// SPDX-License-Identifier: GPL-2.0+ /* Framework for finding and configuring PHYs. * Also contains generic PHY driver * * Author: Andy Fleming * * Copyright (c) 2004 Freescale Semiconductor, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("PHY library"); MODULE_AUTHOR("Andy Fleming"); MODULE_LICENSE("GPL"); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_basic_features); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_basic_t1_features); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_gbit_features); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_10gbit_features); __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); const int phy_basic_ports_array[3] = { ETHTOOL_LINK_MODE_Autoneg_BIT, ETHTOOL_LINK_MODE_TP_BIT, ETHTOOL_LINK_MODE_MII_BIT, }; EXPORT_SYMBOL_GPL(phy_basic_ports_array); const int phy_fibre_port_array[1] = { ETHTOOL_LINK_MODE_FIBRE_BIT, }; EXPORT_SYMBOL_GPL(phy_fibre_port_array); const int phy_all_ports_features_array[7] = { ETHTOOL_LINK_MODE_Autoneg_BIT, ETHTOOL_LINK_MODE_TP_BIT, ETHTOOL_LINK_MODE_MII_BIT, ETHTOOL_LINK_MODE_FIBRE_BIT, ETHTOOL_LINK_MODE_AUI_BIT, ETHTOOL_LINK_MODE_BNC_BIT, ETHTOOL_LINK_MODE_Backplane_BIT, }; EXPORT_SYMBOL_GPL(phy_all_ports_features_array); const int phy_10_100_features_array[4] = { ETHTOOL_LINK_MODE_10baseT_Half_BIT, ETHTOOL_LINK_MODE_10baseT_Full_BIT, ETHTOOL_LINK_MODE_100baseT_Half_BIT, ETHTOOL_LINK_MODE_100baseT_Full_BIT, }; EXPORT_SYMBOL_GPL(phy_10_100_features_array); const int phy_basic_t1_features_array[3] = { ETHTOOL_LINK_MODE_TP_BIT, ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, ETHTOOL_LINK_MODE_100baseT1_Full_BIT, }; EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); const int phy_gbit_features_array[2] = { ETHTOOL_LINK_MODE_1000baseT_Half_BIT, ETHTOOL_LINK_MODE_1000baseT_Full_BIT, }; EXPORT_SYMBOL_GPL(phy_gbit_features_array); const int phy_10gbit_features_array[1] = { ETHTOOL_LINK_MODE_10000baseT_Full_BIT, }; EXPORT_SYMBOL_GPL(phy_10gbit_features_array); static const int phy_10gbit_fec_features_array[1] = { ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, }; __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; EXPORT_SYMBOL_GPL(phy_10gbit_full_features); static const int phy_10gbit_full_features_array[] = { ETHTOOL_LINK_MODE_10baseT_Full_BIT, ETHTOOL_LINK_MODE_100baseT_Full_BIT, ETHTOOL_LINK_MODE_1000baseT_Full_BIT, ETHTOOL_LINK_MODE_10000baseT_Full_BIT, }; static void features_init(void) { /* 10/100 half/full*/ linkmode_set_bit_array(phy_basic_ports_array, ARRAY_SIZE(phy_basic_ports_array), phy_basic_features); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), phy_basic_features); /* 100 full, TP */ linkmode_set_bit_array(phy_basic_t1_features_array, ARRAY_SIZE(phy_basic_t1_features_array), phy_basic_t1_features); /* 10/100 half/full + 1000 half/full */ linkmode_set_bit_array(phy_basic_ports_array, ARRAY_SIZE(phy_basic_ports_array), phy_gbit_features); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), phy_gbit_features); linkmode_set_bit_array(phy_gbit_features_array, ARRAY_SIZE(phy_gbit_features_array), phy_gbit_features); /* 10/100 half/full + 1000 half/full + fibre*/ linkmode_set_bit_array(phy_basic_ports_array, ARRAY_SIZE(phy_basic_ports_array), phy_gbit_fibre_features); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), phy_gbit_fibre_features); linkmode_set_bit_array(phy_gbit_features_array, ARRAY_SIZE(phy_gbit_features_array), phy_gbit_fibre_features); linkmode_set_bit_array(phy_fibre_port_array, ARRAY_SIZE(phy_fibre_port_array), phy_gbit_fibre_features); /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ linkmode_set_bit_array(phy_all_ports_features_array, ARRAY_SIZE(phy_all_ports_features_array), phy_gbit_all_ports_features); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), phy_gbit_all_ports_features); linkmode_set_bit_array(phy_gbit_features_array, ARRAY_SIZE(phy_gbit_features_array), phy_gbit_all_ports_features); /* 10/100 half/full + 1000 half/full + 10G full*/ linkmode_set_bit_array(phy_all_ports_features_array, ARRAY_SIZE(phy_all_ports_features_array), phy_10gbit_features); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), phy_10gbit_features); linkmode_set_bit_array(phy_gbit_features_array, ARRAY_SIZE(phy_gbit_features_array), phy_10gbit_features); linkmode_set_bit_array(phy_10gbit_features_array, ARRAY_SIZE(phy_10gbit_features_array), phy_10gbit_features); /* 10/100/1000/10G full */ linkmode_set_bit_array(phy_all_ports_features_array, ARRAY_SIZE(phy_all_ports_features_array), phy_10gbit_full_features); linkmode_set_bit_array(phy_10gbit_full_features_array, ARRAY_SIZE(phy_10gbit_full_features_array), phy_10gbit_full_features); /* 10G FEC only */ linkmode_set_bit_array(phy_10gbit_fec_features_array, ARRAY_SIZE(phy_10gbit_fec_features_array), phy_10gbit_fec_features); } void phy_device_free(struct phy_device *phydev) { put_device(&phydev->mdio.dev); } EXPORT_SYMBOL(phy_device_free); static void phy_mdio_device_free(struct mdio_device *mdiodev) { struct phy_device *phydev; phydev = container_of(mdiodev, struct phy_device, mdio); phy_device_free(phydev); } static void phy_device_release(struct device *dev) { kfree(to_phy_device(dev)); } static void phy_mdio_device_remove(struct mdio_device *mdiodev) { struct phy_device *phydev; phydev = container_of(mdiodev, struct phy_device, mdio); phy_device_remove(phydev); } static struct phy_driver genphy_driver; static LIST_HEAD(phy_fixup_list); static DEFINE_MUTEX(phy_fixup_lock); static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) { struct device_driver *drv = phydev->mdio.dev.driver; struct phy_driver *phydrv = to_phy_driver(drv); struct net_device *netdev = phydev->attached_dev; if (!drv || !phydrv->suspend) return false; /* PHY not attached? May suspend if the PHY has not already been * suspended as part of a prior call to phy_disconnect() -> * phy_detach() -> phy_suspend() because the parent netdev might be the * MDIO bus driver and clock gated at this point. */ if (!netdev) goto out; if (netdev->wol_enabled) return false; /* As long as not all affected network drivers support the * wol_enabled flag, let's check for hints that WoL is enabled. * Don't suspend PHY if the attached netdev parent may wake up. * The parent may point to a PCI device, as in tg3 driver. */ if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) return false; /* Also don't suspend PHY if the netdev itself may wakeup. This * is the case for devices w/o underlaying pwr. mgmt. aware bus, * e.g. SoC devices. */ if (device_may_wakeup(&netdev->dev)) return false; out: return !phydev->suspended; } static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) { struct phy_device *phydev = to_phy_device(dev); if (phydev->mac_managed_pm) return 0; /* Wakeup interrupts may occur during the system sleep transition when * the PHY is inaccessible. Set flag to postpone handling until the PHY * has resumed. Wait for concurrent interrupt handler to complete. */ if (phy_interrupt_is_valid(phydev)) { phydev->irq_suspended = 1; synchronize_irq(phydev->irq); } /* We must stop the state machine manually, otherwise it stops out of * control, possibly with the phydev->lock held. Upon resume, netdev * may call phy routines that try to grab the same lock, and that may * lead to a deadlock. */ if (phydev->attached_dev && phydev->adjust_link) phy_stop_machine(phydev); if (!mdio_bus_phy_may_suspend(phydev)) return 0; phydev->suspended_by_mdio_bus = 1; return phy_suspend(phydev); } static __maybe_unused int mdio_bus_phy_resume(struct device *dev) { struct phy_device *phydev = to_phy_device(dev); int ret; if (phydev->mac_managed_pm) return 0; if (!phydev->suspended_by_mdio_bus) goto no_resume; phydev->suspended_by_mdio_bus = 0; /* If we manged to get here with the PHY state machine in a state neither * PHY_HALTED nor PHY_READY this is an indication that something went wrong * and we should most likely be using MAC managed PM and we are not. */ WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY); ret = phy_init_hw(phydev); if (ret < 0) return ret; ret = phy_resume(phydev); if (ret < 0) return ret; no_resume: if (phy_interrupt_is_valid(phydev)) { phydev->irq_suspended = 0; synchronize_irq(phydev->irq); /* Rerun interrupts which were postponed by phy_interrupt() * because they occurred during the system sleep transition. */ if (phydev->irq_rerun) { phydev->irq_rerun = 0; enable_irq(phydev->irq); irq_wake_thread(phydev->irq, phydev); } } if (phydev->attached_dev && phydev->adjust_link) phy_start_machine(phydev); return 0; } static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, mdio_bus_phy_resume); /** * phy_register_fixup - creates a new phy_fixup and adds it to the list * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) * It can also be PHY_ANY_UID * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before * comparison * @run: The actual code to be run when a matching PHY is found */ int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, int (*run)(struct phy_device *)) { struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); if (!fixup) return -ENOMEM; strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); fixup->phy_uid = phy_uid; fixup->phy_uid_mask = phy_uid_mask; fixup->run = run; mutex_lock(&phy_fixup_lock); list_add_tail(&fixup->list, &phy_fixup_list); mutex_unlock(&phy_fixup_lock); return 0; } EXPORT_SYMBOL(phy_register_fixup); /* Registers a fixup to be run on any PHY with the UID in phy_uid */ int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, int (*run)(struct phy_device *)) { return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); } EXPORT_SYMBOL(phy_register_fixup_for_uid); /* Registers a fixup to be run on the PHY with id string bus_id */ int phy_register_fixup_for_id(const char *bus_id, int (*run)(struct phy_device *)) { return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); } EXPORT_SYMBOL(phy_register_fixup_for_id); /** * phy_unregister_fixup - remove a phy_fixup from the list * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison */ int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) { struct list_head *pos, *n; struct phy_fixup *fixup; int ret; ret = -ENODEV; mutex_lock(&phy_fixup_lock); list_for_each_safe(pos, n, &phy_fixup_list) { fixup = list_entry(pos, struct phy_fixup, list); if ((!strcmp(fixup->bus_id, bus_id)) && ((fixup->phy_uid & phy_uid_mask) == (phy_uid & phy_uid_mask))) { list_del(&fixup->list); kfree(fixup); ret = 0; break; } } mutex_unlock(&phy_fixup_lock); return ret; } EXPORT_SYMBOL(phy_unregister_fixup); /* Unregisters a fixup of any PHY with the UID in phy_uid */ int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) { return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); } EXPORT_SYMBOL(phy_unregister_fixup_for_uid); /* Unregisters a fixup of the PHY with id string bus_id */ int phy_unregister_fixup_for_id(const char *bus_id) { return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); } EXPORT_SYMBOL(phy_unregister_fixup_for_id); /* Returns 1 if fixup matches phydev in bus_id and phy_uid. * Fixups can be set to match any in one or more fields. */ static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) { if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) return 0; if ((fixup->phy_uid & fixup->phy_uid_mask) != (phydev->phy_id & fixup->phy_uid_mask)) if (fixup->phy_uid != PHY_ANY_UID) return 0; return 1; } /* Runs any matching fixups for this phydev */ static int phy_scan_fixups(struct phy_device *phydev) { struct phy_fixup *fixup; mutex_lock(&phy_fixup_lock); list_for_each_entry(fixup, &phy_fixup_list, list) { if (phy_needs_fixup(phydev, fixup)) { int err = fixup->run(phydev); if (err < 0) { mutex_unlock(&phy_fixup_lock); return err; } phydev->has_fixups = true; } } mutex_unlock(&phy_fixup_lock); return 0; } static int phy_bus_match(struct device *dev, struct device_driver *drv) { struct phy_device *phydev = to_phy_device(dev); struct phy_driver *phydrv = to_phy_driver(drv); const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); int i; if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) return 0; if (phydrv->match_phy_device) return phydrv->match_phy_device(phydev); if (phydev->is_c45) { for (i = 1; i < num_ids; i++) { if (phydev->c45_ids.device_ids[i] == 0xffffffff) continue; if ((phydrv->phy_id & phydrv->phy_id_mask) == (phydev->c45_ids.device_ids[i] & phydrv->phy_id_mask)) return 1; } return 0; } else { return (phydrv->phy_id & phydrv->phy_id_mask) == (phydev->phy_id & phydrv->phy_id_mask); } } static ssize_t phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct phy_device *phydev = to_phy_device(dev); return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); } static DEVICE_ATTR_RO(phy_id); static ssize_t phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) { struct phy_device *phydev = to_phy_device(dev); const char *mode = NULL; if (phy_is_internal(phydev)) mode = "internal"; else mode = phy_modes(phydev->interface); return sprintf(buf, "%s\n", mode); } static DEVICE_ATTR_RO(phy_interface); static ssize_t phy_has_fixups_show(struct device *dev, struct device_attribute *attr, char *buf) { struct phy_device *phydev = to_phy_device(dev); return sprintf(buf, "%d\n", phydev->has_fixups); } static DEVICE_ATTR_RO(phy_has_fixups); static ssize_t phy_dev_flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct phy_device *phydev = to_phy_device(dev); return sprintf(buf, "0x%08x\n", phydev->dev_flags); } static DEVICE_ATTR_RO(phy_dev_flags); static struct attribute *phy_dev_attrs[] = { &dev_attr_phy_id.attr, &dev_attr_phy_interface.attr, &dev_attr_phy_has_fixups.attr, &dev_attr_phy_dev_flags.attr, NULL, }; ATTRIBUTE_GROUPS(phy_dev); static const struct device_type mdio_bus_phy_type = { .name = "PHY", .groups = phy_dev_groups, .release = phy_device_release, .pm = pm_ptr(&mdio_bus_phy_pm_ops), }; static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) { int ret; ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, MDIO_ID_ARGS(phy_id)); /* We only check for failures in executing the usermode binary, * not whether a PHY driver module exists for the PHY ID. * Accept -ENOENT because this may occur in case no initramfs exists, * then modprobe isn't available. */ if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", ret, (unsigned long)phy_id); return ret; } return 0; } struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, bool is_c45, struct phy_c45_device_ids *c45_ids) { struct phy_device *dev; struct mdio_device *mdiodev; int ret = 0; /* We allocate the device, and initialize the default values */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); mdiodev = &dev->mdio; mdiodev->dev.parent = &bus->dev; mdiodev->dev.bus = &mdio_bus_type; mdiodev->dev.type = &mdio_bus_phy_type; mdiodev->bus = bus; mdiodev->bus_match = phy_bus_match; mdiodev->addr = addr; mdiodev->flags = MDIO_DEVICE_FLAG_PHY; mdiodev->device_free = phy_mdio_device_free; mdiodev->device_remove = phy_mdio_device_remove; dev->speed = SPEED_UNKNOWN; dev->duplex = DUPLEX_UNKNOWN; dev->pause = 0; dev->asym_pause = 0; dev->link = 0; dev->port = PORT_TP; dev->interface = PHY_INTERFACE_MODE_GMII; dev->autoneg = AUTONEG_ENABLE; dev->pma_extable = -ENODATA; dev->is_c45 = is_c45; dev->phy_id = phy_id; if (c45_ids) dev->c45_ids = *c45_ids; dev->irq = bus->irq[addr]; dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); device_initialize(&mdiodev->dev); dev->state = PHY_DOWN; mutex_init(&dev->lock); INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); /* Request the appropriate module unconditionally; don't * bother trying to do so only if it isn't already loaded, * because that gets complicated. A hotplug event would have * done an unconditional modprobe anyway. * We don't do normal hotplug because it won't work for MDIO * -- because it relies on the device staying around for long * enough for the driver to get loaded. With MDIO, the NIC * driver will get bored and give up as soon as it finds that * there's no driver _already_ loaded. */ if (is_c45 && c45_ids) { const int num_ids = ARRAY_SIZE(c45_ids->device_ids); int i; for (i = 1; i < num_ids; i++) { if (c45_ids->device_ids[i] == 0xffffffff) continue; ret = phy_request_driver_module(dev, c45_ids->device_ids[i]); if (ret) break; } } else { ret = phy_request_driver_module(dev, phy_id); } if (ret) { put_device(&mdiodev->dev); dev = ERR_PTR(ret); } return dev; } EXPORT_SYMBOL(phy_device_create); /* phy_c45_probe_present - checks to see if a MMD is present in the package * @bus: the target MII bus * @prtad: PHY package address on the MII bus * @devad: PHY device (MMD) address * * Read the MDIO_STAT2 register, and check whether a device is responding * at this address. * * Returns: negative error number on bus access error, zero if no device * is responding, or positive if a device is present. */ static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) { int stat2; stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); if (stat2 < 0) return stat2; return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; } /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. * @bus: the target MII bus * @addr: PHY address on the MII bus * @dev_addr: MMD address in the PHY. * @devices_in_package: where to store the devices in package information. * * Description: reads devices in package registers of a MMD at @dev_addr * from PHY at @addr on @bus. * * Returns: 0 on success, -EIO on failure. */ static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, u32 *devices_in_package) { int phy_reg; phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); if (phy_reg < 0) return -EIO; *devices_in_package = phy_reg << 16; phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); if (phy_reg < 0) return -EIO; *devices_in_package |= phy_reg; return 0; } /** * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. * @bus: the target MII bus * @addr: PHY address on the MII bus * @c45_ids: where to store the c45 ID information. * * Read the PHY "devices in package". If this appears to be valid, read * the PHY identifiers for each device. Return the "devices in package" * and identifiers in @c45_ids. * * Returns zero on success, %-EIO on bus access error, or %-ENODEV if * the "devices in package" is invalid. */ static int get_phy_c45_ids(struct mii_bus *bus, int addr, struct phy_c45_device_ids *c45_ids) { const int num_ids = ARRAY_SIZE(c45_ids->device_ids); u32 devs_in_pkg = 0; int i, ret, phy_reg; /* Find first non-zero Devices In package. Device zero is reserved * for 802.3 c45 complied PHYs, so don't probe it at first. */ for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { /* Check that there is a device present at this * address before reading the devices-in-package * register to avoid reading garbage from the PHY. * Some PHYs (88x3310) vendor space is not IEEE802.3 * compliant. */ ret = phy_c45_probe_present(bus, addr, i); if (ret < 0) return -EIO; if (!ret) continue; } phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); if (phy_reg < 0) return -EIO; } if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { /* If mostly Fs, there is no device there, then let's probe * MMD 0, as some 10G PHYs have zero Devices In package, * e.g. Cortina CS4315/CS4340 PHY. */ phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); if (phy_reg < 0) return -EIO; /* no device there, let's get out of here */ if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) return -ENODEV; } /* Now probe Device Identifiers for each device present. */ for (i = 1; i < num_ids; i++) { if (!