// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ #include #include #include #include #include "wx_type.h" #include "wx_hw.h" static void wx_intr_disable(struct wx_hw *wxhw, u64 qmask) { u32 mask; mask = (qmask & 0xFFFFFFFF); if (mask) wr32(wxhw, WX_PX_IMS(0), mask); if (wxhw->mac.type == wx_mac_sp) { mask = (qmask >> 32); if (mask) wr32(wxhw, WX_PX_IMS(1), mask); } } /* cmd_addr is used for some special command: * 1. to be sector address, when implemented erase sector command * 2. to be flash address when implemented read, write flash address */ static int wx_fmgr_cmd_op(struct wx_hw *wxhw, u32 cmd, u32 cmd_addr) { u32 cmd_val = 0, val = 0; cmd_val = WX_SPI_CMD_CMD(cmd) | WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | cmd_addr; wr32(wxhw, WX_SPI_CMD, cmd_val); return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, false, wxhw, WX_SPI_STATUS); } static int wx_flash_read_dword(struct wx_hw *wxhw, u32 addr, u32 *data) { int ret = 0; ret = wx_fmgr_cmd_op(wxhw, WX_SPI_CMD_READ_DWORD, addr); if (ret < 0) return ret; *data = rd32(wxhw, WX_SPI_DATA); return ret; } int wx_check_flash_load(struct wx_hw *hw, u32 check_bit) { u32 reg = 0; int err = 0; /* if there's flash existing */ if (!(rd32(hw, WX_SPI_STATUS) & WX_SPI_STATUS_FLASH_BYPASS)) { /* wait hw load flash done */ err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, false, hw, WX_SPI_ILDR_STATUS); if (err < 0) wx_err(hw, "Check flash load timeout.\n"); } return err; } EXPORT_SYMBOL(wx_check_flash_load); void wx_control_hw(struct wx_hw *wxhw, bool drv) { if (drv) { /* Let firmware know the driver has taken over */ wr32m(wxhw, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, WX_CFG_PORT_CTL_DRV_LOAD); } else { /* Let firmware take over control of hw */ wr32m(wxhw, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, 0); } } EXPORT_SYMBOL(wx_control_hw); /** * wx_mng_present - returns 0 when management capability is present * @wxhw: pointer to hardware structure */ int wx_mng_present(struct wx_hw *wxhw) { u32 fwsm; fwsm = rd32(wxhw, WX_MIS_ST); if (fwsm & WX_MIS_ST_MNG_INIT_DN) return 0; else return -EACCES; } EXPORT_SYMBOL(wx_mng_present); /* Software lock to be held while software semaphore is being accessed. */ static DEFINE_MUTEX(wx_sw_sync_lock); /** * wx_release_sw_sync - Release SW semaphore * @wxhw: pointer to hardware structure * @mask: Mask to specify which semaphore to release * * Releases the SW semaphore for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ static void wx_release_sw_sync(struct wx_hw *wxhw, u32 mask) { mutex_lock(&wx_sw_sync_lock); wr32m(wxhw, WX_MNG_SWFW_SYNC, mask, 0); mutex_unlock(&wx_sw_sync_lock); } /** * wx_acquire_sw_sync - Acquire SW semaphore * @wxhw: pointer to hardware structure * @mask: Mask to specify which semaphore to acquire * * Acquires the SW semaphore for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ static int wx_acquire_sw_sync(struct wx_hw *wxhw, u32 mask) { u32 sem = 0; int ret = 0; mutex_lock(&wx_sw_sync_lock); ret = read_poll_timeout(rd32, sem, !(sem & mask), 5000, 2000000, false, wxhw, WX_MNG_SWFW_SYNC); if (!ret) { sem |= mask; wr32(wxhw, WX_MNG_SWFW_SYNC, sem); } else { wx_err(wxhw, "SW Semaphore not granted: 0x%x.\n", sem); } mutex_unlock(&wx_sw_sync_lock); return ret; } /** * wx_host_interface_command - Issue command to manageability block * @wxhw: pointer to the HW structure * @buffer: contains the command to write and where the return status will * be placed * @length: length of buffer, must be multiple of 4 bytes * @timeout: time in ms to wait for command completion * @return_data: read and return data from the buffer (true) or not (false) * Needed because FW structures are big endian and decoding of * these fields can be 8 bit or 16 bit based on command. Decoding * is not easily understood without making a table of commands. * So we will leave this up to the caller to read back the data * in these cases. **/ int wx_host_interface_command(struct wx_hw *wxhw, u32 *buffer, u32 length, u32 timeout, bool return_data) { u32 hdr_size = sizeof(struct wx_hic_hdr); u32 hicr, i, bi, buf[64] = {}; int status = 0; u32 dword_len; u16 buf_len; if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { wx_err(wxhw, "Buffer length failure buffersize=%d.