_num_stations(arvif, sta); kfree(arsta->tx_stats); if (num_tdls_stations != 0) goto exit; ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id, WMI_TDLS_DISABLE); } } else if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) { /* * Existing station deletion. */ ath10k_dbg(ar, ATH10K_DBG_STA, "mac vdev %d peer delete %pM sta %pK (sta gone)\n", arvif->vdev_id, sta->addr, sta); if (sta->tdls) { ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta, WMI_TDLS_PEER_STATE_TEARDOWN); if (ret) ath10k_warn(ar, "failed to update tdls peer state for %pM state %d: %i\n", sta->addr, WMI_TDLS_PEER_STATE_TEARDOWN, ret); } ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); if (ret) ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n", sta->addr, arvif->vdev_id, ret); ath10k_mac_dec_num_stations(arvif, sta); spin_lock_bh(&ar->data_lock); for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) { peer = ar->peer_map[i]; if (!peer) continue; if (peer->sta == sta) { ath10k_warn(ar, "found sta peer %pM (ptr %pK id %d) entry on vdev %i after it was supposedly removed\n", sta->addr, peer, i, arvif->vdev_id); peer->sta = NULL; /* Clean up the peer object as well since we * must have failed to do this above. */ ath10k_peer_map_cleanup(ar, peer); } } spin_unlock_bh(&ar->data_lock); if (ath10k_debug_is_extd_tx_stats_enabled(ar)) { kfree(arsta->tx_stats); arsta->tx_stats = NULL; } for (i = 0; i < ARRAY_SIZE(sta->txq); i++) ath10k_mac_txq_unref(ar, sta->txq[i]); if (!sta->tdls) goto exit; if (ath10k_mac_tdls_vif_stations_count(hw, vif)) goto exit; /* This was the last tdls peer in current vif */ ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id, WMI_TDLS_DISABLE); if (ret) { ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n", arvif->vdev_id, ret); } } else if (old_state == IEEE80211_STA_AUTH && new_state == IEEE80211_STA_ASSOC && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_MESH_POINT || vif->type == NL80211_IFTYPE_ADHOC)) { /* * New association. */ ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM associated\n", sta->addr); ret = ath10k_station_assoc(ar, vif, sta, false); if (ret) ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTHORIZED && sta->tdls) { /* * Tdls station authorized. */ ath10k_dbg(ar, ATH10K_DBG_STA, "mac tdls sta %pM authorized\n", sta->addr); ret = ath10k_station_assoc(ar, vif, sta, false); if (ret) { ath10k_warn(ar, "failed to associate tdls station %pM for vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); goto exit; } ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta, WMI_TDLS_PEER_STATE_CONNECTED); if (ret) ath10k_warn(ar, "failed to update tdls peer %pM for vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTH && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_MESH_POINT || vif->type == NL80211_IFTYPE_ADHOC)) { /* * Disassociation. */ ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM disassociated\n", sta->addr); ret = ath10k_station_disassoc(ar, vif, sta); if (ret) ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); } exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif, u16 ac, bool enable) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct wmi_sta_uapsd_auto_trig_arg arg = {}; u32 prio = 0, acc = 0; u32 value = 0; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; switch (ac) { case IEEE80211_AC_VO: value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; prio = 7; acc = 3; break; case IEEE80211_AC_VI: value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; prio = 5; acc = 2; break; case IEEE80211_AC_BE: value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; prio = 2; acc = 1; break; case IEEE80211_AC_BK: value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; prio = 0; acc = 0; break; } if (enable) arvif->u.sta.uapsd |= value; else arvif->u.sta.uapsd &= ~value; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_UAPSD, arvif->u.sta.uapsd); if (ret) { ath10k_warn(ar, "failed to set uapsd params: %d\n", ret); goto exit; } if (arvif->u.sta.uapsd) value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; else value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_RX_WAKE_POLICY, value); if (ret) ath10k_warn(ar, "failed to set rx wake param: %d\n", ret); ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif); if (ret) { ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_mac_vif_recalc_ps_poll_count(arvif); if (ret) { ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) || test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) { /* Only userspace can make an educated decision when to send * trigger frame. The following effectively disables u-UAPSD * autotrigger in firmware (which is enabled by default * provided the autotrigger service is available). */ arg.wmm_ac = acc; arg.user_priority = prio; arg.service_interval = 0; arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC; arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC; ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id, arvif->bssid, &arg, 1); if (ret) { ath10k_warn(ar, "failed to set uapsd auto trigger %d\n", ret); return ret; } } exit: return ret; } static int ath10k_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 ac, const struct ieee80211_tx_queue_params *params) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct wmi_wmm_params_arg *p = NULL; int ret; mutex_lock(&ar->conf_mutex); switch (ac) { case IEEE80211_AC_VO: p = &arvif->wmm_params.ac_vo; break; case IEEE80211_AC_VI: p = &arvif->wmm_params.ac_vi; break; case IEEE80211_AC_BE: p = &arvif->wmm_params.ac_be; break; case IEEE80211_AC_BK: p = &arvif->wmm_params.ac_bk; break; } if (WARN_ON(!p)) { ret = -EINVAL; goto exit; } p->cwmin = params->cw_min; p->cwmax = params->cw_max; p->aifs = params->aifs; /* * The channel time duration programmed in the HW is in absolute * microseconds, while mac80211 gives the txop in units of * 32 microseconds. */ p->txop = params->txop * 32; if (ar->wmi.ops->gen_vdev_wmm_conf) { ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id, &arvif->wmm_params); if (ret) { ath10k_warn(ar, "failed to set vdev wmm params on vdev %i: %d\n", arvif->vdev_id, ret); goto exit; } } else { /* This won't work well with multi-interface cases but it's * better than nothing. */ ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params); if (ret) { ath10k_warn(ar, "failed to set wmm params: %d\n", ret); goto exit; } } ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd); if (ret) ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret); exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct wmi_start_scan_arg arg; int ret = 0; u32 scan_time_msec; mutex_lock(&ar->conf_mutex); if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) { ret = -EBUSY; goto exit; } spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); reinit_completion(&ar->scan.on_channel); ar->scan.state = ATH10K_SCAN_STARTING; ar->scan.is_roc = true; ar->scan.vdev_id = arvif->vdev_id; ar->scan.roc_freq = chan->center_freq; ar->scan.roc_notify = true; ret = 0; break; case ATH10K_SCAN_STARTING: case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ret = -EBUSY; break; } spin_unlock_bh(&ar->data_lock); if (ret) goto exit; scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2; memset(&arg, 0, sizeof(arg)); ath10k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH10K_SCAN_ID; arg.n_channels = 1; arg.channels[0] = chan->center_freq; arg.dwell_time_active = scan_time_msec; arg.dwell_time_passive = scan_time_msec; arg.max_scan_time = scan_time_msec; arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ; arg.burst_duration_ms = duration; ret = ath10k_start_scan(ar, &arg); if (ret) { ath10k_warn(ar, "failed to start roc scan: %d\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.state = ATH10K_SCAN_IDLE; spin_unlock_bh(&ar->data_lock); goto exit; } ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ); if (ret == 0) { ath10k_warn(ar, "failed