(devs_in_pkg & (1 << i))) continue; if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { /* Probe the "Device Present" bits for the vendor MMDs * to ignore these if they do not contain IEEE 802.3 * registers. */ ret = phy_c45_probe_present(bus, addr, i); if (ret < 0) return ret; if (!ret) continue; } phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); if (phy_reg < 0) return -EIO; c45_ids->device_ids[i] = phy_reg << 16; phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); if (phy_reg < 0) return -EIO; c45_ids->device_ids[i] |= phy_reg; } c45_ids->devices_in_package = devs_in_pkg; /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ c45_ids->mmds_present = devs_in_pkg & ~BIT(0); return 0; } /** * get_phy_c22_id - reads the specified addr for its clause 22 ID. * @bus: the target MII bus * @addr: PHY address on the MII bus * @phy_id: where to store the ID retrieved. * * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, * placing it in @phy_id. Return zero on successful read and the ID is * valid, %-EIO on bus access error, or %-ENODEV if no device responds * or invalid ID. */ static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) { int phy_reg; /* Grab the bits from PHYIR1, and put them in the upper half */ phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); if (phy_reg < 0) { /* returning -ENODEV doesn't stop bus scanning */ return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; } *phy_id = phy_reg << 16; /* Grab the bits from PHYIR2, and put them in the lower half */ phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); if (phy_reg < 0) { /* returning -ENODEV doesn't stop bus scanning */ return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; } *phy_id |= phy_reg; /* If the phy_id is mostly Fs, there is no device there */ if ((*phy_id & 0x1fffffff) == 0x1fffffff) return -ENODEV; return 0; } /* Extract the phy ID from the compatible string of the form * ethernet-phy-idAAAA.BBBB. */ int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) { unsigned int upper, lower; const char *cp; int ret; ret = fwnode_property_read_string(fwnode, "compatible", &cp); if (ret) return ret; if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) return -EINVAL; *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); return 0; } EXPORT_SYMBOL(fwnode_get_phy_id); /** * get_phy_device - reads the specified PHY device and returns its @phy_device * struct * @bus: the target MII bus * @addr: PHY address on the MII bus * @is_c45: If true the PHY uses the 802.3 clause 45 protocol * * Probe for a PHY at @addr on @bus. * * When probing for a clause 22 PHY, then read the ID registers. If we find * a valid ID, allocate and return a &struct phy_device. * * When probing for a clause 45 PHY, read the "devices in package" registers. * If the "devices in package" appears valid, read the ID registers for each * MMD, allocate and return a &struct phy_device. * * Returns an allocated &struct phy_device on success, %-ENODEV if there is * no PHY present, or %-EIO on bus access error. */ struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) { struct phy_c45_device_ids c45_ids; u32 phy_id = 0; int r; c45_ids.devices_in_package = 0; c45_ids.mmds_present = 0; memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); if (is_c45) r = get_phy_c45_ids(bus, addr, &c45_ids); else r = get_phy_c22_id(bus, addr, &phy_id); if (r) return ERR_PTR(r); /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID * of 0 when probed using get_phy_c22_id() with no error. Proceed to * probe with C45 to see if we're able to get a valid PHY ID in the C45 * space, if successful, create the C45 PHY device. */ if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { r = get_phy_c45_ids(bus, addr, &c45_ids); if (!r) return phy_device_create(bus, addr, phy_id, true, &c45_ids); } return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); } EXPORT_SYMBOL(get_phy_device); /** * phy_device_register - Register the phy device on the MDIO bus * @phydev: phy_device structure to be added to the MDIO bus */ int phy_device_register(struct phy_device *phydev) { int err; err = mdiobus_register_device(&phydev->mdio); if (err) return err; /* Deassert the reset signal */ phy_device_reset(phydev, 0); /* Run all of the fixups for this PHY */ err = phy_scan_fixups(phydev); if (err) { phydev_err(phydev, "failed to initialize\n"); goto out; } err = device_add(&phydev->mdio.dev); if (err) { phydev_err(phydev, "failed to add\n"); goto out; } return 0; out: /* Assert the reset signal */ phy_device_reset(phydev, 1); mdiobus_unregister_device(&phydev->mdio); return err; } EXPORT_SYMBOL(phy_device_register); /** * phy_device_remove - Remove a previously registered phy device from the MDIO bus * @phydev: phy_device structure to remove * * This doesn't free the phy_device itself, it merely reverses the effects * of phy_device_register(). Use phy_device_free() to free the device * after calling this function. */ void phy_device_remove(struct phy_device *phydev) { unregister_mii_timestamper(phydev->mii_ts); device_del(&phydev->mdio.dev); /* Assert the reset signal */ phy_device_reset(phydev, 1); mdiobus_unregister_device(&phydev->mdio); } EXPORT_SYMBOL(phy_device_remove); /** * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. * @phydev: phy_device structure to read 802.3-c45 IDs * * Returns zero on success, %-EIO on bus access error, or %-ENODEV if * the "devices in package" is invalid. */ int phy_get_c45_ids(struct phy_device *phydev) { return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, &phydev->c45_ids); } EXPORT_SYMBOL(phy_get_c45_ids); /** * phy_find_first - finds the first PHY device on the bus * @bus: the target MII bus */ struct phy_device *phy_find_first(struct mii_bus *bus) { struct phy_device *phydev; int addr; for (addr = 0; addr < PHY_MAX_ADDR; addr++) { phydev = mdiobus_get_phy(bus, addr); if (phydev) return phydev; } return NULL; } EXPORT_SYMBOL(phy_find_first); static void phy_link_change(struct phy_device *phydev, bool up) { struct net_device *netdev = phydev->attached_dev; if (up) netif_carrier_on(netdev); else netif_carrier_off(netdev); phydev->adjust_link(netdev); if (phydev->mii_ts && phydev->mii_ts->link_state) phydev->mii_ts->link_state(phydev->mii_ts, phydev); } /** * phy_prepare_link - prepares the PHY layer to monitor link status * @phydev: target phy_device struct * @handler: callback function for link status change notifications * * Description: Tells the PHY infrastructure to handle the * gory details on monitoring link status (whether through * polling or an interrupt), and to call back to the * connected device driver when the link status changes. * If you want to monitor your own link state, don't call * this function. */ static void phy_prepare_link(struct phy_device *phydev, void (*handler)(struct net_device *)) { phydev->adjust_link = handler; } /** * phy_connect_direct - connect an ethernet device to a specific phy_device * @dev: the network device to connect * @phydev: the pointer to the phy device * @handler: callback function for state change notifications * @interface: PHY device's interface */ int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, void (*handler)(struct net_device *), phy_interface_t interface) { int rc; if (!dev) return -EINVAL; rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); if (rc) return rc; phy_prepare_link(phydev, handler); if (phy_interrupt_is_valid(phydev)) phy_request_interrupt(phydev); return 0; } EXPORT_SYMBOL(phy_connect_direct); /** * phy_connect - connect an ethernet device to a PHY device * @dev: the network device to connect * @bus_id: the id string of the PHY device to connect * @handler: callback function for state change notifications * @interface: PHY device's interface * * Description: Convenience function for connecting ethernet * devices to PHY devices. The default behavior is for * the PHY infrastructure to handle everything, and only notify * the connected driver when the link status changes. If you * don't want, or can't use the provided functionality, you may * choose to call only the subset of functions which provide * the desired functionality. */ struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, void (*handler)(struct net_device *), phy_interface_t interface) { struct phy_device *phydev; struct device *d; int rc; /* Search the list of PHY devices on the mdio bus for the * PHY with the requested name */ d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); if (!d) { pr_err("PHY %s not found\n", bus_id); return ERR_PTR(-ENODEV); } phydev = to_phy_device(d); rc = phy_connect_direct(dev, phydev, handler, interface); put_device(d); if (rc) return ERR_PTR(rc); return phydev; } EXPORT_SYMBOL(phy_connect); /** * phy_disconnect - disable interrupts, stop state machine, and detach a PHY * device * @phydev: target phy_device struct */ void phy_disconnect(struct phy_device *phydev) { if (phy_is_started(phydev)) phy_stop(phydev); if (phy_interrupt_is_valid(phydev)) phy_free_interrupt(phydev); phydev->adjust_link = NULL; phy_detach(phydev); } EXPORT_SYMBOL(phy_disconnect); /** * phy_poll_reset - Safely wait until a PHY reset has properly completed * @phydev: The PHY device to poll * * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR * register must be polled until the BMCR_RESET bit clears. * * Furthermore, any attempts to write to PHY registers may have no effect * or even generate MDIO bus errors until this is complete. * * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the * standard and do not fully reset after the BMCR_RESET bit is set, and may * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an * effort to support such broken PHYs, this function is separate from the * standard phy_init_hw() which will zero all the other bits in the BMCR * and reapply all driver-specific and board-specific fixups. */ static int phy_poll_reset(struct phy_device *phydev) { /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ int ret, val; ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 50000, 600000, true); if (ret) return ret; /* Some chips (smsc911x) may still need up to another 1ms after the * BMCR_RESET bit is cleared before they are usable. */ msleep(1); return 0; } int phy_init_hw(struct phy_device *phydev) { int ret = 0; /* Deassert the reset signal */ phy_device_reset(phydev, 0); if (!phydev->drv) return 0; if (phydev->drv->soft_reset) { ret = phydev->drv->soft_reset(phydev); /* see comment in genphy_soft_reset for an explanation */ if (!ret) phydev->suspended = 0; } if (ret < 0) return ret; ret = phy_scan_fixups(phydev); if (ret < 0) return ret; if (phydev->drv->config_init) { ret = phydev->drv->config_init(phydev); if (ret < 0) return ret; } if (phydev->drv->config_intr) { ret = phydev->drv->config_intr(phydev); if (ret < 0) return ret; } return 0; } EXPORT_SYMBOL(phy_init_hw); void phy_attached_info(struct phy_device *phydev) { phy_attached_print(phydev, NULL); } EXPORT_SYMBOL(phy_attached_info); #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" char *phy_attached_info_irq(struct phy_device *phydev) { char *irq_str; char irq_num[8]; switch(phydev->irq) { case PHY_POLL: irq_str = "POLL"; break; case PHY_MAC_INTERRUPT: irq_str = "MAC"; break; default: snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); irq_str = irq_num; break; } return kasprintf(GFP_KERNEL, "%s", irq_str); } EXPORT_SYMBOL(phy_attached_info_irq); void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) { const char *unbound = phydev->drv ? "" : "[unbound] "; char *irq_str = phy_attached_info_irq(phydev); if (!fmt) { phydev_info(phydev, ATTACHED_FMT "\n", unbound, phydev_name(phydev), irq_str); } else { va_list ap; phydev_info(phydev, ATTACHED_FMT, unbound, phydev_name(phydev), irq_str); va_start(ap, fmt); vprintk(fmt, ap); va_end(ap); } kfree(irq_str); } EXPORT_SYMBOL(phy_attached_print); static void phy_sysfs_create_links(struct phy_device *phydev) { struct net_device *dev = phydev->attached_dev; int err; if (!dev) return; err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, "attached_dev"); if (err) return; err = sysfs_create_link_nowarn(&dev->dev.kobj, &phydev->mdio.dev.kobj, "phydev"); if (err) { dev_err(&dev->dev, "could not add device link to %s err %d\n", kobject_name(&phydev->mdio.dev.kobj), err); /* non-fatal - some net drivers can use one netdevice * with more then one phy */ } phydev->sysfs_links = true; } static ssize_t phy_standalone_show(struct device *dev, struct device_attribute *attr, char *buf) { struct phy_device *phydev = to_phy_device(dev); return sprintf(buf, "%d\n", !phydev->attached_dev); } static DEVICE_ATTR_RO(phy_standalone); /** * phy_sfp_attach - attach the SFP bus to the PHY upstream network device * @upstream: pointer to the phy device * @bus: sfp bus representing cage being attached * * This is used to fill in the sfp_upstream_ops .attach member. */ void phy_sfp_attach(void *upstream, struct sfp_bus *bus) { struct phy_device *phydev = upstream; if (phydev->attached_dev) phydev->attached_dev->sfp_bus = bus; phydev->sfp_bus_attached = true; } EXPORT_SYMBOL(phy_sfp_attach); /** * phy_sfp_detach - detach the SFP bus from the PHY upstream network device * @upstream: pointer to the phy device * @bus: sfp bus representing cage being attached * * This is used to fill in the sfp_upstream_ops .detach member. */ void phy_sfp_detach(void *upstream, struct sfp_bus *bus) { struct phy_device *phydev = upstream; if (phydev->attached_dev) phydev->attached_dev->sfp_bus = NULL; phydev->sfp_bus_attached = false; } EXPORT_SYMBOL(phy_sfp_detach); /** * phy_sfp_probe - probe for a SFP cage attached to this PHY device * @phydev: Pointer to phy_device * @ops: SFP's upstream operations */ int phy_sfp_probe(struct phy_device *phydev, const struct sfp_upstream_ops *ops) { struct sfp_bus *bus; int ret = 0; if (phydev->mdio.dev.fwnode) { bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); if (IS_ERR(bus)) return PTR_ERR(bus); phydev->sfp_bus = bus; ret = sfp_bus_add_upstream(bus, phydev, ops); sfp_bus_put(bus); } return ret; } EXPORT_SYMBOL(phy_sfp_probe); /** * phy_attach_direct - attach a network device to a given PHY device pointer * @dev: network device to attach * @phydev: Pointer to phy_device to attach * @flags: PHY device's dev_flags * @interface: PHY device's interface * * Description: Called by drivers to attach to a particular PHY * device. The phy_device is found, and properly hooked up * to the phy_driver. If no driver is attached, then a * generic driver is used. The phy_device is given a ptr to * the attaching device, and given a callback for link status * change. The phy_device is returned to the attaching driver. * This function takes a reference on the phy device. */ int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, u32 flags, phy_interface_t interface) { struct mii_bus *bus = phydev->mdio.bus; struct device *d = &phydev->mdio.dev; struct module *ndev_owner = NULL; bool using_genphy = false; int err; /* For Ethernet device drivers that register their own MDIO bus, we * will have bus->owner match ndev_mod, so we do not want to increment * our own module->refcnt here, otherwise we would not be able to * unload later on. */ if (dev) ndev_owner = dev->dev.parent->driver->owner; if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { phydev_err(phydev, "failed to get the bus module\n"); return -EIO; } get_device(d); /* Assume that if there is no driver, that it doesn't * exist, and we should use the genphy driver. */ if (!d->driver) { if (phydev->is_c45) d->driver = &genphy_c45_driver.mdiodrv.driver; else d->driver = &genphy_driver.mdiodrv.driver; using_genphy = true; } if (!try_module_get(d->driver->owner)) { phydev_err(phydev, "failed to get the device driver module\n"); err = -EIO; goto error_put_device; } if (using_genphy) { err = d->driver->probe(d); if (err >= 0) err = device_bind_driver(d); if (err) goto error_module_put; } if (phydev->attached_dev) { dev_err(&dev->dev, "PHY already attached\n"); err = -EBUSY; goto error; } phydev->phy_link_change = phy_link_change; if (dev) { phydev->attached_dev = dev; dev->phydev = phydev; if (phydev->sfp_bus_attached) dev->sfp_bus = phydev->sfp_bus; else if (dev->sfp_bus) phydev->is_on_sfp_module = true; } /* Some Ethernet drivers try to connect to a PHY device before * calling register_netdevice() -> netdev_register_kobject() and * does the dev->dev.kobj initialization. Here we only check for * success which indicates that the network device kobject is * ready. Once we do that we still need to keep track of whether * links were successfully set up or not for phy_detach() to * remove them accordingly. */ phydev->sysfs_links = false; phy_sysfs_create_links(phydev); if (!phydev->attached_dev) { err = sysfs_create_file(&phydev->mdio.dev.kobj, &dev_attr_phy_standalone.attr); if (err) phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); } phydev->dev_flags |= flags; phydev->interface = interface; phydev->state = PHY_READY; phydev->interrupts = PHY_INTERRUPT_DISABLED; /* Port is set to PORT_TP by default and the actual PHY driver will set * it to different value depending on the PHY configuration. If we have * the generic PHY driver we can't figure it out, thus set the old * legacy PORT_MII value. */ if (using_genphy) phydev->port = PORT_MII; /* Initial carrier state is off as the phy is about to be * (re)initialized. */ if (dev) netif_carrier_off(phydev->attached_dev); /* Do initial configuration here, now that * we have certain key parameters * (dev_flags and interface) */ err = phy_init_hw(phydev); if (err) goto error; phy_resume(phydev); phy_led_triggers_register(phydev); return err; error: /* phy_detach() does all of the cleanup below */ phy_detach(phydev); return err; error_module_put: module_put(d->driver->owner); error_put_device: put_device(d); if (ndev_owner != bus->owner) module_put(bus->owner); return err; } EXPORT_SYMBOL(phy_attach_direct); /** * phy_attach - attach a network device to a particular PHY device * @dev: network device to attach * @bus_id: Bus ID of PHY device to attach * @interface: PHY device's interface * * Description: Same as phy_attach_direct() except that a PHY bus_id * string is passed instead of a pointer to a struct phy_device. */ struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, phy_interface_t interface) { struct bus_type *bus = &mdio_bus_type; struct phy_device *phydev; struct device *d; int rc; if (!dev) return ERR_PTR(-EINVAL); /* Search the list of PHY devices on the mdio bus for the * PHY with the requested name */ d = bus_find_device_by_name(bus, NULL, bus_id); if (!d) { pr_err("PHY %s not found\n", bus_id); return ERR_PTR(-ENODEV); } phydev = to_phy_device(d); rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); put_device(d); if (rc) return ERR_PTR(rc); return phydev; } EXPORT_SYMBOL(phy_attach); static bool phy_driver_is_genphy_kind(struct phy_device *phydev, struct device_driver *driver) { struct device *d = &phydev->mdio.dev; bool ret = false; if (!phydev->drv) return ret; get_device(d); ret = d->driver == driver; put_device(d); return ret; } bool phy_driver_is_genphy(struct phy_device *phydev) { return phy_driver_is_genphy_kind(phydev, &genphy_driver.mdiodrv.driver); } EXPORT_SYMBOL_GPL(phy_driver_is_genphy); bool phy_driver_is_genphy_10g(struct phy_device *phydev) { return phy_driver_is_genphy_kind(phydev, &genphy_c45_driver.mdiodrv.driver); } EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); /** * phy_package_join - join a common PHY group * @phydev: target phy_device struct * @addr: cookie and PHY address for global register access * @priv_size: if non-zero allocate this amount of bytes for private data * * This joins a PHY group and provides a shared storage for all phydevs in * this group. This is intended to be used for packages which contain * more than one PHY, for example a quad PHY transceiver. * * The addr parameter serves as a cookie which has to have the same value * for all members of one group and as a PHY address to access generic * registers of a PHY package. Usually, one of the PHY addresses of the * different PHYs in the package provides access to these global registers. * The address which is given here, will be used in the phy_package_read() * and phy_package_write() convenience functions. If your PHY doesn't have * global registers you can just pick any of the PHY addresses. * * This will set the shared pointer of the phydev to the shared storage. * If this is the first call for a this cookie the shared storage will be * allocated. If priv_size is non-zero, the given amount of bytes are * allocated for the priv member. * * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() * with the same cookie but a different priv_size is an error. */ int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) { struct mii_bus *bus = phydev->mdio.bus; struct phy_package_shared *shared; int ret; if (addr < 0 || addr >= PHY_MAX_ADDR) return -EINVAL; mutex_lock(&bus->shared_lock); shared = bus->shared[addr]; if (!shared) { ret = -ENOMEM; shared = kzalloc(sizeof(*shared), GFP_KERNEL); if (!shared) goto err_unlock; if (priv_size) { shared->priv = kzalloc(priv_size, GFP_KERNEL); if (!shared->priv) goto err_free; shared->priv_size = priv_size; } shared->addr = addr; refcount_set(&shared->refcnt, 1); bus->shared[addr] = shared; } else { ret = -EINVAL; if (priv_size && priv_size != shared->priv_size) goto err_unlock; refcount_inc(&shared->refcnt); } mutex_unlock(&bus->shared_lock); phydev->shared = shared; return 0; err_free: kfree(shared); err_unlock: mutex_unlock(&bus->shared_lock); return ret; } EXPORT_SYMBOL_GPL(phy_package_join); /** * phy_package_leave - leave a common PHY group * @phydev: target phy_device struct * * This leaves a PHY group created by phy_package_join(). If this phydev * was the last user of the shared data between the group, this data is * freed. Resets the phydev->shared pointer to NULL. */ void phy_package_leave(struct phy_device *phydev) { struct phy_package_shared *shared = phydev->shared; struct mii_bus *bus = phydev->mdio.bus; if (!shared) return; if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { bus->shared[shared->addr] = NULL; mutex_unlock(&bus->shared_lock); kfree(shared->priv); kfree(shared); } phydev->shared = NULL; } EXPORT_SYMBOL_GPL(phy_package_leave); static void devm_phy_package_leave(struct device *dev, void *res) { phy_package_leave(*(struct phy_device **)res); } /** * devm_phy_package_join - resource managed phy_package_join() * @dev: device that is registering this PHY package * @phydev: target phy_device struct * @addr: cookie and PHY address for global register access * @priv_size: if non-zero allocate this amount of bytes for private data * * Managed phy_package_join(). Shared storage fetched by this function, * phy_package_leave() is automatically called on driver detach. See * phy_package_join() for more information. */ int devm_phy_package_join(struct device *dev, struct phy_device *phydev, int addr, size_t priv_size) { struct phy_device **ptr; int ret; ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; ret = phy_package_join(phydev, addr, priv_size); if (!ret) { *ptr = phydev; devres_add(dev, ptr); } else { devres_free(ptr); } return ret; } EXPORT_SYMBOL_GPL(devm_phy_package_join); /** * phy_detach - detach a PHY device from its network device * @phydev: target phy_device struct * * This detaches the phy device from its network device and the phy * driver, and drops the reference count taken in phy_attach_direct(). */ void phy_detach(struct phy_device *phydev) { struct net_device *dev = phydev->attached_dev; struct module *ndev_owner = NULL; struct mii_bus *bus; if (phydev->sysfs_links) { if (dev) sysfs_remove_link(&dev->dev.kobj, "phydev"); sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); } if (!phydev->attached_dev) sysfs_remove_file(&phydev->mdio.dev.kobj, &dev_attr_phy_standalone.attr); phy_suspend(phydev); if (dev) { phydev->attached_dev->phydev = NULL; phydev->attached_dev = NULL; } phydev->phylink = NULL; phy_led_triggers_unregister(phydev); if (phydev->mdio.dev.driver) module_put(phydev->mdio.dev.driver->owner); /* If the device had no specific driver before (i.e. - it * was using the generic driver), we unbind the device * from the generic driver so that there's a chance a * real driver could be loaded */ if (phy_driver_is_genphy(phydev) || phy_driver_is_genphy_10g(phydev)) device_release_driver(&phydev->mdio.dev); /* Assert the reset signal */ phy_device_reset(phydev, 1); /* * The phydev might go away on the put_device() below, so avoid * a use-after-free bug by reading the underlying bus first. */ bus = phydev->mdio.bus; put_device(&phydev->mdio.dev); if (dev) ndev_owner = dev->dev.parent->driver->owner; if (ndev_owner != bus->owner) module_put(bus->owner); } EXPORT_SYMBOL(phy_detach); int phy_suspend(struct phy_device *phydev) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; struct net_device *netdev = phydev->attached_dev; struct phy_driver *phydrv = phydev->drv; int ret; if (phydev->suspended) return 0; /* If the device has WOL enabled, we cannot suspend the PHY */ phy_ethtool_get_wol(phydev, &wol); if (wol.wolopts || (netdev && netdev->wol_enabled)) return -EBUSY; if (!phydrv || !phydrv->suspend) return 0; ret = phydrv->suspend(phydev); if (!ret) phydev->suspended = true; return ret; } EXPORT_SYMBOL(phy_suspend); int __phy_resume(struct phy_device *phydev) { struct phy_driver *phydrv = phydev->drv; int ret; lockdep_assert_held(&phydev->lock); if (!phydrv || !phydrv->resume) return 0; ret = phydrv->resume(phydev); if (!ret) phydev->suspended = false; return ret; } EXPORT_SYMBOL(__phy_resume); int phy_resume(struct phy_device *phydev) { int ret; mutex_lock(&phydev->lock); ret = __phy_resume(phydev); mutex_unlock(&phydev->lock); return ret; } EXPORT_SYMBOL(phy_resume); int phy_loopback(struct phy_device *phydev, bool enable) { int ret = 0; if (!phydev->drv) return -EIO; mutex_lock(&phydev->lock); if (enable && phydev->loopback_enabled) { ret = -EBUSY; goto out; } if (!enable && !phydev->loopback_enabled) { ret = -EINVAL; goto out; } if (phydev->drv->set_loopback) ret = phydev->drv->set_loopback(phydev, enable); else ret = genphy_loopback(phydev, enable); if (ret) goto out; phydev->loopback_enabled = enable; out: mutex_unlock(&phydev->lock); return ret; } EXPORT_SYMBOL(phy_loopback); /** * phy_reset_after_clk_enable - perform a PHY reset if needed * @phydev: target phy_device struct * * Description: Some PHYs are known to need a reset after their refclk was * enabled. This function evaluates the flags and perform the reset if it's * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy * was reset. */ int phy_reset_after_clk_enable(struct phy_device *phydev) { if (!phydev || !phydev->drv) return -ENODEV; if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { phy_device_reset(phydev, 1); phy_device_reset(phydev, 0); return 1; } return 0; } EXPORT_SYMBOL(phy_reset_after_clk_enable); /* Generic PHY support and helper functions */ /** * genphy_config_advert - sanitize and advertise auto-negotiation parameters * @phydev: target phy_device struct * * Description: Writes MII_ADVERTISE with the appropriate values, * after sanitizing the values to make sure we only advertise * what is supported. Returns < 0 on error, 0 if the PHY's advertisement * hasn't changed, and > 0 if it has changed. */ static int genphy_config_advert(struct phy_device *phydev) { int err, bmsr, changed = 0; u32 adv; /* Only allow advertising what this PHY supports */ linkmode_and(phydev->advertising, phydev->advertising, phydev->supported); adv = linkmode_adv_to_mii_adv_t(phydev->advertising); /* Setup standard advertisement */ err = phy_modify_changed(phydev, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, adv); if (err < 0) return err; if (err > 0) changed = 1; bmsr = phy_read(phydev, MII_BMSR); if (bmsr < 0) return bmsr; /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a * logical 1. */ if (!(bmsr & BMSR_ESTATEN)) return changed; adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); err = phy_modify_changed(phydev, MII_CTRL1000, ADVERTISE_1000FULL | ADVERTISE_1000HALF, adv); if (err < 0) return err; if (err > 0) changed = 1; return changed; } /** * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters * @phydev: target phy_device struct * * Description: Writes MII_ADVERTISE with the appropriate values, * after sanitizing the values to make sure we only advertise * what is supported. Returns < 0 on error, 0 if the PHY's advertisement * hasn't changed, and > 0 if it has changed. This function is intended * for Clause 37 1000Base-X mode. */ static int genphy_c37_config_advert(struct phy_device *phydev) { u16 adv = 0; /* Only allow advertising what this PHY supports */ linkmode_and(phydev->advertising, phydev->advertising, phydev->supported); if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, phydev->advertising)) adv |= ADVERTISE_1000XFULL; if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->advertising)) adv |= ADVERTISE_1000XPAUSE; if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->advertising)) adv |= ADVERTISE_1000XPSE_ASYM; return phy_modify_changed(phydev, MII_ADVERTISE, ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, adv); } /** * genphy_config_eee_advert - disable unwanted eee mode advertisement * @phydev: target phy_device struct * * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't * changed, and 1 if it has changed. */ int genphy_config_eee_advert(struct phy_device *phydev) { int err; /* Nothing to disable */ if (!phydev->eee_broken_modes) return 0; err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, phydev->eee_broken_modes, 0); /* If the call failed, we assume that EEE is not supported */ return err < 0 ? 