\n", length); return -EINVAL; } status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_MB); if (status != 0) return status; /* Calculate length in DWORDs. We must be DWORD aligned */ if ((length % (sizeof(u32))) != 0) { wx_err(wxhw, "Buffer length failure, not aligned to dword"); status = -EINVAL; goto rel_out; } dword_len = length >> 2; /* The device driver writes the relevant command block * into the ram area. */ for (i = 0; i < dword_len; i++) { wr32a(wxhw, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); /* write flush */ buf[i] = rd32a(wxhw, WX_MNG_MBOX, i); } /* Setting this bit tells the ARC that a new command is pending. */ wr32m(wxhw, WX_MNG_MBOX_CTL, WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, timeout * 1000, false, wxhw, WX_MNG_MBOX_CTL); /* Check command completion */ if (status) { wx_dbg(wxhw, "Command has failed with no status valid.\n"); buf[0] = rd32(wxhw, WX_MNG_MBOX); if ((buffer[0] & 0xff) != (~buf[0] >> 24)) { status = -EINVAL; goto rel_out; } if ((buf[0] & 0xff0000) >> 16 == 0x80) { wx_dbg(wxhw, "It's unknown cmd.\n"); status = -EINVAL; goto rel_out; } wx_dbg(wxhw, "write value:\n"); for (i = 0; i < dword_len; i++) wx_dbg(wxhw, "%x ", buffer[i]); wx_dbg(wxhw, "read value:\n"); for (i = 0; i < dword_len; i++) wx_dbg(wxhw, "%x ", buf[i]); } if (!return_data) goto rel_out; /* Calculate length in DWORDs */ dword_len = hdr_size >> 2; /* first pull in the header so we know the buffer length */ for (bi = 0; bi < dword_len; bi++) { buffer[bi] = rd32a(wxhw, WX_MNG_MBOX, bi); le32_to_cpus(&buffer[bi]); } /* If there is any thing in data position pull it in */ buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; if (buf_len == 0) goto rel_out; if (length < buf_len + hdr_size) { wx_err(wxhw, "Buffer not large enough for reply message.\n"); status = -EFAULT; goto rel_out; } /* Calculate length in DWORDs, add 3 for odd lengths */ dword_len = (buf_len + 3) >> 2; /* Pull in the rest of the buffer (bi is where we left off) */ for (; bi <= dword_len; bi++) { buffer[bi] = rd32a(wxhw, WX_MNG_MBOX, bi); le32_to_cpus(&buffer[bi]); } rel_out: wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_MB); return status; } EXPORT_SYMBOL(wx_host_interface_command); /** * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd * assuming that the semaphore is already obtained. * @wxhw: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the hostif. **/ static int wx_read_ee_hostif_data(struct wx_hw *wxhw, u16 offset, u16 *data) { struct wx_hic_read_shadow_ram buffer; int status; buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; buffer.hdr.req.buf_lenh = 0; buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; /* convert offset from words to bytes */ buffer.address = (__force u32)cpu_to_be32(offset * 2); /* one word */ buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); status = wx_host_interface_command(wxhw, (u32 *)&buffer, sizeof(buffer), WX_HI_COMMAND_TIMEOUT, false); if (status != 0) return status; *data = (u16)rd32a(wxhw, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); return status; } /** * wx_read_ee_hostif - Read EEPROM word using a host interface cmd * @wxhw: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the hostif. **/ int wx_read_ee_hostif(struct wx_hw *wxhw, u16 offset, u16 *data) { int status = 0; status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH); if (status == 