to switch to channel for roc scan\n"); ret = ath10k_scan_stop(ar); if (ret) ath10k_warn(ar, "failed to stop scan: %d\n", ret); ret = -ETIMEDOUT; goto exit; } ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, msecs_to_jiffies(duration)); ret = 0; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); ar->scan.roc_notify = false; spin_unlock_bh(&ar->data_lock); ath10k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); return 0; } /* * Both RTS and Fragmentation threshold are interface-specific * in ath10k, but device-specific in mac80211. */ static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; int ret = 0; mutex_lock(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n", arvif->vdev_id, value); ret = ath10k_mac_set_rts(arvif, value); if (ret) { ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", arvif->vdev_id, ret); break; } } mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value) { /* Even though there's a WMI enum for fragmentation threshold no known * firmware actually implements it. Moreover it is not possible to rely * frame fragmentation to mac80211 because firmware clears the "more * fragments" bit in frame control making it impossible for remote * devices to reassemble frames. * * Hence implement a dummy callback just to say fragmentation isn't * supported. This effectively prevents mac80211 from doing frame * fragmentation in software. */ return -EOPNOTSUPP; } void ath10k_mac_wait_tx_complete(struct ath10k *ar) { bool skip; long time_left; /* mac80211 doesn't care if we really xmit queued frames or not * we'll collect those frames either way if we stop/delete vdevs */ if (ar->state == ATH10K_STATE_WEDGED) return; time_left = wait_event_timeout(ar->htt.empty_tx_wq, ({ bool empty; spin_lock_bh(&ar->htt.tx_lock); empty = (ar->htt.num_pending_tx == 0); spin_unlock_bh(&ar->htt.tx_lock); skip = (ar->state == ATH10K_STATE_WEDGED) || test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags); (empty || skip); }), ATH10K_FLUSH_TIMEOUT_HZ); if (time_left == 0 || skip) ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %ld\n", skip, ar->state, time_left); } static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; u32 bitmap; if (drop) { if (vif && vif->type == NL80211_IFTYPE_STATION) { bitmap = ~(1 << WMI_MGMT_TID); list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->vdev_type == WMI_VDEV_TYPE_STA) ath10k_wmi_peer_flush(ar, arvif->vdev_id, arvif->bssid, bitmap); } ath10k_htt_flush_tx(&ar->htt); } return; } mutex_lock(&ar->conf_mutex); ath10k_mac_wait_tx_complete(ar); mutex_unlock(&ar->conf_mutex); } /* TODO: Implement this function properly * For now it is needed to reply to Probe Requests in IBSS mode. * Probably we need this information from FW. */ static int ath10k_tx_last_beacon(struct ieee80211_hw *hw) { return 1; } static void ath10k_reconfig_complete(struct ieee80211_hw *hw, enum ieee80211_reconfig_type reconfig_type) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) return; mutex_lock(&ar->conf_mutex); /* If device failed to restart it will be in a different state, e.g. * ATH10K_STATE_WEDGED */ if (ar->state == ATH10K_STATE_RESTARTED) { ath10k_info(ar, "device successfully recovered\n"); ar->state = ATH10K_STATE_ON; ieee80211_wake_queues(ar->hw); clear_bit(ATH10K_FLAG_RESTARTING, &ar->dev_flags); if (ar->hw_params.hw_restart_disconnect) { list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA) ieee80211_hw_restart_disconnect(arvif->vif); } } } mutex_unlock(&ar->conf_mutex); } static void ath10k_mac_update_bss_chan_survey(struct ath10k *ar, struct ieee80211_channel *channel) { int ret; enum wmi_bss_survey_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ; lockdep_assert_held(&ar->conf_mutex); if (!test_bit(WMI_SERVICE_BSS_CHANNEL_INFO_64, ar->wmi.svc_map) || (ar->rx_channel != channel)) return; if (ar->scan.state != ATH10K_SCAN_IDLE) { ath10k_dbg(ar, ATH10K_DBG_MAC, "ignoring bss chan info request while scanning..\n"); return; } reinit_completion(&ar->bss_survey_done); ret = ath10k_wmi_pdev_bss_chan_info_request(ar, type); if (ret) { ath10k_warn(ar, "failed to send pdev bss chan info request\n"); return; } ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ); if (!ret) { ath10k_warn(ar, "bss channel survey timed out\n"); return; } } static int ath10k_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct ath10k *ar = hw->priv; struct ieee80211_supported_band *sband; struct survey_info *ar_survey = &ar->survey[idx]; int ret = 0; mutex_lock(&ar->conf_mutex); sband = hw->wiphy->bands[NL80211_BAND_2GHZ]; if (sband && idx >= sband->n_channels) { idx -= sband->n_channels; sband = NULL; } if (!sband) sband = hw->wiphy->bands[NL80211_BAND_5GHZ]; if (!sband || idx >= sband->n_channels) { ret = -ENOENT; goto exit; } ath10k_mac_update_bss_chan_survey(ar, &sband->channels[idx]); spin_lock_bh(&ar->data_lock); memcpy(survey, ar_survey, sizeof(*survey)); spin_unlock_bh(&ar->data_lock); survey->channel = &sband->channels[idx]; if (ar->rx_channel == survey->channel) survey->filled |= SURVEY_INFO_IN_USE; exit: mutex_unlock(&ar->conf_mutex); return ret; } static bool ath10k_mac_bitrate_mask_get_single_nss(struct ath10k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask, int *nss) { struct ieee80211_supported_band *sband = &ar->mac.sbands[band]; u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); u8 ht_nss_mask = 0; u8 vht_nss_mask = 0; int i; if (mask->control[band].legacy) return false; for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { if (mask->control[band].ht_mcs[i] == 0) continue; else if (mask->control[band].ht_mcs[i] == sband->ht_cap.mcs.rx_mask[i]) ht_nss_mask |= BIT(i); else return false; } for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { if (mask->control[band].vht_mcs[i] == 0) continue; else if (mask->control[band].vht_mcs[i] == ath10k_mac_get_max_vht_mcs_map(vht_mcs_map, i)) vht_nss_mask |= BIT(i); else return false; } if (ht_nss_mask != vht_nss_mask) return false; if (ht_nss_mask == 0) return false; if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask) return false; *nss = fls(ht_nss_mask); return true; } static int ath10k_mac_set_fixed_rate_params(struct ath10k_vif *arvif, u8 rate, u8 nss, u8 sgi, u8 ldpc) { struct ath10k *ar = arvif->ar; u32 vdev_param; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02x nss %u sgi %u\n", arvif->vdev_id, rate, nss, sgi); vdev_param = ar->wmi.vdev_param->fixed_rate; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate); if (ret) { ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n", rate, ret); return ret; } vdev_param = ar->wmi.vdev_param->nss; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss); if (ret) { ath10k_warn(ar, "failed to set nss param %d: %d\n", nss, ret); return ret; } vdev_param = ar->wmi.vdev_param->sgi; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, sgi); if (ret) { ath10k_warn(ar, "failed to set sgi param %d: %d\n", sgi, ret); return ret; } vdev_param = ar->wmi.vdev_param->ldpc; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ldpc); if (ret) { ath10k_warn(ar, "failed to set ldpc param %d: %d\n", ldpc, ret); return ret; } return 0; } static bool ath10k_mac_can_set_bitrate_mask(struct ath10k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask, bool allow_pfr) { int i; u16 vht_mcs; /* Due to firmware limitation in WMI_PEER_ASSOC_CMDID it is impossible * to express all VHT MCS rate masks. Effectively only the following * ranges can be used: none, 0-7, 0-8 and 0-9. */ for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { vht_mcs = mask->control[band].vht_mcs[i]; switch (vht_mcs) { case 0: case BIT(8) - 1: case BIT(9) - 1: case BIT(10) - 1: break; default: if (!allow_pfr) ath10k_warn(ar, "refusing bitrate mask with missing 0-7 VHT MCS rates\n"); return false; } } return true; } static bool ath10k_mac_set_vht_bitrate_mask_fixup(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta) { int err; u8 