// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Intel Corporation. */ #include "ice_common.h" #include "ice_flex_pipe.h" #include "ice_flow.h" #include "ice.h" /* For supporting double VLAN mode, it is necessary to enable or disable certain * boost tcam entries. The metadata labels names that match the following * prefixes will be saved to allow enabling double VLAN mode. */ #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */ #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */ /* To support tunneling entries by PF, the package will append the PF number to * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. */ #define ICE_TNL_PRE "TNL_" static const struct ice_tunnel_type_scan tnls[] = { { TNL_VXLAN, "TNL_VXLAN_PF" }, { TNL_GENEVE, "TNL_GENEVE_PF" }, { TNL_LAST, "" } }; static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { /* SWITCH */ { ICE_SID_XLT0_SW, ICE_SID_XLT_KEY_BUILDER_SW, ICE_SID_XLT1_SW, ICE_SID_XLT2_SW, ICE_SID_PROFID_TCAM_SW, ICE_SID_PROFID_REDIR_SW, ICE_SID_FLD_VEC_SW, ICE_SID_CDID_KEY_BUILDER_SW, ICE_SID_CDID_REDIR_SW }, /* ACL */ { ICE_SID_XLT0_ACL, ICE_SID_XLT_KEY_BUILDER_ACL, ICE_SID_XLT1_ACL, ICE_SID_XLT2_ACL, ICE_SID_PROFID_TCAM_ACL, ICE_SID_PROFID_REDIR_ACL, ICE_SID_FLD_VEC_ACL, ICE_SID_CDID_KEY_BUILDER_ACL, ICE_SID_CDID_REDIR_ACL }, /* FD */ { ICE_SID_XLT0_FD, ICE_SID_XLT_KEY_BUILDER_FD, ICE_SID_XLT1_FD, ICE_SID_XLT2_FD, ICE_SID_PROFID_TCAM_FD, ICE_SID_PROFID_REDIR_FD, ICE_SID_FLD_VEC_FD, ICE_SID_CDID_KEY_BUILDER_FD, ICE_SID_CDID_REDIR_FD }, /* RSS */ { ICE_SID_XLT0_RSS, ICE_SID_XLT_KEY_BUILDER_RSS, ICE_SID_XLT1_RSS, ICE_SID_XLT2_RSS, ICE_SID_PROFID_TCAM_RSS, ICE_SID_PROFID_REDIR_RSS, ICE_SID_FLD_VEC_RSS, ICE_SID_CDID_KEY_BUILDER_RSS, ICE_SID_CDID_REDIR_RSS }, /* PE */ { ICE_SID_XLT0_PE, ICE_SID_XLT_KEY_BUILDER_PE, ICE_SID_XLT1_PE, ICE_SID_XLT2_PE, ICE_SID_PROFID_TCAM_PE, ICE_SID_PROFID_REDIR_PE, ICE_SID_FLD_VEC_PE, ICE_SID_CDID_KEY_BUILDER_PE, ICE_SID_CDID_REDIR_PE } }; /** * ice_sect_id - returns section ID * @blk: block type * @sect: section type * * This helper function returns the proper section ID given a block type and a * section type. */ static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) { return ice_sect_lkup[blk][sect]; } /** * ice_pkg_val_buf * @buf: pointer to the ice buffer * * This helper function validates a buffer's header. */ static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) { struct ice_buf_hdr *hdr; u16 section_count; u16 data_end; hdr = (struct ice_buf_hdr *)buf->buf; /* verify data */ section_count = le16_to_cpu(hdr->section_count); if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) return NULL; data_end = le16_to_cpu(hdr->data_end); if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) return NULL; return hdr; } /** * ice_find_buf_table * @ice_seg: pointer to the ice segment * * Returns the address of the buffer table within the ice segment. */ static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) { struct ice_nvm_table *nvms; nvms = (struct ice_nvm_table *) (ice_seg->device_table + le32_to_cpu(ice_seg->device_table_count)); return (__force struct ice_buf_table *) (nvms->vers + le32_to_cpu(nvms->table_count)); } /** * ice_pkg_enum_buf * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * * This function will enumerate all the buffers in the ice segment. The first * call is made with the ice_seg parameter non-NULL; on subsequent calls, * ice_seg is set to NULL which continues the enumeration. When the function * returns a NULL pointer, then the end of the buffers has been reached, or an * unexpected value has been detected (for example an invalid section count or * an invalid buffer end value). */ static struct ice_buf_hdr * ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) { if (ice_seg) { state->buf_table = ice_find_buf_table(ice_seg); if (!state->buf_table) return NULL; state->buf_idx = 0; return ice_pkg_val_buf(state->buf_table->buf_array); } if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count)) return ice_pkg_val_buf(state->buf_table->buf_array + state->buf_idx); else return NULL; } /** * ice_pkg_advance_sect * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * * This helper function will advance the section within the ice segment, * also advancing the buffer if needed. */ static bool ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) { if (!ice_seg && !state->buf) return false; if (!ice_seg && state->buf) if (++state->sect_idx < le16_to_cpu(state->buf->section_count)) return true; state->buf = ice_pkg_enum_buf(ice_seg, state); if (!state->buf) return false; /* start of new buffer, reset section index */ state->sect_idx = 0; return true; } /** * ice_pkg_enum_section * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * @sect_type: section type to enumerate * * This function will enumerate all the sections of a particular type in the * ice segment. The first call is made with the ice_seg parameter non-NULL; * on subsequent calls, ice_seg is set to NULL which continues the enumeration. * When the function returns a NULL pointer, then the end of the matching * sections has been reached. */ static void * ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, u32 sect_type) { u16 offset, size; if (ice_seg) state->type = sect_type; if (!ice_pkg_advance_sect(ice_seg, state)) return NULL; /* scan for next matching section */ while (state->buf->section_entry[state->sect_idx].type != cpu_to_le32(state->type)) if (!ice_pkg_advance_sect(NULL, state)) return NULL; /* validate section */ offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) return NULL; size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size); if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) return NULL; /* make sure the section fits in the buffer */ if (offset + size > ICE_PKG_BUF_SIZE) return NULL; state->sect_type = le32_to_cpu(state->buf->section_entry[state->sect_idx].type); /* calc pointer to this section */ state->sect = ((u8 *)state->buf) + le16_to_cpu(state->buf->section_entry[state->sect_idx].offset); return state->sect; } /** * ice_pkg_enum_entry * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) * @state: pointer to the enum state * @sect_type: section type to enumerate * @offset: pointer to variable that receives the offset in the table (optional) * @handler: function that handles access to the entries into the section type * * This function will enumerate all the entries in particular section type in * the ice segment. The first call is made with the ice_seg parameter non-NULL; * on subsequent calls, ice_seg is set to NULL which continues the enumeration. * When the function returns a NULL pointer, then the end of the entries has * been reached. * * Since each section may have a different header and entry size, the handler * function is needed to determine the number and location entries in each * section. * * The offset parameter is optional, but should be used for sections that * contain an offset for each section table. For such cases, the section handler * function must return the appropriate offset + index to give the absolution * offset for each entry. For example, if the base for a section's header * indicates a base offset of 10, and the index for the entry is 2, then * section handler function should set the offset to 10 + 2 = 12. */ static void * ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, u32 sect_type, u32 *offset, void *(*handler)(u32 sect_type, void *section, u32 index, u32 *offset)) { void *entry; if (ice_seg) { if (!handler) return NULL; if (!ice_pkg_enum_section(ice_seg, state, sect_type)) return NULL; state->entry_idx = 0; state->handler = handler; } else { state->entry_idx++; } if (!state->handler) return NULL; /* get entry */ entry = state->handler(state->sect_type, state->sect, state->entry_idx, offset); if (!entry) { /* end of a section, look for another section of this type */ if (!ice_pkg_enum_section(NULL, state, 0)) return NULL; state->entry_idx = 0; entry = state->handler(state->sect_type, state->sect, state->entry_idx, offset); } return entry; } /** * ice_hw_ptype_ena - check if the PTYPE is enabled or not * @hw: pointer to the HW structure * @ptype: the hardware PTYPE */ bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) { return ptype < ICE_FLOW_PTYPE_MAX && test_bit(ptype, hw->hw_ptype); } /** * ice_marker_ptype_tcam_handler * @sect_type: section type * @section: pointer to section * @index: index of the Marker PType TCAM entry to be returned * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections * * This is a callback function that can be passed to ice_pkg_enum_entry. * Handles enumeration of individual Marker PType TCAM entries. */ static void * ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) { struct ice_marker_ptype_tcam_section *marker_ptype; if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE) return NULL; if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF) return NULL; if (offset) *offset = 0; marker_ptype = section; if (index >= le16_to_cpu(marker_ptype->count)) return NULL; return marker_ptype->tcam + index; } /** * ice_fill_hw_ptype - fill the enabled PTYPE bit information * @hw: pointer to the HW structure */ static void ice_fill_hw_ptype(struct ice_hw *hw) { struct ice_marker_ptype_tcam_entry *tcam; struct ice_seg *seg = hw->seg; struct ice_pkg_enum state; bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX); if (!seg) return; memset(&state, 0, sizeof(state)); do { tcam = ice_pkg_enum_entry(seg, &state, ICE_SID_RXPARSER_MARKER_PTYPE, NULL, ice_marker_ptype_tcam_handler); if (tcam && le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX && le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX) set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype); seg = NULL; } while (tcam); } /** * ice_boost_tcam_handler * @sect_type: section type * @section: pointer to section * @index: index of the boost TCAM entry to be returned * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections * * This is a callback function that can be passed to ice_pkg_enum_entry. * Handles enumeration of individual boost TCAM entries. */ static void * ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) { struct ice_boost_tcam_section *boost; if (!section) return NULL; if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) return NULL; /* cppcheck-suppress nullPointer */ if (index > ICE_MAX_BST_TCAMS_IN_BUF) return NULL; if (offset) *offset = 0; boost = section; if (index >= le16_to_cpu(boost->count)) return NULL; return boost->tcam + index; } /** * ice_find_boost_entry * @ice_seg: pointer to the ice segment (non-NULL) * @addr: Boost TCAM address of entry to search for * @entry: returns pointer to the entry * * Finds a particular Boost TCAM entry and returns a pointer to that entry * if it is found. The ice_seg parameter must not be NULL since the first call * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. */ static int ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, struct ice_boost_tcam_entry **entry) { struct ice_boost_tcam_entry *tcam; struct ice_pkg_enum state; memset(&state, 0, sizeof(state)); if (!ice_seg) return -EINVAL; do { tcam = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_RXPARSER_BOOST_TCAM, NULL, ice_boost_tcam_handler); if (tcam && le16_to_cpu(tcam->addr) == addr) { *entry = tcam; return 0; } ice_seg = NULL; } while (tcam); *entry = NULL; return -EIO; } /** * ice_label_enum_handler * @sect_type: section type * @section: pointer to section * @index: index of the label entry to be returned * @offset: pointer to receive absolute offset, always zero for label sections * * This is a callback function that can be passed to ice_pkg_enum_entry. * Handles enumeration of individual label entries. */ static void * ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index, u32 *offset) { struct ice_label_section *labels; if (!section) return NULL; /* cppcheck-suppress nullPointer */ if (index > ICE_MAX_LABELS_IN_BUF) return NULL; if (offset) *offset = 0; labels = section; if (index >= le16_to_cpu(labels->count)) return NULL; return labels->label + index; } /** * ice_enum_labels * @ice_seg: pointer to the ice segment (NULL on subsequent calls) * @type: the section type that will contain the label (0 on subsequent calls) * @state: ice_pkg_enum structure that will hold the state of the enumeration * @value: pointer to a value that will return the label's value if found * * Enumerates a list of labels in the package. The caller will call * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL * the end of the list has been reached. */ static char * ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, u16 *value) { struct ice_label *label; /* Check for valid label section on first call */ if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) return