0) { status = wx_read_ee_hostif_data(wxhw, offset, data); wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH); } return status; } EXPORT_SYMBOL(wx_read_ee_hostif); /** * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif * @wxhw: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @words: number of words * @data: word(s) read from the EEPROM * * Reads a 16 bit word(s) from the EEPROM using the hostif. **/ int wx_read_ee_hostif_buffer(struct wx_hw *wxhw, u16 offset, u16 words, u16 *data) { struct wx_hic_read_shadow_ram buffer; u32 current_word = 0; u16 words_to_read; u32 value = 0; int status; u32 i; /* Take semaphore for the entire operation. */ status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH); if (status != 0) return status; while (words) { if (words > FW_MAX_READ_BUFFER_SIZE / 2) words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; else words_to_read = words; buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; buffer.hdr.req.buf_lenh = 0; buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; /* convert offset from words to bytes */ buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); status = wx_host_interface_command(wxhw, (u32 *)&buffer, sizeof(buffer), WX_HI_COMMAND_TIMEOUT, false); if (status != 0) { wx_err(wxhw, "Host interface command failed\n"); goto out; } for (i = 0; i < words_to_read; i++) { u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; value = rd32(wxhw, reg); data[current_word] = (u16)(value & 0xffff); current_word++; i++; if (i < words_to_read) { value >>= 16; data[current_word] = (u16)(value & 0xffff); current_word++; } } words -= words_to_read; } out: wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH); return status; } EXPORT_SYMBOL(wx_read_ee_hostif_buffer); /** * wx_calculate_checksum - Calculate checksum for buffer * @buffer: pointer to EEPROM * @length: size of EEPROM to calculate a checksum for * Calculates the checksum for some buffer on a specified length. The * checksum calculated is returned. **/ static u8 wx_calculate_checksum(u8 *buffer, u32 length) { u8 sum = 0; u32 i; if (!buffer) return 0; for (i = 0; i < length; i++) sum += buffer[i]; return (u8)(0 - sum); } /** * wx_reset_hostif - send reset cmd to fw * @wxhw: pointer to hardware structure * * Sends reset cmd to firmware through the manageability * block. **/ int wx_reset_hostif(struct wx_hw *wxhw) { struct wx_hic_reset reset_cmd; int ret_val = 0; int i; reset_cmd.hdr.cmd = FW_RESET_CMD; reset_cmd.hdr.buf_len = FW_RESET_LEN; reset_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; reset_cmd.lan_id = wxhw->bus.func; reset_cmd.reset_type = (u16)wxhw->reset_type; reset_cmd.hdr.checksum = 0; reset_cmd.hdr.checksum = wx_calculate_checksum((u8 *)&reset_cmd, (FW_CEM_HDR_LEN + reset_cmd.hdr.buf_len)); for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { ret_val = wx_host_interface_command(wxhw, (u32 *)&reset_cmd, sizeof(reset_cmd), WX_HI_COMMAND_TIMEOUT, true); if (ret_val != 0) continue; if (reset_cmd.hdr.cmd_or_resp.ret_status == FW_CEM_RESP_STATUS_SUCCESS) ret_val = 0; else ret_val = -EFAULT; break; } return ret_val; } EXPORT_SYMBOL(wx_reset_hostif); /** * wx_init_eeprom_params - Initialize EEPROM params * @wxhw: pointer to hardware structure * * Initializes the EEPROM parameters wx_eeprom_info within the * wx_hw struct in order to set up EEPROM access. **/ void wx_init_eeprom_params(struct wx_hw *wxhw) { struct wx_eeprom_info *eeprom = &wxhw->eeprom; u16 eeprom_size; u16 data = 0x80; if (eeprom->type == wx_eeprom_uninitialized) { eeprom->semaphore_delay = 10; eeprom->type = wx_eeprom_none; if (!