/* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qed.h" #include "qed_sriov.h" #include "qed_sp.h" #include "qed_dev_api.h" #include "qed_ll2.h" #include "qed_fcoe.h" #include "qed_iscsi.h" #include "qed_mcp.h" #include "qed_reg_addr.h" #include "qed_hw.h" #include "qed_selftest.h" #include "qed_debug.h" #define QED_ROCE_QPS (8192) #define QED_ROCE_DPIS (8) #define QED_RDMA_SRQS QED_ROCE_QPS static char version[] = "QLogic FastLinQ 4xxxx Core Module qed " DRV_MODULE_VERSION "\n"; MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Core Module"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); #define FW_FILE_VERSION \ __stringify(FW_MAJOR_VERSION) "." \ __stringify(FW_MINOR_VERSION) "." \ __stringify(FW_REVISION_VERSION) "." \ __stringify(FW_ENGINEERING_VERSION) #define QED_FW_FILE_NAME \ "qed/qed_init_values_zipped-" FW_FILE_VERSION ".bin" MODULE_FIRMWARE(QED_FW_FILE_NAME); static int __init qed_init(void) { pr_info("%s", version); return 0; } static void __exit qed_cleanup(void) { pr_notice("qed_cleanup called\n"); } module_init(qed_init); module_exit(qed_cleanup); /* Check if the DMA controller on the machine can properly handle the DMA * addressing required by the device. */ static int qed_set_coherency_mask(struct qed_dev *cdev) { struct device *dev = &cdev->pdev->dev; if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { DP_NOTICE(cdev, "Can't request 64-bit consistent allocations\n"); return -EIO; } } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { DP_NOTICE(cdev, "Can't request 64b/32b DMA addresses\n"); return -EIO; } return 0; } static void qed_free_pci(struct qed_dev *cdev) { struct pci_dev *pdev = cdev->pdev; if (cdev->doorbells && cdev->db_size) iounmap(cdev->doorbells); if (cdev->regview) iounmap(cdev->regview); if (atomic_read(&pdev->enable_cnt) == 1) pci_release_regions(pdev); pci_disable_device(pdev); } #define PCI_REVISION_ID_ERROR_VAL 0xff /* Performs PCI initializations as well as initializing PCI-related parameters * in the device structrue. Returns 0 in case of success. */ static int qed_init_pci(struct qed_dev *cdev, struct pci_dev *pdev) { u8 rev_id; int rc; cdev->pdev = pdev; rc = pci_enable_device(pdev); if (rc) { DP_NOTICE(cdev, "Cannot enable PCI device\n"); goto err0; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { DP_NOTICE(cdev, "No memory region found in bar #0\n"); rc = -EIO; goto err1; } if (IS_PF(cdev) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { DP_NOTICE(cdev, "No memory region found in bar #2\n"); rc = -EIO; goto err1; } if (atomic_read(&pdev->enable_cnt) == 1) { rc = pci_request_regions(pdev, "qed"); if (rc) { DP_NOTICE(cdev, "Failed to request PCI memory resources\n"); goto err1; } pci_set_master(pdev); pci_save_state(pdev); } pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); if (rev_id == PCI_REVISION_ID_ERROR_VAL) { DP_NOTICE(cdev, "Detected PCI device error [rev_id 0x%x]. Probably due to prior indication. Aborting.\n", rev_id); rc = -ENODEV; goto err2; } if (!pci_is_pcie(pdev)) { DP_NOTICE(cdev, "The bus is not PCI Express\n"); rc = -EIO; goto err2; } cdev->pci_params.pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); if (IS_PF(cdev) && !cdev->pci_params.pm_cap) DP_NOTICE(cdev, "Cannot find power management capability\n"); rc = qed_set_coherency_mask(cdev); if (rc) goto err2; cdev->pci_params.mem_start = pci_resource_start(pdev, 0); cdev->pci_params.mem_end = pci_resource_end(pdev, 0); cdev->pci_params.irq = pdev->irq; cdev->regview = pci_ioremap_bar(pdev, 0); if (!cdev->regview) { DP_NOTICE(cdev, "Cannot map register space, aborting\n"); rc = -ENOMEM; goto err2; } cdev->db_phys_addr = pci_resource_start(cdev->pdev, 2); cdev->db_size = pci_resource_len(cdev->pdev, 2); if (!cdev->db_size) { if (IS_PF(cdev)) { DP_NOTICE(cdev, "No Doorbell bar available\n"); return -EINVAL; } else { return 0; } } cdev->doorbells = ioremap_wc(cdev->db_phys_addr, cdev->db_size); if (!cdev->doorbells) { DP_NOTICE(cdev, "Cannot map doorbell space\n"); return -ENOMEM; } return 0; err2: pci_release_regions(pdev); err1: pci_disable_device(pdev); err0: return rc; } int qed_fill_dev_info(struct qed_dev *cdev, struct qed_dev_info *dev_info) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_hw_info *hw_info = &p_hwfn->hw_info; struct qed_tunnel_info *tun = &cdev->tunnel; struct qed_ptt *ptt; memset(dev_info, 0, sizeof(struct qed_dev_info)); if (tun->vxlan.tun_cls == QED_TUNN_CLSS_MAC_VLAN && tun->vxlan.b_mode_enabled) dev_info->vxlan_enable = true; if (tun->l2_gre.b_mode_enabled && tun->ip_gre.b_mode_enabled && tun->l2_gre.tun_cls == QED_TUNN_CLSS_MAC_VLAN && tun->ip_gre.tun_cls == QED_TUNN_CLSS_MAC_VLAN) dev_info->gre_enable = true; if (tun->l2_geneve.b_mode_enabled && tun->ip_geneve.b_mode_enabled && tun->l2_geneve.tun_cls == QED_TUNN_CLSS_MAC_VLAN && tun->ip_geneve.tun_cls == QED_TUNN_CLSS_MAC_VLAN) dev_info->geneve_enable = true; dev_info->num_hwfns = cdev->num_hwfns; dev_info->pci_mem_start = cdev->pci_params.mem_start; dev_info->pci_mem_end = cdev->pci_params.mem_end; dev_info->pci_irq = cdev->pci_params.irq; dev_info->rdma_supported = QED_IS_RDMA_PERSONALITY(p_hwfn); dev_info->dev_type = cdev->type; ether_addr_copy(dev_info->hw_mac, hw_info->hw_mac_addr); if (IS_PF(cdev)) { dev_info->fw_major = FW_MAJOR_VERSION; dev_info->fw_minor = FW_MINOR_VERSION; dev_info->fw_rev = FW_REVISION_VERSION; dev_info->fw_eng = FW_ENGINEERING_VERSION; dev_info->b_inter_pf_switch = test_bit(QED_MF_INTER_PF_SWITCH, &cdev->mf_bits); dev_info->tx_switching = true; if (hw_info->b_wol_support == QED_WOL_SUPPORT_PME) dev_info->wol_support = true; dev_info->abs_pf_id = QED_LEADING_HWFN(cdev)->abs_pf_id; } else { qed_vf_get_fw_version(&cdev->hwfns[0], &dev_info->fw_major, &dev_info->fw_minor, &dev_info->fw_rev, &dev_info->fw_eng); } if (IS_PF(cdev)) { ptt = qed_ptt_acquire(QED_LEADING_HWFN(cdev)); if (ptt) { qed_mcp_get_mfw_ver(QED_LEADING_HWFN(cdev), ptt, &dev_info->mfw_rev, NULL); qed_mcp_get_mbi_ver(QED_LEADING_HWFN(cdev), ptt, &dev_info->mbi_version); qed_mcp_get_flash_size(QED_LEADING_HWFN(cdev), ptt, &dev_info->flash_size); qed_ptt_release(QED_LEADING_HWFN(cdev), ptt); } } else { qed_mcp_get_mfw_ver(QED_LEADING_HWFN(cdev), NULL, &dev_info->mfw_rev, NULL); } dev_info->mtu = hw_info->mtu; return 0; } static void qed_free_cdev(struct qed_dev *cdev) { kfree((void *)cdev); } static struct qed_dev *qed_alloc_cdev(struct pci_dev *pdev) { struct qed_dev *cdev; cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); if (!cdev) return cdev; qed_init_struct(cdev); return cdev; } /* Sets the requested power state */ static int qed_set_power_state(struct qed_dev *cdev, pci_power_t state) { if (!cdev) return -ENODEV; DP_VERBOSE(cdev, NETIF_MSG_DRV, "Omitting Power state change\n"); return 0; } /* probing */ static struct qed_dev *qed_probe(struct pci_dev *pdev, struct qed_probe_params *params) { struct qed_dev *cdev; int rc; cdev = qed_alloc_cdev(pdev); if (!cdev) goto err0; cdev->drv_type = DRV_ID_DRV_TYPE_LINUX; cdev->protocol = params->protocol; if (params->is_vf) cdev->b_is_vf = true; qed_init_dp(cdev, params->dp_module, params->dp_level); rc = qed_init_pci(cdev, pdev); if (rc) { DP_ERR(cdev, "init pci failed\n"); goto err1; } DP_INFO(cdev, "PCI init completed successfully\n"); rc = qed_hw_prepare(cdev, QED_PCI_DEFAULT); if (rc) { DP_ERR(cdev, "hw prepare failed\n"); goto err2; } DP_INFO(cdev, "qed_probe completed