NULL; label = ice_pkg_enum_entry(ice_seg, state, type, NULL, ice_label_enum_handler); if (!label) return NULL; *value = le16_to_cpu(label->value); return label->name; } /** * ice_add_tunnel_hint * @hw: pointer to the HW structure * @label_name: label text * @val: value of the tunnel port boost entry */ static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) { if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { u16 i; for (i = 0; tnls[i].type != TNL_LAST; i++) { size_t len = strlen(tnls[i].label_prefix); /* Look for matching label start, before continuing */ if (strncmp(label_name, tnls[i].label_prefix, len)) continue; /* Make sure this label matches our PF. Note that the PF * character ('0' - '7') will be located where our * prefix string's null terminator is located. */ if ((label_name[len] - '0') == hw->pf_id) { hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; hw->tnl.tbl[hw->tnl.count].valid = false; hw->tnl.tbl[hw->tnl.count].boost_addr = val; hw->tnl.tbl[hw->tnl.count].port = 0; hw->tnl.count++; break; } } } } /** * ice_add_dvm_hint * @hw: pointer to the HW structure * @val: value of the boost entry * @enable: true if entry needs to be enabled, or false if needs to be disabled */ static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable) { if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) { hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val; hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable; hw->dvm_upd.count++; } } /** * ice_init_pkg_hints * @hw: pointer to the HW structure * @ice_seg: pointer to the segment of the package scan (non-NULL) * * This function will scan the package and save off relevant information * (hints or metadata) for driver use. The ice_seg parameter must not be NULL * since the first call to ice_enum_labels requires a pointer to an actual * ice_seg structure. */ static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) { struct ice_pkg_enum state; char *label_name; u16 val; int i; memset(&hw->tnl, 0, sizeof(hw->tnl)); memset(&state, 0, sizeof(state)); if (!ice_seg) return; label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, &val); while (label_name) { if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) /* check for a tunnel entry */ ice_add_tunnel_hint(hw, label_name, val); /* check for a dvm mode entry */ else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE))) ice_add_dvm_hint(hw, val, true); /* check for a svm mode entry */ else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE))) ice_add_dvm_hint(hw, val, false); label_name = ice_enum_labels(NULL, 0, &state, &val); } /* Cache the appropriate boost TCAM entry pointers for tunnels */ for (i = 0; i < hw->tnl.count; i++) { ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, &hw->tnl.tbl[i].boost_entry); if (hw->tnl.tbl[i].boost_entry) { hw->tnl.tbl[i].valid = true; if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT) hw->tnl.valid_count[hw->tnl.tbl[i].type]++; } } /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */ for (i = 0; i < hw->dvm_upd.count; i++) ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr, &hw->dvm_upd.tbl[i].boost_entry); } /* Key creation */ #define ICE_DC_KEY 0x1 /* don't care */ #define ICE_DC_KEYINV 0x1 #define ICE_NM_KEY 0x0 /* never match */ #define ICE_NM_KEYINV 0x0 #define ICE_0_KEY 0x1 /* match 0 */ #define ICE_0_KEYINV 0x0 #define ICE_1_KEY 0x0 /* match 1 */ #define ICE_1_KEYINV 0x1 /** * ice_gen_key_word - generate 16-bits of a key/mask word * @val: the value * @valid: valid bits mask (change only the valid bits) * @dont_care: don't care mask * @nvr_mtch: never match mask * @key: pointer to an array of where the resulting key portion * @key_inv: pointer to an array of where the resulting key invert portion * * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits * of key and 8 bits of key invert. * * '0' = b01, always match a 0 bit * '1' = b10, always match a 1 bit * '?' = b11, don't care bit (always matches) * '~' = b00, never match bit * * Input: * val: b0 1 0 1 0 1 * dont_care: b0 0 1 1 0 0 * never_mtch: b0 0 0 0 1 1 * ------------------------------ * Result: key: b01 10 11 11 00 00 */ static int ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, u8 *key_inv) { u8 in_key = *key, in_key_inv = *key_inv; u8 i; /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) return -EIO; *key = 0; *key_inv = 0; /* encode the 8 bits into 8-bit key and 8-bit key invert */ for (i = 0; i < 8; i++) { *key >>= 1; *key_inv >>= 1; if (!(valid & 0x1)) { /* change only valid bits */ *key |= (in_key & 0x1) << 7; *key_inv |= (in_key_inv & 0x1) << 7; } else if (dont_care & 0x1) { /* don't care bit */ *key |= ICE_DC_KEY << 7; *key_inv |= ICE_DC_KEYINV << 7; } else if (nvr_mtch & 0x1) { /* never match bit */ *key |= ICE_NM_KEY << 7; *key_inv |= ICE_NM_KEYINV << 7; } else if (val & 0x01) { /* exact 1 match */ *key |= ICE_1_KEY << 7; *key_inv |= ICE_1_KEYINV << 7; } else { /* exact 0 match */ *key |= ICE_0_KEY << 7; *key_inv |= ICE_0_KEYINV << 7; } dont_care >>= 1; nvr_mtch >>= 1; valid >>= 1; val >>= 1; in_key >>= 1; in_key_inv >>= 1; } return 0; } /** * ice_bits_max_set - determine if the number of bits set is within a maximum * @mask: pointer to the byte array which is the mask * @size: the number of bytes in the mask * @max: the max number of set bits * * This function determines if there are at most 'max' number of bits set in an * array. Returns true if the number for bits set is <= max or will return false * otherwise. */ static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) { u16 count = 0; u16 i; /* check each byte */ for (i = 0; i < size; i++) { /* if 0, go to next byte */ if (!mask[i]) continue; /* We know there is at least one set bit in this byte because of * the above check; if we already have found 'max' number of * bits set, then we can return failure now. */ if (count == max) return false; /* count the bits in this byte, checking threshold */ count += hweight8(mask[i]); if (count > max) return false; } return true; } /** * ice_set_key - generate a variable sized key with multiples of 16-bits * @key: pointer to where the key will be stored * @size: the size of the complete key in bytes (must be even) * @val: array of 8-bit values that makes up the value portion of the key * @upd: array of 8-bit masks that determine what key portion to update * @dc: array of 8-bit masks that make up the don't care mask * @nm: array of 8-bit masks that make up the never match mask * @off: the offset of the first byte in the key to update * @len: the number of bytes in the key update * * This function generates a key from a value, a don't care mask and a never * match mask. * upd, dc, and nm are optional parameters, and can be NULL: * upd == NULL --> upd mask is all 1's (update all bits) * dc == NULL --> dc mask is all 0's (no don't care bits) * nm == NULL --> nm mask is all 0's (no never match bits) */ static int ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, u16 len) { u16 half_size; u16 i; /* size must be a multiple of 2 bytes. */ if (size % 2) return -EIO; half_size = size / 2; if (off + len > half_size) return -EIO; /* Make sure at most one bit is set in the never match mask. Having more * than one never match mask bit set will cause HW to consume excessive * power otherwise; this is a power management efficiency check. */ #define ICE_NVR_MTCH_BITS_MAX 1 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) return -EIO; for (i = 0; i < len; i++) if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, dc ? dc[i] : 0, nm ? nm[i] : 0, key + off + i, key + half_size + off + i)) return -EIO; return 0; } /** * ice_acquire_global_cfg_lock * @hw: pointer to the HW structure * @access: access type (read or write) * * This function will request ownership of the global config lock for reading * or writing of the package. When attempting to obtain write access, the * caller must check for the following two return values: * * 0 - Means the caller has acquired the global config lock * and can perform writing of the package. * -EALREADY - Indicates another driver has already written the * package or has found that no update was necessary; in * this case, the caller can just skip performing any * update of the package. */ static int ice_acquire_global_cfg_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) { int status; status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, ICE_GLOBAL_CFG_LOCK_TIMEOUT); if (!status) mutex_lock(&ice_global_cfg_lock_sw); else if (status == -EALREADY) ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); return status; } /** * ice_release_global_cfg_lock * @hw: pointer to the HW structure * * This function will release the global config lock. */ static void ice_release_global_cfg_lock(struct ice_hw *hw) { mutex_unlock(&ice_global_cfg_lock_sw); ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); } /** * ice_acquire_change_lock * @hw: pointer to the HW structure * @access: access type (read or write) * * This function will request ownership of the change lock. */ int ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) { return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, ICE_CHANGE_LOCK_TIMEOUT); } /** * ice_release_change_lock * @hw: pointer to the HW structure * * This function will release the change lock using the proper Admin Command. */ void ice_release_change_lock(struct ice_hw *hw) { ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); } /** * ice_aq_download_pkg * @hw: pointer to the hardware structure * @pkg_buf: the package buffer to transfer * @buf_size: the size of the package buffer * @last_buf: last buffer indicator * @error_offset: returns error offset * @error_info: returns error information * @cd: pointer to command details structure or NULL * * Download Package (0x0C40) */ static int ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, bool last_buf, u32 *error_offset, u32 *error_info, struct ice_sq_cd *cd) { struct ice_aqc_download_pkg *cmd; struct ice_aq_desc desc; int status; if (error_offset) *error_offset = 0; if (error_info) *error_info = 0; cmd = &desc.params.download_pkg; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); if (last_buf) cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); if (status == -EIO) { /* Read error from buffer only when the FW returned an error */ struct ice_aqc_download_pkg_resp *resp; resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; if (error_offset) *error_offset = le32_to_cpu(resp->error_offset); if (error_info) *error_info = le32_to_cpu(resp->error_info); } return status; } /** * ice_aq_upload_section * @hw: pointer to the hardware structure * @pkg_buf: the package buffer which will receive the section * @buf_size: the size of the package buffer * @cd: pointer to command details structure or NULL * * Upload Section (0x0C41) */ int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); } /** * ice_aq_update_pkg * @hw: pointer to the hardware structure * @pkg_buf: the package cmd buffer * @buf_size: the size of the package cmd buffer * @last_buf: last buffer indicator * @error_offset: returns error offset * @error_info: returns error information * @cd: pointer to command details structure or NULL * * Update Package (0x0C42) */ static int ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, bool last_buf, u32 *error_offset, u32 *error_info, struct ice_sq_cd *cd) { struct ice_aqc_download_pkg *cmd; struct ice_aq_desc desc; int status; if (error_offset) *error_offset = 0; if (error_info) *error_info = 0; cmd = &desc.params.download_pkg; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); if (last_buf) cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); if (status == -EIO) { /* Read error from buffer only when the FW returned an error */ struct ice_aqc_download_pkg_resp *resp; resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; if (error_offset) *error_offset = le32_to_cpu(resp->error_offset); if (error_info) *error_info = le32_to_cpu(resp->error_info); } return status; } /** * ice_find_seg_in_pkg * @hw: pointer to the hardware structure * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) * @pkg_hdr: pointer to the package header to be searched * * This function searches a package file for a particular segment type. On * success it returns a pointer to the segment header, otherwise it will * return NULL. */ static struct ice_generic_seg_hdr * ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, struct ice_pkg_hdr *pkg_hdr) { u32 i; ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, pkg_hdr->pkg_format_ver.update, pkg_hdr->pkg_format_ver.draft); /* Search all package segments for the requested segment type */ for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) { struct ice_generic_seg_hdr *seg; seg = (struct ice_generic_seg_hdr *) ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i])); if (le32_to_cpu(seg->seg_type) == seg_type) return seg; } return NULL; } /** * ice_update_pkg_no_lock * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @count: the number of buffers in the array */ static int ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) { int status = 0; u32 i; for (i = 0; i < count; i++) { struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); bool last = ((i + 1) == count); u32 offset, info; status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end), last, &offset, &info, NULL); if (status) { ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", status, offset, info); break; } } return status; } /** * ice_update_pkg * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @count: the number of buffers in the array * * Obtains change lock and updates package. */ static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) { int status; status = ice_acquire_change_lock(hw, ICE_RES_WRITE); if (status) return status; status = ice_update_pkg_no_lock(hw, bufs, count); ice_release_change_lock(hw); return status; } static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err) { switch (aq_err) { case ICE_AQ_RC_ENOSEC: case ICE_AQ_RC_EBADSIG: return ICE_DDP_PKG_FILE_SIGNATURE_INVALID; case ICE_AQ_RC_ESVN: return ICE_DDP_PKG_FILE_REVISION_TOO_LOW; case ICE_AQ_RC_EBADMAN: case ICE_AQ_RC_EBADBUF: return ICE_DDP_PKG_LOAD_ERROR; default: return ICE_DDP_PKG_ERR; } } /** * ice_dwnld_cfg_bufs * @hw: pointer to the hardware structure * @bufs: pointer to an array of buffers * @count: the number of buffers in the array * * Obtains global config lock and downloads the package configuration buffers * to the firmware. Metadata buffers are skipped, and the first metadata buffer * found indicates that the rest of the buffers are all metadata buffers. */ static enum ice_ddp_state ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) { enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; struct ice_buf_hdr *bh; enum ice_aq_err err; u32 offset, info, i; int status; if (!bufs || !count) return ICE_DDP_PKG_ERR; /* If the first buffer's first section has its metadata bit set * then there are no buffers to be downloaded, and the operation is * considered a success. */ bh = (struct ice_buf_hdr *)bufs; if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) return ICE_DDP_PKG_SUCCESS; status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); if (status) { if (status == -EALREADY) return ICE_DDP_PKG_ALREADY_LOADED; return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status); } for (i = 0; i < count; i++) { bool last = ((i + 1) == count); if (!last) { /* check next buffer for metadata flag */ bh = (struct ice_buf_hdr *)(bufs + i + 1); /* A set metadata flag in the next buffer will signal * that the current buffer will be the last buffer * downloaded */ if (le16_to_cpu(bh->section_count)) if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF) last = true; } bh = (struct ice_buf_hdr *)(bufs + i); status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, &offset, &info, NULL); /* Save AQ status from download package */ if (status) { ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", status, offset, info); err = hw->adminq.sq_last_status; state = ice_map_aq_err_to_ddp_state(err); break; } if (last) break; } if (!status) { status = ice_set_vlan_mode(hw); if (status) ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", status); } ice_release_global_cfg_lock(hw); return state; } /** * ice_aq_get_pkg_info_list * @hw: pointer to the hardware structure * @pkg_info: the buffer which will receive the information list * @buf_size: the size of the pkg_info information buffer * @cd: pointer to command details structure or NULL * * Get Package Info List (0x0C43) */ static int ice_aq_get_pkg_info_list(struct ice_hw *hw, struct ice_aqc_get_pkg_info_resp *pkg_info, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); } /** * ice_download_pkg * @hw: pointer to the hardware structure * @ice_seg: pointer to the segment of the package to be downloaded * * Handles the download of a complete package. */ static enum ice_ddp_state ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) { struct ice_buf_table *ice_buf_tbl; int status; ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", ice_seg->hdr.seg_format_ver.major, ice_seg->hdr.seg_format_ver.minor, ice_seg->hdr.seg_format_ver.update, ice_seg->hdr.seg_format_ver.draft); ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", le32_to_cpu(ice_seg->hdr.seg_type), le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); ice_buf_tbl = ice_find_buf_table(ice_seg); ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", le32_to_cpu(ice_buf_tbl->buf_count)); status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, le32_to_cpu(ice_buf_tbl->buf_count)); ice_post_pkg_dwnld_vlan_mode_cfg(hw); return status; } /** * ice_init_pkg_info * @hw: pointer to the hardware structure * @pkg_hdr: pointer to the driver's package hdr * * Saves off the package details into the HW structure. */ static enum ice_ddp_state ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) { struct ice_generic_seg_hdr *seg_hdr; if (!pkg_hdr) return ICE_DDP_PKG_ERR; seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr); if (seg_hdr) { struct ice_meta_sect *meta; struct ice_pkg_enum state; memset(&state, 0, sizeof(state)); /* Get package information from the Metadata Section */ meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, ICE_SID_METADATA); if (!meta) { ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); return ICE_DDP_PKG_INVALID_FILE; } hw->pkg_ver = meta->ver; memcpy(hw->pkg_name, meta->name, sizeof(meta->name)); ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", meta->ver.major, meta->ver.minor, meta->ver.update, meta->ver.draft, meta->name); hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; memcpy(hw->ice_seg_id, seg_hdr->seg_id, sizeof(hw->ice_seg_id)); ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", seg_hdr->seg_format_ver.major, seg_hdr->seg_format_ver.minor, seg_hdr->seg_format_ver.update, seg_hdr->seg_format_ver.draft, seg_hdr->seg_id); } else { ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); return ICE_DDP_PKG_INVALID_FILE; } return ICE_DDP_PKG_SUCCESS; } /** * ice_get_pkg_info * @hw: pointer to the hardware structure * * Store details of the package currently loaded in HW into the HW structure. */ static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw) { enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS; struct ice_aqc_get_pkg_info_resp *pkg_info; u16 size; u32 i; size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT); pkg_info = kzalloc(size, GFP_KERNEL); if (!pkg_info) return ICE_DDP_PKG_ERR; if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) { state = ICE_DDP_PKG_ERR; goto init_pkg_free_alloc; } for (i = 0; i < le32_to_cpu(pkg_info->count); i++) { #define ICE_PKG_FLAG_COUNT 4 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; u8 place = 0; if (pkg_info->pkg_info[i].is_active) { flags[place++] = 'A'; hw->active_pkg_ver = pkg_info->pkg_info[i].ver; hw->active_track_id = le32_to_cpu(pkg_info->pkg_info[i].track_id); memcpy(hw->active_pkg_name, pkg_info->pkg_info[i].name, sizeof(pkg_info->pkg_info[i].name)); hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; } if (pkg_info->pkg_info[i].is_active_at_boot) flags[place++] = 'B'; if (pkg_info->pkg_info[i].is_modified) flags[place++] = 'M'; if (pkg_info->pkg_info[i].is_in_nvm) flags[place++] = 'N'; ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", i, pkg_info->pkg_info[i].ver.major, pkg_info->pkg_info[i].ver.minor, pkg_info->pkg_info[i].ver.update, pkg_info->pkg_info[i].ver.draft, pkg_info->pkg_info[i].name, flags); } init_pkg_free_alloc: kfree(pkg_info); return state; } /** * ice_verify_pkg - verify package * @pkg: pointer to the package buffer * @len: size of the package buffer * * Verifies various attributes of the package file, including length, format * version, and the requirement of at least one segment. */ static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) { u32 seg_count; u32 i; if (len < struct_size(pkg, seg_offset, 1)) return ICE_DDP_PKG_INVALID_FILE; if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) return ICE_DDP_PKG_INVALID_FILE; /* pkg must have at least one segment */ seg_count = le32_to_cpu(pkg->seg_count); if (seg_count < 1) return ICE_DDP_PKG_INVALID_FILE; /* make sure segment array fits in package length */ if (len < struct_size(pkg, seg_offset, seg_count)) return ICE_DDP_PKG_INVALID_FILE; /* all segments must fit within length */ for (i = 0; i < seg_count; i++) { u32 off = le32_to_cpu(pkg->seg_offset[i]); struct ice_generic_seg_hdr *seg; /* segment header must fit */ if (len < off + sizeof(*seg)) return ICE_DDP_PKG_INVALID_FILE; seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); /* segment body must fit */ if (len < off + le32_to_cpu(seg->seg_size)) return ICE_DDP_PKG_INVALID_FILE; } return ICE_DDP_PKG_SUCCESS; } /** * ice_free_seg - free package segment pointer * @hw: pointer to the hardware structure * * Frees the package segment pointer in the proper manner, depending on if the * segment was allocated or just the passed in pointer was stored. */ void ice_free_seg(struct ice_hw *hw) { if (hw->pkg_copy) { devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy); hw->pkg_copy = NULL; hw->pkg_size = 0; } hw->seg = NULL; } /** * ice_init_pkg_regs - initialize additional package registers * @hw: pointer to the hardware structure */ static void ice_init_pkg_regs(struct ice_hw *hw) { #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF #define ICE_SW_BLK_IDX 0 /* setup Switch block input mask, which is 48-bits in two parts */ wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); } /** * ice_chk_pkg_version - check package version for compatibility with driver * @pkg_ver: pointer to a version structure to check * * Check to make sure that the package about to be downloaded is compatible with * the driver. To be compatible, the major and minor components of the package * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR * definitions. */ static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) { if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ || (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && pkg_ver->minor > ICE_PKG_SUPP_VER_MNR)) return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH; else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ || (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ && pkg_ver->minor < ICE_PKG_SUPP_VER_MNR)) return ICE_DDP_PKG_FILE_VERSION_TOO_LOW; return ICE_DDP_PKG_SUCCESS; } /** * ice_chk_pkg_compat * @hw: pointer to the hardware structure * @ospkg: pointer to the package hdr * @seg: pointer to the package segment hdr * * This function checks the package version compatibility with driver and NVM */ static enum ice_ddp_state ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, struct ice_seg **seg) { struct ice_aqc_get_pkg_info_resp *pkg; enum ice_ddp_state state; u16 size; u32 i; /* Check package version compatibility */ state = ice_chk_pkg_version(&hw->pkg_ver); if (state) { ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); return state; } /* find ICE segment in given package */ *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, ospkg); if (!