// SPDX-License-Identifier: GPL-2.0-only /* 10G controller driver for Samsung SoCs * * Copyright (C) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Author: Siva Reddy Kallam */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sxgbe_common.h" #include "sxgbe_desc.h" #include "sxgbe_dma.h" #include "sxgbe_mtl.h" #include "sxgbe_reg.h" #define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x) #define JUMBO_LEN 9000 /* Module parameters */ #define TX_TIMEO 5000 #define DMA_TX_SIZE 512 #define DMA_RX_SIZE 1024 #define TC_DEFAULT 64 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */ #define SXGBE_DEFAULT_LPI_TIMER 1000 static int debug = -1; static int eee_timer = SXGBE_DEFAULT_LPI_TIMER; module_param(eee_timer, int, 0644); module_param(debug, int, 0644); static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id); static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id); static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id); #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x)) /** * sxgbe_verify_args - verify the driver parameters. * Description: it verifies if some wrong parameter is passed to the driver. * Note that wrong parameters are replaced with the default values. */ static void sxgbe_verify_args(void) { if (unlikely(eee_timer < 0)) eee_timer = SXGBE_DEFAULT_LPI_TIMER; } static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv) { /* Check and enter in LPI mode */ if (!priv->tx_path_in_lpi_mode) priv->hw->mac->set_eee_mode(priv->ioaddr); } void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv) { /* Exit and disable EEE in case of we are are in LPI state. */ priv->hw->mac->reset_eee_mode(priv->ioaddr); del_timer_sync(&priv->eee_ctrl_timer); priv->tx_path_in_lpi_mode = false; } /** * sxgbe_eee_ctrl_timer * @t: timer list containing a data * Description: * If there is no data transfer and if we are not in LPI state, * then MAC Transmitter can be moved to LPI state. */ static void sxgbe_eee_ctrl_timer(struct timer_list *t) { struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer); sxgbe_enable_eee_mode(priv); mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); } /** * sxgbe_eee_init * @priv: private device pointer * Description: * If the EEE support has been enabled while configuring the driver, * if the GMAC actually supports the EEE (from the HW cap reg) and the * phy can also manage EEE, so enable the LPI state and start the timer * to verify if the tx path can enter in LPI state. */ bool sxgbe_eee_init(struct sxgbe_priv_data * const priv) { struct net_device *ndev = priv->dev; bool ret = false; /* MAC core supports the EEE feature. */ if (priv->hw_cap.eee) { /* Check if the PHY supports EEE */ if (phy_init_eee(ndev->phydev, 1)) return false; priv->eee_active = 1; timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0); priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer); add_timer(&priv->eee_ctrl_timer); priv->hw->mac->set_eee_timer(priv->ioaddr, SXGBE_DEFAULT_LPI_TIMER, priv->tx_lpi_timer); pr_info("Energy-Efficient Ethernet initialized\n"); ret = true; } return ret; } static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv) { struct net_device *ndev = priv->dev; /* When the EEE has been already initialised we have to * modify the PLS bit in the LPI ctrl & status reg according * to the PHY link status. For this reason. */ if (priv->eee_enabled) priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link); } /** * sxgbe_clk_csr_set - dynamically set the MDC clock * @priv: driver private structure * Description: this is to dynamically set the MDC clock according to the csr * clock input. */ static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv) { u32 clk_rate = clk_get_rate(priv->sxgbe_clk); /* assign the proper divider, this will be used during * mdio communication */ if (clk_rate < SXGBE_CSR_F_150M) priv->clk_csr = SXGBE_CSR_100_150M; else if (clk_rate <= SXGBE_CSR_F_250M) priv->clk_csr = SXGBE_CSR_150_250M; else if (clk_rate <= SXGBE_CSR_F_300M) priv->clk_csr = SXGBE_CSR_250_300M; else if (clk_rate <= SXGBE_CSR_F_350M) priv->clk_csr = SXGBE_CSR_300_350M; else if (clk_rate <= SXGBE_CSR_F_400M) priv->clk_csr = SXGBE_CSR_350_400M; else if (clk_rate <= SXGBE_CSR_F_500M) priv->clk_csr = SXGBE_CSR_400_500M; } /* minimum number of free TX descriptors required to wake up TX process */ #define SXGBE_TX_THRESH(x) (x->dma_tx_size/4) static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize) { return queue->dirty_tx + tx_qsize - queue->cur_tx - 1; } /** * sxgbe_adjust_link * @dev: net device structure * Description: it adjusts the link parameters. */ static void sxgbe_adjust_link(struct net_device *dev) { struct sxgbe_priv_data *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; u8 new_state = 0; u8 speed = 0xff; if (!phydev) return; /* SXGBE is not supporting auto-negotiation and * half duplex mode. so, not handling duplex change * in this function. only handling speed and link status */ if (phydev->link) { if (phydev->speed != priv->speed) { new_state = 1; switch (phydev->speed) { case SPEED_10000: speed = SXGBE_SPEED_10G; break; case SPEED_2500: speed = SXGBE_SPEED_2_5G; break; case SPEED_1000: speed = SXGBE_SPEED_1G; break; default: netif_err(priv, link, dev, "Speed (%d) not supported\n", phydev->speed); } priv->speed = phydev->speed; priv->hw->mac->set_speed(priv->ioaddr, speed); } if (!priv->oldlink) { new_state = 1; priv->oldlink = 1; } } else if (priv->oldlink) { new_state = 1; priv->oldlink = 0; priv->speed = SPEED_UNKNOWN; } if (new_state & netif_msg_link(priv)) phy_print_status(phydev); /* Alter the MAC settings for EEE */ sxgbe_eee_adjust(priv); } /** * sxgbe_init_phy - PHY initialization * @ndev: net device structure * Description: it initializes the driver's PHY state, and attaches the PHY * to the mac driver. * Return value: * 0 on success */ static int sxgbe_init_phy(struct net_device *ndev) { char phy_id_fmt[MII_BUS_ID_SIZE + 3]; char bus_id[MII_BUS_ID_SIZE]; struct phy_device *phydev; struct sxgbe_priv_data *priv = netdev_priv(ndev); int phy_iface = priv->plat->interface; /* assign default link status */ priv->oldlink = 0; priv->speed = SPEED_UNKNOWN; priv->oldduplex = DUPLEX_UNKNOWN; if (priv->plat->phy_bus_name) snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", priv->plat->phy_bus_name, priv->plat->bus_id); else snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x", priv->plat->bus_id); snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, priv->plat->phy_addr); netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt); phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface); if (IS_ERR(phydev)) { netdev_err(ndev, "Could not attach to PHY\n"); return PTR_ERR(phydev); } /* Stop Advertising 1000BASE Capability if interface is not GMII */ if ((phy_iface == PHY_INTERFACE_MODE_MII) || (phy_iface == PHY_INTERFACE_MODE_RMII)) phy_set_max_speed(phydev, SPEED_1000); if (phydev->phy_id == 0) { phy_disconnect(phydev); return -ENODEV; } netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n", __func__, phydev->phy_id, phydev->link); return 0; } /** * sxgbe_clear_descriptors: clear descriptors * @priv: driver private structure * Description: this function is called to clear the tx and