successfully\n"); return cdev; err2: qed_free_pci(cdev); err1: qed_free_cdev(cdev); err0: return NULL; } static void qed_remove(struct qed_dev *cdev) { if (!cdev) return; qed_hw_remove(cdev); qed_free_pci(cdev); qed_set_power_state(cdev, PCI_D3hot); qed_free_cdev(cdev); } static void qed_disable_msix(struct qed_dev *cdev) { if (cdev->int_params.out.int_mode == QED_INT_MODE_MSIX) { pci_disable_msix(cdev->pdev); kfree(cdev->int_params.msix_table); } else if (cdev->int_params.out.int_mode == QED_INT_MODE_MSI) { pci_disable_msi(cdev->pdev); } memset(&cdev->int_params.out, 0, sizeof(struct qed_int_param)); } static int qed_enable_msix(struct qed_dev *cdev, struct qed_int_params *int_params) { int i, rc, cnt; cnt = int_params->in.num_vectors; for (i = 0; i < cnt; i++) int_params->msix_table[i].entry = i; rc = pci_enable_msix_range(cdev->pdev, int_params->msix_table, int_params->in.min_msix_cnt, cnt); if (rc < cnt && rc >= int_params->in.min_msix_cnt && (rc % cdev->num_hwfns)) { pci_disable_msix(cdev->pdev); /* If fastpath is initialized, we need at least one interrupt * per hwfn [and the slow path interrupts]. New requested number * should be a multiple of the number of hwfns. */ cnt = (rc / cdev->num_hwfns) * cdev->num_hwfns; DP_NOTICE(cdev, "Trying to enable MSI-X with less vectors (%d out of %d)\n", cnt, int_params->in.num_vectors); rc = pci_enable_msix_exact(cdev->pdev, int_params->msix_table, cnt); if (!rc) rc = cnt; } if (rc > 0) { /* MSI-x configuration was achieved */ int_params->out.int_mode = QED_INT_MODE_MSIX; int_params->out.num_vectors = rc; rc = 0; } else { DP_NOTICE(cdev, "Failed to enable MSI-X [Requested %d vectors][rc %d]\n", cnt, rc); } return rc; } /* This function outputs the int mode and the number of enabled msix vector */ static int qed_set_int_mode(struct qed_dev *cdev, bool force_mode) { struct qed_int_params *int_params = &cdev->int_params; struct msix_entry *tbl; int rc = 0, cnt; switch (int_params->in.int_mode) { case QED_INT_MODE_MSIX: /* Allocate MSIX table */ cnt = int_params->in.num_vectors; int_params->msix_table = kcalloc(cnt, sizeof(*tbl), GFP_KERNEL); if (!int_params->msix_table) { rc = -ENOMEM; goto out; } /* Enable MSIX */ rc = qed_enable_msix(cdev, int_params); if (!rc) goto out; DP_NOTICE(cdev, "Failed to enable MSI-X\n"); kfree(int_params->msix_table); if (force_mode) goto out; /* Fallthrough */ case QED_INT_MODE_MSI: if (cdev->num_hwfns == 1) { rc = pci_enable_msi(cdev->pdev); if (!rc) { int_params->out.int_mode = QED_INT_MODE_MSI; goto out; } DP_NOTICE(cdev, "Failed to enable MSI\n"); if (force_mode) goto out; } /* Fallthrough */ case QED_INT_MODE_INTA: int_params->out.int_mode = QED_INT_MODE_INTA; rc = 0; goto out; default: DP_NOTICE(cdev, "Unknown int_mode value %d\n", int_params->in.int_mode); rc = -EINVAL; } out: if (!rc) DP_INFO(cdev, "Using %s interrupts\n", int_params->out.int_mode == QED_INT_MODE_INTA ? "INTa" : int_params->out.int_mode == QED_INT_MODE_MSI ? "MSI" : "MSIX"); cdev->int_coalescing_mode = QED_COAL_MODE_ENABLE; return rc; } static void qed_simd_handler_config(struct qed_dev *cdev, void *token, int index, void(*handler)(void *)) { struct qed_hwfn *hwfn = &cdev->hwfns[index % cdev->num_hwfns]; int relative_idx = index / cdev->num_hwfns; hwfn->simd_proto_handler[relative_idx].func = handler; hwfn->simd_proto_handler[relative_idx].token = token; } static void qed_simd_handler_clean(struct qed_dev *cdev, int index) { struct qed_hwfn *hwfn = &cdev->hwfns[index % cdev->num_hwfns]; int relative_idx = index / cdev->num_hwfns; memset(&hwfn->simd_proto_handler[relative_idx], 0, sizeof(struct qed_simd_fp_handler)); } static irqreturn_t qed_msix_sp_int(int irq, void *tasklet) { tasklet_schedule((struct tasklet_struct *)tasklet); return IRQ_HANDLED; } static irqreturn_t qed_single_int(int irq, void *dev_instance) { struct qed_dev *cdev = (struct qed_dev *)dev_instance; struct qed_hwfn *hwfn; irqreturn_t rc = IRQ_NONE; u64 status; int i, j; for (i = 0; i < cdev->num_hwfns; i++) { status = qed_int_igu_read_sisr_reg(&cdev->hwfns[i]); if (!status) continue; hwfn = &cdev->hwfns[i]; /* Slowpath interrupt */ if (unlikely(status & 0x1)) { tasklet_schedule(hwfn->sp_dpc); status &= ~0x1; rc = IRQ_HANDLED; } /* Fastpath interrupts */ for (j = 0; j < 64; j++) { if ((0x2ULL << j) & status) { struct qed_simd_fp_handler *p_handler = &hwfn->simd_proto_handler[j]; if (p_handler->func) p_handler->func(p_handler->token); else DP_NOTICE(hwfn, "Not calling fastpath handler as it is NULL [handler #%d, status 0x%llx]\n", j, status); status &= ~(0x2ULL << j); rc = IRQ_HANDLED; } } if (unlikely(status)) DP_VERBOSE(hwfn, NETIF_MSG_INTR, "got an unknown interrupt status 0x%llx\n", status); } return rc; } int qed_slowpath_irq_req(struct qed_hwfn *hwfn) { struct qed_dev *cdev = hwfn->cdev; u32 int_mode; int rc = 0; u8 id; int_mode = cdev->int_params.out.int_mode; if (int_mode == QED_INT_MODE_MSIX) { id = hwfn->my_id; snprintf(hwfn->name, NAME_SIZE, "sp-%d-%02x:%02x.%02x", id, cdev->pdev->bus->number, PCI_SLOT(cdev->pdev->devfn), hwfn->abs_pf_id); rc = request_irq(cdev->int_params.msix_table[id].vector, qed_msix_sp_int, 0, hwfn->name, hwfn->sp_dpc); } else { unsigned long flags = 0; snprintf(cdev->name, NAME_SIZE, "%02x:%02x.%02x", cdev->pdev->bus->number, PCI_SLOT(cdev->pdev->devfn), PCI_FUNC(cdev->pdev->devfn)); if (cdev->int_params.out.int_mode == QED_INT_MODE_INTA) flags |= IRQF_SHARED; rc = request_irq(cdev->pdev->irq, qed_single_int, flags, cdev->name, cdev); } if (rc) DP_NOTICE(cdev, "request_irq failed, rc = %d\n", rc); else DP_VERBOSE(hwfn, (NETIF_MSG_INTR | QED_MSG_SP), "Requested slowpath %s\n", (int_mode == QED_INT_MODE_MSIX) ? "MSI-X" : "IRQ"); return rc; } static void qed_slowpath_tasklet_flush(struct qed_hwfn *p_hwfn) { /* Calling the disable function will make sure that any * currently-running function is completed. The following call to the * enable function makes this sequence a flush-like operation. */ if (p_hwfn->b_sp_dpc_enabled) { tasklet_disable(p_hwfn->sp_dpc); tasklet_enable(p_hwfn->sp_dpc); } } void qed_slowpath_irq_sync(struct qed_hwfn *p_hwfn) { struct qed_dev *cdev = p_hwfn->cdev; u8 id = p_hwfn->my_id; u32 int_mode; int_mode = cdev->int_params.out.int_mode; if (int_mode == QED_INT_MODE_MSIX) synchronize_irq(cdev->int_params.msix_table[id].vector); else synchronize_irq(cdev->pdev->irq); qed_slowpath_tasklet_flush(p_hwfn); } static void qed_slowpath_irq_free(struct qed_dev *cdev) { int i; if (cdev->int_params.out.int_mode == QED_INT_MODE_MSIX) { for_each_hwfn(cdev, i) { if (!cdev->hwfns[i].b_int_requested) break; synchronize_irq(cdev->int_params.msix_table[i].vector); free_irq(cdev->int_params.msix_table[i].vector, cdev->hwfns[i].sp_dpc); } } else { if (QED_LEADING_HWFN(cdev)->b_int_requested) free_irq(cdev->pdev->irq, cdev); } qed_int_disable_post_isr_release(cdev); } static int qed_nic_stop(struct qed_dev *cdev) { int i, rc; rc = qed_hw_stop(cdev); for (i = 0; i < cdev->num_hwfns; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (p_hwfn->b_sp_dpc_enabled) { tasklet_disable(p_hwfn->sp_dpc); p_hwfn->b_sp_dpc_enabled = false; DP_VERBOSE(cdev, NETIF_MSG_IFDOWN, "Disabled sp tasklet [hwfn %d] at %p\n", i, p_hwfn->sp_dpc); } } qed_dbg_pf_exit(cdev); return rc; } static int qed_nic_setup(struct qed_dev *cdev) { int rc, i; /* Determine if interface is going to require LL2 */ if (QED_LEADING_HWFN(cdev)->hw_info.personality != QED_PCI_ETH) { for (i = 0; i < cdev->num_hwfns; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->using_ll2 = true; } } rc = qed_resc_alloc(cdev); if (rc) return rc; DP_INFO(cdev, "Allocated qed resources\n"); qed_resc_setup(cdev); return rc; } static int qed_set_int_fp(struct qed_dev *cdev, u16 cnt) { int limit = 0; /* Mark the fastpath as free/used */ cdev->int_params.fp_initialized = cnt ? true : false; if (cdev->int_params.out.int_mode != QED_INT_MODE_MSIX) limit = cdev->num_hwfns * 63; else if (cdev->int_params.fp_msix_cnt) limit = cdev->int_params.fp_msix_cnt; if (!limit) return -ENOMEM; return min_t(int, cnt, limit); } static int qed_get_int_fp(struct qed_dev *cdev, struct qed_int_info *info) { memset(info, 0, sizeof(struct qed_int_info)); if (!cdev->int_params.fp_initialized) { DP_INFO(cdev, "Protocol driver requested interrupt information, but its support is not yet configured\n"); return -EINVAL; } /* Need to expose only MSI-X information; Single IRQ is handled solely * by qed. */ if (cdev->int_params.out.int_mode == QED_INT_MODE_MSIX) { int msix_base = cdev->int_params.fp_msix_base; info->msix_cnt = cdev->int_params.fp_msix_cnt; info->msix = &cdev->int_params.msix_table[msix_base]; } return 0; } static int qed_slowpath_setup_int(struct qed_dev *cdev, enum qed_int_mode int_mode) { struct qed_sb_cnt_info sb_cnt_info; int num_l2_queues = 0; int rc; int i; if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); return -EINVAL; } memset(&cdev->int_params, 0, sizeof(struct qed_int_params)); cdev->int_params.in.int_mode = int_mode; for_each_hwfn(cdev, i) { memset(&sb_cnt_info, 0, sizeof(sb_cnt_info)); qed_int_get_num_sbs(&cdev->hwfns[i], &sb_cnt_info); cdev->int_params.in.num_vectors += sb_cnt_info.cnt; cdev->int_params.in.num_vectors++; /* slowpath */ } /* We want a minimum of one slowpath and one fastpath vector per hwfn */ cdev->int_params.in.min_msix_cnt = cdev->num_hwfns * 2; if (is_kdump_kernel()) { DP_INFO(cdev, "Kdump kernel: Limit the max number of requested MSI-X vectors to %hd\n", cdev->int_params.in.min_msix_cnt); cdev->int_params.in.num_vectors = cdev->int_params.in.min_msix_cnt; } rc = qed_set_int_mode(cdev, false); if (rc) { DP_ERR(cdev, "qed_slowpath_setup_int ERR\n"); return rc; } cdev->int_params.fp_msix_base = cdev->num_hwfns; cdev->int_params.fp_msix_cnt = cdev->int_params.out.num_vectors - cdev->num_hwfns; if (!IS_ENABLED(CONFIG_QED_RDMA) || !QED_IS_RDMA_PERSONALITY(QED_LEADING_HWFN(cdev))) return 0; for_each_hwfn(cdev, i) num_l2_queues += FEAT_NUM(&cdev->hwfns[i], QED_PF_L2_QUE); DP_VERBOSE(cdev, QED_MSG_RDMA, "cdev->int_params.fp_msix_cnt=%d num_l2_queues=%d\n", cdev->int_params.fp_msix_cnt, num_l2_queues); if (cdev->int_params.fp_msix_cnt > num_l2_queues) { cdev->int_params.rdma_msix_cnt = (cdev->int_params.fp_msix_cnt - num_l2_queues) / cdev->num_hwfns; cdev->int_params.rdma_msix_base = cdev->int_params.fp_msix_base + num_l2_queues; cdev->int_params.fp_msix_cnt = num_l2_queues; } else { cdev->int_params.rdma_msix_cnt = 0; } DP_VERBOSE(cdev, QED_MSG_RDMA, "roce_msix_cnt=%d roce_msix_base=%d\n", cdev->int_params.rdma_msix_cnt, cdev->int_params.rdma_msix_base); return 0; } static int qed_slowpath_vf_setup_int(struct qed_dev *cdev) { int rc; memset(&cdev->int_params, 0, sizeof(struct qed_int_params)); cdev->int_params.in.int_mode = QED_INT_MODE_MSIX; qed_vf_get_num_rxqs(QED_LEADING_HWFN(cdev), &cdev->int_params.in.num_vectors); if (cdev->num_hwfns > 1) { u8 vectors = 0; qed_vf_get_num_rxqs(&cdev->hwfns[1], &vectors); cdev->int_params.in.num_vectors += vectors; } /* We want a minimum of one fastpath vector per vf hwfn */ cdev->int_params.in.min_msix_cnt = cdev->num_hwfns; rc = qed_set_int_mode(cdev, true); if (rc) return rc; cdev->int_params.fp_msix_base = 0; cdev->int_params.fp_msix_cnt = cdev->int_params.out.num_vectors; return 0; } u32 qed_unzip_data(struct qed_hwfn *p_hwfn, u32 input_len, u8 *input_buf, u32 max_size, u8 *unzip_buf) { int rc; p_hwfn->stream->next_in = input_buf; p_hwfn->stream->avail_in = input_len; p_hwfn->stream->next_out = unzip_buf; p_hwfn->stream->avail_out = max_size; rc = zlib_inflateInit2(p_hwfn->stream, MAX_WBITS); if (rc != Z_OK) { DP_VERBOSE(p_hwfn, NETIF_MSG_DRV, "zlib init failed, rc = %d\n", rc); return 0; } rc = zlib_inflate(p_hwfn->stream, Z_FINISH); zlib_inflateEnd(p_hwfn->stream); if (rc != Z_OK && rc != Z_STREAM_END) { DP_VERBOSE(p_hwfn, NETIF_MSG_DRV, "FW unzip error: %s, rc=%d\n", p_hwfn->stream->msg, rc); return 0; } return p_hwfn->stream->total_out / 4; } static int qed_alloc_stream_mem(struct qed_dev *cdev) { int i; void *workspace; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->stream = kzalloc(sizeof(*p_hwfn->stream), GFP_KERNEL); if (!p_hwfn->stream) return -ENOMEM; workspace = vzalloc(zlib_inflate_workspacesize()); if (!workspace) return -ENOMEM; p_hwfn->stream->workspace = workspace; } return 0; } static void qed_free_stream_mem(struct qed_dev *cdev) { int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (!p_hwfn->stream) return; vfree(p_hwfn->stream->workspace); kfree(p_hwfn->stream); } } static void qed_update_pf_params(struct qed_dev *cdev, struct qed_pf_params *params) { int i; if (IS_ENABLED(CONFIG_QED_RDMA)) { params->rdma_pf_params.num_qps = QED_ROCE_QPS; params->rdma_pf_params.min_dpis = QED_ROCE_DPIS; params->rdma_pf_params.num_srqs = QED_RDMA_SRQS; /* divide by 3 the MRs to avoid MF ILT overflow */ params->rdma_pf_params.gl_pi = QED_ROCE_PROTOCOL_INDEX; } if (cdev->num_hwfns > 1 || IS_VF(cdev)) params->eth_pf_params.num_arfs_filters = 0; /* In case we might support RDMA, don't allow qede to be greedy * with the L2 contexts. Allow for 64 queues [rx, tx cos, xdp] * per hwfn. */ if (QED_IS_RDMA_PERSONALITY(QED_LEADING_HWFN(cdev))) { u16 *num_cons; num_cons = ¶ms->eth_pf_params.num_cons; *num_cons = min_t(u16, *num_cons, QED_MAX_L2_CONS); } for (i = 0; i < cdev->num_hwfns; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->pf_params = *params; } } #define QED_PERIODIC_DB_REC_COUNT 100 #define QED_PERIODIC_DB_REC_INTERVAL_MS 100 #define QED_PERIODIC_DB_REC_INTERVAL \ msecs_to_jiffies(QED_PERIODIC_DB_REC_INTERVAL_MS) #define QED_PERIODIC_DB_REC_WAIT_COUNT 10 #define QED_PERIODIC_DB_REC_WAIT_INTERVAL \ (QED_PERIODIC_DB_REC_INTERVAL_MS / QED_PERIODIC_DB_REC_WAIT_COUNT) static int qed_slowpath_delayed_work(struct qed_hwfn *hwfn, enum qed_slowpath_wq_flag wq_flag, unsigned long delay) { if (!hwfn->slowpath_wq_active) return -EINVAL; /* Memory barrier for setting atomic bit */ smp_mb__before_atomic(); set_bit(wq_flag, &hwfn->slowpath_task_flags); smp_mb__after_atomic(); queue_delayed_work(hwfn->slowpath_wq, &hwfn->slowpath_task, delay); return 0; } void qed_periodic_db_rec_start(struct qed_hwfn *p_hwfn) { /* Reset periodic Doorbell Recovery counter */ p_hwfn->periodic_db_rec_count = QED_PERIODIC_DB_REC_COUNT; /* Don't schedule periodic Doorbell Recovery if already scheduled */ if (test_bit(QED_SLOWPATH_PERIODIC_DB_REC, &p_hwfn->slowpath_task_flags)) return; qed_slowpath_delayed_work(p_hwfn, QED_SLOWPATH_PERIODIC_DB_REC, QED_PERIODIC_DB_REC_INTERVAL); } static void qed_slowpath_wq_stop(struct qed_dev *cdev) { int i, sleep_count = QED_PERIODIC_DB_REC_WAIT_COUNT; if (IS_VF(cdev)) return; for_each_hwfn(cdev, i) { if (!cdev->hwfns[i].slowpath_wq) continue; /* Stop queuing new delayed works */ cdev->hwfns[i].slowpath_wq_active = false; /* Wait until the