rate = arvif->vht_pfr; /* skip non vht and multiple rate peers */ if (!sta->deflink.vht_cap.vht_supported || arvif->vht_num_rates != 1) return false; err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_PARAM_FIXED_RATE, rate); if (err) ath10k_warn(ar, "failed to enable STA %pM peer fixed rate: %d\n", sta->addr, err); return true; } static void ath10k_mac_set_bitrate_mask_iter(void *data, struct ieee80211_sta *sta) { struct ath10k_vif *arvif = data; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k *ar = arvif->ar; if (arsta->arvif != arvif) return; if (ath10k_mac_set_vht_bitrate_mask_fixup(ar, arvif, sta)) return; spin_lock_bh(&ar->data_lock); arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED; spin_unlock_bh(&ar->data_lock); ieee80211_queue_work(ar->hw, &arsta->update_wk); } static void ath10k_mac_clr_bitrate_mask_iter(void *data, struct ieee80211_sta *sta) { struct ath10k_vif *arvif = data; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k *ar = arvif->ar; int err; /* clear vht peers only */ if (arsta->arvif != arvif || !sta->deflink.vht_cap.vht_supported) return; err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_PARAM_FIXED_RATE, WMI_FIXED_RATE_NONE); if (err) ath10k_warn(ar, "failed to clear STA %pM peer fixed rate: %d\n", sta->addr, err); } static int ath10k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct cfg80211_chan_def def; struct ath10k *ar = arvif->ar; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; u8 rate; u8 nss; u8 sgi; u8 ldpc; int single_nss; int ret; int vht_num_rates, allow_pfr; u8 vht_pfr; bool update_bitrate_mask = true; if (ath10k_mac_vif_chan(vif, &def)) return -EPERM; band = def.chan->band; ht_mcs_mask = mask->control[band].ht_mcs; vht_mcs_mask = mask->control[band].vht_mcs; ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC); sgi = mask->control[band].gi; if (sgi == NL80211_TXRATE_FORCE_LGI) return -EINVAL; allow_pfr = test_bit(ATH10K_FW_FEATURE_PEER_FIXED_RATE, ar->normal_mode_fw.fw_file.fw_features); if (allow_pfr) { mutex_lock(&ar->conf_mutex); ieee80211_iterate_stations_atomic(ar->hw, ath10k_mac_clr_bitrate_mask_iter, arvif); mutex_unlock(&ar->conf_mutex); } if (ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask, &vht_num_rates)) { ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask, &rate, &nss, false); if (ret) { ath10k_warn(ar, "failed to get single rate for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } } else if (ath10k_mac_bitrate_mask_get_single_nss(ar, band, mask, &single_nss)) { rate = WMI_FIXED_RATE_NONE; nss = single_nss; } else { rate = WMI_FIXED_RATE_NONE; nss = min(ar->num_rf_chains, max(ath10k_mac_max_ht_nss(ht_mcs_mask), ath10k_mac_max_vht_nss(vht_mcs_mask))); if (!ath10k_mac_can_set_bitrate_mask(ar, band, mask, allow_pfr)) { u8 vht_nss; if (!allow_pfr || vht_num_rates != 1) return -EINVAL; /* Reach here, firmware supports peer fixed rate and has * single vht rate, and don't update vif birate_mask, as * the rate only for specific peer. */ ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask, &vht_pfr, &vht_nss, true); update_bitrate_mask = false; } else { vht_pfr = 0; } mutex_lock(&ar->conf_mutex); if (update_bitrate_mask) arvif->bitrate_mask = *mask; arvif->vht_num_rates = vht_num_rates; arvif->vht_pfr = vht_pfr; ieee80211_iterate_stations_atomic(ar->hw, ath10k_mac_set_bitrate_mask_iter, arvif); mutex_unlock(&ar->conf_mutex); } mutex_lock(&ar->conf_mutex); ret = ath10k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc); if (ret) { ath10k_warn(ar, "failed to set fixed rate params on vdev %i: %d\n", arvif->vdev_id, ret); goto exit; } exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct ath10k *ar = hw->priv; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_peer *peer; u32 bw, smps; spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr); if (!peer) { spin_unlock_bh(&ar->data_lock); ath10k_warn(ar, "mac sta rc update failed to find peer %pM on vdev %i\n", sta->addr, arvif->vdev_id); return; } ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n", sta->addr, changed, sta->deflink.bandwidth, sta->deflink.rx_nss, sta->deflink.smps_mode); if (changed & IEEE80211_RC_BW_CHANGED) { bw = WMI_PEER_CHWIDTH_20MHZ; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_20: bw = WMI_PEER_CHWIDTH_20MHZ; break; case IEEE80211_STA_RX_BW_40: bw = WMI_PEER_CHWIDTH_40MHZ; break; case IEEE80211_STA_RX_BW_80: bw = WMI_PEER_CHWIDTH_80MHZ; break; case IEEE80211_STA_RX_BW_160: bw = WMI_PEER_CHWIDTH_160MHZ; break; default: ath10k_warn(ar, "Invalid bandwidth %d in rc update for %pM\n", sta->deflink.bandwidth, sta->addr); bw = WMI_PEER_CHWIDTH_20MHZ; break; } arsta->bw = bw; } if (changed & IEEE80211_RC_NSS_CHANGED) arsta->nss = sta->deflink.rx_nss; if (changed & IEEE80211_RC_SMPS_CHANGED) { smps = WMI_PEER_SMPS_PS_NONE; switch (sta->deflink.smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_OFF: smps = WMI_PEER_SMPS_PS_NONE; break; case IEEE80211_SMPS_STATIC: smps = WMI_PEER_SMPS_STATIC; break; case IEEE80211_SMPS_DYNAMIC: smps = WMI_PEER_SMPS_DYNAMIC; break; case IEEE80211_SMPS_NUM_MODES: ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n", sta->deflink.smps_mode, sta->addr); smps = WMI_PEER_SMPS_PS_NONE; break; } arsta->smps = smps; } arsta->changed |= changed; spin_unlock_bh(&ar->data_lock); ieee80211_queue_work(hw, &arsta->update_wk); } static void ath10k_offset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, s64 tsf_offset) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; u32 offset, vdev_param; int ret; if (tsf_offset < 0) { vdev_param = ar->wmi.vdev_param->dec_tsf; offset = -tsf_offset; } else { vdev_param = ar->wmi.vdev_param->inc_tsf; offset = tsf_offset; } ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, offset); if (ret && ret != -EOPNOTSUPP) ath10k_warn(ar, "failed to set tsf offset %d cmd %d: %d\n", offset, vdev_param, ret); } static int ath10k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ieee80211_sta *sta = params->sta; enum ieee80211_ampdu_mlme_action action = params->action; u16 tid = params->tid; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %u action %d\n", arvif->vdev_id, sta->addr, tid, action); switch (action) { case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: /* HTT AddBa/DelBa events trigger mac80211 Rx BA session * creation/removal. Do we need to verify this? */ return 0; case IEEE80211_AMPDU_TX_START: case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: case IEEE80211_AMPDU_TX_OPERATIONAL: /* Firmware offloads Tx aggregation entirely so deny mac80211 * Tx aggregation requests. */ return -EOPNOTSUPP; } return -EINVAL; } static void ath10k_mac_update_rx_channel(struct ath10k *ar, struct ieee80211_chanctx_conf *ctx, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs) { struct cfg80211_chan_def *def = NULL; /* Both locks are required because ar->rx_channel is modified. This * allows readers to hold either lock. */ lockdep_assert_held(&ar->conf_mutex); lockdep_assert_held(&ar->data_lock); WARN_ON(ctx && vifs); WARN_ON(vifs && !n_vifs); /* FIXME: Sort of an optimization and a workaround. Peers and vifs are * on a linked list now. Doing a lookup peer -> vif -> chanctx for each * ppdu on Rx may reduce performance on low-end systems. It should be * possible to make tables/hashmaps to speed the lookup up (be vary of * cpu data cache lines though regarding sizes) but to keep the initial * implementation simple and less intrusive fallback to the slow lookup * only for multi-channel cases. Single-channel cases will remain to * use the old channel derival and thus performance should not be * affected much. */ rcu_read_lock(); if (!ctx && ath10k_mac_num_chanctxs(ar) == 1) { ieee80211_iter_chan_contexts_atomic(ar->hw, ath10k_mac_get_any_chandef_iter, &def); if (vifs) def = &vifs[0].new_ctx->def; ar->rx_channel = def->chan; } else if ((ctx && ath10k_mac_num_chanctxs(ar) == 0) || (ctx && (ar->state == ATH10K_STATE_RESTARTED))) { /* During driver restart due to firmware assert, since mac80211 * already has valid channel context for given radio, channel * context iteration return num_chanctx > 0. So fix rx_channel * when restart is in progress. */ ar->rx_channel = ctx->def.chan; } else { ar->rx_channel = NULL; } rcu_read_unlock(); } static void ath10k_mac_update_vif_chan(struct ath10k *ar, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs) { struct ath10k_vif *arvif; int ret; int i; lockdep_assert_held(&ar->conf_mutex); /* First stop monitor interface. Some FW versions crash if there's a * lone monitor interface. */ if (ar->monitor_started) ath10k_monitor_stop(ar); for (i = 0; i < n_vifs; i++) { arvif = (void *)vifs[i].vif->drv_priv; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx switch vdev_id %i freq %u->%u width %d->%d\n", arvif->vdev_id, vifs[i].old_ctx->def.chan->center_freq, vifs[i].new_ctx->def.chan->center_freq, vifs[i].old_ctx->def.width, vifs[i].new_ctx->def.width); if (WARN_ON(!arvif->is_started)) continue; if (WARN_ON(!arvif->is_up)) continue; ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) { ath10k_warn(ar, "failed to down vdev %d: %d\n", arvif->vdev_id, ret); continue; } } /* All relevant vdevs are downed and associated channel resources * should be available for the channel switch now. */ spin_lock_bh(&ar->data_lock); ath10k_mac_update_rx_channel(ar, NULL, vifs, n_vifs); spin_unlock_bh(&ar->data_lock); for (i = 0; i < n_vifs; i++) { arvif = (void *)vifs[i].vif->drv_priv; if (WARN_ON(!arvif->is_started)) continue; if (WARN_ON(!arvif->is_up)) continue; ret = ath10k_mac_setup_bcn_tmpl(arvif); if (ret) ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n", ret); ret = ath10k_mac_setup_prb_tmpl(arvif); if (ret) ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n", ret); ret = ath10k_vdev_restart(arvif, &vifs[i].new_ctx->def); if (ret) { ath10k_warn(ar, "failed to restart vdev %d: %d\n", arvif->vdev_id, ret); continue; } ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to bring vdev up %d: %d\n", arvif->vdev_id, ret); continue; } } ath10k_monitor_recalc(ar); } static int ath10k_mac_op_add_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { struct ath10k *ar = hw->priv; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx add freq %u width %d ptr %pK\n", ctx->def.chan->center_freq, ctx->def.width, ctx); mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); ath10k_mac_update_rx_channel(ar, ctx, NULL, 0); spin_unlock_bh(&ar->data_lock); ath10k_recalc_radar_detection(ar); ath10k_monitor_recalc(ar); mutex_unlock(&ar->conf_mutex); return 0; } static void ath10k_mac_op_remove_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { struct ath10k *ar = hw->priv; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx remove freq %u width %d ptr %pK\n", ctx->def.chan->center_freq, ctx->def.width, ctx); mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); ath10k_mac_update_rx_channel(ar, NULL, NULL, 0); spin_unlock_bh(&ar->data_lock); ath10k_recalc_radar_detection(ar); ath10k_monitor_recalc(ar); mutex_unlock(&ar->conf_mutex); } struct ath10k_mac_change_chanctx_arg { struct ieee80211_chanctx_conf *ctx; struct ieee80211_vif_chanctx_switch *vifs; int n_vifs; int next_vif; }; static void ath10k_mac_change_chanctx_cnt_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_mac_change_chanctx_arg *arg = data; if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx) return; arg->n_vifs++; } static void ath10k_mac_change_chanctx_fill_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_mac_change_chanctx_arg *arg = data; struct ieee80211_chanctx_conf *ctx; ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf); if (ctx != arg->ctx) return; if (WARN_ON(arg->next_vif == arg->n_vifs)) return; arg->vifs[arg->next_vif].vif = vif; arg->vifs[arg->next_vif].old_ctx = ctx; arg->vifs[arg->next_vif].new_ctx = ctx; arg->next_vif++; } static void ath10k_mac_op_change_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx, u32 changed) { struct ath10k *ar = hw->priv; struct ath10k_mac_change_chanctx_arg arg = { .ctx = ctx }; mutex_lock(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx change freq %u width %d ptr %pK changed %x\n", ctx->def.chan->center_freq, ctx->def.width, ctx, changed); /* This shouldn't really happen because channel switching should use * switch_vif_chanctx(). */ if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL)) goto unlock; if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH) { ieee80211_iterate_active_interfaces_atomic( hw, ATH10K_ITER_NORMAL_FLAGS, ath10k_mac_change_chanctx_cnt_iter, &arg); if (arg.n_vifs == 0) goto radar; arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), GFP_KERNEL); if (!arg.vifs) goto radar; ieee80211_iterate_active_interfaces_atomic( hw, ATH10K_ITER_NORMAL_FLAGS, ath10k_mac_change_chanctx_fill_iter, &arg); ath10k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs); kfree(arg.vifs); } radar: ath10k_recalc_radar_detection(ar); /* FIXME: How to configure Rx chains properly? */ /* No other actions are actually necessary. Firmware maintains channel * definitions per vdev internally and there's no host-side channel * context abstraction to configure, e.g. channel width. */ unlock: mutex_unlock(&ar->conf_mutex); } static int ath10k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx_conf *ctx) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; int ret; mutex_lock(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx assign ptr %pK vdev_id %i\n", ctx, arvif->vdev_id); if (WARN_ON(arvif->is_started)) { mutex_unlock(&ar->conf_mutex); return -EBUSY; } ret = ath10k_vdev_start(arvif, &ctx->def); if (ret) { ath10k_warn(ar, "failed to start vdev %i addr %pM on freq %d: %d\n", arvif->vdev_id, vif->addr, ctx->def.chan->center_freq, ret); goto err; } arvif->is_started = true; ret = ath10k_mac_vif_setup_ps(arvif); if (ret) { ath10k_warn(ar, "failed to update vdev %i ps: %d\n", arvif->vdev_id, ret); goto err_stop; } if (vif->type == NL80211_IFTYPE_MONITOR) { ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, 0, vif->addr); if (ret) { ath10k_warn(ar, "failed to up monitor vdev %i: %d\n", arvif->vdev_id, ret); goto err_stop; } arvif->is_up = true; } if (ath10k_mac_can_set_cts_prot(arvif)) { ret = ath10k_mac_set_cts_prot(arvif); if (ret) ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n", arvif->vdev_id, ret); } if (ath10k_peer_stats_enabled(ar) && ar->hw_params.tx_stats_over_pktlog) { ar->pktlog_filter |= ATH10K_PKTLOG_PEER_STATS; ret = ath10k_wmi_pdev_pktlog_enable(ar, ar->pktlog_filter); if (ret) { ath10k_warn(ar, "failed to enable pktlog %d\n", ret); goto err_stop; } } mutex_unlock(&ar->conf_mutex); return 0; err_stop: ath10k_vdev_stop(arvif); arvif->is_started = false; ath10k_mac_vif_setup_ps(arvif); err: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx_conf *ctx) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; int ret; mutex_lock(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx unassign ptr %pK vdev_id %i\n", ctx, arvif->vdev_id); WARN_ON(!arvif->is_started); if (vif->type == NL80211_IFTYPE_MONITOR) { WARN_ON(!arvif->is_up); ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) ath10k_warn(ar, "failed to down monitor vdev %i: %d\n", arvif->vdev_id, ret); arvif->is_up = false; } ret = ath10k_vdev_stop(arvif); if (ret) ath10k_warn(ar, "failed to stop vdev %i: %d\n", arvif->vdev_id, ret); arvif->is_started = false; mutex_unlock(&ar->conf_mutex); } static int ath10k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac chanctx switch n_vifs %d mode %d\n", n_vifs, mode); ath10k_mac_update_vif_chan(ar, vifs, n_vifs); mutex_unlock(&ar->conf_mutex); return 0; } static void ath10k_mac_op_sta_pre_rcu_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath10k *ar; struct ath10k_peer *peer; ar = hw->priv; list_for_each_entry(peer, &ar->peers, list) if (peer->sta == sta) peer->removed = true; } /* HT MCS parameters with Nss = 1 */ static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss1[] = { /* MCS L20 L40 S20 S40 */ {0, { 65, 135, 72, 150} }, {1, { 130, 270, 144, 300} }, {2, { 195, 405, 217, 450} }, {3, { 260, 540, 289, 600} }, {4, { 390, 810, 433, 900} }, {5, { 520, 1080, 578, 1200} }, {6, { 585, 1215, 650, 1350} }, {7, { 650, 1350, 722, 1500} } }; /* HT MCS parameters with Nss = 2 */ static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss2[] = { /* MCS L20 L40 S20 S40 */ {0, {130, 270, 144, 300} }, {1, {260, 540, 289, 600} }, {2, {390, 810, 433, 900} }, {3, {520, 1080, 578, 1200} }, {4, {780, 1620, 867, 1800} }, {5, {1040, 2160, 1156, 2400} }, {6, {1170, 2430, 1300, 2700} }, {7, {1300, 2700, 1444, 3000} } }; /* MCS parameters with Nss = 1 */ static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss1[] = { /* MCS L80 S80 L40 S40 L20 S20 */ {0, {293, 325}, {135, 150}, {65, 72} }, {1, {585, 650}, {270, 300}, {130, 144} }, {2, {878, 975}, {405, 450}, {195, 217} }, {3, {1170, 1300}, {540, 600}, {260, 289} }, {4, {1755, 1950}, {810, 900}, {390, 433} }, {5, {2340, 2600}, {1080, 1200}, {520, 578} }, {6, {2633, 2925}, {1215, 1350}, {585, 650} }, {7, {2925, 3250}, {1350, 1500}, {650, 722} }, {8, {3510, 3900}, {1620, 1800}, {780, 867} }, {9, {3900, 4333}, {1800, 2000}, {780, 867} } }; /*MCS parameters with Nss = 2 */ static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss2[] = { /* MCS L80 S80 L40 S40 L20 S20 */ {0, {585, 650}, {270, 300}, {130, 144} }, {1, {1170, 1300}, {540, 600}, {260, 289} }, {2, {1755, 1950}, {810, 900}, {390, 433} }, {3, {2340, 2600}, {1080, 1200}, {520, 578} }, {4, {3510, 3900}, {1620, 1800}, {780, 867} }, {5, {4680, 5200}, {2160, 2400}, {1040, 1156} }, {6, {5265, 5850}, {2430, 2700}, {1170, 1300} }, {7, {5850, 6500}, {2700, 3000}, {1300, 1444} }, {8, {7020, 7800}, {3240, 3600}, {1560, 1733} }, {9, {7800, 8667}, {3600, 4000}, {1560, 1733} } }; static void ath10k_mac_get_rate_flags_ht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs, u8 *flags, u8 *bw) { struct ath10k_index_ht_data_rate_type *mcs_rate; u8 index; size_t len_nss1 = ARRAY_SIZE(supported_ht_mcs_rate_nss1); size_t len_nss2 = ARRAY_SIZE(supported_ht_mcs_rate_nss2); if (mcs >= (len_nss1 + len_nss2)) { ath10k_warn(ar, "not supported mcs %d in current rate table", mcs); return; } mcs_rate = (struct ath10k_index_ht_data_rate_type *) ((nss == 1) ? &supported_ht_mcs_rate_nss1 : &supported_ht_mcs_rate_nss2); if (mcs >= len_nss1) index = mcs - len_nss1; else index = mcs; if (rate == mcs_rate[index].supported_rate[0]) { *bw = RATE_INFO_BW_20; } else if (rate == mcs_rate[index].supported_rate[1]) { *bw |= RATE_INFO_BW_40; } else if (rate == mcs_rate[index].supported_rate[2]) { *bw |= RATE_INFO_BW_20; *flags |= RATE_INFO_FLAGS_SHORT_GI; } else if (rate == mcs_rate[index].supported_rate[3]) { *bw |= RATE_INFO_BW_40; *flags |= RATE_INFO_FLAGS_SHORT_GI; } else { ath10k_warn(ar, "invalid ht params rate %d 100kbps nss %d mcs %d", rate, nss, mcs); } } static void ath10k_mac_get_rate_flags_vht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs, u8 *flags, u8 *bw) { struct ath10k_index_vht_data_rate_type *mcs_rate; mcs_rate = (struct ath10k_index_vht_data_rate_type *) ((nss == 1) ? &supported_vht_mcs_rate_nss1 : &supported_vht_mcs_rate_nss2); if (rate == mcs_rate[mcs].supported_VHT80_rate[0]) { *bw = RATE_INFO_BW_80; } else if (rate == mcs_rate[mcs].supported_VHT80_rate[1]) { *bw = RATE_INFO_BW_80; *flags |= RATE_INFO_FLAGS_SHORT_GI; } else if (rate == mcs_rate[mcs].supported_VHT40_rate[0]) { *bw = RATE_INFO_BW_40; } else if (rate == mcs_rate[mcs].supported_VHT40_rate[1]) { *bw = RATE_INFO_BW_40; *flags |= RATE_INFO_FLAGS_SHORT_GI; } else if (rate == mcs_rate[mcs].supported_VHT20_rate[0]) { *bw = RATE_INFO_BW_20; } else if (rate == mcs_rate[mcs].supported_VHT20_rate[1]) { *bw = RATE_INFO_BW_20; *flags |= RATE_INFO_FLAGS_SHORT_GI; } else { ath10k_warn(ar, "invalid vht params rate %d 100kbps nss %d mcs %d", rate, nss, mcs); } } static void ath10k_mac_get_rate_flags(struct ath10k *ar, u32 rate, enum ath10k_phy_mode mode, u8 nss, u8 mcs, u8 *flags, u8 *bw) { if (mode == ATH10K_PHY_MODE_HT) { *flags = RATE_INFO_FLAGS_MCS; ath10k_mac_get_rate_flags_ht(ar, rate, nss, mcs, flags, bw); } else if (mode == ATH10K_PHY_MODE_VHT) { *flags = RATE_INFO_FLAGS_VHT_MCS; ath10k_mac_get_rate_flags_vht(ar, rate, nss, mcs, flags, bw); } } static void ath10k_mac_parse_bitrate(struct ath10k *ar, u32 rate_code, u32 bitrate_kbps, struct rate_info *rate) { enum ath10k_phy_mode mode = ATH10K_PHY_MODE_LEGACY; enum wmi_rate_preamble preamble = WMI_TLV_GET_HW_RC_PREAM_V1(rate_code); u8 nss = WMI_TLV_GET_HW_RC_NSS_V1(rate_code) + 1; u8 mcs = WMI_TLV_GET_HW_RC_RATE_V1(rate_code); u8 flags = 0, bw = 0; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac parse rate code 0x%x bitrate %d kbps\n", rate_code, bitrate_kbps); if (preamble == WMI_RATE_PREAMBLE_HT) mode = ATH10K_PHY_MODE_HT; else if (preamble == WMI_RATE_PREAMBLE_VHT) mode = ATH10K_PHY_MODE_VHT; ath10k_mac_get_rate_flags(ar, bitrate_kbps / 100, mode, nss, mcs, &flags, &bw); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac parse bitrate preamble %d mode %d nss %d mcs %d flags %x bw %d\n", preamble, mode, nss, mcs, flags, bw); rate->flags = flags; rate->bw = bw; rate->legacy = bitrate_kbps / 100; rate->nss = nss; rate->mcs = mcs; } static void ath10k_mac_sta_get_peer_stats_info(struct ath10k *ar, struct ieee80211_sta *sta, struct station_info *sinfo) { struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k_peer *peer; unsigned long time_left; int ret; if (!(ar->hw_params.supports_peer_stats_info && arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA)) return; spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arsta->arvif->vdev_id, sta->addr); spin_unlock_bh(&ar->data_lock); if (!peer) return; reinit_completion(&ar->peer_stats_info_complete); ret = ath10k_wmi_request_peer_stats_info(ar, arsta->arvif->vdev_id, WMI_REQUEST_ONE_PEER_STATS_INFO, arsta->arvif->bssid, 0); if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "could not request peer stats info: %d\n", ret); return; } time_left = wait_for_completion_timeout(&ar->peer_stats_info_complete, 3 * HZ); if (time_left == 0) { ath10k_warn(ar, "timed out waiting peer stats info\n"); return; } if (arsta->rx_rate_code != 0 && arsta->rx_bitrate_kbps != 0) { ath10k_mac_parse_bitrate(ar, arsta->rx_rate_code, arsta->rx_bitrate_kbps, &sinfo->rxrate); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); arsta->rx_rate_code = 0; arsta->rx_bitrate_kbps = 0; } if (arsta->tx_rate_code != 0 && arsta->tx_bitrate_kbps != 0) { ath10k_mac_parse_bitrate(ar, arsta->tx_rate_code, arsta->tx_bitrate_kbps, &sinfo->txrate); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); arsta->tx_rate_code = 0; arsta->tx_bitrate_kbps = 0; } } static void ath10k_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo) { struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; struct ath10k *ar = arsta->arvif->ar; if (!ath10k_peer_stats_enabled(ar)) return; mutex_lock(&ar->conf_mutex); ath10k_debug_fw_stats_request(ar); mutex_unlock(&ar->conf_mutex); sinfo->rx_duration = arsta->rx_duration; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); if (arsta->txrate.legacy || arsta->txrate.nss) { if (arsta->txrate.legacy) { sinfo->txrate.legacy = arsta->txrate.legacy; } else { sinfo->txrate.mcs = arsta->txrate.mcs; sinfo->txrate.nss = arsta->txrate.nss; sinfo->txrate.bw = arsta->txrate.bw; } sinfo->txrate.flags = arsta->txrate.flags; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); } if (ar->htt.disable_tx_comp) { sinfo->tx_failed = arsta->tx_failed; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); } sinfo->tx_retries = arsta->tx_retries; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); ath10k_mac_sta_get_peer_stats_info(ar, sta, sinfo); } static int