rx descriptors * in case of both basic and extended descriptors are used. */ static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv) { int i, j; unsigned int txsize = priv->dma_tx_size; unsigned int rxsize = priv->dma_rx_size; /* Clear the Rx/Tx descriptors */ for (j = 0; j < SXGBE_RX_QUEUES; j++) { for (i = 0; i < rxsize; i++) priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i], priv->use_riwt, priv->mode, (i == rxsize - 1)); } for (j = 0; j < SXGBE_TX_QUEUES; j++) { for (i = 0; i < txsize; i++) priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]); } } static int sxgbe_init_rx_buffers(struct net_device *dev, struct sxgbe_rx_norm_desc *p, int i, unsigned int dma_buf_sz, struct sxgbe_rx_queue *rx_ring) { struct sxgbe_priv_data *priv = netdev_priv(dev); struct sk_buff *skb; skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL); if (!skb) return -ENOMEM; rx_ring->rx_skbuff[i] = skb; rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, dma_buf_sz, DMA_FROM_DEVICE); if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) { netdev_err(dev, "%s: DMA mapping error\n", __func__); dev_kfree_skb_any(skb); return -EINVAL; } p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i]; return 0; } /** * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated * @dev: net device structure * @p: dec pointer * @i: index * @dma_buf_sz: size * @rx_ring: ring to be freed * * Description: this function initializes the DMA RX descriptor */ static void sxgbe_free_rx_buffers(struct net_device *dev, struct sxgbe_rx_norm_desc *p, int i, unsigned int dma_buf_sz, struct sxgbe_rx_queue *rx_ring) { struct sxgbe_priv_data *priv = netdev_priv(dev); kfree_skb(rx_ring->rx_skbuff[i]); dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i], dma_buf_sz, DMA_FROM_DEVICE); } /** * init_tx_ring - init the TX descriptor ring * @dev: net device structure * @queue_no: queue * @tx_ring: ring to be initialised * @tx_rsize: ring size * Description: this function initializes the DMA TX descriptor */ static int init_tx_ring(struct device *dev, u8 queue_no, struct sxgbe_tx_queue *tx_ring, int tx_rsize) { /* TX ring is not allcoated */ if (!tx_ring) { dev_err(dev, "No memory for TX queue of SXGBE\n"); return -ENOMEM; } /* allocate memory for TX descriptors */ tx_ring->dma_tx = dma_alloc_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), &tx_ring->dma_tx_phy, GFP_KERNEL); if (!tx_ring->dma_tx) return -ENOMEM; /* allocate memory for TX skbuff array */ tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize, sizeof(dma_addr_t), GFP_KERNEL); if (!tx_ring->tx_skbuff_dma) goto dmamem_err; tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize, sizeof(struct sk_buff *), GFP_KERNEL); if (!tx_ring->tx_skbuff) goto dmamem_err; /* assign queue number */ tx_ring->queue_no = queue_no; /* initialise counters */ tx_ring->dirty_tx = 0; tx_ring->cur_tx = 0; return 0; dmamem_err: dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), tx_ring->dma_tx, tx_ring->dma_tx_phy); return -ENOMEM; } /** * free_rx_ring - free the RX descriptor ring * @dev: net device structure * @rx_ring: ring to be initialised * @rx_rsize: ring size * Description: this function initializes the DMA RX descriptor */ static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring, int rx_rsize) { dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), rx_ring->dma_rx, rx_ring->dma_rx_phy); kfree(rx_ring->rx_skbuff_dma); kfree(rx_ring->rx_skbuff); } /** * init_rx_ring - init the RX descriptor ring * @dev: net device structure * @queue_no: queue * @rx_ring: ring to be initialised * @rx_rsize: ring size * Description: this function initializes the DMA RX descriptor */ static int init_rx_ring(struct net_device *dev, u8 queue_no, struct sxgbe_rx_queue *rx_ring, int rx_rsize) { struct sxgbe_priv_data *priv = netdev_priv(dev); int desc_index; unsigned int bfsize = 0; unsigned int ret = 0; /* Set the max buffer size according to the MTU. */ bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8); netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize); /* RX ring is not allcoated */ if (rx_ring == NULL) { netdev_err(dev, "No memory for RX queue\n"); return -ENOMEM; } /* assign queue number */ rx_ring->queue_no = queue_no; /* allocate memory for RX descriptors */ rx_ring->dma_rx = dma_alloc_coherent(priv->device, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), &rx_ring->dma_rx_phy, GFP_KERNEL); if (rx_ring->dma_rx == NULL) return -ENOMEM; /* allocate memory for RX skbuff array */ rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize, sizeof(dma_addr_t), GFP_KERNEL); if (!rx_ring->rx_skbuff_dma) { ret = -ENOMEM; goto err_free_dma_rx; } rx_ring->rx_skbuff = kmalloc_array(rx_rsize, sizeof(struct sk_buff *), GFP_KERNEL); if (!rx_ring->rx_skbuff) { ret = -ENOMEM; goto err_free_skbuff_dma; } /* initialise the buffers */ for (desc_index = 0; desc_index < rx_rsize; desc_index++) { struct sxgbe_rx_norm_desc *p; p = rx_ring->dma_rx + desc_index; ret = sxgbe_init_rx_buffers(dev, p, desc_index, bfsize, rx_ring); if (ret) goto err_free_rx_buffers; } /* initialise counters */ rx_ring->cur_rx = 0; rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize); priv->dma_buf_sz = bfsize; return 0; err_free_rx_buffers: while (--desc_index >= 0) { struct sxgbe_rx_norm_desc *p; p = rx_ring->dma_rx + desc_index; sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring); } kfree(rx_ring->rx_skbuff); err_free_skbuff_dma: kfree(rx_ring->rx_skbuff_dma); err_free_dma_rx: dma_free_coherent(priv->device, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), rx_ring->dma_rx, rx_ring->dma_rx_phy); return ret; } /** * free_tx_ring - free the TX descriptor ring * @dev: net device structure * @tx_ring: ring to be initialised * @tx_rsize: ring size * Description: this function initializes the DMA TX descriptor */ static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring, int tx_rsize) { dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), tx_ring->dma_tx, tx_ring->dma_tx_phy); } /** * init_dma_desc_rings - init the RX/TX descriptor rings * @netd: net device structure * Description: this function initializes the DMA RX/TX descriptors * and allocates the socket buffers. It suppors the chained and ring * modes. */ static int init_dma_desc_rings(struct net_device *netd) { int queue_num, ret; struct sxgbe_priv_data *priv = netdev_priv(netd); int tx_rsize = priv->dma_tx_size; int rx_rsize = priv->dma_rx_size; /* Allocate memory for queue structures and TX descs */ SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { ret = init_tx_ring(priv->device, queue_num, priv->txq[queue_num], tx_rsize); if (ret) { dev_err(&netd->dev, "TX DMA ring allocation failed!\n"); goto txalloc_err; } /* save private pointer in each ring this * pointer is needed during cleaing TX queue */ priv->txq[queue_num]->priv_ptr = priv; } /* Allocate memory for queue structures and RX descs */ SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { ret = init_rx_ring(netd, queue_num, priv->rxq[queue_num], rx_rsize); if (ret) { netdev_err(netd, "RX DMA ring allocation failed!!