last periodic doorbell recovery is executed */ while (test_bit(QED_SLOWPATH_PERIODIC_DB_REC, &cdev->hwfns[i].slowpath_task_flags) && sleep_count--) msleep(QED_PERIODIC_DB_REC_WAIT_INTERVAL); flush_workqueue(cdev->hwfns[i].slowpath_wq); destroy_workqueue(cdev->hwfns[i].slowpath_wq); } } static void qed_slowpath_task(struct work_struct *work) { struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, slowpath_task.work); struct qed_ptt *ptt = qed_ptt_acquire(hwfn); if (!ptt) { if (hwfn->slowpath_wq_active) queue_delayed_work(hwfn->slowpath_wq, &hwfn->slowpath_task, 0); return; } if (test_and_clear_bit(QED_SLOWPATH_MFW_TLV_REQ, &hwfn->slowpath_task_flags)) qed_mfw_process_tlv_req(hwfn, ptt); if (test_and_clear_bit(QED_SLOWPATH_PERIODIC_DB_REC, &hwfn->slowpath_task_flags)) { qed_db_rec_handler(hwfn, ptt); if (hwfn->periodic_db_rec_count--) qed_slowpath_delayed_work(hwfn, QED_SLOWPATH_PERIODIC_DB_REC, QED_PERIODIC_DB_REC_INTERVAL); } qed_ptt_release(hwfn, ptt); } static int qed_slowpath_wq_start(struct qed_dev *cdev) { struct qed_hwfn *hwfn; char name[NAME_SIZE]; int i; if (IS_VF(cdev)) return 0; for_each_hwfn(cdev, i) { hwfn = &cdev->hwfns[i]; snprintf(name, NAME_SIZE, "slowpath-%02x:%02x.%02x", cdev->pdev->bus->number, PCI_SLOT(cdev->pdev->devfn), hwfn->abs_pf_id); hwfn->slowpath_wq = alloc_workqueue(name, 0, 0); if (!hwfn->slowpath_wq) { DP_NOTICE(hwfn, "Cannot create slowpath workqueue\n"); return -ENOMEM; } INIT_DELAYED_WORK(&hwfn->slowpath_task, qed_slowpath_task); hwfn->slowpath_wq_active = true; } return 0; } static int qed_slowpath_start(struct qed_dev *cdev, struct qed_slowpath_params *params) { struct qed_drv_load_params drv_load_params; struct qed_hw_init_params hw_init_params; struct qed_mcp_drv_version drv_version; struct qed_tunnel_info tunn_info; const u8 *data = NULL; struct qed_hwfn *hwfn; struct qed_ptt *p_ptt; int rc = -EINVAL; if (qed_iov_wq_start(cdev)) goto err; if (qed_slowpath_wq_start(cdev)) goto err; if (IS_PF(cdev)) { rc = request_firmware(&cdev->firmware, QED_FW_FILE_NAME, &cdev->pdev->dev); if (rc) { DP_NOTICE(cdev, "Failed to find fw file - /lib/firmware/%s\n", QED_FW_FILE_NAME); goto err; } if (cdev->num_hwfns == 1) { p_ptt = qed_ptt_acquire(QED_LEADING_HWFN(cdev)); if (p_ptt) { QED_LEADING_HWFN(cdev)->p_arfs_ptt = p_ptt; } else { DP_NOTICE(cdev, "Failed to acquire PTT for aRFS\n"); goto err; } } } cdev->rx_coalesce_usecs = QED_DEFAULT_RX_USECS; rc = qed_nic_setup(cdev); if (rc) goto err; if (IS_PF(cdev)) rc = qed_slowpath_setup_int(cdev, params->int_mode); else rc = qed_slowpath_vf_setup_int(cdev); if (rc) goto err1; if (IS_PF(cdev)) { /* Allocate stream for unzipping */ rc = qed_alloc_stream_mem(cdev); if (rc) goto err2; /* First Dword used to differentiate between various sources */ data = cdev->firmware->data + sizeof(u32); qed_dbg_pf_init(cdev); } /* Start the slowpath */ memset(&hw_init_params, 0, sizeof(hw_init_params)); memset(&tunn_info, 0, sizeof(tunn_info)); tunn_info.vxlan.b_mode_enabled = true; tunn_info.l2_gre.b_mode_enabled = true; tunn_info.ip_gre.b_mode_enabled = true; tunn_info.l2_geneve.b_mode_enabled = true; tunn_info.ip_geneve.b_mode_enabled = true; tunn_info.vxlan.tun_cls = QED_TUNN_CLSS_MAC_VLAN; tunn_info.l2_gre.tun_cls = QED_TUNN_CLSS_MAC_VLAN; tunn_info.ip_gre.tun_cls = QED_TUNN_CLSS_MAC_VLAN; tunn_info.l2_geneve.tun_cls = QED_TUNN_CLSS_MAC_VLAN; tunn_info.ip_geneve.tun_cls = QED_TUNN_CLSS_MAC_VLAN; hw_init_params.p_tunn = &tunn_info; hw_init_params.b_hw_start = true; hw_init_params.int_mode = cdev->int_params.out.int_mode; hw_init_params.allow_npar_tx_switch = true; hw_init_params.bin_fw_data = data; memset(&drv_load_params, 0, sizeof(drv_load_params)); drv_load_params.is_crash_kernel = is_kdump_kernel(); drv_load_params.mfw_timeout_val = QED_LOAD_REQ_LOCK_TO_DEFAULT; drv_load_params.avoid_eng_reset = false; drv_load_params.override_force_load = QED_OVERRIDE_FORCE_LOAD_NONE; hw_init_params.p_drv_load_params = &drv_load_params; rc = qed_hw_init(cdev, &hw_init_params); if (rc) goto err2; DP_INFO(cdev, "HW initialization and function start completed successfully\n"); if (IS_PF(cdev)) { cdev->tunn_feature_mask = (BIT(QED_MODE_VXLAN_TUNN) | BIT(QED_MODE_L2GENEVE_TUNN) | BIT(QED_MODE_IPGENEVE_TUNN) | BIT(QED_MODE_L2GRE_TUNN) | BIT(QED_MODE_IPGRE_TUNN)); } /* Allocate LL2 interface if needed */ if (QED_LEADING_HWFN(cdev)->using_ll2) { rc = qed_ll2_alloc_if(cdev); if (rc) goto err3; } if (IS_PF(cdev)) { hwfn = QED_LEADING_HWFN(cdev); drv_version.version = (params->drv_major << 24) | (params->drv_minor << 16) | (params->drv_rev << 8) | (params->drv_eng); strlcpy(drv_version.name, params->name, MCP_DRV_VER_STR_SIZE - 4); rc = qed_mcp_send_drv_version(hwfn, hwfn->p_main_ptt, &drv_version); if (rc) { DP_NOTICE(cdev, "Failed sending drv version command\n"); return rc; } } qed_reset_vport_stats(cdev); return 0; err3: qed_hw_stop(cdev); err2: qed_hw_timers_stop_all(cdev); if (IS_PF(cdev)) qed_slowpath_irq_free(cdev); qed_free_stream_mem(cdev); qed_disable_msix(cdev); err1: qed_resc_free(cdev); err: if (IS_PF(cdev)) release_firmware(cdev->firmware); if (IS_PF(cdev) && (cdev->num_hwfns == 1) && QED_LEADING_HWFN(cdev)->p_arfs_ptt) qed_ptt_release(QED_LEADING_HWFN(cdev), QED_LEADING_HWFN(cdev)->p_arfs_ptt); qed_iov_wq_stop(cdev, false); qed_slowpath_wq_stop(cdev); return rc; } static int qed_slowpath_stop(struct qed_dev *cdev) { if (!cdev) return -ENODEV; qed_slowpath_wq_stop(cdev); qed_ll2_dealloc_if(cdev); if (IS_PF(cdev)) { if (cdev->num_hwfns == 1) qed_ptt_release(QED_LEADING_HWFN(cdev), QED_LEADING_HWFN(cdev)->p_arfs_ptt); qed_free_stream_mem(cdev); if (IS_QED_ETH_IF(cdev)) qed_sriov_disable(cdev, true); } qed_nic_stop(cdev); if (IS_PF(cdev)) qed_slowpath_irq_free(cdev); qed_disable_msix(cdev); qed_resc_free(cdev); qed_iov_wq_stop(cdev, true); if (IS_PF(cdev)) release_firmware(cdev->firmware); return 0; } static void qed_set_name(struct qed_dev *cdev, char name[NAME_SIZE]) { int i; memcpy(cdev->name, name, NAME_SIZE); for_each_hwfn(cdev, i) snprintf(cdev->hwfns[i].name, NAME_SIZE, "%s-%d", name, i); } static u32 qed_sb_init(struct qed_dev *cdev, struct qed_sb_info *sb_info, void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id, enum qed_sb_type type) { struct qed_hwfn *p_hwfn; struct qed_ptt *p_ptt; int hwfn_index; u16 rel_sb_id; u8 n_hwfns; u32 rc; /* RoCE uses single engine and CMT uses two engines. When using both * we force only a single engine. Storage uses only engine 0 too. */ if (type == QED_SB_TYPE_L2_QUEUE) n_hwfns = cdev->num_hwfns; else n_hwfns = 1; hwfn_index = sb_id % n_hwfns; p_hwfn = &cdev->hwfns[hwfn_index]; rel_sb_id = sb_id / n_hwfns; DP_VERBOSE(cdev, NETIF_MSG_INTR, "hwfn [%d] <--[init]-- SB %04x [0x%04x upper]\n", hwfn_index, rel_sb_id, sb_id); if (IS_PF(p_hwfn->cdev)) { p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = qed_int_sb_init(p_hwfn, p_ptt, sb_info, sb_virt_addr, sb_phy_addr, rel_sb_id); qed_ptt_release(p_hwfn, p_ptt); } else { rc = qed_int_sb_init(p_hwfn, NULL, sb_info, sb_virt_addr, sb_phy_addr, rel_sb_id); } return rc; } static u32 qed_sb_release(struct qed_dev *cdev, struct qed_sb_info *sb_info, u16 sb_id) { struct qed_hwfn *p_hwfn; int hwfn_index; u16 rel_sb_id; u32 rc; hwfn_index = sb_id % cdev->num_hwfns; p_hwfn = &cdev->hwfns[hwfn_index]; rel_sb_id = sb_id / cdev->num_hwfns; DP_VERBOSE(cdev, NETIF_MSG_INTR, "hwfn [%d] <--[init]-- SB %04x [0x%04x