ath10k_mac_op_set_tid_config(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct cfg80211_tid_config *tid_config) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_mac_iter_tid_conf_data data = {}; struct wmi_per_peer_per_tid_cfg_arg arg = {}; int ret, i; mutex_lock(&ar->conf_mutex); arg.vdev_id = arvif->vdev_id; arvif->tids_rst = 0; memset(arvif->tid_conf_changed, 0, sizeof(arvif->tid_conf_changed)); for (i = 0; i < tid_config->n_tid_conf; i++) { ret = ath10k_mac_parse_tid_config(ar, sta, vif, &tid_config->tid_conf[i], &arg); if (ret) goto exit; } ret = 0; if (sta) goto exit; arvif->tids_rst = 0; data.curr_vif = vif; data.ar = ar; ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf, &data); exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_mac_op_reset_tid_config(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u8 tids) { struct ath10k_vif *arvif = (void *)vif->drv_priv; struct ath10k_mac_iter_tid_conf_data data = {}; struct ath10k *ar = hw->priv; int ret = 0; mutex_lock(&ar->conf_mutex); if (sta) { arvif->tids_rst = 0; ret = ath10k_mac_reset_tid_config(ar, sta, arvif, tids); goto exit; } arvif->tids_rst = tids; data.curr_vif = vif; data.ar = ar; ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf, &data); exit: mutex_unlock(&ar->conf_mutex); return ret; } static const struct ieee80211_ops ath10k_ops = { .tx = ath10k_mac_op_tx, .wake_tx_queue = ath10k_mac_op_wake_tx_queue, .start = ath10k_start, .stop = ath10k_stop, .config = ath10k_config, .add_interface = ath10k_add_interface, .update_vif_offload = ath10k_update_vif_offload, .remove_interface = ath10k_remove_interface, .configure_filter = ath10k_configure_filter, .bss_info_changed = ath10k_bss_info_changed, .set_coverage_class = ath10k_mac_op_set_coverage_class, .hw_scan = ath10k_hw_scan, .cancel_hw_scan = ath10k_cancel_hw_scan, .set_key = ath10k_set_key, .set_default_unicast_key = ath10k_set_default_unicast_key, .sta_state = ath10k_sta_state, .sta_set_txpwr = ath10k_sta_set_txpwr, .conf_tx = ath10k_conf_tx, .remain_on_channel = ath10k_remain_on_channel, .cancel_remain_on_channel = ath10k_cancel_remain_on_channel, .set_rts_threshold = ath10k_set_rts_threshold, .set_frag_threshold = ath10k_mac_op_set_frag_threshold, .flush = ath10k_flush, .tx_last_beacon = ath10k_tx_last_beacon, .set_antenna = ath10k_set_antenna, .get_antenna = ath10k_get_antenna, .reconfig_complete = ath10k_reconfig_complete, .get_survey = ath10k_get_survey, .set_bitrate_mask = ath10k_mac_op_set_bitrate_mask, .sta_rc_update = ath10k_sta_rc_update, .offset_tsf = ath10k_offset_tsf, .ampdu_action = ath10k_ampdu_action, .get_et_sset_count = ath10k_debug_get_et_sset_count, .get_et_stats = ath10k_debug_get_et_stats, .get_et_strings = ath10k_debug_get_et_strings, .add_chanctx = ath10k_mac_op_add_chanctx, .remove_chanctx = ath10k_mac_op_remove_chanctx, .change_chanctx = ath10k_mac_op_change_chanctx, .assign_vif_chanctx = ath10k_mac_op_assign_vif_chanctx, .unassign_vif_chanctx = ath10k_mac_op_unassign_vif_chanctx, .switch_vif_chanctx = ath10k_mac_op_switch_vif_chanctx, .sta_pre_rcu_remove = ath10k_mac_op_sta_pre_rcu_remove, .sta_statistics = ath10k_sta_statistics, .set_tid_config = ath10k_mac_op_set_tid_config, .reset_tid_config = ath10k_mac_op_reset_tid_config, CFG80211_TESTMODE_CMD(ath10k_tm_cmd) #ifdef CONFIG_PM .suspend = ath10k_wow_op_suspend, .resume = ath10k_wow_op_resume, .set_wakeup = ath10k_wow_op_set_wakeup, #endif #ifdef CONFIG_MAC80211_DEBUGFS .sta_add_debugfs = ath10k_sta_add_debugfs, #endif .set_sar_specs = ath10k_mac_set_sar_specs, }; #define CHAN2G(_channel, _freq, _flags) { \ .band = NL80211_BAND_2GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _freq, _flags) { \ .band = NL80211_BAND_5GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static const struct ieee80211_channel ath10k_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static const struct ieee80211_channel ath10k_5ghz_channels[] = { CHAN5G(36, 5180, 0), CHAN5G(40, 5200, 0), CHAN5G(44, 5220, 0), CHAN5G(48, 5240, 0), CHAN5G(52, 5260, 0), CHAN5G(56, 5280, 0), CHAN5G(60, 5300, 0), CHAN5G(64, 5320, 0), CHAN5G(100, 5500, 0), CHAN5G(104, 5520, 0), CHAN5G(108, 5540, 0), CHAN5G(112, 5560, 0), CHAN5G(116, 5580, 0), CHAN5G(120, 5600, 0), CHAN5G(124, 5620, 0), CHAN5G(128, 5640, 0), CHAN5G(132, 5660, 0), CHAN5G(136, 5680, 0), CHAN5G(140, 5700, 0), CHAN5G(144, 5720, 0), CHAN5G(149, 5745, 0), CHAN5G(153, 5765, 0), CHAN5G(157, 5785, 0), CHAN5G(161, 5805, 0), CHAN5G(165, 5825, 0), CHAN5G(169, 5845, 0), CHAN5G(173, 5865, 0), /* If you add more, you may need to change ATH10K_MAX_5G_CHAN */ /* And you will definitely need to change ATH10K_NUM_CHANS in core.h */ }; struct ath10k *ath10k_mac_create(size_t priv_size) { struct ieee80211_hw *hw; struct ieee80211_ops *ops; struct ath10k *ar; ops = kmemdup(&ath10k_ops, sizeof(ath10k_ops), GFP_KERNEL); if (!ops) return NULL; hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, ops); if (!hw) { kfree(ops); return NULL; } ar = hw->priv; ar->hw = hw; ar->ops = ops; return ar; } void ath10k_mac_destroy(struct ath10k *ar) { struct ieee80211_ops *ops = ar->ops; ieee80211_free_hw(ar->hw); kfree(ops); } static const struct ieee80211_iface_limit ath10k_if_limits[] = { { .max = 8, .types = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_P2P_CLIENT) }, { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) }, { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) }, { .max = 7, .types = BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }, }; static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = { { .max = 8, .types = BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }, { .max = 1, .types = BIT(NL80211_IFTYPE_STATION) }, }; static const struct ieee80211_iface_combination ath10k_if_comb[] = { { .limits = ath10k_if_limits, .n_limits = ARRAY_SIZE(ath10k_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, }, }; static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = { { .limits = ath10k_10x_if_limits, .n_limits = ARRAY_SIZE(ath10k_10x_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, .beacon_int_min_gcd = 1, #ifdef CONFIG_ATH10K_DFS_CERTIFIED .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80), #endif }, }; static const struct ieee80211_iface_limit ath10k_tlv_if_limit[] = { { .max = 2, .types = BIT(NL80211_IFTYPE_STATION), }, { .max = 2, .types = BIT(NL80211_IFTYPE_AP) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO), }, { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE), }, }; static const struct ieee80211_iface_limit ath10k_tlv_qcs_if_limit[] = { { .max = 2, .types = BIT(NL80211_IFTYPE_STATION), }, { .max = 2, .types = BIT(NL80211_IFTYPE_P2P_CLIENT), }, { .max = 1, .types = BIT(NL80211_IFTYPE_AP) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_GO), }, { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE), }, }; static const struct ieee80211_iface_limit ath10k_tlv_if_limit_ibss[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC), }, }; /* FIXME: This is not thoroughly tested. These combinations may over- or * underestimate hw/fw capabilities. */ static struct ieee80211_iface_combination ath10k_tlv_if_comb[] = { { .limits = ath10k_tlv_if_limit, .num_different_channels = 1, .max_interfaces = 4, .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit), }, { .limits = ath10k_tlv_if_limit_ibss, .num_different_channels = 1, .max_interfaces = 2, .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss), }, }; static struct ieee80211_iface_combination ath10k_tlv_qcs_if_comb[] = { { .limits = ath10k_tlv_if_limit, .num_different_channels = 1, .max_interfaces = 4, .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit), }, { .limits = ath10k_tlv_qcs_if_limit, .num_different_channels = 2, .max_interfaces = 4, .n_limits = ARRAY_SIZE(ath10k_tlv_qcs_if_limit), }, { .limits = ath10k_tlv_if_limit_ibss, .num_different_channels = 1, .max_interfaces = 2, .