*seg) { ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); return ICE_DDP_PKG_INVALID_FILE; } /* Check if FW is compatible with the OS package */ size = struct_size(pkg, pkg_info, ICE_PKG_CNT); pkg = kzalloc(size, GFP_KERNEL); if (!pkg) return ICE_DDP_PKG_ERR; if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) { state = ICE_DDP_PKG_LOAD_ERROR; goto fw_ddp_compat_free_alloc; } for (i = 0; i < le32_to_cpu(pkg->count); i++) { /* loop till we find the NVM package */ if (!pkg->pkg_info[i].is_in_nvm) continue; if ((*seg)->hdr.seg_format_ver.major != pkg->pkg_info[i].ver.major || (*seg)->hdr.seg_format_ver.minor > pkg->pkg_info[i].ver.minor) { state = ICE_DDP_PKG_FW_MISMATCH; ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); } /* done processing NVM package so break */ break; } fw_ddp_compat_free_alloc: kfree(pkg); return state; } /** * ice_sw_fv_handler * @sect_type: section type * @section: pointer to section * @index: index of the field vector entry to be returned * @offset: ptr to variable that receives the offset in the field vector table * * This is a callback function that can be passed to ice_pkg_enum_entry. * This function treats the given section as of type ice_sw_fv_section and * enumerates offset field. "offset" is an index into the field vector table. */ static void * ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) { struct ice_sw_fv_section *fv_section = section; if (!section || sect_type != ICE_SID_FLD_VEC_SW) return NULL; if (index >= le16_to_cpu(fv_section->count)) return NULL; if (offset) /* "index" passed in to this function is relative to a given * 4k block. To get to the true index into the field vector * table need to add the relative index to the base_offset * field of this section */ *offset = le16_to_cpu(fv_section->base_offset) + index; return fv_section->fv + index; } /** * ice_get_prof_index_max - get the max profile index for used profile * @hw: pointer to the HW struct * * Calling this function will get the max profile index for used profile * and store the index number in struct ice_switch_info *switch_info * in HW for following use. */ static int ice_get_prof_index_max(struct ice_hw *hw) { u16 prof_index = 0, j, max_prof_index = 0; struct ice_pkg_enum state; struct ice_seg *ice_seg; bool flag = false; struct ice_fv *fv; u32 offset; memset(&state, 0, sizeof(state)); if (!hw->seg) return -EINVAL; ice_seg = hw->seg; do { fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &offset, ice_sw_fv_handler); if (!fv) break; ice_seg = NULL; /* in the profile that not be used, the prot_id is set to 0xff * and the off is set to 0x1ff for all the field vectors. */ for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) if (fv->ew[j].prot_id != ICE_PROT_INVALID || fv->ew[j].off != ICE_FV_OFFSET_INVAL) flag = true; if (flag && prof_index > max_prof_index) max_prof_index = prof_index; prof_index++; flag = false; } while (fv); hw->switch_info->max_used_prof_index = max_prof_index; return 0; } /** * ice_get_ddp_pkg_state - get DDP pkg state after download * @hw: pointer to the HW struct * @already_loaded: indicates if pkg was already loaded onto the device */ static enum ice_ddp_state ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded) { if (hw->pkg_ver.major == hw->active_pkg_ver.major && hw->pkg_ver.minor == hw->active_pkg_ver.minor && hw->pkg_ver.update == hw->active_pkg_ver.update && hw->pkg_ver.draft == hw->active_pkg_ver.draft && !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) { if (already_loaded) return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED; else return ICE_DDP_PKG_SUCCESS; } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED; } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED; } else { return ICE_DDP_PKG_ERR; } } /** * ice_init_pkg - initialize/download package * @hw: pointer to the hardware structure * @buf: pointer to the package buffer * @len: size of the package buffer * * This function initializes a package. The package contains HW tables * required to do packet processing. First, the function extracts package * information such as version. Then it finds the ice configuration segment * within the package; this function then saves a copy of the segment pointer * within the supplied package buffer. Next, the function will cache any hints * from the package, followed by downloading the package itself. Note, that if * a previous PF driver has already downloaded the package successfully, then * the current driver will not have to download the package again. * * The local package contents will be used to query default behavior and to * update specific sections of the HW's version of the package (e.g. to update * the parse graph to understand new protocols). * * This function stores a pointer to the package buffer memory, and it is * expected that the supplied buffer will not be freed immediately. If the * package buffer needs to be freed, such as when read from a file, use * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this * case. */ enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) { bool already_loaded = false; enum ice_ddp_state state; struct ice_pkg_hdr *pkg; struct ice_seg *seg; if (!buf || !len) return ICE_DDP_PKG_ERR; pkg = (struct ice_pkg_hdr *)buf; state = ice_verify_pkg(pkg, len); if (state) { ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", state); return state; } /* initialize package info */ state = ice_init_pkg_info(hw, pkg); if (state) return state; /* before downloading the package, check package version for * compatibility with driver */ state = ice_chk_pkg_compat(hw, pkg, &seg); if (state) return state; /* initialize package hints and then download package */ ice_init_pkg_hints(hw, seg); state = ice_download_pkg(hw, seg); if (state == ICE_DDP_PKG_ALREADY_LOADED) { ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); already_loaded = true; } /* Get information on the package currently loaded in HW, then make sure * the driver is compatible with this version. */ if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) { state = ice_get_pkg_info(hw); if (!state) state = ice_get_ddp_pkg_state(hw, already_loaded); } if (ice_is_init_pkg_successful(state)) { hw->seg = seg; /* on successful package download update other required * registers to support the package and fill HW tables * with package content. */ ice_init_pkg_regs(hw); ice_fill_blk_tbls(hw); ice_fill_hw_ptype(hw); ice_get_prof_index_max(hw); } else { ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", state); } return state; } /** * ice_copy_and_init_pkg - initialize/download a copy of the package * @hw: pointer to the hardware structure * @buf: pointer to the package buffer * @len: size of the package buffer * * This function copies the package buffer, and then calls ice_init_pkg() to * initialize the copied package contents. * * The copying is necessary if the package buffer supplied is constant, or if * the memory may disappear shortly after calling this function. * * If the package buffer resides in the data segment and can be modified, the * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). * * However, if the package buffer needs to be copied first, such as when being * read from a file, the caller should use ice_copy_and_init_pkg(). * * This function will first copy the package buffer, before calling * ice_init_pkg(). The caller is free to immediately destroy the original * package buffer, as the new copy will be managed by this function and * related routines. */ enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) { enum ice_ddp_state state; u8 *buf_copy; if (!buf || !len) return ICE_DDP_PKG_ERR; buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL); state = ice_init_pkg(hw, buf_copy, len); if (!ice_is_init_pkg_successful(state)) { /* Free the copy, since we failed to initialize the package */ devm_kfree(ice_hw_to_dev(hw), buf_copy); } else { /* Track the copied pkg so we can free it later */ hw->pkg_copy = buf_copy; hw->pkg_size = len; } return state; } /** * ice_is_init_pkg_successful - check if DDP init was successful * @state: state of the DDP pkg after download */ bool ice_is_init_pkg_successful(enum ice_ddp_state state) { switch (state) { case ICE_DDP_PKG_SUCCESS: case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: return true; default: return false; } } /** * ice_pkg_buf_alloc * @hw: pointer to the HW structure * * Allocates a package buffer and returns a pointer to the buffer header. * Note: all package contents must be in Little Endian form. */ static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) { struct ice_buf_build *bld; struct ice_buf_hdr *buf; bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL); if (!bld) return NULL; buf = (struct ice_buf_hdr *)bld; buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr, section_entry)); return bld; } static bool ice_is_gtp_u_profile(u16 prof_idx) { return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID && prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) || prof_idx == ICE_PROFID_IPV4_GTPU_TEID; } static bool ice_is_gtp_c_profile(u16 prof_idx) { switch (prof_idx) { case ICE_PROFID_IPV4_GTPC_TEID: case ICE_PROFID_IPV4_GTPC_NO_TEID: case ICE_PROFID_IPV6_GTPC_TEID: case ICE_PROFID_IPV6_GTPC_NO_TEID: return true; default: return false; } } /** * ice_get_sw_prof_type - determine switch profile type * @hw: pointer to the HW structure * @fv: pointer to the switch field vector * @prof_idx: profile index to check */ static enum ice_prof_type ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx) { u16 i; if (ice_is_gtp_c_profile(prof_idx)) return ICE_PROF_TUN_GTPC; if (ice_is_gtp_u_profile(prof_idx)) return ICE_PROF_TUN_GTPU; for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && fv->ew[i].off == ICE_VNI_OFFSET) return ICE_PROF_TUN_UDP; /* GRE tunnel will have GRE protocol */ if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) return ICE_PROF_TUN_GRE; } return ICE_PROF_NON_TUN; } /** * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type * @hw: pointer to hardware structure * @req_profs: type of profiles requested * @bm: pointer to memory for returning the bitmap of field vectors */ void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, unsigned long *bm) { struct ice_pkg_enum state; struct ice_seg *ice_seg; struct ice_fv *fv; if (req_profs == ICE_PROF_ALL) { bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); return; } memset(&state, 0, sizeof(state)); bitmap_zero(bm, ICE_MAX_NUM_PROFILES); ice_seg = hw->seg; do { enum ice_prof_type prof_type; u32 offset; fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &offset, ice_sw_fv_handler); ice_seg = NULL; if (fv) { /* Determine field vector type */ prof_type = ice_get_sw_prof_type(hw, fv, offset); if (req_profs & prof_type) set_bit((u16)offset, bm); } } while (fv); } /** * ice_get_sw_fv_list * @hw: pointer to the HW structure * @lkups: list of protocol types * @bm: bitmap of field vectors to consider * @fv_list: Head of a list * * Finds all the field vector entries from switch block that contain * a given protocol ID and offset and returns a list of structures of type * "ice_sw_fv_list_entry". Every structure in the list has a field vector * definition and profile ID information * NOTE: The caller of the function is responsible for freeing the memory * allocated for every list entry. */ int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups, unsigned long *bm, struct list_head *fv_list) { struct ice_sw_fv_list_entry *fvl; struct ice_sw_fv_list_entry *tmp; struct ice_pkg_enum state; struct ice_seg *ice_seg; struct ice_fv *fv; u32 offset; memset(&state, 0, sizeof(state)); if (!lkups->n_val_words || !hw->seg) return -EINVAL; ice_seg = hw->seg; do { u16 i; fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &offset, ice_sw_fv_handler); if (!fv) break; ice_seg = NULL; /* If field vector is not in the bitmap list, then skip this * profile. */ if (!test_bit((u16)offset, bm)) continue; for (i = 0; i < lkups->n_val_words; i++) { int j; for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) if (fv->ew[j].prot_id == lkups->fv_words[i].prot_id && fv->ew[j].off == lkups->fv_words[i].off) break; if (j >= hw->blk[ICE_BLK_SW].es.fvw) break; if (i + 1 == lkups->n_val_words) { fvl = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fvl), GFP_KERNEL); if (!fvl) goto err; fvl->fv_ptr = fv; fvl->profile_id = offset; list_add(&fvl->list_entry, fv_list); break; } } } while (fv); if (list_empty(fv_list)) return -EIO; return 0; err: list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) { list_del(&fvl->list_entry); devm_kfree(ice_hw_to_dev(hw), fvl); } return -ENOMEM; } /** * ice_init_prof_result_bm - Initialize the profile result index bitmap * @hw: pointer to hardware structure */ void ice_init_prof_result_bm(struct ice_hw *hw) { struct ice_pkg_enum state; struct ice_seg *ice_seg; struct ice_fv *fv; memset(&state, 0, sizeof(state)); if (!hw->seg) return; ice_seg = hw->seg; do { u32 off; u16 i; fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, &off, ice_sw_fv_handler); ice_seg = NULL; if (!fv) break; bitmap_zero(hw->switch_info->prof_res_bm[off], ICE_MAX_FV_WORDS); /* Determine empty field vector indices, these can be * used for recipe results. Skip index 0, since it is * always used for Switch ID. */ for (i = 1; i < ICE_MAX_FV_WORDS; i++) if (fv->ew[i].prot_id == ICE_PROT_INVALID && fv->ew[i].off == ICE_FV_OFFSET_INVAL) set_bit(i, hw->switch_info->prof_res_bm[off]); } while (fv); } /** * ice_pkg_buf_free * @hw: pointer to the HW structure * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Frees a package buffer */ void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) { devm_kfree(ice_hw_to_dev(hw), bld); } /** * ice_pkg_buf_reserve_section * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * @count: the number of sections to reserve * * Reserves one or more section table entries in a package buffer. This routine * can be called multiple times as long as they are made before calling * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() * is called once, the number of sections that can be allocated will not be