\n"); goto rxalloc_err; } /* save private pointer in each ring this * pointer is needed during cleaing TX queue */ priv->rxq[queue_num]->priv_ptr = priv; } sxgbe_clear_descriptors(priv); return 0; txalloc_err: while (queue_num--) free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); return ret; rxalloc_err: while (queue_num--) free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); return ret; } static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue) { int dma_desc; struct sxgbe_priv_data *priv = txqueue->priv_ptr; int tx_rsize = priv->dma_tx_size; for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) { struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc; if (txqueue->tx_skbuff_dma[dma_desc]) dma_unmap_single(priv->device, txqueue->tx_skbuff_dma[dma_desc], priv->hw->desc->get_tx_len(tdesc), DMA_TO_DEVICE); dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]); txqueue->tx_skbuff[dma_desc] = NULL; txqueue->tx_skbuff_dma[dma_desc] = 0; } } static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv) { int queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; tx_free_ring_skbufs(tqueue); } } static void free_dma_desc_resources(struct sxgbe_priv_data *priv) { int queue_num; int tx_rsize = priv->dma_tx_size; int rx_rsize = priv->dma_rx_size; /* Release the DMA TX buffers */ dma_free_tx_skbufs(priv); /* Release the TX ring memory also */ SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); } /* Release the RX ring memory also */ SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); } } static int txring_mem_alloc(struct sxgbe_priv_data *priv) { int queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { priv->txq[queue_num] = devm_kmalloc(priv->device, sizeof(struct sxgbe_tx_queue), GFP_KERNEL); if (!priv->txq[queue_num]) return -ENOMEM; } return 0; } static int rxring_mem_alloc(struct sxgbe_priv_data *priv) { int queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { priv->rxq[queue_num] = devm_kmalloc(priv->device, sizeof(struct sxgbe_rx_queue), GFP_KERNEL); if (!priv->rxq[queue_num]) return -ENOMEM; } return 0; } /** * sxgbe_mtl_operation_mode - HW MTL operation mode * @priv: driver private structure * Description: it sets the MTL operation mode: tx/rx MTL thresholds * or Store-And-Forward capability. */ static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv) { int queue_num; /* TX/RX threshold control */ if (likely(priv->plat->force_sf_dma_mode)) { /* set TC mode for TX QUEUES */ SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, SXGBE_MTL_SFMODE); priv->tx_tc = SXGBE_MTL_SFMODE; /* set TC mode for RX QUEUES */ SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, SXGBE_MTL_SFMODE); priv->rx_tc = SXGBE_MTL_SFMODE; } else if (unlikely(priv->plat->force_thresh_dma_mode)) { /* set TC mode for TX QUEUES */ SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, priv->tx_tc); /* set TC mode for RX QUEUES */ SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, priv->rx_tc); } else { pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__); } } /** * sxgbe_tx_queue_clean: * @tqueue: queue pointer * Description: it reclaims resources after transmission completes. */ static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue) { struct sxgbe_priv_data *priv = tqueue->priv_ptr; unsigned int tx_rsize = priv->dma_tx_size; struct netdev_queue *dev_txq; u8 queue_no = tqueue->queue_no; dev_txq = netdev_get_tx_queue(priv->dev, queue_no); __netif_tx_lock(dev_txq, smp_processor_id()); priv->xstats.tx_clean++; while (tqueue->dirty_tx != tqueue->cur_tx) { unsigned int entry = tqueue->dirty_tx % tx_rsize; struct sk_buff *skb = tqueue->tx_skbuff[entry]; struct sxgbe_tx_norm_desc *p; p = tqueue->dma_tx + entry; /* Check if the descriptor is owned by the DMA. */ if (priv->hw->desc->get_tx_owner(p)) break; if (netif_msg_tx_done(priv)) pr_debug("%s: curr %d, dirty %d\n", __func__, tqueue->cur_tx, tqueue->dirty_tx); if (likely(tqueue->tx_skbuff_dma[entry])) { dma_unmap_single(priv->device, tqueue->tx_skbuff_dma[entry], priv->hw->desc->get_tx_len(p), DMA_TO_DEVICE); tqueue->tx_skbuff_dma[entry] = 0; } if (likely(skb)) { dev_kfree_skb(skb); tqueue->tx_skbuff[entry] = NULL; } priv->hw->desc->release_tx_desc(p); tqueue->dirty_tx++; } /* wake up queue */ if (unlikely(netif_tx_queue_stopped(dev_txq) && sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) { if (netif_msg_tx_done(priv)) pr_debug("%s: restart transmit\n", __func__); netif_tx_wake_queue(dev_txq); } __netif_tx_unlock(dev_txq); } /** * sxgbe_tx_all_clean: * @priv: driver private structure * Description: it reclaims resources after transmission completes. */ static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv) { u8 queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; sxgbe_tx_queue_clean(tqueue); } if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { sxgbe_enable_eee_mode(priv); mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); } } /** * sxgbe_restart_tx_queue: irq tx error mng function * @priv: driver private structure * @queue_num: queue number * Description: it cleans the descriptors and restarts the transmission * in case of errors. */ static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num) { struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num]; struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev, queue_num); /* stop the queue */ netif_tx_stop_queue(dev_txq); /* stop the tx dma */ priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num); /* free the skbuffs of the ring */ tx_free_ring_skbufs(tx_ring); /* initialise counters */ tx_ring->cur_tx = 0; tx_ring->dirty_tx = 0; /* start the tx dma */ priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num); priv->dev->stats.tx_errors++; /* wakeup the queue */ netif_tx_wake_queue(dev_txq); } /** * sxgbe_reset_all_tx_queues: irq tx error mng function * @priv: driver private structure * Description: it cleans all the descriptors and * restarts the transmission on all queues in case of errors. */ static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv) { int queue_num; /* On TX timeout of net device, resetting of all queues * may not be proper way, revisit this later if needed */ SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) sxgbe_restart_tx_queue(priv, queue_num); } /** * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register. * @priv: driver private structure * Description: * new GMAC chip generations have a new register to indicate the * presence of the optional feature/functions. * This can be also used to override the value passed through the * platform and necessary for old MAC10/100 and GMAC chips. */ static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv) { int rval = 0; struct sxgbe_hw_features *features = &priv->hw_cap; /* Read First Capability Register CAP[0] */ rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0); if (rval) { features->pmt_remote_wake_up = SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval); features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval); features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval); features->tx_csum_offload = SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval); features->rx_csum_offload = SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval); features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval); features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval); features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval); features->eee = SXGBE_HW_FEAT_EEE(rval); } /* Read First Capability Register CAP[1] */ rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1); if (rval) { features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval); features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); features->dcb_enable = SXGBE_HW_FEAT_DCB(rval); features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval); features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval); features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval); features->rss_enable = SXGBE_HW_FEAT_RSS(rval); features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval); features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval); } /* Read First Capability Register CAP[2] */ rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2); if (rval) { features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval); features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval); features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval); features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval); features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval); features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval); } return rval; } /** * sxgbe_check_ether_addr: check if the MAC addr is valid * @priv: driver private structure * Description: * it is to verify if the MAC address is valid, in case of failures it * generates a random MAC address */ static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv) { if (!is_valid_ether_addr(priv->dev->dev_addr)) { u8 addr[ETH_ALEN]; priv->hw->mac->get_umac_addr((void __iomem *) priv->ioaddr, addr, 0); if (is_valid_ether_addr(addr)) eth_hw_addr_set(priv->dev, addr); else eth_hw_addr_random(priv->dev); } dev_info(priv->device, "device MAC address %pM\n", priv->dev->dev_addr); } /** * sxgbe_init_dma_engine: DMA init. * @priv: driver private structure * Description: * It inits the DMA invoking the specific SXGBE callback. * Some DMA parameters can be passed from the platform; * in case of these are not passed a default is kept for the MAC or GMAC. */ static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv) { int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0; int queue_num; if (priv->plat->dma_cfg) { pbl = priv->plat->dma_cfg->pbl; fixed_burst = priv->plat->dma_cfg->fixed_burst; burst_map = priv->plat->dma_cfg->burst_map; } SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) priv->hw->dma->cha_init(priv->ioaddr, queue_num, fixed_burst, pbl, (priv->txq[queue_num])->dma_tx_phy, (priv->rxq[queue_num])->dma_rx_phy, priv->dma_tx_size, priv->dma_rx_size); return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map); } /** * sxgbe_init_mtl_engine: MTL init. * @priv: driver private structure * Description: * It inits the MTL invoking the specific SXGBE callback. */ static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv) { int queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num, priv->hw_cap.tx_mtl_qsize); priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num); } } /** * sxgbe_disable_mtl_engine: MTL disable. * @priv: driver private structure * Description: * It disables the MTL queues by invoking the specific SXGBE callback. */ static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv) { int queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num); } /** * sxgbe_tx_timer: mitigation sw timer for tx. * @t: timer pointer * Description: * This is the timer handler to directly invoke the sxgbe_tx_clean. */ static void sxgbe_tx_timer(struct timer_list *t) { struct sxgbe_tx_queue *p = from_timer(p, t, txtimer); sxgbe_tx_queue_clean(p); } /** * sxgbe_tx_init_coalesce: init tx mitigation options. * @priv: driver private structure * Description: * This inits the transmit coalesce parameters: i.e. timer rate, * timer handler and default threshold used for enabling the * interrupt on completion bit. */ static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv) { u8 queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { struct sxgbe_tx_queue *p = priv->txq[queue_num]; p->tx_coal_frames = SXGBE_TX_FRAMES; p->tx_coal_timer = SXGBE_COAL_TX_TIMER; timer_setup(&p->txtimer, sxgbe_tx_timer, 0); p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer); add_timer(&p->txtimer); } } static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv) { u8 queue_num; SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { struct sxgbe_tx_queue *p = priv->txq[queue_num]; del_timer_sync(&p->txtimer); } } /** * sxgbe_open - open entry point of the driver * @dev : pointer to the device structure. * Description: * This function is the open entry point of the driver. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int sxgbe_open(struct net_device *dev) { struct sxgbe_priv_data *priv = netdev_priv(dev); int ret, queue_num; clk_prepare_enable(priv->sxgbe_clk); sxgbe_check_ether_addr(priv); /* Init the phy */ ret = sxgbe_init_phy(dev); if (ret) { netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n", __func__, ret); goto phy_error; } /* Create and initialize the TX/RX descriptors chains. */ priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE); priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE); priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE); priv->tx_tc = TC_DEFAULT; priv->rx_tc = TC_DEFAULT; init_dma_desc_rings(dev); /* DMA initialization and SW reset */ ret = sxgbe_init_dma_engine(priv); if (ret < 0) { netdev_err(dev, "%s: DMA initialization failed\n", __func__); goto init_error; } /* MTL initialization */ sxgbe_init_mtl_engine(priv); /* Copy the MAC addr into the HW */ priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0); /* Initialize the MAC Core */ priv->hw->mac->core_init(priv->ioaddr); SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num); } /* Request the IRQ lines */ ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", __func__, priv->irq, ret); goto init_error; } /* If the LPI irq is different from the mac irq * register a dedicated handler */ if (priv->lpi_irq != dev->irq) { ret = devm_request_irq(priv->device, priv->lpi_irq, sxgbe_common_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", __func__, priv->lpi_irq, ret); goto init_error; } } /* Request TX DMA irq lines */ SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { ret = devm_request_irq(priv->device, (priv->txq[queue_num])->irq_no, sxgbe_tx_interrupt, 0, dev->name, priv->txq[queue_num]); if (unlikely(ret < 0)) { netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", __func__, priv->irq, ret); goto init_error; } } /* Request RX DMA irq lines */ SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { ret = devm_request_irq(priv->device, (priv->rxq[queue_num])->irq_no, sxgbe_rx_interrupt, 0, dev->name, priv->rxq[queue_num]); if (unlikely(ret < 0)) { netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", __func__, priv->irq, ret); goto init_error; } } /* Enable the MAC Rx/Tx */ priv->hw->mac->enable_tx(priv->ioaddr, true); priv->hw->mac->enable_rx(priv->ioaddr, true); /* Set the HW DMA mode and the COE */ sxgbe_mtl_operation_mode(priv); /* Extra statistics */ memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats)); priv->xstats.tx_threshold = priv->tx_tc; priv->xstats.rx_threshold = priv->rx_tc; /* Start the ball rolling... */ netdev_dbg(dev, "DMA RX/TX processes started...