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss), }, }; static const struct ieee80211_iface_limit ath10k_10_4_if_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, { .max = 16, .types = BIT(NL80211_IFTYPE_AP) #ifdef CONFIG_MAC80211_MESH | BIT(NL80211_IFTYPE_MESH_POINT) #endif }, }; static const struct ieee80211_iface_combination ath10k_10_4_if_comb[] = { { .limits = ath10k_10_4_if_limits, .n_limits = ARRAY_SIZE(ath10k_10_4_if_limits), .max_interfaces = 16, .num_different_channels = 1, .beacon_int_infra_match = true, .beacon_int_min_gcd = 1, #ifdef CONFIG_ATH10K_DFS_CERTIFIED .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_80P80) | BIT(NL80211_CHAN_WIDTH_160), #endif }, }; static const struct ieee80211_iface_combination ath10k_10_4_bcn_int_if_comb[] = { { .limits = ath10k_10_4_if_limits, .n_limits = ARRAY_SIZE(ath10k_10_4_if_limits), .max_interfaces = 16, .num_different_channels = 1, .beacon_int_infra_match = true, .beacon_int_min_gcd = 100, #ifdef CONFIG_ATH10K_DFS_CERTIFIED .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80) | BIT(NL80211_CHAN_WIDTH_80P80) | BIT(NL80211_CHAN_WIDTH_160), #endif }, }; static void ath10k_get_arvif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_vif_iter *arvif_iter = data; struct ath10k_vif *arvif = (void *)vif->drv_priv; if (arvif->vdev_id == arvif_iter->vdev_id) arvif_iter->arvif = arvif; } struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id) { struct ath10k_vif_iter arvif_iter; memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter)); arvif_iter.vdev_id = vdev_id; ieee80211_iterate_active_interfaces_atomic(ar->hw, ATH10K_ITER_RESUME_FLAGS, ath10k_get_arvif_iter, &arvif_iter); if (!arvif_iter.arvif) { ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id); return NULL; } return arvif_iter.arvif; } #define WRD_METHOD "WRDD" #define WRDD_WIFI (0x07) static u32 ath10k_mac_wrdd_get_mcc(struct ath10k *ar, union acpi_object *wrdd) { union acpi_object *mcc_pkg; union acpi_object *domain_type; union acpi_object *mcc_value; u32 i; if (wrdd->type != ACPI_TYPE_PACKAGE || wrdd->package.count < 2 || wrdd->package.elements[0].type != ACPI_TYPE_INTEGER || wrdd->package.elements[0].integer.value != 0) { ath10k_warn(ar, "ignoring malformed/unsupported wrdd structure\n"); return 0; } for (i = 1; i < wrdd->package.count; ++i) { mcc_pkg = &wrdd->package.elements[i]; if (mcc_pkg->type != ACPI_TYPE_PACKAGE) continue; if (mcc_pkg->package.count < 2) continue; if (mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER || mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) continue; domain_type = &mcc_pkg->package.elements[0]; if (domain_type->integer.value != WRDD_WIFI) continue; mcc_value = &mcc_pkg->package.elements[1]; return mcc_value->integer.value; } return 0; } static int ath10k_mac_get_wrdd_regulatory(struct ath10k *ar, u16 *rd) { acpi_handle root_handle; acpi_handle handle; struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL}; acpi_status status; u32 alpha2_code; char alpha2[3]; root_handle = ACPI_HANDLE(ar->dev); if (!root_handle) return -EOPNOTSUPP; status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle); if (ACPI_FAILURE(status)) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "failed to get wrd method %d\n", status); return -EIO; } status = acpi_evaluate_object(handle, NULL, NULL, &wrdd); if (ACPI_FAILURE(status)) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "failed to call wrdc %d\n", status); return -EIO; } alpha2_code = ath10k_mac_wrdd_get_mcc(ar, wrdd.pointer); kfree(wrdd.pointer); if (!alpha2_code) return -EIO; alpha2[0] = (alpha2_code >> 8) & 0xff; alpha2[1] = (alpha2_code >> 0) & 0xff; alpha2[2] = '\0'; ath10k_dbg(ar, ATH10K_DBG_BOOT, "regulatory hint from WRDD (alpha2-code): %s\n", alpha2); *rd = ath_regd_find_country_by_name(alpha2); if (*rd == 0xffff) return -EIO; *rd |= COUNTRY_ERD_FLAG; return 0; } static int ath10k_mac_init_rd(struct ath10k *ar) { int ret; u16 rd; ret = ath10k_mac_get_wrdd_regulatory(ar, &rd); if (ret) { ath10k_dbg(ar, ATH10K_DBG_BOOT, "fallback to eeprom programmed regulatory settings\n"); rd = ar->hw_eeprom_rd; } ar->ath_common.regulatory.current_rd = rd; return 0; } int ath10k_mac_register(struct ath10k *ar) { static const u32 cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, /* Do not add hardware supported ciphers before this line. * Allow software encryption for all chips. Don't forget to * update n_cipher_suites below. */ WLAN_CIPHER_SUITE_AES_CMAC, WLAN_CIPHER_SUITE_BIP_CMAC_256, WLAN_CIPHER_SUITE_BIP_GMAC_128, WLAN_CIPHER_SUITE_BIP_GMAC_256, /* Only QCA99x0 and QCA4019 variants support GCMP-128, GCMP-256 * and CCMP-256 in hardware. */ WLAN_CIPHER_SUITE_GCMP, WLAN_CIPHER_SUITE_GCMP_256, WLAN_CIPHER_SUITE_CCMP_256, }; struct ieee80211_supported_band *band; void *channels; int ret; if (!is_valid_ether_addr(ar->mac_addr)) { ath10k_warn(ar, "invalid MAC address; choosing random\n"); eth_random_addr(ar->mac_addr); } SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); SET_IEEE80211_DEV(ar->hw, ar->dev); BUILD_BUG_ON((ARRAY_SIZE(ath10k_2ghz_channels) + ARRAY_SIZE(ath10k_5ghz_channels)) != ATH10K_NUM_CHANS); if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { channels = kmemdup(ath10k_2ghz_channels, sizeof(ath10k_2ghz_channels), GFP_KERNEL); if (!channels) { ret = -ENOMEM; goto err_free; } band = &ar->mac.sbands[NL80211_BAND_2GHZ]; band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels); band->channels = channels; if (ar->hw_params.cck_rate_map_rev2) { band->n_bitrates = ath10k_g_rates_rev2_size; band->bitrates = ath10k_g_rates_rev2; } else { band->n_bitrates = ath10k_g_rates_size; band->bitrates = ath10k_g_rates; } ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band; } if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { channels = kmemdup(ath10k_5ghz_channels, sizeof(ath10k_5ghz_channels), GFP_KERNEL); if (!channels) { ret = -ENOMEM; goto err_free; } band = &ar->mac.sbands[NL80211_BAND_5GHZ]; band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels); band->channels = channels; band->n_bitrates = ath10k_a_rates_size; band->bitrates = ath10k_a_rates; ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band; } wiphy_read_of_freq_limits(ar->hw->wiphy); ath10k_mac_setup_ht_vht_cap(ar); ar->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_MESH_POINT); ar->hw->wiphy->available_antennas_rx = ar->cfg_rx_chainmask; ar->hw->wiphy->available_antennas_tx = ar->cfg_tx_chainmask; if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->normal_mode_fw.fw_file.fw_features)) ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_DEVICE) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); ieee80211_hw_set(ar->hw, SIGNAL_DBM); if (!test_bit(ATH10K_FW_FEATURE_NO_PS, ar->running_fw->fw_file.fw_features)) { ieee80211_hw_set(ar->hw, SUPPORTS_PS); ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS); } ieee80211_hw_set(ar->hw, MFP_CAPABLE); ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL); ieee80211_hw_set(ar->hw, AP_LINK_PS); ieee80211_hw_set(ar->hw, SPECTRUM_MGMT); ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT); ieee80211_hw_set(ar->hw, CONNECTION_MONITOR); ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK); ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF); ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA); ieee80211_hw_set(ar->hw, QUEUE_CONTROL); ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG); ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK); if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL); ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS; ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) { ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION); ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW); } ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; if (test_bit(WMI_SERVICE_NLO, ar->wmi.svc_map)) { ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS; ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS; ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH; ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS; ar->hw->wiphy->max_sched_scan_plan_interval = WMI_PNO_MAX_SCHED_SCAN_PLAN_INT; ar->hw->wiphy->max_sched_scan_plan_iterations = WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS; ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR; } ar->hw->vif_data_size = sizeof(struct ath10k_vif); ar->hw->sta_data_size = sizeof(struct ath10k_sta); ar->hw->txq_data_size = sizeof(struct ath10k_txq); ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL; if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) { ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD; /* Firmware delivers WPS/P2P Probe Requests frames to driver so * that userspace (e.g. wpa_supplicant/hostapd) can generate * correct Probe Responses. This is more of a hack advert.. */ ar->hw->wiphy->probe_resp_offload |= NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P; } if (test_bit(WMI_SERVICE_TDLS, ar->wmi.svc_map) || test_bit(WMI_SERVICE_TDLS_EXPLICIT_MODE_ONLY, ar->wmi.svc_map)) { ar->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS; if (test_bit(WMI_SERVICE_TDLS_WIDER_BANDWIDTH, ar->wmi.svc_map)) ieee80211_hw_set(ar->hw, TDLS_WIDER_BW); } if (test_bit(WMI_SERVICE_TDLS_UAPSD_BUFFER_STA, ar->wmi.svc_map)) ieee80211_hw_set(ar->hw, SUPPORTS_TDLS_BUFFER_STA); if (ath10k_frame_mode == ATH10K_HW_TXRX_ETHERNET) { if (ar->wmi.vdev_param->tx_encap_type != WMI_VDEV_PARAM_UNSUPPORTED) ieee80211_hw_set(ar->hw, SUPPORTS_TX_ENCAP_OFFLOAD); } ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; ar->hw->wiphy->max_remain_on_channel_duration = 5000; ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | NL80211_FEATURE_AP_SCAN; ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations; ret = ath10k_wow_init(ar); if (ret) { ath10k_warn(ar, "failed to init wow: %d\n", ret); goto err_free; } wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS); wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL); wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_AQL); if (ar->hw_params.mcast_frame_registration) wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_MULTICAST_REGISTRATIONS); if (test_bit(WMI_SERVICE_TX_DATA_ACK_RSSI, ar->wmi.svc_map) || test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, ar->wmi.svc_map)) wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); if (ath10k_peer_stats_enabled(ar) || test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map)) wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS); if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER); if (test_bit(WMI_SERVICE_TX_PWR_PER_PEER, ar->wmi.svc_map)) wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_STA_TX_PWR); if (test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) { ar->hw->wiphy->tid_config_support.vif |= BIT(NL80211_TID_CONFIG_ATTR_NOACK) | BIT(NL80211_TID_CONFIG_ATTR_RETRY_SHORT) | BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG) | BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE); if (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) { ar->hw->wiphy->tid_config_support.vif |= BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL); } ar->hw->wiphy->tid_config_support.peer = ar->hw->wiphy->tid_config_support.vif; ar->hw->wiphy->max_data_retry_count = ATH10K_MAX_RETRY_COUNT; } else { ar->ops->set_tid_config = NULL; } /* * on LL hardware queues are managed entirely by the FW * so we only advertise to mac we can do the queues thing */ ar->hw->queues = IEEE80211_MAX_QUEUES; /* vdev_ids are used as hw queue numbers. Make sure offchan tx queue is * something that vdev_ids can't reach so that we don't stop the queue * accidentally. */ ar->hw->offchannel_tx_hw_queue = IEEE80211_MAX_QUEUES - 1; switch (ar->running_fw->fw_file.wmi_op_version) { case ATH10K_FW_WMI_OP_VERSION_MAIN: ar->hw->wiphy->iface_combinations = ath10k_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_if_comb); ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC); break; case ATH10K_FW_WMI_OP_VERSION_TLV: if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) { ar->hw->wiphy->iface_combinations = ath10k_tlv_qcs_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_tlv_qcs_if_comb); } else { ar->hw->wiphy->iface_combinations = ath10k_tlv_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_tlv_if_comb); } ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC); break; case ATH10K_FW_WMI_OP_VERSION_10_1: case ATH10K_FW_WMI_OP_VERSION_10_2: case ATH10K_FW_WMI_OP_VERSION_10_2_4: ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_10x_if_comb); break; case ATH10K_FW_WMI_OP_VERSION_10_4: ar->hw->wiphy->iface_combinations = ath10k_10_4_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_10_4_if_comb); if (test_bit(WMI_SERVICE_VDEV_DIFFERENT_BEACON_INTERVAL_SUPPORT, ar->wmi.svc_map)) { ar->hw->wiphy->iface_combinations = ath10k_10_4_bcn_int_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_10_4_bcn_int_if_comb); } break; case ATH10K_FW_WMI_OP_VERSION_UNSET: case ATH10K_FW_WMI_OP_VERSION_MAX: WARN_ON(1); ret = -EINVAL; goto err_free; } if (ar->hw_params.dynamic_sar_support) ar->hw->wiphy->sar_capa = &ath10k_sar_capa; if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) ar->hw->netdev_features = NETIF_F_HW_CSUM; if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED)) { /* Init ath dfs pattern detector */ ar->ath_common.debug_mask = ATH_DBG_DFS; ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common, NL80211_DFS_UNSET); if (!ar->dfs_detector) ath10k_warn(ar, "failed to initialise DFS pattern detector\n"); } ret = ath10k_mac_init_rd(ar); if (ret) { ath10k_err(ar, "failed to derive regdom: %d\n", ret); goto err_dfs_detector_exit; } /* Disable set_coverage_class for chipsets that do not support it. */ if (!ar->hw_params.hw_ops->set_coverage_class) ar->ops->set_coverage_class = NULL; ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy, ath10k_reg_notifier); if (ret) { ath10k_err(ar, "failed to initialise regulatory: %i\n", ret); goto err_dfs_detector_exit; } if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) { ar->hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; } ar->hw->wiphy->cipher_suites = cipher_suites; /* QCA988x and QCA6174 family chips do not support CCMP-256, GCMP-128 * and GCMP-256 ciphers in hardware. Fetch number of ciphers supported * from chip specific hw_param table. */ if (!ar->hw_params.n_cipher_suites || ar->hw_params.n_cipher_suites > ARRAY_SIZE(cipher_suites)) { ath10k_err(ar, "invalid hw_params.n_cipher_suites %d\n", ar->hw_params.n_cipher_suites); ar->hw_params.n_cipher_suites = 8; } ar->hw->wiphy->n_cipher_suites = ar->hw_params.n_cipher_suites; wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); ar->hw->weight_multiplier = ATH10K_AIRTIME_WEIGHT_MULTIPLIER; ret = ieee80211_register_hw(ar->hw); if (ret) { ath10k_err(ar, "failed to register ieee80211: %d\n", ret); goto err_dfs_detector_exit; } if (test_bit(WMI_SERVICE_PER_PACKET_SW_ENCRYPT, ar->wmi.svc_map)) { ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP_VLAN); ar->hw->wiphy->software_iftypes |= BIT(NL80211_IFTYPE_AP_VLAN); } if (!ath_is_world_regd(&ar->ath_common.reg_world_copy) && !ath_is_world_regd(&ar->ath_common.regulatory)) { ret = regulatory_hint(ar->hw->wiphy, ar->ath_common.regulatory.alpha2); if (ret) goto err_unregister; } return 0; err_unregister: ieee80211_unregister_hw(ar->hw); err_dfs_detector_exit: if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) ar->dfs_detector->exit(ar->dfs_detector); err_free: kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); SET_IEEE80211_DEV(ar->hw, NULL); return ret; } void ath10k_mac_unregister(struct ath10k *ar) { ieee80211_unregister_hw(ar->hw); if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) ar->dfs_detector->exit(ar->dfs_detector); kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); SET_IEEE80211_DEV(ar->hw, NULL); }