able * to be increased; not using all reserved sections is fine, but this will * result in some wasted space in the buffer. * Note: all package contents must be in Little Endian form. */ static int ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) { struct ice_buf_hdr *buf; u16 section_count; u16 data_end; if (!bld) return -EINVAL; buf = (struct ice_buf_hdr *)&bld->buf; /* already an active section, can't increase table size */ section_count = le16_to_cpu(buf->section_count); if (section_count > 0) return -EIO; if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) return -EIO; bld->reserved_section_table_entries += count; data_end = le16_to_cpu(buf->data_end) + flex_array_size(buf, section_entry, count); buf->data_end = cpu_to_le16(data_end); return 0; } /** * ice_pkg_buf_alloc_section * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * @type: the section type value * @size: the size of the section to reserve (in bytes) * * Reserves memory in the buffer for a section's content and updates the * buffers' status accordingly. This routine returns a pointer to the first * byte of the section start within the buffer, which is used to fill in the * section contents. * Note: all package contents must be in Little Endian form. */ static void * ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) { struct ice_buf_hdr *buf; u16 sect_count; u16 data_end; if (!bld || !type || !size) return NULL; buf = (struct ice_buf_hdr *)&bld->buf; /* check for enough space left in buffer */ data_end = le16_to_cpu(buf->data_end); /* section start must align on 4 byte boundary */ data_end = ALIGN(data_end, 4); if ((data_end + size) > ICE_MAX_S_DATA_END) return NULL; /* check for more available section table entries */ sect_count = le16_to_cpu(buf->section_count); if (sect_count < bld->reserved_section_table_entries) { void *section_ptr = ((u8 *)buf) + data_end; buf->section_entry[sect_count].offset = cpu_to_le16(data_end); buf->section_entry[sect_count].size = cpu_to_le16(size); buf->section_entry[sect_count].type = cpu_to_le32(type); data_end += size; buf->data_end = cpu_to_le16(data_end); buf->section_count = cpu_to_le16(sect_count + 1); return section_ptr; } /* no free section table entries */ return NULL; } /** * ice_pkg_buf_alloc_single_section * @hw: pointer to the HW structure * @type: the section type value * @size: the size of the section to reserve (in bytes) * @section: returns pointer to the section * * Allocates a package buffer with a single section. * Note: all package contents must be in Little Endian form. */ struct ice_buf_build * ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, void **section) { struct ice_buf_build *buf; if (!section) return NULL; buf = ice_pkg_buf_alloc(hw); if (!buf) return NULL; if (ice_pkg_buf_reserve_section(buf, 1)) goto ice_pkg_buf_alloc_single_section_err; *section = ice_pkg_buf_alloc_section(buf, type, size); if (!*section) goto ice_pkg_buf_alloc_single_section_err; return buf; ice_pkg_buf_alloc_single_section_err: ice_pkg_buf_free(hw, buf); return NULL; } /** * ice_pkg_buf_get_active_sections * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Returns the number of active sections. Before using the package buffer * in an update package command, the caller should make sure that there is at * least one active section - otherwise, the buffer is not legal and should * not be used. * Note: all package contents must be in Little Endian form. */ static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) { struct ice_buf_hdr *buf; if (!bld) return 0; buf = (struct ice_buf_hdr *)&bld->buf; return le16_to_cpu(buf->section_count); } /** * ice_pkg_buf * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) * * Return a pointer to the buffer's header */ struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) { if (!bld) return NULL; return &bld->buf; } /** * ice_get_open_tunnel_port - retrieve an open tunnel port * @hw: pointer to the HW structure * @port: returns open port * @type: type of tunnel, can be TNL_LAST if it doesn't matter */ bool ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, enum ice_tunnel_type type) { bool res = false; u16 i; mutex_lock(&hw->tnl_lock); for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { *port = hw->tnl.tbl[i].port; res = true; break; } mutex_unlock(&hw->tnl_lock); return res; } /** * ice_upd_dvm_boost_entry * @hw: pointer to the HW structure * @entry: pointer to double vlan boost entry info */ static int ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry) { struct ice_boost_tcam_section *sect_rx, *sect_tx; int status = -ENOSPC; struct ice_buf_build *bld; u8 val, dc, nm; bld = ice_pkg_buf_alloc(hw); if (!bld) return -ENOMEM; /* allocate 2 sections, one for Rx parser, one for Tx parser */ if (ice_pkg_buf_reserve_section(bld, 2)) goto ice_upd_dvm_boost_entry_err; sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, struct_size(sect_rx, tcam, 1)); if (!sect_rx) goto ice_upd_dvm_boost_entry_err; sect_rx->count = cpu_to_le16(1); sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, struct_size(sect_tx, tcam, 1)); if (!sect_tx) goto ice_upd_dvm_boost_entry_err; sect_tx->count = cpu_to_le16(1); /* copy original boost entry to update package buffer */ memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam)); /* re-write the don't care and never match bits accordingly */ if (entry->enable) { /* all bits are don't care */ val = 0x00; dc = 0xFF; nm = 0x00; } else { /* disable, one never match bit, the rest are don't care */ val = 0x00; dc = 0xF7; nm = 0x08; } ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), &val, NULL, &dc, &nm, 0, sizeof(u8)); /* exact copy of entry to Tx section entry */ memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1); ice_upd_dvm_boost_entry_err: ice_pkg_buf_free(hw, bld); return status; } /** * ice_set_dvm_boost_entries * @hw: pointer to the HW structure * * Enable double vlan by updating the appropriate boost tcam entries. */ int ice_set_dvm_boost_entries(struct ice_hw *hw) { int status; u16 i; for (i = 0; i < hw->dvm_upd.count; i++) { status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]); if (status) return status; } return 0; } /** * ice_tunnel_idx_to_entry - convert linear index to the sparse one * @hw: pointer to the HW structure * @type: type of tunnel * @idx: linear index * * Stack assumes we have 2 linear tables with indexes [0, count_valid), * but really the port table may be sprase, and types are mixed, so convert * the stack index into the device index. */ static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, u16 idx) { u16 i; for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].type == type && idx-- == 0) return i; WARN_ON_ONCE(1); return 0; } /** * ice_create_tunnel * @hw: pointer to the HW structure * @index: device table entry * @type: type of tunnel * @port: port of tunnel to create * * Create a tunnel by updating the parse graph in the parser. We do that by * creating a package buffer with the tunnel info and issuing an update package * command. */ static int ice_create_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, u16 port) { struct ice_boost_tcam_section *sect_rx, *sect_tx; struct ice_buf_build *bld; int status = -ENOSPC; mutex_lock(&hw->tnl_lock); bld = ice_pkg_buf_alloc(hw); if (!bld) { status = -ENOMEM; goto ice_create_tunnel_end; } /* allocate 2 sections, one for Rx parser, one for Tx parser */ if (ice_pkg_buf_reserve_section(bld, 2)) goto ice_create_tunnel_err; sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, struct_size(sect_rx, tcam, 1)); if (!sect_rx) goto ice_create_tunnel_err; sect_rx->count = cpu_to_le16(1); sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, struct_size(sect_tx, tcam, 1)); if (!sect_tx) goto ice_create_tunnel_err; sect_tx->count = cpu_to_le16(1); /* copy original boost entry to update package buffer */ memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, sizeof(*sect_rx->tcam)); /* over-write the never-match dest port key bits with the encoded port * bits */ ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), (u8 *)&port, NULL, NULL, NULL, (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); /* exact copy of entry to Tx section entry */ memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); if (!status) hw->tnl.tbl[index].port = port; ice_create_tunnel_err: ice_pkg_buf_free(hw, bld); ice_create_tunnel_end: mutex_unlock(&hw->tnl_lock); return status; } /** * ice_destroy_tunnel * @hw: pointer to the HW structure * @index: device table entry * @type: type of tunnel * @port: port of tunnel to destroy (ignored if the all parameter is true) * * Destroys a tunnel or all tunnels by creating an update package buffer * targeting the specific updates requested and then performing an update * package. */ static int ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, u16 port) { struct ice_boost_tcam_section *sect_rx, *sect_tx; struct ice_buf_build *bld; int status = -ENOSPC; mutex_lock(&hw->tnl_lock); if (WARN_ON(!hw->tnl.tbl[index].valid || hw->tnl.tbl[index].type != type || hw->tnl.tbl[index].port != port)) { status = -EIO; goto ice_destroy_tunnel_end; } bld = ice_pkg_buf_alloc(hw); if (!bld) { status = -ENOMEM; goto ice_destroy_tunnel_end; } /* allocate 2 sections, one for Rx parser, one for Tx parser */ if (ice_pkg_buf_reserve_section(bld, 2)) goto ice_destroy_tunnel_err; sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, struct_size(sect_rx, tcam, 1)); if (!sect_rx) goto ice_destroy_tunnel_err; sect_rx->count = cpu_to_le16(1); sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, struct_size(sect_tx, tcam, 1)); if (!sect_tx) goto ice_destroy_tunnel_err; sect_tx->count = cpu_to_le16(1); /* copy original boost entry to update package buffer, one copy to Rx * section, another copy to the Tx section */ memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, sizeof(*sect_rx->tcam)); memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, sizeof(*sect_tx->tcam)); status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); if (!status) hw->tnl.tbl[index].port = 0; ice_destroy_tunnel_err: ice_pkg_buf_free(hw, bld); ice_destroy_tunnel_end: mutex_unlock(&hw->tnl_lock); return status; } int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; enum ice_tunnel_type tnl_type; int status; u16 index; tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); if (status) { netdev_err(netdev, "Error adding UDP tunnel - %d\n", status); return -EIO; } udp_tunnel_nic_set_port_priv(netdev, table, idx, index); return 0; } int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; enum ice_tunnel_type tnl_type; int status; tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, ntohs(ti->port)); if (status) { netdev_err(netdev, "Error removing UDP tunnel - %d\n", status); return -EIO; } return 0; } /** * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index * @hw: pointer to the hardware structure * @blk: hardware block * @prof: profile ID * @fv_idx: field vector word index * @prot: variable to receive the protocol ID * @off: variable to receive the protocol offset */ int ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, u8 *prot, u16 *off) { struct ice_fv_word *fv_ext; if (prof >= hw->blk[blk].es.count) return -EINVAL; if (fv_idx >= hw->blk[blk].es.fvw) return -EINVAL; fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); *prot = fv_ext[fv_idx].prot_id; *off = fv_ext[fv_idx].off; return 0; } /* PTG Management */ /** * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) * @hw: pointer to the hardware structure * @blk: HW block * @ptype: the ptype to search for * @ptg: pointer to variable that receives the PTG * * This function will search the PTGs for a particular ptype, returning the * PTG ID that contains it through the PTG parameter, with the value of * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. */ static int ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) { if (ptype >= ICE_XLT1_CNT || !ptg) return -EINVAL; *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; return 0; } /** * ice_ptg_alloc_val - Allocates a new packet type group ID by value * @hw: pointer to the hardware structure * @blk: HW block * @ptg: the PTG to allocate * * This function allocates a given packet type group ID specified by the PTG * parameter. */ static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) { hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; } /** * ice_ptg_remove_ptype - Removes ptype from a particular packet type group * @hw: pointer to the hardware structure * @blk: HW block * @ptype: the ptype to remove * @ptg: the PTG to remove the ptype from * * This function will remove the ptype from the specific PTG, and move it to * the default PTG (ICE_DEFAULT_PTG). */ static int ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) { struct