\n"); priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES); priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES); if (dev->phydev) phy_start(dev->phydev); /* initialise TX coalesce parameters */ sxgbe_tx_init_coalesce(priv); if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { priv->rx_riwt = SXGBE_MAX_DMA_RIWT; priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT); } priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER; priv->eee_enabled = sxgbe_eee_init(priv); napi_enable(&priv->napi); netif_start_queue(dev); return 0; init_error: free_dma_desc_resources(priv); if (dev->phydev) phy_disconnect(dev->phydev); phy_error: clk_disable_unprepare(priv->sxgbe_clk); return ret; } /** * sxgbe_release - close entry point of the driver * @dev : device pointer. * Description: * This is the stop entry point of the driver. */ static int sxgbe_release(struct net_device *dev) { struct sxgbe_priv_data *priv = netdev_priv(dev); if (priv->eee_enabled) del_timer_sync(&priv->eee_ctrl_timer); /* Stop and disconnect the PHY */ if (dev->phydev) { phy_stop(dev->phydev); phy_disconnect(dev->phydev); } netif_tx_stop_all_queues(dev); napi_disable(&priv->napi); /* delete TX timers */ sxgbe_tx_del_timer(priv); /* Stop TX/RX DMA and clear the descriptors */ priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); /* disable MTL queue */ sxgbe_disable_mtl_engine(priv); /* Release and free the Rx/Tx resources */ free_dma_desc_resources(priv); /* Disable the MAC Rx/Tx */ priv->hw->mac->enable_tx(priv->ioaddr, false); priv->hw->mac->enable_rx(priv->ioaddr, false); clk_disable_unprepare(priv->sxgbe_clk); return 0; } /* Prepare first Tx descriptor for doing TSO operation */ static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv, struct sxgbe_tx_norm_desc *first_desc, struct sk_buff *skb) { unsigned int total_hdr_len, tcp_hdr_len; /* Write first Tx descriptor with appropriate value */ tcp_hdr_len = tcp_hdrlen(skb); total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len; first_desc->tdes01 = dma_map_single(priv->device, skb->data, total_hdr_len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, first_desc->tdes01)) pr_err("%s: TX dma mapping failed!!\n", __func__); first_desc->tdes23.tx_rd_des23.first_desc = 1; priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len, tcp_hdr_len, skb->len - total_hdr_len); } /** * sxgbe_xmit: Tx entry point of the driver * @skb : the socket buffer * @dev : device pointer * Description : this is the tx entry point of the driver. * It programs the chain or the ring and supports oversized frames * and SG feature. */ static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned int entry, frag_num; int cksum_flag = 0; struct netdev_queue *dev_txq; unsigned txq_index = skb_get_queue_mapping(skb); struct sxgbe_priv_data *priv = netdev_priv(dev); unsigned int tx_rsize = priv->dma_tx_size; struct sxgbe_tx_queue *tqueue = priv->txq[txq_index]; struct sxgbe_tx_norm_desc *tx_desc, *first_desc; struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL; int nr_frags = skb_shinfo(skb)->nr_frags; int no_pagedlen = skb_headlen(skb); int is_jumbo = 0; u16 cur_mss = skb_shinfo(skb)->gso_size; u32 ctxt_desc_req = 0; /* get the TX queue handle */ dev_txq = netdev_get_tx_queue(dev, txq_index); if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss)) ctxt_desc_req = 1; if (unlikely(skb_vlan_tag_present(skb) || ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && tqueue->hwts_tx_en))) ctxt_desc_req = 1; if (priv->tx_path_in_lpi_mode) sxgbe_disable_eee_mode(priv); if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) { if (!netif_tx_queue_stopped(dev_txq)) { netif_tx_stop_queue(dev_txq); netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n", __func__, txq_index); } return NETDEV_TX_BUSY; } entry = tqueue->cur_tx % tx_rsize; tx_desc = tqueue->dma_tx + entry; first_desc = tx_desc; if (ctxt_desc_req) ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc; /* save the skb address */ tqueue->tx_skbuff[entry] = skb; if (!is_jumbo) { if (likely(skb_is_gso(skb))) { /* TSO support */ if (unlikely(tqueue->prev_mss != cur_mss)) { priv->hw->desc->tx_ctxt_desc_set_mss( ctxt_desc, cur_mss); priv->hw->desc->tx_ctxt_desc_set_tcmssv( ctxt_desc); priv->hw->desc->tx_ctxt_desc_reset_ostc( ctxt_desc); priv->hw->desc->tx_ctxt_desc_set_ctxt( ctxt_desc); priv->hw->desc->tx_ctxt_desc_set_owner( ctxt_desc); entry = (++tqueue->cur_tx) % tx_rsize; first_desc = tqueue->dma_tx + entry; tqueue->prev_mss = cur_mss; } sxgbe_tso_prepare(priv, first_desc, skb); } else { tx_desc->tdes01 = dma_map_single(priv->device, skb->data, no_pagedlen, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, tx_desc->tdes01)) netdev_err(dev, "%s: TX dma mapping failed!!\n", __func__); priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen, no_pagedlen, cksum_flag); } } for (frag_num = 0; frag_num < nr_frags; frag_num++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; int len = skb_frag_size(frag); entry = (++tqueue->cur_tx) % tx_rsize; tx_desc = tqueue->dma_tx + entry; tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len, DMA_TO_DEVICE); tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01; tqueue->tx_skbuff[entry] = NULL; /* prepare the descriptor */ priv->hw->desc->prepare_tx_desc(tx_desc, 0, len, len, cksum_flag); /* memory barrier to flush descriptor */ wmb(); /* set the owner */ priv->hw->desc->set_tx_owner(tx_desc); } /* close the descriptors */ priv->hw->desc->close_tx_desc(tx_desc); /* memory barrier to flush descriptor */ wmb(); tqueue->tx_count_frames += nr_frags + 1; if (tqueue->tx_count_frames > tqueue->tx_coal_frames) { priv->hw->desc->clear_tx_ic(tx_desc); priv->xstats.tx_reset_ic_bit++; mod_timer(&tqueue->txtimer, SXGBE_COAL_TIMER(tqueue->tx_coal_timer)); } else { tqueue->tx_count_frames = 0; } /* set owner for first desc */ priv->hw->desc->set_tx_owner(first_desc); /* memory barrier to flush descriptor */ wmb(); tqueue->cur_tx++; /* display current ring */ netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n", __func__, tqueue->cur_tx % tx_rsize, tqueue->dirty_tx % tx_rsize, entry, first_desc, nr_frags); if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) { netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n", __func__); netif_tx_stop_queue(dev_txq); } dev->stats.tx_bytes += skb->len; if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && tqueue->hwts_tx_en)) { /* declare that device is doing timestamping */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; priv->hw->desc->tx_enable_tstamp(first_desc); } skb_tx_timestamp(skb); priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index); return NETDEV_TX_OK; } /** * sxgbe_rx_refill: refill used skb preallocated buffers * @priv: driver private structure * Description : this is to reallocate the skb for the reception process * that is based on zero-copy. */ static void sxgbe_rx_refill(struct sxgbe_priv_data *priv) { unsigned