(rd32(wxhw, WX_SPI_STATUS) & WX_SPI_STATUS_FLASH_BYPASS)) { eeprom->type = wx_flash; eeprom_size = 4096; eeprom->word_size = eeprom_size >> 1; wx_dbg(wxhw, "Eeprom params: type = %d, size = %d\n", eeprom->type, eeprom->word_size); } } if (wxhw->mac.type == wx_mac_sp) { if (wx_read_ee_hostif(wxhw, WX_SW_REGION_PTR, &data)) { wx_err(wxhw, "NVM Read Error\n"); return; } data = data >> 1; } eeprom->sw_region_offset = data; } EXPORT_SYMBOL(wx_init_eeprom_params); /** * wx_get_mac_addr - Generic get MAC address * @wxhw: pointer to hardware structure * @mac_addr: Adapter MAC address * * Reads the adapter's MAC address from first Receive Address Register (RAR0) * A reset of the adapter must be performed prior to calling this function * in order for the MAC address to have been loaded from the EEPROM into RAR0 **/ void wx_get_mac_addr(struct wx_hw *wxhw, u8 *mac_addr) { u32 rar_high; u32 rar_low; u16 i; wr32(wxhw, WX_PSR_MAC_SWC_IDX, 0); rar_high = rd32(wxhw, WX_PSR_MAC_SWC_AD_H); rar_low = rd32(wxhw, WX_PSR_MAC_SWC_AD_L); for (i = 0; i < 2; i++) mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); for (i = 0; i < 4; i++) mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); } EXPORT_SYMBOL(wx_get_mac_addr); /** * wx_set_rar - Set Rx address register * @wxhw: pointer to hardware structure * @index: Receive address register to write * @addr: Address to put into receive address register * @pools: VMDq "set" or "pool" index * @enable_addr: set flag that address is active * * Puts an ethernet address into a receive address register. **/ int wx_set_rar(struct wx_hw *wxhw, u32 index, u8 *addr, u64 pools, u32 enable_addr) { u32 rar_entries = wxhw->mac.num_rar_entries; u32 rar_low, rar_high; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { wx_err(wxhw, "RAR index %d is out of range.\n", index); return -EINVAL; } /* select the MAC address */ wr32(wxhw, WX_PSR_MAC_SWC_IDX, index); /* setup VMDq pool mapping */ wr32(wxhw, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); if (wxhw->mac.type == wx_mac_sp) wr32(wxhw, WX_PSR_MAC_SWC_VM_H, pools >> 32); /* HW expects these in little endian so we reverse the byte * order from network order (big endian) to little endian * * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_low = ((u32)addr[5] | ((u32)addr[4] << 8) | ((u32)addr[3] << 16) | ((u32)addr[2] << 24)); rar_high = ((u32)addr[1] | ((u32)addr[0] << 8)); if (enable_addr != 0) rar_high |= WX_PSR_MAC_SWC_AD_H_AV; wr32(wxhw, WX_PSR_MAC_SWC_AD_L, rar_low); wr32m(wxhw, WX_PSR_MAC_SWC_AD_H, (WX_PSR_MAC_SWC_AD_H_AD(~0) | WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) | WX_PSR_MAC_SWC_AD_H_AV), rar_high); return 0; } EXPORT_SYMBOL(wx_set_rar); /** * wx_clear_rar - Remove Rx address register * @wxhw: pointer to hardware structure * @index: Receive address register to write * * Clears an ethernet address from a receive address register. **/ int wx_clear_rar(struct wx_hw *wxhw, u32 index) { u32 rar_entries = wxhw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { wx_err(wxhw, "RAR index %d is out of range.\n", index); return -EINVAL; } /* Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ wr32(wxhw, WX_PSR_MAC_SWC_IDX, index); wr32(wxhw, WX_PSR_MAC_SWC_VM_L, 0); wr32(wxhw, WX_PSR_MAC_SWC_VM_H, 0); wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0); wr32m(wxhw, WX_PSR_MAC_SWC_AD_H, (WX_PSR_MAC_SWC_AD_H_AD(~0) | WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) | WX_PSR_MAC_SWC_AD_H_AV), 0); return 0; } EXPORT_SYMBOL(wx_clear_rar); /** * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address * @wxhw: pointer to hardware struct * @rar: receive address register index to disassociate * @vmdq: VMDq pool index to remove from the rar **/ static int wx_clear_vmdq(struct wx_hw *wxhw, u32 rar, u32 __maybe_unused vmdq) { u32 rar_entries = wxhw->mac.num_rar_entries; u32 mpsar_lo, mpsar_hi; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { wx_err(wxhw, "RAR index %d is out of range.