ice_ptg_ptype **ch; struct ice_ptg_ptype *p; if (ptype > ICE_XLT1_CNT - 1) return -EINVAL; if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) return -ENOENT; /* Should not happen if .in_use is set, bad config */ if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) return -EIO; /* find the ptype within this PTG, and bypass the link over it */ p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; while (p) { if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { *ch = p->next_ptype; break; } ch = &p->next_ptype; p = p->next_ptype; } hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; return 0; } /** * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group * @hw: pointer to the hardware structure * @blk: HW block * @ptype: the ptype to add or move * @ptg: the PTG to add or move the ptype to * * This function will either add or move a ptype to a particular PTG depending * on if the ptype is already part of another group. Note that using a * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the * default PTG. */ static int ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) { u8 original_ptg; int status; if (ptype > ICE_XLT1_CNT - 1) return -EINVAL; if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) return -ENOENT; status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); if (status) return status; /* Is ptype already in the correct PTG? */ if (original_ptg == ptg) return 0; /* Remove from original PTG and move back to the default PTG */ if (original_ptg != ICE_DEFAULT_PTG) ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); /* Moving to default PTG? Then we're done with this request */ if (ptg == ICE_DEFAULT_PTG) return 0; /* Add ptype to PTG at beginning of list */ hw->blk[blk].xlt1.ptypes[ptype].next_ptype = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = &hw->blk[blk].xlt1.ptypes[ptype]; hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; hw->blk[blk].xlt1.t[ptype] = ptg; return 0; } /* Block / table size info */ struct ice_blk_size_details { u16 xlt1; /* # XLT1 entries */ u16 xlt2; /* # XLT2 entries */ u16 prof_tcam; /* # profile ID TCAM entries */ u16 prof_id; /* # profile IDs */ u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ u16 prof_redir; /* # profile redirection entries */ u16 es; /* # extraction sequence entries */ u16 fvw; /* # field vector words */ u8 overwrite; /* overwrite existing entries allowed */ u8 reverse; /* reverse FV order */ }; static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { /** * Table Definitions * XLT1 - Number of entries in XLT1 table * XLT2 - Number of entries in XLT2 table * TCAM - Number of entries Profile ID TCAM table * CDID - Control Domain ID of the hardware block * PRED - Number of entries in the Profile Redirection Table * FV - Number of entries in the Field Vector * FVW - Width (in WORDs) of the Field Vector * OVR - Overwrite existing table entries * REV - Reverse FV */ /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ /* Overwrite , Reverse FV */ /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, false, false }, /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, false, false }, /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, false, true }, /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, true, true }, /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, false, false }, }; enum ice_sid_all { ICE_SID_XLT1_OFF = 0, ICE_SID_XLT2_OFF, ICE_SID_PR_OFF, ICE_SID_PR_REDIR_OFF, ICE_SID_ES_OFF, ICE_SID_OFF_COUNT, }; /* Characteristic handling */ /** * ice_match_prop_lst - determine if properties of two lists match * @list1: first properties list * @list2: second properties list * * Count, cookies and the order must match in order to be considered equivalent. */ static bool ice_match_prop_lst(struct list_head *list1, struct list_head *list2) { struct ice_vsig_prof *tmp1; struct ice_vsig_prof *tmp2; u16 chk_count = 0; u16 count = 0; /* compare counts */ list_for_each_entry(tmp1, list1, list) count++; list_for_each_entry(tmp2, list2, list) chk_count++; /* cppcheck-suppress knownConditionTrueFalse */ if (!count || count != chk_count) return false; tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); /* profile cookies must compare, and in the exact same order to take * into account priority */ while (count--) { if (tmp2->profile_cookie != tmp1->profile_cookie) return false; tmp1 = list_next_entry(tmp1, list); tmp2 = list_next_entry(tmp2, list); } return true; } /* VSIG Management */ /** * ice_vsig_find_vsi - find a VSIG that contains a specified VSI * @hw: pointer to the hardware structure * @blk: HW block * @vsi: VSI of interest * @vsig: pointer to receive the VSI group * * This function will lookup the VSI entry in the XLT2 list and return * the VSI group its associated with. */ static int ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) { if (!vsig || vsi >= ICE_MAX_VSI) return -EINVAL; /* As long as there's a default or valid VSIG associated with the input * VSI, the functions returns a success. Any handling of VSIG will be * done by the following add, update or remove functions. */ *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; return 0; } /** * ice_vsig_alloc_val - allocate a new VSIG by value * @hw: pointer to the hardware structure * @blk: HW block * @vsig: the VSIG to allocate * * This function will allocate a given VSIG specified by the VSIG parameter. */ static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) { u16 idx = vsig & ICE_VSIG_IDX_M; if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; } return ICE_VSIG_VALUE(idx, hw->pf_id); } /** * ice_vsig_alloc - Finds a free entry and allocates a new VSIG * @hw: pointer to the hardware structure * @blk: HW block * * This function will iterate through the VSIG list and mark the first * unused entry for the new VSIG entry as used and return that value. */ static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) { u16 i; for (i = 1; i < ICE_MAX_VSIGS; i++) if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) return ice_vsig_alloc_val(hw, blk, i); return ICE_DEFAULT_VSIG; } /** * ice_find_dup_props_vsig - find VSI group with a specified set of properties * @hw: pointer to the hardware structure * @blk: HW block * @chs: characteristic list * @vsig: returns the VSIG with the matching profiles, if found * * Each VSIG is associated with a characteristic set; i.e. all VSIs under * a group have the same characteristic set. To check if there exists a VSIG * which has the same characteristics as the input characteristics; this * function will iterate through the XLT2 list and return the VSIG that has a * matching configuration. In order to make sure that priorities are accounted * for, the list must match exactly, including the order in which the * characteristics are listed. */ static int ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, struct list_head *chs, u16 *vsig) { struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; u16 i; for (i = 0; i < xlt2->count; i++) if (xlt2->vsig_tbl[i].in_use && ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { *vsig = ICE_VSIG_VALUE(i, hw->pf_id); return 0; } return -ENOENT; } /** * ice_vsig_free - free VSI group * @hw: pointer to the hardware structure * @blk: HW block * @vsig: VSIG to remove * * The function will remove all VSIs associated with the input VSIG and move * them to the DEFAULT_VSIG and mark the VSIG available. */ static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) { struct ice_vsig_prof *dtmp, *del; struct ice_vsig_vsi *vsi_cur; u16 idx; idx = vsig & ICE_VSIG_IDX_M; if (idx >= ICE_MAX_VSIGS) return -EINVAL; if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) return -ENOENT; hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; /* If the VSIG has at least 1 VSI then iterate through the * list and remove the VSIs before deleting the group. */ if (vsi_cur) { /* remove all vsis associated with this VSIG XLT2 entry */ do { struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; vsi_cur->vsig = ICE_DEFAULT_VSIG; vsi_cur->changed = 1; vsi_cur->next_vsi = NULL; vsi_cur = tmp; } while (vsi_cur); /* NULL terminate head of VSI list */ hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; } /* free characteristic list */ list_for_each_entry_safe(del, dtmp, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) { list_del(&del->list); devm_kfree(ice_hw_to_dev(hw), del); } /* if VSIG characteristic list was cleared for reset * re-initialize the list head */ INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); return 0; } /** * ice_vsig_remove_vsi - remove VSI from VSIG * @hw: pointer to the hardware structure * @blk: HW block * @vsi: VSI to remove * @vsig: VSI group to remove from * * The function will remove the input VSI from its VSI group and move it * to the DEFAULT_VSIG. */ static int ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) { struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; u16 idx; idx = vsig & ICE_VSIG_IDX_M; if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) return -EINVAL; if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) return -ENOENT; /* entry already in default VSIG, don't have to remove */ if (idx == ICE_DEFAULT_VSIG) return 0; vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; if (!(*vsi_head)) return -EIO; vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; vsi_cur = (*vsi_head); /* iterate the VSI list, skip over the entry to be removed */ while (vsi_cur) { if (vsi_tgt == vsi_cur) { (*vsi_head) = vsi_cur->next_vsi; break; } vsi_head = &vsi_cur->next_vsi; vsi_cur = vsi_cur->next_vsi; } /* verify if VSI was removed from group list */ if (!vsi_cur) return -ENOENT; vsi_cur->vsig = ICE_DEFAULT_VSIG; vsi_cur->changed = 1; vsi_cur->next_vsi = NULL; return 0; } /** * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group * @hw: pointer to the hardware structure * @blk: HW block * @vsi: VSI to move * @vsig: destination VSI group * * This function will move or add the input VSI to the target VSIG. * The function will find the original VSIG the VSI belongs to and * move the entry to the DEFAULT_VSIG, update the original VSIG and * then move entry to the new VSIG. */ static int ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) { struct ice_vsig_vsi *tmp; u16 orig_vsig, idx; int status; idx = vsig & ICE_VSIG_IDX_M; if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) return -EINVAL; /* if VSIG not in use and VSIG is not default type this VSIG * doesn't exist. */ if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && vsig != ICE_DEFAULT_VSIG) return -ENOENT; status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); if (status) return status; /* no update required if vsigs match */ if (orig_vsig == vsig) return 0; if (orig_vsig != ICE_DEFAULT_VSIG) { /* remove entry from orig_vsig and add to default VSIG */ status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); if (status) return status; } if (idx == ICE_DEFAULT_VSIG) return 0; /* Create VSI entry and add VSIG and prop_mask values */ hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; hw->blk[blk].xlt2.vsis[vsi].changed = 1; /* Add new entry to the head of the VSIG list */ tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = &hw->blk[blk].xlt2.vsis[vsi]; hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; hw->blk[blk].xlt2.t[vsi] = vsig; return 0; } /** * ice_prof_has_mask_idx - determine if profile index masking is identical * @hw: pointer to the hardware structure * @blk: HW block * @prof: profile to check * @idx: profile index to check * @mask: mask to match */ static bool ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, u16 mask) { bool expect_no_mask = false; bool found = false; bool match = false; u16 i; /* If mask is 0x0000 or 0xffff, then there is no masking */ if (mask == 0 || mask == 0xffff) expect_no_mask = true; /* Scan the enabled masks on this profile, for the specified idx */ for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) if (hw->blk[blk].masks.masks[i].in_use && hw->blk[blk].masks.masks[i].idx == idx) { found = true; if (hw->blk[blk].masks.masks[i].mask == mask) match = true; break; } if (expect_no_mask) { if (found) return false; } else { if (!match) return false; } return true; } /** * ice_prof_has_mask - determine if profile masking is identical * @hw: pointer to the hardware structure * @blk: HW block * @prof: profile to check * @masks: masks to match */ static bool ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) { u16 i; /* es->mask_ena[prof] will have the mask */ for (i = 0; i < hw->blk[blk].es.fvw; i++) if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) return false; return true; } /** * ice_find_prof_id_with_mask - find profile ID for a given field vector * @hw: pointer to the hardware structure * @blk: HW block * @fv: field vector to search for * @masks: masks for FV * @prof_id: receives the profile ID */ static int ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, struct ice_fv_word *fv, u16 *masks, u8 *prof_id) { struct ice_es *es = &hw->blk[blk].es; u8 i; /* For FD, we don't want to re-use a existed profile with the same * field vector and mask. This will cause rule interference. */ if (blk == ICE_BLK_FD) return -ENOENT; for (i = 0; i < (u8)es->count; i++) { u16 off = i * es->fvw; if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) continue; /* check if masks settings are the same for this profile */ if (masks && !ice_prof_has_mask(hw, blk, i, masks)) continue; *prof_id = i; return 0; } return -ENOENT; } /** * ice_prof_id_rsrc_type - get profile ID resource type for a block type * @blk: the block type * @rsrc_type: pointer to variable to receive the resource type */ static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) { switch (blk) { case ICE_BLK_FD: *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; break; case ICE_BLK_RSS: *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; break; default: return false; } return true; } /** * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type * @blk: the block type * @rsrc_type: pointer to variable to receive the resource type */ static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) { switch (blk) { case ICE_BLK_FD: *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; break; case ICE_BLK_RSS: *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; break; default: return false; } return true; } /** * ice_alloc_tcam_ent - allocate hardware TCAM entry * @hw: pointer to the HW struct * @blk: the block to allocate the TCAM for * @btm: true to allocate from bottom of table, false to allocate from top * @tcam_idx: pointer to variable to receive the TCAM entry * * This function allocates a new entry in a Profile ID TCAM for a specific * block. */ static int ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, u16 *tcam_idx) { u16 res_type; if (!ice_tcam_ent_rsrc_type(blk, &res_type)) return -EINVAL; return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); } /** * ice_free_tcam_ent - free hardware TCAM entry * @hw: pointer to the HW struct * @blk: the block from which to free the TCAM entry * @tcam_idx: the TCAM entry to free * * This function frees an entry in a Profile ID TCAM for a specific block. */ static int ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) { u16 res_type; if (!ice_tcam_ent_rsrc_type(blk, &res_type)) return -EINVAL; return ice_free_hw_res(hw, res_type, 1, &tcam_idx); } /** * ice_alloc_prof_id - allocate profile ID * @hw: pointer to the HW struct * @blk: the block to allocate the profile ID for * @prof_id: pointer to variable to receive the profile ID * * This function allocates a new profile ID, which also corresponds to a Field * Vector (Extraction Sequence) entry. */ static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) { u16 res_type; u16 get_prof; int status; if (!ice_prof_id_rsrc_type(blk, &res_type)) return -EINVAL; status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); if (!status) *prof_id = (u8)get_prof; return status; } /** * ice_free_prof_id - free profile ID * @hw: pointer to the HW struct * @blk: the block from which to free the profile ID * @prof_id: the profile ID to free * * This function frees a profile ID, which also corresponds to a Field Vector. */ static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) { u16 tmp_prof_id = (u16)prof_id; u16 res_type; if (!ice_prof_id_rsrc_type(blk, &res_type)) return -EINVAL; return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); } /** * ice_prof_inc_ref - increment reference count for profile * @hw: pointer to the HW struct * @blk: the block from which to free the profile ID * @prof_id: the profile ID for which to increment the reference count */ static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) { if (prof_id > hw->blk[blk].es.count) return -EINVAL; hw->blk[blk].es.ref_count[prof_id]++; return 0; } /** * ice_write_prof_mask_reg - write profile mask register * @hw: pointer to the HW struct * @blk: hardware block * @mask_idx: mask index * @idx: index of the FV which will use the mask * @mask: the 16-bit mask */ static void ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, u16 idx, u16 mask) { u32 offset; u32 val; switch (blk) { case ICE_BLK_RSS: offset = GLQF_HMASK(mask_idx); val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M; val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M; break; case ICE_BLK_FD: offset = GLQF_FDMASK(mask_idx); val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M; val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M; break; default: ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", blk); return; } wr32(hw, offset, val); ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", blk, idx, offset, val); } /** * ice_write_prof_mask_enable_res - write profile mask enable register * @hw: pointer to the HW struct * @blk: hardware block * @prof_id: profile ID * @enable_mask: enable mask */ static void ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, u16 prof_id, u32 enable_mask) { u32 offset; switch (blk) { case ICE_BLK_RSS: offset = GLQF_HMASK_SEL(prof_id); break; case ICE_BLK_FD: offset = GLQF_FDMASK_SEL(prof_id); break; default: ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", blk); return; } wr32(hw, offset, enable_mask); ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", blk, prof_id, offset, enable_mask); } /** * ice_init_prof_masks - initial prof masks * @hw: pointer to the HW struct * @blk: hardware block */ static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) { u16 per_pf; u16 i; mutex_init(&hw->blk[blk].masks.lock); per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; hw->blk[blk].masks.count = per_pf; hw->blk[blk].masks.first = hw->pf_id * per_pf; memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) ice_write_prof_mask_reg(hw, blk, i, 0, 0); } /** * ice_init_all_prof_masks - initialize all prof masks * @hw: pointer to the HW struct */ static void ice_init_all_prof_masks(struct ice_hw *hw) { ice_init_prof_masks(hw, ICE_BLK_RSS); ice_init_prof_masks(hw, ICE_BLK_FD); } /** * ice_alloc_prof_mask - allocate profile mask * @hw: pointer to the HW struct * @blk: hardware block * @idx: index of FV which will use the mask * @mask: the 16-bit mask * @mask_idx: variable to receive the mask index */ static int ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, u16 *mask_idx) { bool found_unused = false, found_copy = false; u16 unused_idx = 0, copy_idx = 0; int status = -ENOSPC; u16 i; if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) return -EINVAL; mutex_lock(&hw->blk[blk].masks.lock); for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) if (hw->blk[blk].masks.masks[i].in_use) { /* if mask is in use and it exactly duplicates the * desired mask and index, then in can be reused */ if (hw->blk[blk].masks.masks[i].mask == mask && hw->blk[blk].masks.masks[i].idx == idx) { found_copy = true; copy_idx = i; break; } } else { /* save off unused index, but keep searching in case * there is an exact match later on */ if (!found_unused) { found_unused = true; unused_idx = i; } } if (found_copy) i = copy_idx; else if (found_unused) i = unused_idx; else goto err_ice_alloc_prof_mask; /* update mask for a new entry */ if (found_unused) { hw->blk[blk].masks.masks[i].in_use = true; hw->blk[blk].masks.masks[i].mask = mask; hw->blk[blk].masks.masks[i].idx = idx; hw->blk[blk].masks.masks[i].ref = 0; ice_write_prof_mask_reg(hw, blk, i, idx, mask); } hw->blk[blk].masks.masks[i].ref++; *mask_idx = i; status = 0; err_ice_alloc_prof_mask: mutex_unlock(&hw->blk[blk].masks.lock); return status; } /** * ice_free_prof_mask - free profile mask * @hw: pointer to the HW struct * @blk: hardware block * @mask_idx: index of mask */ static int ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) { if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) return -EINVAL; if (!(mask_idx >= hw->blk[blk].masks.first && mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) return -ENOENT; mutex_lock(&hw->blk[blk].masks.lock); if (!hw->blk[blk].masks.masks[mask_idx].in_use) goto exit_ice_free_prof_mask; if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { hw->blk[blk].masks.masks[mask_idx].ref--; goto exit_ice_free_prof_mask; } /* remove mask */ hw->blk[blk].masks.masks[mask_idx].in_use = false; hw->blk[blk].masks.masks[mask_idx].mask = 0; hw->blk[blk].masks.masks[mask_idx].idx = 0; /* update mask as unused entry */ ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, mask_idx); ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); exit_ice_free_prof_mask: mutex_unlock(&hw->blk[blk].masks.lock); return 0; } /** * ice_free_prof_masks - free all profile masks for a profile * @hw: pointer to the HW struct * @blk: hardware block * @prof_id: profile ID */ static int ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) { u32 mask_bm; u16 i; if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) return -EINVAL; mask_bm = hw->blk[blk].es.mask_ena[prof_id]; for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) if (mask_bm & BIT(i)) ice_free_prof_mask(hw, blk, i); return 0; } /** * ice_shutdown_prof_masks - releases lock for masking * @hw: pointer to the HW struct * @blk: hardware block * * This should be called before unloading the driver */ static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) { u16 i; mutex_lock(&hw->blk[blk].masks.lock); for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { ice_write_prof_mask_reg(hw, blk, i, 0, 0); hw->blk[blk].masks.masks[i].in_use = false; hw->blk[blk].masks.masks[i].idx = 0; hw->blk[blk].masks.masks[i].mask = 0; } mutex_unlock(&hw->blk[blk].masks.lock); mutex_destroy(&hw->blk[blk].masks.lock); } /** * ice_shutdown_all_prof_masks - releases all locks for masking * @hw: pointer to the HW struct * * This should be called before unloading the driver */ static void ice_shutdown_all_prof_masks(struct ice_hw *hw) { ice_shutdown_prof_masks(hw, ICE_BLK_RSS); ice_shutdown_prof_masks(hw, ICE_BLK_FD); } /** * ice_update_prof_masking - set registers according to masking * @hw: pointer to the HW struct * @blk: hardware block * @prof_id: profile ID * @masks: masks */ static int ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, u16 *masks) { bool err = false; u32 ena_mask = 0; u16 idx; u16 i; /* Only support FD and RSS masking, otherwise nothing to be done */ if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) return 0; for (i = 0; i < hw->blk[blk].es.fvw; i++) if (masks[i] && masks[i] != 0xFFFF) { if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { ena_mask |= BIT(idx); } else { /* not enough bitmaps */ err = true; break; } } if (err) { /* free any bitmaps we have allocated */ for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) if (ena_mask & BIT(i)) ice_free_prof_mask(hw, blk, i); return -EIO; } /* enable the masks for this profile */ ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); /* store enabled masks with profile so that they can be freed later */ hw->blk[blk].es.mask_ena[prof_id] = ena_mask; return 0; } /** * ice_write_es - write an extraction sequence to hardware * @hw: pointer to the HW struct * @blk: the block in which to write the extraction sequence * @prof_id: the profile ID to write * @fv: pointer to the extraction sequence to write - NULL to clear extraction */ static void ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, struct ice_fv_word *fv) { u16 off; off = prof_id * hw->blk[blk].es.fvw; if (!fv) { memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw * sizeof(*fv)); hw->blk[blk].es.written[prof_id] = false; } else { memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw * sizeof(*fv)); } } /** * ice_prof_dec_ref - decrement reference count for profile * @hw: pointer to the HW struct * @blk: the block from which to free the profile ID * @prof_id: the profile ID for which to decrement the reference count */ static int ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) { if (prof_id > hw->blk[blk].es.count) return -EINVAL; if (hw->blk[blk].es.ref_count[prof_id] > 0) { if (!