0 : err; } EXPORT_SYMBOL(genphy_config_eee_advert); /** * genphy_setup_forced - configures/forces speed/duplex from @phydev * @phydev: target phy_device struct * * Description: Configures MII_BMCR to force speed/duplex * to the values in phydev. Assumes that the values are valid. * Please see phy_sanitize_settings(). */ int genphy_setup_forced(struct phy_device *phydev) { u16 ctl; phydev->pause = 0; phydev->asym_pause = 0; ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); return phy_modify(phydev, MII_BMCR, ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); } EXPORT_SYMBOL(genphy_setup_forced); static int genphy_setup_master_slave(struct phy_device *phydev) { u16 ctl = 0; if (!phydev->is_gigabit_capable) return 0; switch (phydev->master_slave_set) { case MASTER_SLAVE_CFG_MASTER_PREFERRED: ctl |= CTL1000_PREFER_MASTER; break; case MASTER_SLAVE_CFG_SLAVE_PREFERRED: break; case MASTER_SLAVE_CFG_MASTER_FORCE: ctl |= CTL1000_AS_MASTER; fallthrough; case MASTER_SLAVE_CFG_SLAVE_FORCE: ctl |= CTL1000_ENABLE_MASTER; break; case MASTER_SLAVE_CFG_UNKNOWN: case MASTER_SLAVE_CFG_UNSUPPORTED: return 0; default: phydev_warn(phydev, "Unsupported Master/Slave mode\n"); return -EOPNOTSUPP; } return phy_modify_changed(phydev, MII_CTRL1000, (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | CTL1000_PREFER_MASTER), ctl); } int genphy_read_master_slave(struct phy_device *phydev) { int cfg, state; int val; phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; val = phy_read(phydev, MII_CTRL1000); if (val < 0) return val; if (val & CTL1000_ENABLE_MASTER) { if (val & CTL1000_AS_MASTER) cfg = MASTER_SLAVE_CFG_MASTER_FORCE; else cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; } else { if (val & CTL1000_PREFER_MASTER) cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; else cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; } val = phy_read(phydev, MII_STAT1000); if (val < 0) return val; if (val & LPA_1000MSFAIL) { state = MASTER_SLAVE_STATE_ERR; } else if (phydev->link) { /* this bits are valid only for active link */ if (val & LPA_1000MSRES) state = MASTER_SLAVE_STATE_MASTER; else state = MASTER_SLAVE_STATE_SLAVE; } else { state = MASTER_SLAVE_STATE_UNKNOWN; } phydev->master_slave_get = cfg; phydev->master_slave_state = state; return 0; } EXPORT_SYMBOL(genphy_read_master_slave); /** * genphy_restart_aneg - Enable and Restart Autonegotiation * @phydev: target phy_device struct */ int genphy_restart_aneg(struct phy_device *phydev) { /* Don't isolate the PHY if we're negotiating */ return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, BMCR_ANENABLE | BMCR_ANRESTART); } EXPORT_SYMBOL(genphy_restart_aneg); /** * genphy_check_and_restart_aneg - Enable and restart auto-negotiation * @phydev: target phy_device struct * @restart: whether aneg restart is requested * * Check, and restart auto-negotiation if needed. */ int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) { int ret; if (!restart) { /* Advertisement hasn't changed, but maybe aneg was never on to * begin with? Or maybe phy was isolated? */ ret = phy_read(phydev, MII_BMCR); if (ret < 0) return ret; if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) restart = true; } if (restart) return genphy_restart_aneg(phydev); return 0; } EXPORT_SYMBOL(genphy_check_and_restart_aneg); /** * __genphy_config_aneg - restart auto-negotiation or write BMCR * @phydev: target phy_device struct * @changed: whether autoneg is requested * * Description: If auto-negotiation is enabled, we configure the * advertising, and then restart auto-negotiation. If it is not * enabled, then we write the BMCR. */ int __genphy_config_aneg(struct phy_device *phydev, bool changed) { int err; if (genphy_config_eee_advert(phydev)) changed = true; err = genphy_setup_master_slave(phydev); if (err < 0) return err; else if (err) changed = true; if (AUTONEG_ENABLE != phydev->autoneg) return genphy_setup_forced(phydev); err = genphy_config_advert(phydev); if (err < 0) /* error */ return err; else if (err) changed = true; return genphy_check_and_restart_aneg(phydev, changed); } EXPORT_SYMBOL(__genphy_config_aneg); /** * genphy_c37_config_aneg - restart auto-negotiation or write BMCR * @phydev: target phy_device struct * * Description: If auto-negotiation is enabled, we configure the * advertising, and then restart auto-negotiation. If it is not * enabled, then we write the BMCR. This function is intended * for use with Clause 37 1000Base-X mode. */ int genphy_c37_config_aneg(struct phy_device *phydev) { int err, changed; if (phydev->autoneg != AUTONEG_ENABLE) return genphy_setup_forced(phydev); err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, BMCR_SPEED1000); if (err) return err; changed = genphy_c37_config_advert(phydev); if (changed < 0) /* error */ return changed; if (!changed) { /* Advertisement hasn't changed, but maybe aneg was never on to * begin with? Or maybe phy was isolated? */ int ctl = phy_read(phydev, MII_BMCR); if (ctl < 0) return ctl; if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) changed = 1; /* do restart aneg */ } /* Only restart aneg if we are advertising something different * than we were before. */ if (changed > 0) return genphy_restart_aneg(phydev); return 0; } EXPORT_SYMBOL(genphy_c37_config_aneg); /** * genphy_aneg_done - return auto-negotiation status * @phydev: target phy_device struct * * Description: Reads the status register and returns 0 either if * auto-negotiation is incomplete, or if there was an error. * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. */ int genphy_aneg_done(struct phy_device *phydev) { int retval = phy_read(phydev, MII_BMSR); return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); } EXPORT_SYMBOL(genphy_aneg_done); /** * genphy_update_link - update link status in @phydev * @phydev: target phy_device struct * * Description: Update the value in phydev->link to reflect the * current link value. In order to do this, we need to read * the status register twice, keeping the second value. */ int genphy_update_link(struct phy_device *phydev) { int status = 0, bmcr; bmcr = phy_read(phydev, MII_BMCR); if (bmcr < 0) return bmcr; /* Autoneg is being started, therefore disregard BMSR value and * report link as down. */ if (bmcr & BMCR_ANRESTART) goto done; /* The link state is latched low so that momentary link * drops can be detected. Do not double-read the status * in polling mode to detect such short link drops except * the link was already down. */ if (!phy_polling_mode(phydev) || !phydev->link) { status = phy_read(phydev, MII_BMSR); if (status < 0) return status; else if (status & BMSR_LSTATUS) goto done; } /* Read link and autonegotiation status */ status = phy_read(phydev, MII_BMSR); if (status < 0) return status; done: phydev->link = status & BMSR_LSTATUS ? 1 : 0; phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; /* Consider the case that autoneg was started and "aneg complete" * bit has been reset, but "link up" bit not yet. */ if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) phydev->link = 0; return 0; } EXPORT_SYMBOL(genphy_update_link); int genphy_read_lpa(struct phy_device *phydev) { int lpa, lpagb; if (phydev->autoneg == AUTONEG_ENABLE) { if (!phydev->autoneg_complete) { mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 0); mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); return 0; } if (phydev->is_gigabit_capable) { lpagb = phy_read(phydev, MII_STAT1000); if (lpagb < 0) return lpagb; if (lpagb & LPA_1000MSFAIL) { int adv = phy_read(phydev, MII_CTRL1000); if (adv < 0) return adv; if (adv & CTL1000_ENABLE_MASTER) phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); else phydev_err(phydev, "Master/Slave resolution failed\n"); return -ENOLINK; } mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, lpagb); } lpa = phy_read(phydev, MII_LPA); if (lpa < 0) return lpa; mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); } else { linkmode_zero(phydev->lp_advertising); } return 0; } EXPORT_SYMBOL(genphy_read_lpa); /** * genphy_read_status_fixed - read the link parameters for !aneg mode * @phydev: target phy_device struct * * Read the current duplex and speed state for a PHY operating with * autonegotiation disabled. */ int genphy_read_status_fixed(struct phy_device *phydev) { int bmcr = phy_read(phydev, MII_BMCR); if (bmcr < 0) return bmcr; if (bmcr & BMCR_FULLDPLX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; if (bmcr & BMCR_SPEED1000) phydev->speed = SPEED_1000; else if (bmcr & BMCR_SPEED100) phydev->speed = SPEED_100; else phydev->speed = SPEED_10; return 0; } EXPORT_SYMBOL(genphy_read_status_fixed); /** * genphy_read_status - check the link status and update current link state * @phydev: target phy_device struct * * Description: Check the link, then figure out the current state * by comparing what we advertise with what the link partner * advertises. Start by checking the gigabit possibilities, * then move on to 10/100. */ int genphy_read_status(struct phy_device *phydev) { int err, old_link = phydev->link; /* Update the link, but return if there was an error */ err = genphy_update_link(phydev); if (err) return err; /* why bother the PHY if nothing can have changed */ if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) return 0; phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; phydev->speed = SPEED_UNKNOWN; phydev->duplex = DUPLEX_UNKNOWN; phydev->pause = 0; phydev->asym_pause = 0; if (phydev->is_gigabit_capable) { err = genphy_read_master_slave(phydev); if (err < 0) return err; } err = genphy_read_lpa(phydev); if (err < 0) return err; if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { phy_resolve_aneg_linkmode(phydev); } else if (phydev->autoneg == AUTONEG_DISABLE) { err = genphy_read_status_fixed(phydev); if (err < 0) return err; } return 0; } EXPORT_SYMBOL(genphy_read_status); /** * genphy_c37_read_status - check the link status and update current link state * @phydev: target phy_device struct * * Description: Check the link, then figure out the current state * by comparing what we advertise with what the link partner * advertises. This function is for Clause 37 1000Base-X mode. */ int genphy_c37_read_status(struct phy_device *phydev) { int lpa, err, old_link = phydev->link; /* Update the link, but return if there was an error */ err = genphy_update_link(phydev); if (err) return err; /* why bother the PHY if nothing can have changed */ if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) return 0; phydev->duplex = DUPLEX_UNKNOWN; phydev->pause = 0; phydev->asym_pause = 0; if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { lpa = phy_read(phydev, MII_LPA); if (lpa < 0) return lpa; linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->lp_advertising, lpa & LPA_LPACK); linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, phydev->lp_advertising, lpa & LPA_1000XFULL); linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->lp_advertising, lpa & LPA_1000XPAUSE); linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->lp_advertising, lpa & LPA_1000XPAUSE_ASYM); phy_resolve_aneg_linkmode(phydev); } else if (phydev->autoneg == AUTONEG_DISABLE) { int bmcr = phy_read(phydev, MII_BMCR); if (bmcr < 0) return bmcr; if (bmcr & BMCR_FULLDPLX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; } return 0; } EXPORT_SYMBOL(genphy_c37_read_status); /** * genphy_soft_reset - software reset the PHY via BMCR_RESET bit * @phydev: target phy_device struct * * Description: Perform a software PHY reset using the standard * BMCR_RESET bit and poll for the reset bit to be cleared. * * Returns: 0 on success, < 0 on failure */ int genphy_soft_reset(struct phy_device *phydev) { u16 res = BMCR_RESET; int ret; if (phydev->autoneg == AUTONEG_ENABLE) res |= BMCR_ANRESTART; ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); if (ret < 0) return ret; /* Clause 22 states that setting bit BMCR_RESET sets control registers * to their default value. Therefore the POWER DOWN bit is supposed to * be cleared after soft reset. */ phydev->suspended = 0; ret = phy_poll_reset(phydev); if (ret) return ret; /* BMCR may be reset to defaults */ if (phydev->autoneg == AUTONEG_DISABLE) ret = genphy_setup_forced(phydev); return ret; } EXPORT_SYMBOL(genphy_soft_reset); irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) { /* It seems there are cases where the interrupts are handled by another * entity (ie an IRQ controller embedded inside the PHY) and do not * need any other interraction from phylib. In this case, just trigger * the state machine directly. */ phy_trigger_machine(phydev); return 0; } EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); /** * genphy_read_abilities - read PHY abilities from Clause 22 registers * @phydev: target phy_device struct * * Description: Reads the PHY's abilities and populates * phydev->supported accordingly. * * Returns: 0 on success, < 0 on failure */ int genphy_read_abilities(struct phy_device *phydev) { int val; linkmode_set_bit_array(phy_basic_ports_array, ARRAY_SIZE(phy_basic_ports_array), phydev->supported); val = phy_read(phydev, MII_BMSR); if (val < 0) return val; linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, val & BMSR_ANEGCAPABLE); linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, val & BMSR_100FULL); linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, val & BMSR_100HALF); linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, val & BMSR_10FULL); linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, val & BMSR_10HALF); if (val & BMSR_ESTATEN) { val = phy_read(phydev, MII_ESTATUS); if (val < 0) return val; linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, phydev->supported, val & ESTATUS_1000_TFULL); linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, phydev->supported, val & ESTATUS_1000_THALF); linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, phydev->supported, val & ESTATUS_1000_XFULL); } return 0; } EXPORT_SYMBOL(genphy_read_abilities); /* This is used for the phy device which doesn't support the MMD extended * register access, but it does have side effect when we are trying to access * the MMD register via indirect method. */ int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) { return -EOPNOTSUPP; } EXPORT_SYMBOL(genphy_read_mmd_unsupported); int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, u16 regnum, u16 val) { return -EOPNOTSUPP; } EXPORT_SYMBOL(genphy_write_mmd_unsupported); int genphy_suspend(struct phy_device *phydev) { return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); } EXPORT_SYMBOL(genphy_suspend); int genphy_resume(struct phy_device *phydev) { return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); } EXPORT_SYMBOL(genphy_resume); int genphy_loopback(struct phy_device *phydev, bool enable) { if (enable) { u16 val, ctl = BMCR_LOOPBACK; int ret; ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); phy_modify(phydev, MII_BMCR, ~0, ctl); ret = phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 5000, 500000, true); if (ret) return ret; } else { phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); phy_config_aneg(phydev); } return 0; } EXPORT_SYMBOL(genphy_loopback); /** * phy_remove_link_mode - Remove a supported link mode * @phydev: phy_device structure to remove link mode from * @link_mode: Link mode to be removed * * Description: Some MACs don't support all link modes which the PHY * does. e.g. a 1G MAC often does not support 1000Half. Add a helper * to remove a link mode. */ void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) { linkmode_clear_bit(link_mode, phydev->supported); phy_advertise_supported(phydev); } EXPORT_SYMBOL(phy_remove_link_mode); static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) { linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); } /** * phy_advertise_supported - Advertise all supported modes * @phydev: target phy_device struct * * Description: Called to advertise all supported modes, doesn't touch * pause mode advertising. */ void phy_advertise_supported(struct phy_device *phydev) { __ETHTOOL_DECLARE_LINK_MODE_MASK(new); linkmode_copy(new, phydev->supported); phy_copy_pause_bits(new, phydev->advertising); linkmode_copy(phydev->advertising, new); } EXPORT_SYMBOL(phy_advertise_supported); /** * phy_support_sym_pause - Enable support of symmetrical pause * @phydev: target phy_device struct * * Description: Called by the MAC to indicate is supports symmetrical * Pause, but not asym pause. */ void phy_support_sym_pause(struct phy_device *phydev) { linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); phy_copy_pause_bits(phydev->advertising, phydev->supported); } EXPORT_SYMBOL(phy_support_sym_pause); /** * phy_support_asym_pause - Enable support of asym pause * @phydev: target phy_device struct * * Description: Called by the MAC to indicate is supports Asym Pause. */ void phy_support_asym_pause(struct phy_device *phydev) { phy_copy_pause_bits(phydev->advertising, phydev->supported); } EXPORT_SYMBOL(phy_support_asym_pause); /** * phy_set_sym_pause - Configure symmetric Pause * @phydev: target phy_device struct * @rx: Receiver Pause is supported * @tx: Transmit Pause is supported * @autoneg: Auto neg should be used * * Description: Configure advertised Pause support depending on if * receiver pause and pause auto neg is supported. Generally called * from the set_pauseparam .ndo. */ void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, bool autoneg) { linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); if (rx && tx && autoneg) linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); linkmode_copy(phydev->advertising, phydev->supported); } EXPORT_SYMBOL(phy_set_sym_pause); /** * phy_set_asym_pause - Configure Pause and Asym Pause * @phydev: target phy_device struct * @rx: Receiver Pause is supported * @tx: Transmit Pause is supported * * Description: Configure advertised Pause support depending on if * transmit and receiver pause is supported. If there has been a * change in adverting, trigger a new autoneg. Generally called from * the set_pauseparam .ndo. */ void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) { __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); linkmode_copy(oldadv, phydev->advertising); linkmode_set_pause(phydev->advertising, tx, rx); if (!linkmode_equal(oldadv, phydev->advertising) && phydev->autoneg) phy_start_aneg(phydev); } EXPORT_SYMBOL(phy_set_asym_pause); /** * phy_validate_pause - Test if the PHY/MAC support the pause configuration * @phydev: phy_device struct * @pp: requested pause configuration * * Description: Test if the PHY/MAC combination supports the Pause * configuration the user is requesting. Returns True if it is * supported, false otherwise. */ bool phy_validate_pause(struct phy_device *phydev, struct ethtool_pauseparam *pp) { if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && pp->rx_pause) return false; if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported) && pp->rx_pause != pp->tx_pause) return false; return true; } EXPORT_SYMBOL(phy_validate_pause); /** * phy_get_pause - resolve negotiated pause modes * @phydev: phy_device struct * @tx_pause: pointer to bool to indicate whether transmit pause should be * enabled. * @rx_pause: pointer to bool to indicate whether receive pause should be * enabled. * * Resolve and return the flow control modes according to the negotiation * result. This includes checking that we are operating in full duplex mode. * See linkmode_resolve_pause() for further details. */ void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) { if (phydev->duplex != DUPLEX_FULL) { *tx_pause = false; *rx_pause = false; return; } return linkmode_resolve_pause(phydev->advertising, phydev->lp_advertising, tx_pause, rx_pause); } EXPORT_SYMBOL(phy_get_pause); #if IS_ENABLED(CONFIG_OF_MDIO) static int phy_get_int_delay_property(struct device *dev, const char *name) { s32 int_delay; int ret; ret = device_property_read_u32(dev, name, &int_delay); if (ret) return ret; return int_delay; } #else static int phy_get_int_delay_property(struct device *dev, const char *name) { return -EINVAL; } #endif /** * phy_get_internal_delay - returns the index of the internal delay * @phydev: phy_device struct * @dev: pointer to the devices device struct * @delay_values: array of delays the PHY supports * @size: the size of the delay array * @is_rx: boolean to indicate to get the rx internal delay * * Returns the index within the array of internal delay passed in. * If the device property is not present then the interface type is checked * if the interface defines use of internal delay then a 1 is returned otherwise * a 0 is returned. * The array must be in ascending order. If PHY does not have an ascending order * array then size = 0 and the value of the delay property is