\n", rar); return -EINVAL; } wr32(wxhw, WX_PSR_MAC_SWC_IDX, rar); mpsar_lo = rd32(wxhw, WX_PSR_MAC_SWC_VM_L); mpsar_hi = rd32(wxhw, WX_PSR_MAC_SWC_VM_H); if (!mpsar_lo && !mpsar_hi) return 0; /* was that the last pool using this rar? */ if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) wx_clear_rar(wxhw, rar); return 0; } /** * wx_init_uta_tables - Initialize the Unicast Table Array * @wxhw: pointer to hardware structure **/ static void wx_init_uta_tables(struct wx_hw *wxhw) { int i; wx_dbg(wxhw, " Clearing UTA\n"); for (i = 0; i < 128; i++) wr32(wxhw, WX_PSR_UC_TBL(i), 0); } /** * wx_init_rx_addrs - Initializes receive address filters. * @wxhw: pointer to hardware structure * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. **/ void wx_init_rx_addrs(struct wx_hw *wxhw) { u32 rar_entries = wxhw->mac.num_rar_entries; u32 psrctl; int i; /* If the current mac address is valid, assume it is a software override * to the permanent address. * Otherwise, use the permanent address from the eeprom. */ if (!is_valid_ether_addr(wxhw->mac.addr)) { /* Get the MAC address from the RAR0 for later reference */ wx_get_mac_addr(wxhw, wxhw->mac.addr); wx_dbg(wxhw, "Keeping Current RAR0 Addr = %pM\n", wxhw->mac.addr); } else { /* Setup the receive address. */ wx_dbg(wxhw, "Overriding MAC Address in RAR[0]\n"); wx_dbg(wxhw, "New MAC Addr = %pM\n", wxhw->mac.addr); wx_set_rar(wxhw, 0, wxhw->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); if (wxhw->mac.type == wx_mac_sp) { /* clear VMDq pool/queue selection for RAR 0 */ wx_clear_vmdq(wxhw, 0, WX_CLEAR_VMDQ_ALL); } } /* Zero out the other receive addresses. */ wx_dbg(wxhw, "Clearing RAR[1-%d]\n", rar_entries - 1); for (i = 1; i < rar_entries; i++) { wr32(wxhw, WX_PSR_MAC_SWC_IDX, i); wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0); wr32(wxhw, WX_PSR_MAC_SWC_AD_H, 0); } /* Clear the MTA */ wxhw->addr_ctrl.mta_in_use = 0; psrctl = rd32(wxhw, WX_PSR_CTL); psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); psrctl |= wxhw->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; wr32(wxhw, WX_PSR_CTL, psrctl); wx_dbg(wxhw, " Clearing MTA\n"); for (i = 0; i < wxhw->mac.mcft_size; i++) wr32(wxhw, WX_PSR_MC_TBL(i), 0); wx_init_uta_tables(wxhw); } EXPORT_SYMBOL(wx_init_rx_addrs); void wx_disable_rx(struct wx_hw *wxhw) { u32 pfdtxgswc; u32 rxctrl; rxctrl = rd32(wxhw, WX_RDB_PB_CTL); if (rxctrl & WX_RDB_PB_CTL_RXEN) { pfdtxgswc = rd32(wxhw, WX_PSR_CTL); if (pfdtxgswc & WX_PSR_CTL_SW_EN) { pfdtxgswc &= ~WX_PSR_CTL_SW_EN; wr32(wxhw, WX_PSR_CTL, pfdtxgswc); wxhw->mac.set_lben = true; } else { wxhw->mac.set_lben = false; } rxctrl &= ~WX_RDB_PB_CTL_RXEN; wr32(wxhw, WX_RDB_PB_CTL, rxctrl); if (!(((wxhw->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || ((wxhw->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { /* disable mac receiver */ wr32m(wxhw, WX_MAC_RX_CFG, WX_MAC_RX_CFG_RE, 0); } } } EXPORT_SYMBOL(wx_disable_rx); /** * wx_disable_pcie_master - Disable PCI-express master access * @wxhw: pointer to hardware structure * * Disables PCI-Express master access and verifies there are no pending * requests. **/ int wx_disable_pcie_master(struct wx_hw *wxhw) { int status = 0; u32 val; /* Always set this bit to ensure any future transactions are blocked */ pci_clear_master(wxhw->pdev); /* Exit if master requests are blocked */ if (!(rd32(wxhw, WX_PX_TRANSACTION_PENDING))) return 0; /* Poll for master request bit to clear */ status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, false, wxhw, WX_PX_TRANSACTION_PENDING); if (status < 0) wx_err(wxhw, "PCIe transaction pending bit did not clear.