// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. */ #include #include #include #include #include #include #include #include "net_driver.h" #include "bitfield.h" #include "efx.h" #include "nic.h" #include "ef10_regs.h" #include "io.h" #include "workarounds.h" #include "mcdi_pcol.h" /************************************************************************** * * Generic buffer handling * These buffers are used for interrupt status, MAC stats, etc. * **************************************************************************/ int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, unsigned int len, gfp_t gfp_flags) { buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, &buffer->dma_addr, gfp_flags); if (!buffer->addr) return -ENOMEM; buffer->len = len; return 0; } void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) { if (buffer->addr) { dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, buffer->dma_addr); buffer->addr = NULL; } } /* Check whether an event is present in the eventq at the current * read pointer. Only useful for self-test. */ bool efx_nic_event_present(struct efx_channel *channel) { return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); } void efx_nic_event_test_start(struct efx_channel *channel) { channel->event_test_cpu = -1; smp_wmb(); channel->efx->type->ev_test_generate(channel); } int efx_nic_irq_test_start(struct efx_nic *efx) { efx->last_irq_cpu = -1; smp_wmb(); return efx->type->irq_test_generate(efx); } /* Hook interrupt handler(s) * Try MSI and then legacy interrupts. */ int efx_nic_init_interrupt(struct efx_nic *efx) { struct efx_channel *channel; unsigned int n_irqs; int rc; if (!EFX_INT_MODE_USE_MSI(efx)) { rc = request_irq(efx->legacy_irq, efx->type->irq_handle_legacy, IRQF_SHARED, efx->name, efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to hook legacy IRQ %d\n", efx->pci_dev->irq); goto fail1; } efx->irqs_hooked = true; return 0; } #ifdef CONFIG_RFS_ACCEL if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); if (!efx->net_dev->rx_cpu_rmap) { rc = -ENOMEM; goto fail1; } } #endif /* Hook MSI or MSI-X interrupt */ n_irqs = 0; efx_for_each_channel(channel, efx) { rc = request_irq(channel->irq, efx->type->irq_handle_msi, IRQF_PROBE_SHARED, /* Not shared */ efx->msi_context[channel->channel].name, &efx->msi_context[channel->channel]); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to hook IRQ %d\n", channel->irq); goto fail2; } ++n_irqs; #ifdef CONFIG_RFS_ACCEL if (efx->interrupt_mode == EFX_INT_MODE_MSIX && channel->channel < efx->n_rx_channels) { rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, channel->irq); if (rc) goto fail2; } #endif } efx->irqs_hooked = true; return 0; fail2: #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); efx->net_dev->rx_cpu_rmap = NULL; #endif efx_for_each_channel(channel, efx) { if (n_irqs-- == 0) break; free_irq(channel->irq, &efx->msi_context[channel->channel]); } fail1: return rc; } void efx_nic_fini_interrupt(struct efx_nic *efx) { struct efx_channel *channel; #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); efx->net_dev->rx_cpu_rmap = NULL; #endif if (!efx->irqs_hooked) return; if (EFX_INT_MODE_USE_MSI(efx)) { /* Disable MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) free_irq(channel->irq, &efx->msi_context[channel->channel]); } else { /* Disable legacy interrupt */ free_irq(efx->legacy_irq, efx); } efx->irqs_hooked = false; } /* Register dump */ #define REGISTER_REVISION_ED 4 #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */ struct efx_nic_reg { u32 offset:24; u32 min_revision:3, max_revision:3; }; #define REGISTER(name, arch, min_rev, max_rev) { \ arch ## R_ ## min_rev ## max_rev ## _ ## name, \ REGISTER_REVISION_ ## arch ## min_rev, \ REGISTER_REVISION_ ## arch ## max_rev \ } #define REGISTER_DZ(name) REGISTER(name, E, D, Z) static const struct efx_nic_reg efx_nic_regs[] = { /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ /* XX_CORE_STAT is partly RC */ REGISTER_DZ(BIU_HW_REV_ID), REGISTER_DZ(MC_DB_LWRD), REGISTER_DZ(MC_DB_HWRD), }; struct efx_nic_reg_table { u32 offset:24; u32 min_revision:3, max_revision:3; u32 step:6, rows:21; }; #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \ offset, \ REGISTER_REVISION_ ## arch ## min_rev, \ REGISTER_REVISION_ ## arch ## max_rev, \ step, rows \ } #define REGISTER_TABLE(name, arch, min_rev, max_rev) \ REGISTER_TABLE_DIMENSIONS( \ name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \ arch, min_rev, max_rev, \ arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS) #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z) static const struct efx_nic_reg_table efx_nic_reg_tables[] = { REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS), }; size_t efx_nic_get_regs_len(struct efx_nic *efx) { const struct efx_nic_reg *reg; const struct efx_nic_reg_table *table; size_t len = 0; for (reg = efx_nic_regs; reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); reg++) if (efx->type->revision >= reg->min_revision && efx->type->revision <= reg->max_revision) len += sizeof(efx_oword_t); for (table = efx_nic_reg_tables; table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); table++) if (efx->type->revision >= table->min_revision && efx->type->revision <= table->max_revision) len += table->rows * min_t(size_t, table->step, 16); return len; } void efx_nic_get_regs(struct efx_nic *efx, void *buf) { const struct efx_nic_reg *reg; const struct efx_nic_reg_table *table; for (reg = efx_nic_regs; reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); reg++) { if (efx->type->revision >= reg->min_revision && efx->type->revision <= reg->max_revision) { efx_reado(efx, (efx_oword_t *)buf, reg->offset); buf += sizeof(efx_oword_t); } } for (table = efx_nic_reg_tables; table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); table++) { size_t size, i; if (!(efx->type->revision >= table->min_revision && efx->type->revision <= table->max_revision)) continue; size = min_t(size_t, table->step, 16); for (i = 0; i < table->rows; i++) { switch (table->step) { case 4: /* 32-bit SRAM */ efx_readd(efx, buf, table->offset + 4 * i); break; case 16: /* 128-bit-readable register */ efx_reado_table(efx, buf, table->offset, i); break; case 32: /* 128-bit register, interleaved */ efx_reado_table(efx, buf, table->offset, 2 * i); break; default: WARN_ON(1); return; } buf += size; } } } /** * efx_nic_describe_stats - Describe supported statistics for ethtool * @desc: Array of &struct efx_hw_stat_desc describing the statistics * @count: Length of the @desc array * @mask: Bitmask of which elements of @desc are enabled * @names: Buffer to copy names to, or %NULL. The names are copied * starting at intervals of %ETH_GSTRING_LEN bytes. * * Returns the number of visible statistics, i.e. the number of set * bits in the first @count bits of @mask for which a name is defined. */ size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u8 **names) { size_t visible = 0; size_t index; for_each_set_bit(index, mask, count) { if (desc[index].name) { if (names) ethtool_puts(names, desc[index].name); ++visible; } } return visible; } /** * efx_nic_copy_stats - Copy stats from the DMA buffer in to an * intermediate buffer. This is used to get a consistent * set of stats while the DMA buffer can be written at any time * by the NIC. * @efx: The associated NIC. * @dest: Destination buffer. Must be the same size as the DMA buffer. */ int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest) { __le64 *dma_stats = efx->stats_buffer.addr; __le64 generation_start, generation_end; int rc = 0, retry; if (!dest) return 0; if (!dma_stats) goto return_zeroes; /* If we're unlucky enough to read statistics during the DMA, wait * up to 10ms for it to finish (typically takes <500us) */ for (retry = 0; retry < 100; ++retry) { generation_end = dma_stats[efx->num_mac_stats - 1]; if (generation_end == EFX_MC_STATS_GENERATION_INVALID) goto return_zeroes; rmb(); memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64)); rmb(); generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; if (generation_end == generation_start) return 0; /* return good data */ udelay(100); } rc = -EIO; return_zeroes: memset(dest, 0, efx->num_mac_stats * sizeof(u64)); return rc; } /** * efx_nic_update_stats - Convert statistics DMA buffer to array of u64 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer * layout. DMA widths of 0, 16, 32 and 64 are supported; where * the width is specified as 0 the corresponding element of * @stats is not updated. * @count: Length of the @desc array * @mask: Bitmask of which elements of @desc are enabled * @stats: Buffer to update with the converted statistics. The length * of this array must be at least @count. * @dma_buf: DMA buffer containing hardware statistics * @accumulate: If set, the converted values will be added rather than * directly stored to the corresponding elements of @stats */ void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u64 *stats, const void *dma_buf, bool accumulate) { size_t index; for_each_set_bit(index, mask, count) { if (desc[index].dma_width) { const void *addr = dma_buf + desc[index].offset; u64 val; switch (desc[index].dma_width) { case 16: val = le16_to_cpup((__le16 *)addr); break; case 32: val = le32_to_cpup((__le32 *)addr); break; case 64: val = le64_to_cpup((__le64 *)addr); break; default: WARN_ON(1); val = 0; break; } if (accumulate) stats[index] += val; else stats[index] = val; } } } void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops) { /* if down, or this is the first update after coming up */ if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state) efx->rx_nodesc_drops_while_down += *rx_nodesc_drops - efx->rx_nodesc_drops_total; efx->rx_nodesc_drops_total = *rx_nodesc_drops; efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP); *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down; }