returned. * Return -EINVAL if the delay is invalid or cannot be found. */ s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, const int *delay_values, int size, bool is_rx) { s32 delay; int i; if (is_rx) { delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); if (delay < 0 && size == 0) { if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) return 1; else return 0; } } else { delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); if (delay < 0 && size == 0) { if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) return 1; else return 0; } } if (delay < 0) return delay; if (delay && size == 0) return delay; if (delay < delay_values[0] || delay > delay_values[size - 1]) { phydev_err(phydev, "Delay %d is out of range\n", delay); return -EINVAL; } if (delay == delay_values[0]) return 0; for (i = 1; i < size; i++) { if (delay == delay_values[i]) return i; /* Find an approximate index by looking up the table */ if (delay > delay_values[i - 1] && delay < delay_values[i]) { if (delay - delay_values[i - 1] < delay_values[i] - delay) return i - 1; else return i; } } phydev_err(phydev, "error finding internal delay index for %d\n", delay); return -EINVAL; } EXPORT_SYMBOL(phy_get_internal_delay); static bool phy_drv_supports_irq(struct phy_driver *phydrv) { return phydrv->config_intr && phydrv->handle_interrupt; } /** * fwnode_mdio_find_device - Given a fwnode, find the mdio_device * @fwnode: pointer to the mdio_device's fwnode * * If successful, returns a pointer to the mdio_device with the embedded * struct device refcount incremented by one, or NULL on failure. * The caller should call put_device() on the mdio_device after its use. */ struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) { struct device *d; if (!fwnode) return NULL; d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); if (!d) return NULL; return to_mdio_device(d); } EXPORT_SYMBOL(fwnode_mdio_find_device); /** * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. * * @phy_fwnode: Pointer to the phy's fwnode. * * If successful, returns a pointer to the phy_device with the embedded * struct device refcount incremented by one, or NULL on failure. */ struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) { struct mdio_device *mdiodev; mdiodev = fwnode_mdio_find_device(phy_fwnode); if (!mdiodev) return NULL; if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) return to_phy_device(&mdiodev->dev); put_device(&mdiodev->dev); return NULL; } EXPORT_SYMBOL(fwnode_phy_find_device); /** * device_phy_find_device - For the given device, get the phy_device * @dev: Pointer to the given device * * Refer return conditions of fwnode_phy_find_device(). */ struct phy_device *device_phy_find_device(struct device *dev) { return fwnode_phy_find_device(dev_fwnode(dev)); } EXPORT_SYMBOL_GPL(device_phy_find_device); /** * fwnode_get_phy_node - Get the phy_node using the named reference. * @fwnode: Pointer to fwnode from which phy_node has to be obtained. * * Refer return conditions of fwnode_find_reference(). * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" * and "phy-device" are not supported in ACPI. DT supports all the three * named references to the phy node. */ struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) { struct fwnode_handle *phy_node; /* Only phy-handle is used for ACPI */ phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) return phy_node; phy_node = fwnode_find_reference(fwnode, "phy", 0); if (IS_ERR(phy_node)) phy_node = fwnode_find_reference(fwnode, "phy-device", 0); return phy_node; } EXPORT_SYMBOL_GPL(fwnode_get_phy_node); /** * phy_probe - probe and init a PHY device * @dev: device to probe and init * * Description: Take care of setting up the phy_device structure, * set the state to READY (the driver's init function should * set it to STARTING if needed). */ static int phy_probe(struct device *dev) { struct phy_device *phydev = to_phy_device(dev); struct device_driver *drv = phydev->mdio.dev.driver; struct phy_driver *phydrv = to_phy_driver(drv); int err = 0; phydev->drv = phydrv; /* Disable the interrupt if the PHY doesn't support it * but the interrupt is still a valid one */ if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) phydev->irq = PHY_POLL; if (phydrv->flags & PHY_IS_INTERNAL) phydev->is_internal = true; mutex_lock(&phydev->lock); /* Deassert the reset signal */ phy_device_reset(phydev, 0); if (phydev->drv->probe) { err = phydev->drv->probe(phydev); if (err) goto out; } /* Start out supporting everything. Eventually, * a controller will attach, and may modify one * or both of these values */ if (phydrv->features) linkmode_copy(phydev->supported, phydrv->features); else if (phydrv->get_features) err = phydrv->get_features(phydev); else if (phydev->is_c45) err = genphy_c45_pma_read_abilities(phydev); else err = genphy_read_abilities(phydev); if (err) goto out; if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported)) phydev->autoneg = 0; if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, phydev->supported)) phydev->is_gigabit_capable = 1; if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, phydev->supported)) phydev->is_gigabit_capable = 1; of_set_phy_supported(phydev); phy_advertise_supported(phydev); /* Get the EEE modes we want to prohibit. We will ask * the PHY stop advertising these mode later on */ of_set_phy_eee_broken(phydev); /* The Pause Frame bits indicate that the PHY can support passing * pause frames. During autonegotiation, the PHYs will determine if * they should allow pause frames to pass. The MAC driver should then * use that result to determine whether to enable flow control via * pause frames. * * Normally, PHY drivers should not set the Pause bits, and instead * allow phylib to do that. However, there may be some situations * (e.g. hardware erratum) where the driver wants to set only one * of these bits. */ if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); } /* Set the state to READY by default */ phydev->state = PHY_READY; out: /* Assert the reset signal */ if (err) phy_device_reset(phydev, 1); mutex_unlock(&phydev->lock); return err; } static int phy_remove(struct device *dev) { struct phy_device *phydev = to_phy_device(dev); cancel_delayed_work_sync(&phydev->state_queue); mutex_lock(&phydev->lock); phydev->state = PHY_DOWN; mutex_unlock(&phydev->lock); sfp_bus_del_upstream(phydev->sfp_bus); phydev->sfp_bus = NULL; if (phydev->drv && phydev->drv->remove) phydev->drv->remove(phydev); /* Assert the reset signal */ phy_device_reset(phydev, 1); phydev->drv = NULL; return 0; } static void phy_shutdown(struct device *dev) { struct phy_device *phydev = to_phy_device(dev); if (phydev->state == PHY_READY || !phydev->attached_dev) return; phy_disable_interrupts(phydev); } /** * phy_driver_register - register a phy_driver with the PHY layer * @new_driver: new phy_driver to register * @owner: module owning this PHY */ int phy_driver_register(struct phy_driver *new_driver, struct module *owner) { int retval; /* Either the features are hard coded, or dynamically * determined. It cannot be both. */ if (WARN_ON(new_driver->features && new_driver->get_features)) { pr_err("%s: features and get_features must not both be set\n", new_driver->name); return -EINVAL; } /* PHYLIB device drivers must not match using a DT compatible table * as this bypasses our checks that the mdiodev that is being matched * is backed by a struct phy_device. If such a case happens, we will * make out-of-bounds accesses and lockup in phydev->lock. */ if (WARN(new_driver->mdiodrv.driver.of_match_table, "%s: driver must not provide a DT match table\n", new_driver->name)) return -EINVAL; new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; new_driver->mdiodrv.driver.name = new_driver->name; new_driver->mdiodrv.driver.bus = &mdio_bus_type; new_driver->mdiodrv.driver.probe = phy_probe; new_driver->mdiodrv.driver.remove = phy_remove; new_driver->mdiodrv.driver.shutdown = phy_shutdown; new_driver->mdiodrv.driver.owner = owner; new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; retval = driver_register(&new_driver->mdiodrv.driver); if (retval) { pr_err("%s: Error %d in registering driver\n", new_driver->name, retval); return retval; } pr_debug("%s: Registered new driver\n", new_driver->name); return 0; } EXPORT_SYMBOL(phy_driver_register); int phy_drivers_register(struct phy_driver *new_driver, int n, struct module *owner) { int i, ret = 0; for (i = 0; i < n; i++) { ret = phy_driver_register(new_driver + i, owner); if (ret) { while (i-- > 0) phy_driver_unregister(new_driver + i); break; } } return ret; } EXPORT_SYMBOL(phy_drivers_register); void phy_driver_unregister(struct phy_driver *drv) { driver_unregister(&drv->mdiodrv.driver); } EXPORT_SYMBOL(phy_driver_unregister); void phy_drivers_unregister(struct phy_driver *drv, int n) { int i; for (i = 0; i < n; i++) phy_driver_unregister(drv + i); } EXPORT_SYMBOL(phy_drivers_unregister); static struct phy_driver genphy_driver = { .phy_id = 0xffffffff, .phy_id_mask = 0xffffffff, .name = "Generic PHY", .get_features = genphy_read_abilities, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, }; static const struct ethtool_phy_ops phy_ethtool_phy_ops = { .get_sset_count = phy_ethtool_get_sset_count, .get_strings = phy_ethtool_get_strings, .get_stats = phy_ethtool_get_stats, .start_cable_test = phy_start_cable_test, .start_cable_test_tdr = phy_start_cable_test_tdr, }; static int __init phy_init(void) { int rc; rc = mdio_bus_init(); if (rc) return rc; ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); features_init(); rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); if (rc) goto err_c45; rc = phy_driver_register(&genphy_driver, THIS_MODULE); if (rc) { phy_driver_unregister(&genphy_c45_driver); err_c45: mdio_bus_exit(); } return rc; } static void __exit phy_exit(void) { phy_driver_unregister(&genphy_c45_driver); phy_driver_unregister(&genphy_driver); mdio_bus_exit(); ethtool_set_ethtool_phy_ops(NULL); } subsys_initcall(phy_init); module_exit(phy_exit);