upper]\n", hwfn_index, rel_sb_id, sb_id); rc = qed_int_sb_release(p_hwfn, sb_info, rel_sb_id); return rc; } static bool qed_can_link_change(struct qed_dev *cdev) { return true; } static int qed_set_link(struct qed_dev *cdev, struct qed_link_params *params) { struct qed_hwfn *hwfn; struct qed_mcp_link_params *link_params; struct qed_ptt *ptt; u32 sup_caps; int rc; if (!cdev) return -ENODEV; /* The link should be set only once per PF */ hwfn = &cdev->hwfns[0]; /* When VF wants to set link, force it to read the bulletin instead. * This mimics the PF behavior, where a noitification [both immediate * and possible later] would be generated when changing properties. */ if (IS_VF(cdev)) { qed_schedule_iov(hwfn, QED_IOV_WQ_VF_FORCE_LINK_QUERY_FLAG); return 0; } ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EBUSY; link_params = qed_mcp_get_link_params(hwfn); if (params->override_flags & QED_LINK_OVERRIDE_SPEED_AUTONEG) link_params->speed.autoneg = params->autoneg; if (params->override_flags & QED_LINK_OVERRIDE_SPEED_ADV_SPEEDS) { link_params->speed.advertised_speeds = 0; sup_caps = QED_LM_1000baseT_Full_BIT | QED_LM_1000baseKX_Full_BIT | QED_LM_1000baseX_Full_BIT; if (params->adv_speeds & sup_caps) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; sup_caps = QED_LM_10000baseT_Full_BIT | QED_LM_10000baseKR_Full_BIT | QED_LM_10000baseKX4_Full_BIT | QED_LM_10000baseR_FEC_BIT | QED_LM_10000baseCR_Full_BIT | QED_LM_10000baseSR_Full_BIT | QED_LM_10000baseLR_Full_BIT | QED_LM_10000baseLRM_Full_BIT; if (params->adv_speeds & sup_caps) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; if (params->adv_speeds & QED_LM_20000baseKR2_Full_BIT) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G; sup_caps = QED_LM_25000baseKR_Full_BIT | QED_LM_25000baseCR_Full_BIT | QED_LM_25000baseSR_Full_BIT; if (params->adv_speeds & sup_caps) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; sup_caps = QED_LM_40000baseLR4_Full_BIT | QED_LM_40000baseKR4_Full_BIT | QED_LM_40000baseCR4_Full_BIT | QED_LM_40000baseSR4_Full_BIT; if (params->adv_speeds & sup_caps) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G; sup_caps = QED_LM_50000baseKR2_Full_BIT | QED_LM_50000baseCR2_Full_BIT | QED_LM_50000baseSR2_Full_BIT; if (params->adv_speeds & sup_caps) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G; sup_caps = QED_LM_100000baseKR4_Full_BIT | QED_LM_100000baseSR4_Full_BIT | QED_LM_100000baseCR4_Full_BIT | QED_LM_100000baseLR4_ER4_Full_BIT; if (params->adv_speeds & sup_caps) link_params->speed.advertised_speeds |= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G; } if (params->override_flags & QED_LINK_OVERRIDE_SPEED_FORCED_SPEED) link_params->speed.forced_speed = params->forced_speed; if (params->override_flags & QED_LINK_OVERRIDE_PAUSE_CONFIG) { if (params->pause_config & QED_LINK_PAUSE_AUTONEG_ENABLE) link_params->pause.autoneg = true; else link_params->pause.autoneg = false; if (params->pause_config & QED_LINK_PAUSE_RX_ENABLE) link_params->pause.forced_rx = true; else link_params->pause.forced_rx = false; if (params->pause_config & QED_LINK_PAUSE_TX_ENABLE) link_params->pause.forced_tx = true; else link_params->pause.forced_tx = false; } if (params->override_flags & QED_LINK_OVERRIDE_LOOPBACK_MODE) { switch (params->loopback_mode) { case QED_LINK_LOOPBACK_INT_PHY: link_params->loopback_mode = ETH_LOOPBACK_INT_PHY; break; case QED_LINK_LOOPBACK_EXT_PHY: link_params->loopback_mode = ETH_LOOPBACK_EXT_PHY; break; case QED_LINK_LOOPBACK_EXT: link_params->loopback_mode = ETH_LOOPBACK_EXT; break; case QED_LINK_LOOPBACK_MAC: link_params->loopback_mode = ETH_LOOPBACK_MAC; break; default: link_params->loopback_mode = ETH_LOOPBACK_NONE; break; } } if (params->override_flags & QED_LINK_OVERRIDE_EEE_CONFIG) memcpy(&link_params->eee, ¶ms->eee, sizeof(link_params->eee)); rc = qed_mcp_set_link(hwfn, ptt, params->link_up); qed_ptt_release(hwfn, ptt); return rc; } static int qed_get_port_type(u32 media_type) { int port_type; switch (media_type) { case MEDIA_SFPP_10G_FIBER: case MEDIA_SFP_1G_FIBER: case MEDIA_XFP_FIBER: case MEDIA_MODULE_FIBER: case MEDIA_KR: port_type = PORT_FIBRE; break; case MEDIA_DA_TWINAX: port_type = PORT_DA; break; case MEDIA_BASE_T: port_type = PORT_TP; break; case MEDIA_NOT_PRESENT: port_type = PORT_NONE; break; case MEDIA_UNSPECIFIED: default: port_type = PORT_OTHER; break; } return port_type; } static int qed_get_link_data(struct qed_hwfn *hwfn, struct qed_mcp_link_params *params, struct qed_mcp_link_state *link, struct qed_mcp_link_capabilities *link_caps) { void *p; if (!IS_PF(hwfn->cdev)) { qed_vf_get_link_params(hwfn, params); qed_vf_get_link_state(hwfn, link); qed_vf_get_link_caps(hwfn, link_caps); return 0; } p = qed_mcp_get_link_params(hwfn); if (!p) return -ENXIO; memcpy(params, p, sizeof(*params)); p = qed_mcp_get_link_state(hwfn); if (!p) return -ENXIO; memcpy(link, p, sizeof(*link)); p = qed_mcp_get_link_capabilities(hwfn); if (!p) return -ENXIO; memcpy(link_caps, p, sizeof(*link_caps)); return 0; } static void qed_fill_link_capability(struct qed_hwfn *hwfn, struct qed_ptt *ptt, u32 capability, u32 *if_capability) { u32 media_type, tcvr_state, tcvr_type; u32 speed_mask, board_cfg; if (qed_mcp_get_media_type(hwfn, ptt, &media_type)) media_type = MEDIA_UNSPECIFIED; if (qed_mcp_get_transceiver_data(hwfn, ptt, &tcvr_state, &tcvr_type)) tcvr_type = ETH_TRANSCEIVER_STATE_UNPLUGGED; if (qed_mcp_trans_speed_mask(hwfn, ptt, &speed_mask)) speed_mask = 0xFFFFFFFF; if (qed_mcp_get_board_config(hwfn, ptt, &board_cfg)) board_cfg = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED; DP_VERBOSE(hwfn->cdev, NETIF_MSG_DRV, "Media_type = 0x%x tcvr_state = 0x%x tcvr_type = 0x%x speed_mask = 0x%x board_cfg = 0x%x\n", media_type, tcvr_state, tcvr_type, speed_mask, board_cfg); switch (media_type) { case MEDIA_DA_TWINAX: if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G) *if_capability |= QED_LM_20000baseKR2_Full_BIT; /* For DAC media multiple speed capabilities are supported*/ capability = capability & speed_mask; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) *if_capability |= QED_LM_1000baseKX_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) *if_capability |= QED_LM_10000baseCR_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G) *if_capability |= QED_LM_40000baseCR4_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G) *if_capability |= QED_LM_25000baseCR_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G) *if_capability |= QED_LM_50000baseCR2_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G) *if_capability |= QED_LM_100000baseCR4_Full_BIT; break; case MEDIA_BASE_T: if (board_cfg & NVM_CFG1_PORT_PORT_TYPE_EXT_PHY) { if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) { *if_capability |= QED_LM_1000baseT_Full_BIT; } if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) { *if_capability |= QED_LM_10000baseT_Full_BIT; } } if (board_cfg & NVM_CFG1_PORT_PORT_TYPE_MODULE) { if (tcvr_type == ETH_TRANSCEIVER_TYPE_1000BASET) *if_capability |= QED_LM_1000baseT_Full_BIT; if (tcvr_type == ETH_TRANSCEIVER_TYPE_10G_BASET) *if_capability |= QED_LM_10000baseT_Full_BIT; } break; case MEDIA_SFP_1G_FIBER: case MEDIA_SFPP_10G_FIBER: case MEDIA_XFP_FIBER: case MEDIA_MODULE_FIBER: if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) { if ((tcvr_type == ETH_TRANSCEIVER_TYPE_1G_LX) || (tcvr_type == ETH_TRANSCEIVER_TYPE_1G_SX)) *if_capability |= QED_LM_1000baseKX_Full_BIT; } if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) { if (tcvr_type == ETH_TRANSCEIVER_TYPE_10G_SR) *if_capability |= QED_LM_10000baseSR_Full_BIT; if (tcvr_type == ETH_TRANSCEIVER_TYPE_10G_LR) *if_capability |= QED_LM_10000baseLR_Full_BIT; if (tcvr_type == ETH_TRANSCEIVER_TYPE_10G_LRM) *if_capability |= QED_LM_10000baseLRM_Full_BIT; if (tcvr_type == ETH_TRANSCEIVER_TYPE_10G_ER) *if_capability |= QED_LM_10000baseR_FEC_BIT; } if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G) *if_capability |= QED_LM_20000baseKR2_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G) { if (tcvr_type == ETH_TRANSCEIVER_TYPE_25G_SR) *if_capability |= QED_LM_25000baseSR_Full_BIT; } if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G) { if (tcvr_type == ETH_TRANSCEIVER_TYPE_40G_LR4) *if_capability |= QED_LM_40000baseLR4_Full_BIT; if (tcvr_type == ETH_TRANSCEIVER_TYPE_40G_SR4) *if_capability |= QED_LM_40000baseSR4_Full_BIT; } if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G) *if_capability |= QED_LM_50000baseKR2_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G) { if (tcvr_type == ETH_TRANSCEIVER_TYPE_100G_SR4) *if_capability |= QED_LM_100000baseSR4_Full_BIT; } break; case MEDIA_KR: if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G) *if_capability |= QED_LM_20000baseKR2_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) *if_capability |= QED_LM_1000baseKX_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) *if_capability |= QED_LM_10000baseKR_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G) *if_capability |= QED_LM_25000baseKR_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G) *if_capability |= QED_LM_40000baseKR4_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G) *if_capability |= QED_LM_50000baseKR2_Full_BIT; if (capability & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G) *if_capability |= QED_LM_100000baseKR4_Full_BIT; break; case MEDIA_UNSPECIFIED: case MEDIA_NOT_PRESENT: DP_VERBOSE(hwfn->cdev, QED_MSG_DEBUG, "Unknown media and transceiver type;\n"); break; } } static void qed_fill_link(struct qed_hwfn *hwfn, struct qed_ptt *ptt, struct qed_link_output *if_link) { struct qed_mcp_link_capabilities link_caps; struct qed_mcp_link_params params; struct qed_mcp_link_state link; u32 media_type; memset(if_link, 0, sizeof(*if_link)); /* Prepare source inputs */ if (qed_get_link_data(hwfn, ¶ms, &link, &link_caps)) { dev_warn(&hwfn->cdev->pdev->dev, "no link data available\n"); return; } /* Set the link parameters to pass to protocol driver */ if (link.link_up) if_link->link_up = true; /* TODO - at the moment assume supported and advertised speed equal */ if_link->supported_caps = QED_LM_FIBRE_BIT; if (link_caps.default_speed_autoneg) if_link->supported_caps |= QED_LM_Autoneg_BIT; if (params.pause.autoneg || (params.pause.forced_rx && params.pause.forced_tx)) if_link->supported_caps |= QED_LM_Asym_Pause_BIT; if (params.pause.autoneg || params.pause.forced_rx || params.pause.forced_tx) if_link->supported_caps |= QED_LM_Pause_BIT; if_link->advertised_caps = if_link->supported_caps; if (params.speed.autoneg) if_link->advertised_caps |= QED_LM_Autoneg_BIT; else if_link->advertised_caps &= ~QED_LM_Autoneg_BIT; /* Fill link advertised capability*/ qed_fill_link_capability(hwfn, ptt, params.speed.advertised_speeds, &if_link->advertised_caps); /* Fill link supported capability*/ qed_fill_link_capability(hwfn, ptt, link_caps.speed_capabilities, &if_link->supported_caps); if (link.link_up) if_link->speed = link.speed; /* TODO - fill duplex properly */ if_link->duplex = DUPLEX_FULL; qed_mcp_get_media_type(hwfn, ptt, &media_type); if_link->port = qed_get_port_type(media_type); if_link->autoneg = params.speed.autoneg; if (params.pause.autoneg) if_link->pause_config |= QED_LINK_PAUSE_AUTONEG_ENABLE; if (params.pause.forced_rx) if_link->pause_config |= QED_LINK_PAUSE_RX_ENABLE; if (params.pause.forced_tx) if_link->pause_config |= QED_LINK_PAUSE_TX_ENABLE; /* Link partner capabilities */ if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_1G_FD) if_link->lp_caps |= QED_LM_1000baseT_Full_BIT; if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_10G) if_link->lp_caps |= QED_LM_10000baseKR_Full_BIT; if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_20G) if_link->lp_caps |= QED_LM_20000baseKR2_Full_BIT; if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_25G) if_link->lp_caps |= QED_LM_25000baseKR_Full_BIT; if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_40G) if_link->lp_caps |= QED_LM_40000baseLR4_Full_BIT; if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_50G) if_link->lp_caps |= QED_LM_50000baseKR2_Full_BIT; if (link.partner_adv_speed & QED_LINK_PARTNER_SPEED_100G) if_link->lp_caps |= QED_LM_100000baseKR4_Full_BIT; if (link.an_complete) if_link->lp_caps |= QED_LM_Autoneg_BIT; if (link.partner_adv_pause) if_link->lp_caps |= QED_LM_Pause_BIT; if (link.partner_adv_pause == QED_LINK_PARTNER_ASYMMETRIC_PAUSE || link.partner_adv_pause == QED_LINK_PARTNER_BOTH_PAUSE) if_link->lp_caps |= QED_LM_Asym_Pause_BIT; if (link_caps.default_eee == QED_MCP_EEE_UNSUPPORTED) { if_link->eee_supported = false; } else { if_link->eee_supported = true; if_link->eee_active = link.eee_active; if_link->sup_caps = link_caps.eee_speed_caps; /* MFW clears adv_caps on eee disable; use configured value */ if_link->eee.adv_caps = link.eee_adv_caps ? link.eee_adv_caps : params.eee.adv_caps; if_link->eee.lp_adv_caps = link.eee_lp_adv_caps; if_link->eee.enable = params.eee.enable; if_link->eee.tx_lpi_enable = params.eee.tx_lpi_enable; if_link->eee.tx_lpi_timer = params.eee.tx_lpi_timer; } } static void qed_get_current_link(struct qed_dev *cdev, struct qed_link_output *if_link) { struct qed_hwfn *hwfn; struct qed_ptt *ptt; int i; hwfn = &cdev->hwfns[0]; if (IS_PF(cdev)) { ptt = qed_ptt_acquire(hwfn); if (ptt) { qed_fill_link(hwfn, ptt, if_link); qed_ptt_release(hwfn, ptt); } else { DP_NOTICE(hwfn, "Failed to fill link; No PTT\n"); } } else { qed_fill_link(hwfn, NULL, if_link); } for_each_hwfn(cdev, i) qed_inform_vf_link_state(&cdev->hwfns[i]); } void qed_link_update(struct qed_hwfn *hwfn, struct qed_ptt *ptt) { void *cookie = hwfn->cdev->ops_cookie; struct qed_common_cb_ops *op = hwfn->cdev->protocol_ops.common; struct qed_link_output if_link; qed_fill_link(hwfn, ptt, &if_link); qed_inform_vf_link_state(hwfn); if (IS_LEAD_HWFN(hwfn) && cookie) op->link_update(cookie, &if_link); } static int qed_drain(struct qed_dev *cdev) { struct qed_hwfn *hwfn; struct qed_ptt *ptt; int i, rc; if (IS_VF(cdev)) return 0; for_each_hwfn(cdev, i) { hwfn = &cdev->hwfns[i]; ptt = qed_ptt_acquire(hwfn); if (!ptt) { DP_NOTICE(hwfn, "Failed to drain NIG; No PTT\n"); return -EBUSY; } rc = qed_mcp_drain(hwfn, ptt); qed_ptt_release(hwfn, ptt); if (rc) return rc; } return 0; } static u32 qed_nvm_flash_image_access_crc(struct qed_dev *cdev, struct qed_nvm_image_att *nvm_image, u32 *crc) { u8 *buf = NULL; int rc, j; u32 val; /* Allocate a buffer for holding the nvram image */ buf = kzalloc(nvm_image->length, GFP_KERNEL); if (!buf) return -ENOMEM; /* Read image into buffer */ rc = qed_mcp_nvm_read(cdev, nvm_image->start_addr, buf, nvm_image->length); if (rc) { DP_ERR(cdev, "Failed reading image from nvm\n"); goto out; } /* Convert the buffer into big-endian format (excluding the * closing 4 bytes of CRC). */ for (j = 0; j < nvm_image->length - 4; j += 4) { val = cpu_to_be32(*(u32 *)&buf[j]); *(u32 *)&buf[j] = val; } /* Calc CRC for the "actual" image buffer, i.e. not including * the last 4 CRC bytes. */ *crc = (~cpu_to_be32(crc32(0xffffffff, buf, nvm_image->length - 4))); out: kfree(buf); return rc; } /* Binary file format - * /----------------------------------------------------------------------\ * 0B | 0x4 [command index] | * 4B | image_type | Options | Number of register settings | * 8B | Value | * 12B | Mask | * 16B | Offset | * \----------------------------------------------------------------------/ * There can be several Value-Mask-Offset sets as specified by 'Number of...'