int rxsize = priv->dma_rx_size; int bfsize = priv->dma_buf_sz; u8 qnum = priv->cur_rx_qnum; for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0; priv->rxq[qnum]->dirty_rx++) { unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize; struct sxgbe_rx_norm_desc *p; p = priv->rxq[qnum]->dma_rx + entry; if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) { struct sk_buff *skb; skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); if (unlikely(skb == NULL)) break; priv->rxq[qnum]->rx_skbuff[entry] = skb; priv->rxq[qnum]->rx_skbuff_dma[entry] = dma_map_single(priv->device, skb->data, bfsize, DMA_FROM_DEVICE); p->rdes23.rx_rd_des23.buf2_addr = priv->rxq[qnum]->rx_skbuff_dma[entry]; } /* Added memory barrier for RX descriptor modification */ wmb(); priv->hw->desc->set_rx_owner(p); priv->hw->desc->set_rx_int_on_com(p); /* Added memory barrier for RX descriptor modification */ wmb(); } } /** * sxgbe_rx: receive the frames from the remote host * @priv: driver private structure * @limit: napi bugget. * Description : this the function called by the napi poll method. * It gets all the frames inside the ring. */ static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit) { u8 qnum = priv->cur_rx_qnum; unsigned int rxsize = priv->dma_rx_size; unsigned int entry = priv->rxq[qnum]->cur_rx; unsigned int next_entry = 0; unsigned int count = 0; int checksum; int status; while (count < limit) { struct sxgbe_rx_norm_desc *p; struct sk_buff *skb; int frame_len; p = priv->rxq[qnum]->dma_rx + entry; if (priv->hw->desc->get_rx_owner(p)) break; count++; next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize; prefetch(priv->rxq[qnum]->dma_rx + next_entry); /* Read the status of the incoming frame and also get checksum * value based on whether it is enabled in SXGBE hardware or * not. */ status = priv->hw->desc->rx_wbstatus(p, &priv->xstats, &checksum); if (unlikely(status < 0)) { entry = next_entry; continue; } if (unlikely(!priv->rxcsum_insertion)) checksum = CHECKSUM_NONE; skb = priv->rxq[qnum]->rx_skbuff[entry]; if (unlikely(!skb)) netdev_err(priv->dev, "rx descriptor is not consistent\n"); prefetch(skb->data - NET_IP_ALIGN); priv->rxq[qnum]->rx_skbuff[entry] = NULL; frame_len = priv->hw->desc->get_rx_frame_len(p); skb_put(skb, frame_len); skb->ip_summed = checksum; if (checksum == CHECKSUM_NONE) netif_receive_skb(skb); else napi_gro_receive(&priv->napi, skb); entry = next_entry; } sxgbe_rx_refill(priv); return count; } /** * sxgbe_poll - sxgbe poll method (NAPI) * @napi : pointer to the napi structure. * @budget : maximum number of packets that the current CPU can receive from * all interfaces. * Description : * To look at the incoming frames and clear the tx resources. */ static int sxgbe_poll(struct napi_struct *napi, int budget) { struct sxgbe_priv_data *priv = container_of(napi, struct sxgbe_priv_data, napi); int work_done = 0; u8 qnum = priv->cur_rx_qnum; priv->xstats.napi_poll++; /* first, clean the tx queues */ sxgbe_tx_all_clean(priv); work_done = sxgbe_rx(priv, budget); if (work_done < budget) { napi_complete_done(napi, work_done); priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum); } return work_done; } /** * sxgbe_tx_timeout * @dev : Pointer to net device structure * @txqueue: index of the hanging queue * Description: this function is called when a packet transmission fails to * complete within a reasonable time. The driver will mark the error in the * netdev structure and arrange for the device to be reset to a sane state * in order to transmit a new packet. */ static void sxgbe_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct sxgbe_priv_data *priv = netdev_priv(dev); sxgbe_reset_all_tx_queues(priv); } /** * sxgbe_common_interrupt - main ISR * @irq: interrupt number. * @dev_id: to pass the net device pointer. * Description: this is the main driver interrupt service routine. * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI * interrupts. */ static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id) { struct net_device *netdev = (struct net_device *)dev_id; struct sxgbe_priv_data *priv = netdev_priv(netdev); int status; status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats); /* For LPI we need to save the tx status */ if (status & TX_ENTRY_LPI_MODE) { priv->xstats.tx_lpi_entry_n++; priv->tx_path_in_lpi_mode = true; } if (status & TX_EXIT_LPI_MODE) { priv->xstats.tx_lpi_exit_n++; priv->tx_path_in_lpi_mode = false; } if (status & RX_ENTRY_LPI_MODE) priv->xstats.rx_lpi_entry_n++; if (status & RX_EXIT_LPI_MODE) priv->xstats.rx_lpi_exit_n++; return IRQ_HANDLED; } /** * sxgbe_tx_interrupt - TX DMA ISR * @irq: interrupt number. * @dev_id: to pass the net device pointer. * Description: this is the tx dma interrupt service routine. */ static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id) { int status; struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id; struct sxgbe_priv_data *priv = txq->priv_ptr; /* get the channel status */ status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no, &priv->xstats); /* check for normal path */ if (likely((status & handle_tx))) napi_schedule(&priv->napi); /* check for unrecoverable error */ if (unlikely((status & tx_hard_error))) sxgbe_restart_tx_queue(priv, txq->queue_no); /* check for TC configuration change */ if (unlikely((status & tx_bump_tc) && (priv->tx_tc != SXGBE_MTL_SFMODE) && (priv->tx_tc < 512))) { /* step of TX TC is 32 till 128, otherwise 64 */ priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64; priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, txq->queue_no, priv->tx_tc); priv->xstats.tx_threshold = priv->tx_tc; } return IRQ_HANDLED; } /** * sxgbe_rx_interrupt - RX DMA ISR * @irq: interrupt number. * @dev_id: to pass the net device pointer. * Description: this is the rx dma interrupt service routine. */ static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id) { int status; struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id; struct sxgbe_priv_data *priv = rxq->priv_ptr; /* get the channel status */ status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no, &priv->xstats); if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) { priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no); __napi_schedule(&priv->napi); } /* check for TC configuration change */ if (unlikely((status & rx_bump_tc) && (priv->rx_tc != SXGBE_MTL_SFMODE) && (priv->rx_tc < 128))) { /* step of TC is 32 */ priv->rx_tc += 32; priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, rxq->queue_no, priv->rx_tc); priv->xstats.rx_threshold = priv->rx_tc; } return IRQ_HANDLED; } static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi) { u64 val = readl(ioaddr + reg_lo); val |= ((u64)readl(ioaddr + reg_hi)) << 32; return val; } /* sxgbe_get_stats64 - entry point to see statistical information of device * @dev : device pointer. * @stats : pointer to hold all the statistical information of device. * Description: * This function is a driver entry point whenever ifconfig command gets * executed to see device statistics. Statistics are number of * bytes sent or received, errors occurred etc. */ static void sxgbe_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct sxgbe_priv_data *priv = netdev_priv(dev); void __iomem *ioaddr = priv->ioaddr; u64 count; spin_lock(&priv->stats_lock); /* Freeze the counter registers before reading value otherwise it may * get updated by hardware while we are reading them */ writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG); stats->rx_bytes = sxgbe_get_stat64(ioaddr, SXGBE_MMC_RXOCTETLO_GCNT_REG, SXGBE_MMC_RXOCTETHI_GCNT_REG); stats->rx_packets = sxgbe_get_stat64(ioaddr, SXGBE_MMC_RXFRAMELO_GBCNT_REG, SXGBE_MMC_RXFRAMEHI_GBCNT_REG); stats->multicast = sxgbe_get_stat64(ioaddr, SXGBE_MMC_RXMULTILO_GCNT_REG, SXGBE_MMC_RXMULTIHI_GCNT_REG); stats->rx_crc_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_RXCRCERRLO_REG, SXGBE_MMC_RXCRCERRHI_REG); stats->rx_length_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_RXLENERRLO_REG, SXGBE_MMC_RXLENERRHI_REG); stats->rx_missed_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG, SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG); stats->tx_bytes = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXOCTETLO_GCNT_REG, SXGBE_MMC_TXOCTETHI_GCNT_REG); count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG, SXGBE_MMC_TXFRAMEHI_GBCNT_REG); stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG, SXGBE_MMC_TXFRAMEHI_GCNT_REG); stats->tx_errors = count - stats->tx_errors; stats->tx_packets = count; stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG, SXGBE_MMC_TXUFLWHI_GBCNT_REG); writel(0, ioaddr + SXGBE_MMC_CTL_REG); spin_unlock(&priv->stats_lock); } /* sxgbe_set_features - entry point to set offload features of the device. * @dev : device pointer. * @features : features which are required to be set. * Description: * This function is a driver entry point and called by Linux kernel whenever * any device features are set or reset by user. * Return value: * This function returns 0 after setting or resetting device features. */ static int sxgbe_set_features(struct net_device *dev, netdev_features_t features) { struct sxgbe_priv_data *priv = netdev_priv(dev); netdev_features_t changed = dev->features ^ features; if (changed & NETIF_F_RXCSUM) { if (features & NETIF_F_RXCSUM) { priv->hw->mac->enable_rx_csum(priv->ioaddr); priv->rxcsum_insertion = true; } else { priv->hw->mac->disable_rx_csum(priv->ioaddr); priv->rxcsum_insertion = false; } } return 0; } /* sxgbe_change_mtu - entry point to change MTU size for the device. * @dev : device pointer. * @new_mtu : the new MTU size for the device. * Description: the Maximum Transfer Unit (MTU) is used by the network layer * to drive packet transmission. Ethernet has an MTU of 1500 octets * (ETH_DATA_LEN). This value can be changed with ifconfig. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int sxgbe_change_mtu(struct net_device *dev, int new_mtu) { dev->mtu = new_mtu; if (!netif_running(dev)) return 0; /* Recevice ring buffer size is needed to be set based on MTU. If MTU is * changed then reinitilisation of the receive ring buffers need to be * done. Hence bring interface down and bring interface back up */ sxgbe_release(dev); return sxgbe_open(dev); } static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr, unsigned int reg_n) { unsigned long data; data = (addr[5] << 8) | addr[4]; /* For MAC Addr registers se have to set the Address Enable (AE) * bit that has no effect on the High Reg 0 where the bit 31 (MO) * is RO. */ writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n)); data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n)); } /** * sxgbe_set_rx_mode - entry point for setting different receive mode of * a device. unicast, multicast addressing * @dev : pointer to the device structure * Description: * This function is a driver entry point which gets called by the kernel * whenever different receive mode like unicast, multicast and promiscuous * must be enabled/disabled. * Return value: * void. */ static void sxgbe_set_rx_mode(struct net_device *dev) { struct sxgbe_priv_data *priv = netdev_priv(dev); void __iomem *ioaddr = (void __iomem *)priv->ioaddr; unsigned int value = 0; u32 mc_filter[2]; struct netdev_hw_addr *ha; int reg = 1; netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n", __func__, netdev_mc_count(dev), netdev_uc_count(dev)); if (dev->flags & IFF_PROMISC) { value = SXGBE_FRAME_FILTER_PR; } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) || (dev->flags & IFF_ALLMULTI)) { value = SXGBE_FRAME_FILTER_PM; /* pass all multi */ writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH); writel(0xffffffff, ioaddr + SXGBE_HASH_LOW); } else if (!netdev_mc_empty(dev)) { /* Hash filter for multicast */ value = SXGBE_FRAME_FILTER_HMC; memset(mc_filter, 0, sizeof(mc_filter)); netdev_for_each_mc_addr(ha, dev) { /* The upper 6 bits of the calculated CRC are used to * index the contens of the hash table */ int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26; /* The most significant bit determines the register to * use (H/L) while the other 5 bits determine the bit * within the register. */ mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); } writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW); writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH); } /* Handle multiple unicast addresses (perfect filtering) */ if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES) /* Switch to promiscuous mode if more than 16 addrs * are required */ value |= SXGBE_FRAME_FILTER_PR; else { netdev_for_each_uc_addr(ha, dev) { sxgbe_set_umac_addr(ioaddr, ha->addr, reg); reg++; } } #ifdef FRAME_FILTER_DEBUG /* Enable Receive all mode (to debug filtering_fail errors) */ value |= SXGBE_FRAME_FILTER_RA; #endif writel(value, ioaddr + SXGBE_FRAME_FILTER); netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n", readl(ioaddr + SXGBE_FRAME_FILTER), readl(ioaddr + SXGBE_HASH_HIGH), readl(ioaddr + SXGBE_HASH_LOW)); } #ifdef CONFIG_NET_POLL_CONTROLLER /** * sxgbe_poll_controller - entry point for polling receive by device * @dev : pointer to the device structure * Description: * This function is used by NETCONSOLE and other diagnostic tools * to allow network I/O with interrupts disabled. * Return value: * Void. */ static void sxgbe_poll_controller(struct net_device *dev) { struct sxgbe_priv_data *priv = netdev_priv(dev); disable_irq(priv->irq); sxgbe_rx_interrupt(priv->irq, dev); enable_irq(priv->irq); } #endif /* sxgbe_ioctl - Entry point for the Ioctl * @dev: Device pointer. * @rq: An IOCTL specefic structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * @cmd: IOCTL command * Description: * Currently it supports the phy_mii_ioctl(...) and HW time stamping. */ static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { int ret = -EOPNOTSUPP; if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: ret = phy_do_ioctl(dev, rq, cmd); break; default: break; } return ret; } static const struct net_device_ops sxgbe_netdev_ops = { .ndo_open = sxgbe_open, .ndo_start_xmit = sxgbe_xmit, .ndo_stop = sxgbe_release, .ndo_get_stats64 = sxgbe_get_stats64, .ndo_change_mtu = sxgbe_change_mtu, .ndo_set_features = sxgbe_set_features, .ndo_set_rx_mode = sxgbe_set_rx_mode, .ndo_tx_timeout = sxgbe_tx_timeout, .ndo_eth_ioctl = sxgbe_ioctl, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = sxgbe_poll_controller, #endif .ndo_set_mac_address = eth_mac_addr, }; /* Get the hardware ops */ static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr) { ops_ptr->mac = sxgbe_get_core_ops(); ops_ptr->desc = sxgbe_get_desc_ops(); ops_ptr->dma = sxgbe_get_dma_ops(); ops_ptr->mtl = sxgbe_get_mtl_ops(); /* set the MDIO communication Address/Data regisers */ ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG; ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG; /* Assigning the default link settings * no SXGBE defined default values to be set in registers, * so assigning as 0 for port and duplex */ ops_ptr->link.port = 0; ops_ptr->link.duplex = 0; ops_ptr->link.speed = SXGBE_SPEED_10G; } /** * sxgbe_hw_init - Init the GMAC device * @priv: driver private structure * Description: this function checks the HW capability * (if supported) and sets the driver's features. */ static int sxgbe_hw_init(struct sxgbe_priv_data * const priv) { u32 ctrl_ids; priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL); if(!priv->hw) return -ENOMEM; /* get the hardware ops */ sxgbe_get_ops(priv->hw); /* get the controller id */ ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr); priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16; priv->hw->ctrl_id = (ctrl_ids & 0x000000ff); pr_info("user ID: 0x%x, Controller ID: 0x%x\n", priv->hw->ctrl_uid, priv->hw->ctrl_id); /* get the H/W features */ if (!sxgbe_get_hw_features(priv)) pr_info("Hardware features not found\n"); if (priv->hw_cap.tx_csum_offload) pr_info("TX Checksum offload supported\n"); if (priv->hw_cap.rx_csum_offload) pr_info("RX Checksum offload supported\n"); return 0; } static int sxgbe_sw_reset(void __iomem *addr) { int retry_count = 10; writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG); while (retry_count--) { if (!(readl(addr + SXGBE_DMA_MODE_REG) & SXGBE_DMA_SOFT_RESET)) break; mdelay(10); } if (retry_count < 0) return -EBUSY; return 0; } /** * sxgbe_drv_probe * @device: device pointer * @plat_dat: platform data pointer * @addr: iobase memory address * Description: this is the main probe function used to * call the alloc_etherdev, allocate the priv structure. */ struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device, struct sxgbe_plat_data *plat_dat, void __iomem *addr) { struct sxgbe_priv_data *priv; struct net_device *ndev; int ret; u8 queue_num; ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data), SXGBE_TX_QUEUES, SXGBE_RX_QUEUES); if (!ndev) return NULL; SET_NETDEV_DEV(ndev, device); priv = netdev_priv(ndev); priv->device = device; priv->dev = ndev; sxgbe_set_ethtool_ops(ndev); priv->plat = plat_dat; priv->ioaddr = addr; ret = sxgbe_sw_reset(priv->ioaddr); if (ret) goto error_free_netdev; /* Verify driver arguments */ sxgbe_verify_args(); /* Init MAC and get the capabilities */ ret = sxgbe_hw_init(priv); if (ret) goto error_free_netdev; /* allocate memory resources for Descriptor rings */ ret = txring_mem_alloc(priv); if (ret) goto error_free_hw; ret = rxring_mem_alloc(priv); if (ret) goto error_free_hw; ndev->netdev_ops = &sxgbe_netdev_ops; ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GRO; ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO); /* assign filtering support */ ndev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 68 - 9000 */ ndev->min_mtu = MIN_MTU; ndev->max_mtu = MAX_MTU; priv->msg_enable = netif_msg_init(debug, default_msg_level); /* Enable TCP segmentation offload for all DMA channels */ if (priv->hw_cap.tcpseg_offload) { SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { priv->hw->dma->enable_tso(priv->ioaddr, queue_num); } } /* Enable Rx checksum offload */ if (priv->hw_cap.rx_csum_offload) { priv->hw->mac->enable_rx_csum(priv->ioaddr); priv->rxcsum_insertion = true; } /* Initialise pause frame settings */ priv->rx_pause = 1; priv->tx_pause = 1; /* Rx Watchdog is available, enable depend on platform data */ if (!priv->plat->riwt_off) { priv->use_riwt = 1; pr_info("Enable RX Mitigation via HW Watchdog Timer\n"); } netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64); spin_lock_init(&priv->stats_lock); priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME); if (IS_ERR(priv->sxgbe_clk)) { netdev_warn(ndev, "%s: warning: cannot get CSR clock\n", __func__); goto error_napi_del; } /* If a specific clk_csr value is passed from the platform * this means that the CSR Clock Range selection cannot be * changed at run-time and it is fixed. Viceversa the driver'll try to * set the MDC clock dynamically according to the csr actual * clock input. */ if (!priv->plat->clk_csr) sxgbe_clk_csr_set(priv); else priv->clk_csr = priv->plat->clk_csr; /* MDIO bus Registration */ ret = sxgbe_mdio_register(ndev); if (ret < 0) { netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n", __func__, priv->plat->bus_id); goto error_clk_put; } ret = register_netdev(ndev); if (ret) { pr_err("%s: ERROR %i registering the device\n", __func__, ret); goto error_mdio_unregister; } sxgbe_check_ether_addr(priv); return priv; error_mdio_unregister: sxgbe_mdio_unregister(ndev); error_clk_put: clk_put(priv->sxgbe_clk); error_napi_del: netif_napi_del(&priv->napi); error_free_hw: kfree(priv->hw); error_free_netdev: free_netdev(ndev); return NULL; } /** * sxgbe_drv_remove * @ndev: net device pointer * Description: this function resets the TX/RX processes, disables the MAC RX/TX * changes the link status, releases the DMA descriptor rings. */ int sxgbe_drv_remove(struct net_device *ndev) { struct sxgbe_priv_data *priv = netdev_priv(ndev); u8 queue_num; netdev_info(ndev, "%s: removing driver\n", __func__); SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num); } priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); priv->hw->mac->enable_tx(priv->ioaddr, false); priv->hw->mac->enable_rx(priv->ioaddr, false); unregister_netdev(ndev); sxgbe_mdio_unregister(ndev); clk_put(priv->sxgbe_clk); netif_napi_del(&priv->napi); kfree(priv->hw); free_netdev(ndev); return 0; } #ifdef CONFIG_PM int sxgbe_suspend(struct net_device *ndev) { return 0; } int sxgbe_resume(struct net_device *ndev) { return 0; } int sxgbe_freeze(struct net_device *ndev) { return -ENOSYS; } int sxgbe_restore(struct net_device *ndev) { return -ENOSYS; } #endif /* CONFIG_PM */ /* Driver is configured as Platform driver */ static int __init sxgbe_init(void) { int ret; ret = sxgbe_register_platform(); if (ret) goto err; return 0; err: pr_err("driver registration failed\n"); return ret; } static void __exit sxgbe_exit(void) { sxgbe_unregister_platform(); } module_init(sxgbe_init); module_exit(sxgbe_exit); #ifndef MODULE static int __init sxgbe_cmdline_opt(char *str) { char *opt; if (!str || !*str) return 1; while ((opt = strsep(&str, ",")) != NULL) { if (!strncmp(opt, "eee_timer:", 10)) { if (kstrtoint(opt + 10, 0, &eee_timer)) goto err; } } return 1; err: pr_err("%s: ERROR broken module parameter conversion\n", __func__); return 1; } __setup("sxgbeeth=", sxgbe_cmdline_opt); #endif /* MODULE */ MODULE_DESCRIPTION("Samsung 10G/2.5G/1G Ethernet PLATFORM driver"); MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value"); MODULE_AUTHOR("Siva Reddy Kallam "); MODULE_AUTHOR("ByungHo An "); MODULE_AUTHOR("Girish K S "); MODULE_AUTHOR("Vipul Pandya "); MODULE_LICENSE("GPL");