\n"); return status; } EXPORT_SYMBOL(wx_disable_pcie_master); /** * wx_stop_adapter - Generic stop Tx/Rx units * @wxhw: pointer to hardware structure * * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, * disables transmit and receive units. The adapter_stopped flag is used by * the shared code and drivers to determine if the adapter is in a stopped * state and should not touch the hardware. **/ int wx_stop_adapter(struct wx_hw *wxhw) { u16 i; /* Set the adapter_stopped flag so other driver functions stop touching * the hardware */ wxhw->adapter_stopped = true; /* Disable the receive unit */ wx_disable_rx(wxhw); /* Set interrupt mask to stop interrupts from being generated */ wx_intr_disable(wxhw, WX_INTR_ALL); /* Clear any pending interrupts, flush previous writes */ wr32(wxhw, WX_PX_MISC_IC, 0xffffffff); wr32(wxhw, WX_BME_CTL, 0x3); /* Disable the transmit unit. Each queue must be disabled. */ for (i = 0; i < wxhw->mac.max_tx_queues; i++) { wr32m(wxhw, WX_PX_TR_CFG(i), WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, WX_PX_TR_CFG_SWFLSH); } /* Disable the receive unit by stopping each queue */ for (i = 0; i < wxhw->mac.max_rx_queues; i++) { wr32m(wxhw, WX_PX_RR_CFG(i), WX_PX_RR_CFG_RR_EN, 0); } /* flush all queues disables */ WX_WRITE_FLUSH(wxhw); /* Prevent the PCI-E bus from hanging by disabling PCI-E master * access and verify no pending requests */ return wx_disable_pcie_master(wxhw); } EXPORT_SYMBOL(wx_stop_adapter); void wx_reset_misc(struct wx_hw *wxhw) { int i; /* receive packets that size > 2048 */ wr32m(wxhw, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); /* clear counters on read */ wr32m(wxhw, WX_MMC_CONTROL, WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); wr32m(wxhw, WX_MAC_RX_FLOW_CTRL, WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); wr32(wxhw, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); wr32m(wxhw, WX_MIS_RST_ST, WX_MIS_RST_ST_RST_INIT, 0x1E00); /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ wr32(wxhw, WX_PSR_MNG_FLEX_SEL, 0); for (i = 0; i < 16; i++) { wr32(wxhw, WX_PSR_MNG_FLEX_DW_L(i), 0); wr32(wxhw, WX_PSR_MNG_FLEX_DW_H(i), 0); wr32(wxhw, WX_PSR_MNG_FLEX_MSK(i), 0); } wr32(wxhw, WX_PSR_LAN_FLEX_SEL, 0); for (i = 0; i < 16; i++) { wr32(wxhw, WX_PSR_LAN_FLEX_DW_L(i), 0); wr32(wxhw, WX_PSR_LAN_FLEX_DW_H(i), 0); wr32(wxhw, WX_PSR_LAN_FLEX_MSK(i), 0); } /* set pause frame dst mac addr */ wr32(wxhw, WX_RDB_PFCMACDAL, 0xC2000001); wr32(wxhw, WX_RDB_PFCMACDAH, 0x0180); } EXPORT_SYMBOL(wx_reset_misc); /** * wx_get_pcie_msix_counts - Gets MSI-X vector count * @wxhw: pointer to hardware structure * @msix_count: number of MSI interrupts that can be obtained * @max_msix_count: number of MSI interrupts that mac need * * Read PCIe configuration space, and get the MSI-X vector count from * the capabilities table. **/ int wx_get_pcie_msix_counts(struct wx_hw *wxhw, u16 *msix_count, u16 max_msix_count) { struct pci_dev *pdev = wxhw->pdev; struct device *dev = &pdev->dev; int pos; *msix_count = 1; pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (!pos) { dev_err(dev, "Unable to find MSI-X Capabilities\n"); return -EINVAL; } pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, msix_count); *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; /* MSI-X count is zero-based in HW */ *msix_count += 1; if (*msix_count > max_msix_count) *msix_count = max_msix_count; return 0; } EXPORT_SYMBOL(wx_get_pcie_msix_counts); int wx_sw_init(struct wx_hw *wxhw) { struct pci_dev *pdev = wxhw->pdev; u32 ssid = 0; int err = 0; wxhw->vendor_id = pdev->vendor; wxhw->device_id = pdev->device; wxhw->revision_id = pdev->revision; wxhw->oem_svid = pdev->subsystem_vendor; wxhw->oem_ssid = pdev->subsystem_device; wxhw->bus.device = PCI_SLOT(pdev->devfn); wxhw->bus.func = PCI_FUNC(pdev->devfn); if (wxhw->oem_svid == PCI_VENDOR_ID_WANGXUN) { wxhw->subsystem_vendor_id = pdev->subsystem_vendor; wxhw->subsystem_device_id = pdev->subsystem_device; } else { err = wx_flash_read_dword(wxhw, 0xfffdc, &ssid); if (!err) wxhw->subsystem_device_id = swab16((u16)ssid); return err; } return 0; } EXPORT_SYMBOL(wx_sw_init); MODULE_LICENSE("GPL");