. * Options - 0'b - Calculate & Update CRC for image */ static int qed_nvm_flash_image_access(struct qed_dev *cdev, const u8 **data, bool *check_resp) { struct qed_nvm_image_att nvm_image; struct qed_hwfn *p_hwfn; bool is_crc = false; u32 image_type; int rc = 0, i; u16 len; *data += 4; image_type = **data; p_hwfn = QED_LEADING_HWFN(cdev); for (i = 0; i < p_hwfn->nvm_info.num_images; i++) if (image_type == p_hwfn->nvm_info.image_att[i].image_type) break; if (i == p_hwfn->nvm_info.num_images) { DP_ERR(cdev, "Failed to find nvram image of type %08x\n", image_type); return -ENOENT; } nvm_image.start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr; nvm_image.length = p_hwfn->nvm_info.image_att[i].len; DP_VERBOSE(cdev, NETIF_MSG_DRV, "Read image %02x; type = %08x; NVM [%08x,...,%08x]\n", **data, image_type, nvm_image.start_addr, nvm_image.start_addr + nvm_image.length - 1); (*data)++; is_crc = !!(**data & BIT(0)); (*data)++; len = *((u16 *)*data); *data += 2; if (is_crc) { u32 crc = 0; rc = qed_nvm_flash_image_access_crc(cdev, &nvm_image, &crc); if (rc) { DP_ERR(cdev, "Failed calculating CRC, rc = %d\n", rc); goto exit; } rc = qed_mcp_nvm_write(cdev, QED_NVM_WRITE_NVRAM, (nvm_image.start_addr + nvm_image.length - 4), (u8 *)&crc, 4); if (rc) DP_ERR(cdev, "Failed writing to %08x, rc = %d\n", nvm_image.start_addr + nvm_image.length - 4, rc); goto exit; } /* Iterate over the values for setting */ while (len) { u32 offset, mask, value, cur_value; u8 buf[4]; value = *((u32 *)*data); *data += 4; mask = *((u32 *)*data); *data += 4; offset = *((u32 *)*data); *data += 4; rc = qed_mcp_nvm_read(cdev, nvm_image.start_addr + offset, buf, 4); if (rc) { DP_ERR(cdev, "Failed reading from %08x\n", nvm_image.start_addr + offset); goto exit; } cur_value = le32_to_cpu(*((__le32 *)buf)); DP_VERBOSE(cdev, NETIF_MSG_DRV, "NVM %08x: %08x -> %08x [Value %08x Mask %08x]\n", nvm_image.start_addr + offset, cur_value, (cur_value & ~mask) | (value & mask), value, mask); value = (value & mask) | (cur_value & ~mask); rc = qed_mcp_nvm_write(cdev, QED_NVM_WRITE_NVRAM, nvm_image.start_addr + offset, (u8 *)&value, 4); if (rc) { DP_ERR(cdev, "Failed writing to %08x\n", nvm_image.start_addr + offset); goto exit; } len--; } exit: return rc; } /* Binary file format - * /----------------------------------------------------------------------\ * 0B | 0x3 [command index] | * 4B | b'0: check_response? | b'1-31 reserved | * 8B | File-type | reserved | * 12B | Image length in bytes | * \----------------------------------------------------------------------/ * Start a new file of the provided type */ static int qed_nvm_flash_image_file_start(struct qed_dev *cdev, const u8 **data, bool *check_resp) { u32 file_type, file_size = 0; int rc; *data += 4; *check_resp = !!(**data & BIT(0)); *data += 4; file_type = **data; DP_VERBOSE(cdev, NETIF_MSG_DRV, "About to start a new file of type %02x\n", file_type); if (file_type == DRV_MB_PARAM_NVM_PUT_FILE_BEGIN_MBI) { *data += 4; file_size = *((u32 *)(*data)); } rc = qed_mcp_nvm_write(cdev, QED_PUT_FILE_BEGIN, file_type, (u8 *)(&file_size), 4); *data += 4; return rc; } /* Binary file format - * /----------------------------------------------------------------------\ * 0B | 0x2 [command index] | * 4B | Length in bytes | * 8B | b'0: check_response? | b'1-31 reserved | * 12B | Offset in bytes | * 16B | Data ... | * \----------------------------------------------------------------------/ * Write data as part of a file that was previously started. Data should be * of length equal to that provided in the message */ static int qed_nvm_flash_image_file_data(struct qed_dev *cdev, const u8 **data, bool *check_resp) { u32 offset, len; int rc; *data += 4; len = *((u32 *)(*data)); *data += 4; *check_resp = !!(**data & BIT(0)); *data += 4; offset = *((u32 *)(*data)); *data += 4; DP_VERBOSE(cdev, NETIF_MSG_DRV, "About to write File-data: %08x bytes to offset %08x\n", len, offset); rc = qed_mcp_nvm_write(cdev, QED_PUT_FILE_DATA, offset, (char *)(*data), len); *data += len; return rc; } /* Binary file format [General header] - * /----------------------------------------------------------------------\ * 0B | QED_NVM_SIGNATURE | * 4B | Length in bytes | * 8B | Highest command in this batchfile | Reserved | * \----------------------------------------------------------------------/ */ static int qed_nvm_flash_image_validate(struct qed_dev *cdev, const struct firmware *image, const u8 **data) { u32 signature, len; /* Check minimum size */ if (image->size < 12) { DP_ERR(cdev, "Image is too short [%08x]\n", (u32)image->size); return -EINVAL; } /* Check signature */ signature = *((u32 *)(*data)); if (signature != QED_NVM_SIGNATURE) { DP_ERR(cdev, "Wrong signature '%08x'\n", signature); return -EINVAL; } *data += 4; /* Validate internal size equals the image-size */ len = *((u32 *)(*data)); if (len != image->size) { DP_ERR(cdev, "Size mismatch: internal = %08x image = %08x\n", len, (u32)image->size); return -EINVAL; } *data += 4; /* Make sure driver familiar with all commands necessary for this */ if (*((u16 *)(*data)) >= QED_NVM_FLASH_CMD_NVM_MAX) { DP_ERR(cdev, "File contains unsupported commands [Need %04x]\n", *((u16 *)(*data))); return -EINVAL; } *data += 4; return 0; } static int qed_nvm_flash(struct qed_dev *cdev, const char *name) { const struct firmware *image; const u8 *data, *data_end; u32 cmd_type; int rc; rc = request_firmware(&image, name, &cdev->pdev->dev); if (rc) { DP_ERR(cdev, "Failed to find '%s'\n", name); return rc; } DP_VERBOSE(cdev, NETIF_MSG_DRV, "Flashing '%s' - firmware's data at %p, size is %08x\n", name, image->data, (u32)image->size); data = image->data; data_end = data + image->size; rc = qed_nvm_flash_image_validate(cdev, image, &data); if (rc) goto exit; while (data < data_end) { bool check_resp = false; /* Parse the actual command */ cmd_type = *((u32 *)data); switch (cmd_type) { case QED_NVM_FLASH_CMD_FILE_DATA: rc = qed_nvm_flash_image_file_data(cdev, &data, &check_resp); break; case QED_NVM_FLASH_CMD_FILE_START: rc = qed_nvm_flash_image_file_start(cdev, &data, &check_resp); break; case QED_NVM_FLASH_CMD_NVM_CHANGE: rc = qed_nvm_flash_image_access(cdev, &data, &check_resp); break; default: DP_ERR(cdev, "Unknown command %08x\n", cmd_type); rc = -EINVAL; goto exit; } if (rc) { DP_ERR(cdev, "Command %08x failed\n", cmd_type); goto exit; } /* Check response if needed */ if (check_resp) { u32 mcp_response = 0; if (qed_mcp_nvm_resp(cdev, (u8 *)&mcp_response)) { DP_ERR(cdev, "Failed getting MCP response\n"); rc = -EINVAL; goto exit; } switch (mcp_response & FW_MSG_CODE_MASK) { case FW_MSG_CODE_OK: case FW_MSG_CODE_NVM_OK: case FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK: case FW_MSG_CODE_PHY_OK: break; default: DP_ERR(cdev, "MFW returns error: %08x\n", mcp_response); rc = -EINVAL; goto exit; } } } exit: release_firmware(image); return rc; } static int qed_nvm_get_image(struct qed_dev *cdev, enum qed_nvm_images type, u8 *buf, u16 len) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); return qed_mcp_get_nvm_image(hwfn, type, buf, len); } static int qed_set_coalesce(struct qed_dev *cdev, u16 rx_coal, u16 tx_coal, void *handle) { return qed_set_queue_coalesce(rx_coal, tx_coal, handle); } static int qed_set_led(struct qed_dev *cdev, enum qed_led_mode mode) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *ptt; int status = 0; ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EAGAIN; status = qed_mcp_set_led(hwfn, ptt, mode); qed_ptt_release(hwfn, ptt); return status; } static int qed_update_wol(struct qed_dev *cdev, bool enabled) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *ptt; int rc = 0; if (IS_VF(cdev)) return 0; ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EAGAIN; rc = qed_mcp_ov_update_wol(hwfn, ptt, enabled ? QED_OV_WOL_ENABLED : QED_OV_WOL_DISABLED); if (rc) goto out; rc = qed_mcp_ov_update_current_config(hwfn, ptt, QED_OV_CLIENT_DRV); out: qed_ptt_release(hwfn, ptt); return rc; } static int qed_update_drv_state(struct qed_dev *cdev, bool active) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *ptt; int status = 0; if (IS_VF(cdev)) return 0; ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EAGAIN; status = qed_mcp_ov_update_driver_state(hwfn, ptt, active ? QED_OV_DRIVER_STATE_ACTIVE : QED_OV_DRIVER_STATE_DISABLED); qed_ptt_release(hwfn, ptt); return status; } static int qed_update_mac(struct qed_dev *cdev, u8 *mac) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *ptt; int status = 0; if (IS_VF(cdev)) return 0; ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EAGAIN; status = qed_mcp_ov_update_mac(hwfn, ptt, mac); if (status) goto out; status = qed_mcp_ov_update_current_config(hwfn, ptt, QED_OV_CLIENT_DRV); out: qed_ptt_release(hwfn, ptt); return status; } static int qed_update_mtu(struct qed_dev *cdev, u16 mtu) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *ptt; int status = 0; if (IS_VF(cdev)) return 0; ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EAGAIN; status = qed_mcp_ov_update_mtu(hwfn, ptt, mtu); if (status) goto out; status = qed_mcp_ov_update_current_config(hwfn, ptt, QED_OV_CLIENT_DRV); out: qed_ptt_release(hwfn, ptt); return status; } static int qed_read_module_eeprom(struct qed_dev *cdev, char *buf, u8 dev_addr, u32 offset, u32 len) { struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *ptt; int rc = 0; if (IS_VF(cdev)) return 0; ptt = qed_ptt_acquire(hwfn); if (!ptt) return -EAGAIN; rc = qed_mcp_phy_sfp_read(hwfn, ptt, MFW_PORT(hwfn), dev_addr, offset, len, buf); qed_ptt_release(hwfn, ptt); return rc; } static struct qed_selftest_ops qed_selftest_ops_pass = { .selftest_memory = &qed_selftest_memory, .selftest_interrupt = &qed_selftest_interrupt, .selftest_register = &qed_selftest_register, .selftest_clock = &qed_selftest_clock, .selftest_nvram = &qed_selftest_nvram, }; const struct qed_common_ops qed_common_ops_pass = { .selftest = &qed_selftest_ops_pass, .probe = &qed_probe, .remove = &qed_remove, .set_power_state = &qed_set_power_state, .set_name = &qed_set_name, .update_pf_params = &qed_update_pf_params, .slowpath_start = &qed_slowpath_start, .slowpath_stop = &qed_slowpath_stop, .set_fp_int = &qed_set_int_fp, .get_fp_int = &qed_get_int_fp, .sb_init = &qed_sb_init, .sb_release = &qed_sb_release, .simd_handler_config = &qed_simd_handler_config, .simd_handler_clean = &qed_simd_handler_clean, .dbg_grc = &qed_dbg_grc, .dbg_grc_size = &qed_dbg_grc_size, .can_link_change = &qed_can_link_change, .set_link = &qed_set_link, .get_link = &qed_get_current_link, .drain = &qed_drain, .update_msglvl = &qed_init_dp, .dbg_all_data = &qed_dbg_all_data, .dbg_all_data_size = &qed_dbg_all_data_size, .chain_alloc = &qed_chain_alloc, .chain_free = &qed_chain_free, .nvm_flash = &qed_nvm_flash, .nvm_get_image = &qed_nvm_get_image, .set_coalesce = &qed_set_coalesce, .set_led = &qed_set_led, .update_drv_state = &qed_update_drv_state, .update_mac = &qed_update_mac, .update_mtu = &qed_update_mtu, .update_wol = &qed_update_wol, .db_recovery_add = &qed_db_recovery_add, .db_recovery_del = &qed_db_recovery_del, .read_module_eeprom = &qed_read_module_eeprom, }; void qed_get_protocol_stats(struct qed_dev *cdev, enum qed_mcp_protocol_type type, union qed_mcp_protocol_stats *stats) { struct qed_eth_stats eth_stats; memset(stats, 0, sizeof(*stats)); switch (type) { case QED_MCP_LAN_STATS: qed_get_vport_stats(cdev, ð_stats); stats->lan_stats.ucast_rx_pkts = eth_stats.common.rx_ucast_pkts; stats->lan_stats.ucast_tx_pkts = eth_stats.common.tx_ucast_pkts; stats->lan_stats.fcs_err = -1; break; case QED_MCP_FCOE_STATS: qed_get_protocol_stats_fcoe(cdev, &stats->fcoe_stats); break; case QED_MCP_ISCSI_STATS: qed_get_protocol_stats_iscsi(cdev, &stats->iscsi_stats); break; default: DP_VERBOSE(cdev, QED_MSG_SP, "Invalid protocol type = %d\n", type); return; } } int qed_mfw_tlv_req(struct qed_hwfn *hwfn) { DP_VERBOSE(hwfn->cdev, NETIF_MSG_DRV, "Scheduling slowpath task [Flag: %d]\n", QED_SLOWPATH_MFW_TLV_REQ); smp_mb__before_atomic(); set_bit(QED_SLOWPATH_MFW_TLV_REQ, &hwfn->slowpath_task_flags); smp_mb__after_atomic(); queue_delayed_work(hwfn->slowpath_wq, &hwfn->slowpath_task, 0); return 0; } static void qed_fill_generic_tlv_data(struct qed_dev *cdev, struct qed_mfw_tlv_generic *tlv) { struct qed_common_cb_ops *op = cdev->protocol_ops.common; struct qed_eth_stats_common *p_common; struct qed_generic_tlvs gen_tlvs; struct qed_eth_stats stats; int i; memset(&gen_tlvs, 0, sizeof(gen_tlvs)); op->get_generic_tlv_data(cdev->ops_cookie, &gen_tlvs); if (gen_tlvs.feat_flags & QED_TLV_IP_CSUM) tlv->flags.ipv4_csum_offload = true; if (gen_tlvs.feat_flags & QED_TLV_LSO) tlv->flags.lso_supported = true; tlv->flags.b_set = true; for (i = 0; i < QED_TLV_MAC_COUNT; i++) { if (is_valid_ether_addr(gen_tlvs.mac[i])) { ether_addr_copy(tlv->mac[i], gen_tlvs.mac[i]); tlv->mac_set[i] = true; } } qed_get_vport_stats(cdev, &stats); p_common = &stats.common; tlv->rx_frames = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; tlv->rx_frames_set = true; tlv->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + p_common->rx_bcast_bytes; tlv->rx_bytes_set = true; tlv->tx_frames = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + p_common->tx_bcast_pkts; tlv->tx_frames_set = true; tlv->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + p_common->tx_bcast_bytes; tlv->rx_bytes_set = true; } int qed_mfw_fill_tlv_data(struct qed_hwfn *hwfn, enum qed_mfw_tlv_type type, union qed_mfw_tlv_data *tlv_buf) { struct qed_dev *cdev = hwfn->cdev; struct qed_common_cb_ops *ops; ops = cdev->protocol_ops.common; if (!ops || !ops->get_protocol_tlv_data || !ops->get_generic_tlv_data) { DP_NOTICE(hwfn, "Can't collect TLV management info\n"); return -EINVAL; } switch (type) { case QED_MFW_TLV_GENERIC: qed_fill_generic_tlv_data(hwfn->cdev, &tlv_buf->generic); break; case QED_MFW_TLV_ETH: ops->get_protocol_tlv_data(cdev->ops_cookie, &tlv_buf->eth); break; case QED_MFW_TLV_FCOE: ops->get_protocol_tlv_data(cdev->ops_cookie, &tlv_buf->fcoe); break; case QED_MFW_TLV_ISCSI: ops->get_protocol_tlv_data(cdev->ops_cookie, &tlv_buf->iscsi); break; default: break; } return 0; }