--hw->blk[blk].es.ref_count[prof_id]) { ice_write_es(hw, blk, prof_id, NULL); ice_free_prof_masks(hw, blk, prof_id); return ice_free_prof_id(hw, blk, prof_id); } } return 0; } /* Block / table section IDs */ static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { /* SWITCH */ { ICE_SID_XLT1_SW, ICE_SID_XLT2_SW, ICE_SID_PROFID_TCAM_SW, ICE_SID_PROFID_REDIR_SW, ICE_SID_FLD_VEC_SW }, /* ACL */ { ICE_SID_XLT1_ACL, ICE_SID_XLT2_ACL, ICE_SID_PROFID_TCAM_ACL, ICE_SID_PROFID_REDIR_ACL, ICE_SID_FLD_VEC_ACL }, /* FD */ { ICE_SID_XLT1_FD, ICE_SID_XLT2_FD, ICE_SID_PROFID_TCAM_FD, ICE_SID_PROFID_REDIR_FD, ICE_SID_FLD_VEC_FD }, /* RSS */ { ICE_SID_XLT1_RSS, ICE_SID_XLT2_RSS, ICE_SID_PROFID_TCAM_RSS, ICE_SID_PROFID_REDIR_RSS, ICE_SID_FLD_VEC_RSS }, /* PE */ { ICE_SID_XLT1_PE, ICE_SID_XLT2_PE, ICE_SID_PROFID_TCAM_PE, ICE_SID_PROFID_REDIR_PE, ICE_SID_FLD_VEC_PE } }; /** * ice_init_sw_xlt1_db - init software XLT1 database from HW tables * @hw: pointer to the hardware structure * @blk: the HW block to initialize */ static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) { u16 pt; for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { u8 ptg; ptg = hw->blk[blk].xlt1.t[pt]; if (ptg != ICE_DEFAULT_PTG) { ice_ptg_alloc_val(hw, blk, ptg); ice_ptg_add_mv_ptype(hw, blk, pt, ptg); } } } /** * ice_init_sw_xlt2_db - init software XLT2 database from HW tables * @hw: pointer to the hardware structure * @blk: the HW block to initialize */ static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) { u16 vsi; for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { u16 vsig; vsig = hw->blk[blk].xlt2.t[vsi]; if (vsig) { ice_vsig_alloc_val(hw, blk, vsig); ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); /* no changes at this time, since this has been * initialized from the original package */ hw->blk[blk].xlt2.vsis[vsi].changed = 0; } } } /** * ice_init_sw_db - init software database from HW tables * @hw: pointer to the hardware structure */ static void ice_init_sw_db(struct ice_hw *hw) { u16 i; for (i = 0; i < ICE_BLK_COUNT; i++) { ice_init_sw_xlt1_db(hw, (enum ice_block)i); ice_init_sw_xlt2_db(hw, (enum ice_block)i); } } /** * ice_fill_tbl - Reads content of a single table type into database * @hw: pointer to the hardware structure * @block_id: Block ID of the table to copy * @sid: Section ID of the table to copy * * Will attempt to read the entire content of a given table of a single block * into the driver database. We assume that the buffer will always * be as large or larger than the data contained in the package. If * this condition is not met, there is most likely an error in the package * contents. */ static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) { u32 dst_len, sect_len, offset = 0; struct ice_prof_redir_section *pr; struct ice_prof_id_section *pid; struct ice_xlt1_section *xlt1; struct ice_xlt2_section *xlt2; struct ice_sw_fv_section *es; struct ice_pkg_enum state; u8 *src, *dst; void *sect; /* if the HW segment pointer is null then the first iteration of * ice_pkg_enum_section() will fail. In this case the HW tables will * not be filled and return success. */ if (!hw->seg) { ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); return; } memset(&state, 0, sizeof(state)); sect = ice_pkg_enum_section(hw->seg, &state, sid); while (sect) { switch (sid) { case ICE_SID_XLT1_SW: case ICE_SID_XLT1_FD: case ICE_SID_XLT1_RSS: case ICE_SID_XLT1_ACL: case ICE_SID_XLT1_PE: xlt1 = sect; src = xlt1->value; sect_len = le16_to_cpu(xlt1->count) * sizeof(*hw->blk[block_id].xlt1.t); dst = hw->blk[block_id].xlt1.t; dst_len = hw->blk[block_id].xlt1.count * sizeof(*hw->blk[block_id].xlt1.t); break; case ICE_SID_XLT2_SW: case ICE_SID_XLT2_FD: case ICE_SID_XLT2_RSS: case ICE_SID_XLT2_ACL: case ICE_SID_XLT2_PE: xlt2 = sect; src = (__force u8 *)xlt2->value; sect_len = le16_to_cpu(xlt2->count) * sizeof(*hw->blk[block_id].xlt2.t); dst = (u8 *)hw->blk[block_id].xlt2.t; dst_len = hw->blk[block_id].xlt2.count * sizeof(*hw->blk[block_id].xlt2.t); break; case ICE_SID_PROFID_TCAM_SW: case ICE_SID_PROFID_TCAM_FD: case ICE_SID_PROFID_TCAM_RSS: case ICE_SID_PROFID_TCAM_ACL: case ICE_SID_PROFID_TCAM_PE: pid = sect; src = (u8 *)pid->entry; sect_len = le16_to_cpu(pid->count) * sizeof(*hw->blk[block_id].prof.t); dst = (u8 *)hw->blk[block_id].prof.t; dst_len = hw->blk[block_id].prof.count * sizeof(*hw->blk[block_id].prof.t); break; case ICE_SID_PROFID_REDIR_SW: case ICE_SID_PROFID_REDIR_FD: case ICE_SID_PROFID_REDIR_RSS: case ICE_SID_PROFID_REDIR_ACL: case ICE_SID_PROFID_REDIR_PE: pr = sect; src = pr->redir_value; sect_len = le16_to_cpu(pr->count) * sizeof(*hw->blk[block_id].prof_redir.t); dst = hw->blk[block_id].prof_redir.t; dst_len = hw->blk[block_id].prof_redir.count * sizeof(*hw->blk[block_id].prof_redir.t); break; case ICE_SID_FLD_VEC_SW: case ICE_SID_FLD_VEC_FD: case ICE_SID_FLD_VEC_RSS: case ICE_SID_FLD_VEC_ACL: case ICE_SID_FLD_VEC_PE: es = sect; src = (u8 *)es->fv; sect_len = (u32)(le16_to_cpu(es->count) * hw->blk[block_id].es.fvw) * sizeof(*hw->blk[block_id].es.t); dst = (u8 *)hw->blk[block_id].es.t; dst_len = (u32)(hw->blk[block_id].es.count * hw->blk[block_id].es.fvw) * sizeof(*hw->blk[block_id].es.t); break; default: return; } /* if the section offset exceeds destination length, terminate * table fill. */ if (offset > dst_len) return; /* if the sum of section size and offset exceed destination size * then we are out of bounds of the HW table size for that PF. * Changing section length to fill the remaining table space * of that PF. */ if ((offset + sect_len) > dst_len) sect_len = dst_len - offset; memcpy(dst + offset, src, sect_len); offset += sect_len; sect = ice_pkg_enum_section(NULL, &state, sid); } } /** * ice_fill_blk_tbls - Read package context for tables * @hw: pointer to the hardware structure * * Reads the current package contents and populates the driver * database with the data iteratively for all advanced feature * blocks. Assume that the HW tables have been allocated. */ void ice_fill_blk_tbls(struct ice_hw *hw) { u8 i; for (i = 0; i < ICE_BLK_COUNT; i++) { enum ice_block blk_id = (enum ice_block)i; ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); } ice_init_sw_db(hw); } /** * ice_free_prof_map - free profile map * @hw: pointer to the hardware structure * @blk_idx: HW block index */ static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) { struct ice_es *es = &hw->blk[blk_idx].es; struct ice_prof_map *del, *tmp; mutex_lock(&es->prof_map_lock); list_for_each_entry_safe(del, tmp, &es->prof_map, list) { list_del(&del->list); devm_kfree(ice_hw_to_dev(hw), del); } INIT_LIST_HEAD(&es->prof_map); mutex_unlock(&es->prof_map_lock); } /** * ice_free_flow_profs - free flow profile entries * @hw: pointer to the hardware structure * @blk_idx: HW block index */ static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) { struct ice_flow_prof *p, *tmp; mutex_lock(&hw->fl_profs_locks[blk_idx]); list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { struct ice_flow_entry *e, *t; list_for_each_entry_safe(e, t, &p->entries, l_entry) ice_flow_rem_entry(hw, (enum ice_block)blk_idx, ICE_FLOW_ENTRY_HNDL(e)); list_del(&p->l_entry); mutex_destroy(&p->entries_lock); devm_kfree(ice_hw_to_dev(hw), p); } mutex_unlock(&hw->fl_profs_locks[blk_idx]); /* if driver is in reset and tables are being cleared * re-initialize the flow profile list heads */ INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); } /** * ice_free_vsig_tbl - free complete VSIG table entries * @hw: pointer to the hardware structure * @blk: the HW block on which to free the VSIG table entries */ static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) { u16 i; if (!hw->blk[blk].xlt2.vsig_tbl) return; for (i = 1; i < ICE_MAX_VSIGS; i++) if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) ice_vsig_free(hw, blk, i); } /** * ice_free_hw_tbls - free hardware table memory * @hw: pointer to the hardware structure */ void ice_free_hw_tbls(struct ice_hw *hw) { struct ice_rss_cfg *r, *rt; u8 i; for (i = 0; i < ICE_BLK_COUNT; i++) { if (hw->blk[i].is_list_init) { struct ice_es *es = &hw->blk[i].es; ice_free_prof_map(hw, i); mutex_destroy(&es->prof_map_lock); ice_free_flow_profs(hw, i); mutex_destroy(&hw->fl_profs_locks[i]); hw->blk[i].is_list_init = false; } ice_free_vsig_tbl(hw, (enum ice_block)i); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); } list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { list_del(&r->l_entry); devm_kfree(ice_hw_to_dev(hw), r); } mutex_destroy(&hw->rss_locks); ice_shutdown_all_prof_masks(hw); memset(hw->blk, 0, sizeof(hw->blk)); } /** * ice_init_flow_profs - init flow profile locks and list heads * @hw: pointer to the hardware structure * @blk_idx: HW block index */ static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) { mutex_init(&hw->fl_profs_locks[blk_idx]); INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); } /** * ice_clear_hw_tbls - clear HW tables and flow profiles * @hw: pointer to the hardware structure */ void ice_clear_hw_tbls(struct ice_hw *hw) { u8 i; for (i = 0; i < ICE_BLK_COUNT; i++) { struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; struct ice_prof_tcam *prof = &hw->blk[i].prof; struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; struct ice_es *es = &hw->blk[i].es; if (hw->blk[i].is_list_init) { ice_free_prof_map(hw, i); ice_free_flow_profs(hw, i); } ice_free_vsig_tbl(hw, (enum ice_block)i); memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); memset(xlt1->ptg_tbl, 0, ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); memset(xlt2->vsig_tbl, 0, xlt2->count * sizeof(*xlt2->vsig_tbl)); memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); memset(prof->t, 0, prof->count * sizeof(*prof->t)); memset(prof_redir->t, 0, prof_redir->count * sizeof(*prof_redir->t)); memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); memset(es->written, 0, es->count * sizeof(*es->written)); memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); } } /** * ice_init_hw_tbls - init hardware table memory * @hw: pointer to the hardware structure */ int ice_init_hw_tbls(struct ice_hw *hw) { u8 i; mutex_init(&hw->rss_locks); INIT_LIST_HEAD(&hw->rss_list_head); ice_init_all_prof_masks(hw); for (i = 0; i < ICE_BLK_COUNT; i++) { struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; struct ice_prof_tcam *prof = &hw->blk[i].prof; struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; struct ice_es *es = &hw->blk[i].es; u16 j; if (hw->blk[i].is_list_init) continue; ice_init_flow_profs(hw, i); mutex_init(&es->prof_map_lock); INIT_LIST_HEAD(&es->prof_map); hw->blk[i].is_list_init = true; hw->blk[i].overwrite = blk_sizes[i].overwrite; es->reverse = blk_sizes[i].reverse; xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; xlt1->count = blk_sizes[i].xlt1; xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, sizeof(*xlt1->ptypes), GFP_KERNEL); if (!xlt1->ptypes) goto err; xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl), GFP_KERNEL); if (!xlt1->ptg_tbl) goto err; xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, sizeof(*xlt1->t), GFP_KERNEL); if (!xlt1->t) goto err; xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; xlt2->count = blk_sizes[i].xlt2; xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, sizeof(*xlt2->vsis), GFP_KERNEL); if (!xlt2->vsis) goto err; xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, sizeof(*xlt2->vsig_tbl), GFP_KERNEL); if (!xlt2->vsig_tbl) goto err; for (j = 0; j < xlt2->count; j++) INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, sizeof(*xlt2->t), GFP_KERNEL); if (!xlt2->t) goto err; prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; prof->count = blk_sizes[i].prof_tcam; prof->max_prof_id = blk_sizes[i].prof_id; prof->cdid_bits = blk_sizes[i].prof_cdid_bits; prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, sizeof(*prof->t), GFP_KERNEL); if (!prof->t) goto err; prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; prof_redir->count = blk_sizes[i].prof_redir; prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), prof_redir->count, sizeof(*prof_redir->t), GFP_KERNEL); if (!prof_redir->t) goto err; es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; es->count = blk_sizes[i].es; es->fvw = blk_sizes[i].fvw; es->t = devm_kcalloc(ice_hw_to_dev(hw), (u32)(es->count * es->fvw), sizeof(*es->t), GFP_KERNEL); if (!es->t) goto err; es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, sizeof(*es->ref_count), GFP_KERNEL); if (!es->ref_count) goto err; es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, sizeof(*es->written), GFP_KERNEL); if (!es->written) goto err; es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, sizeof(*es->mask_ena), GFP_KERNEL); if (!es->mask_ena) goto err; } return 0; err: ice_free_hw_tbls(hw); return -ENOMEM; } /** * ice_prof_gen_key - generate profile ID key * @hw: pointer to the HW struct * @blk: the block in which to write profile ID to * @ptg: packet type group (PTG) portion of key * @vsig: VSIG portion of key * @cdid: CDID portion of key * @flags: flag portion of key * @vl_msk: valid mask * @dc_msk: don't care mask * @nm_msk: never match mask * @key: output of profile ID key */ static int ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], u8 key[ICE_TCAM_KEY_SZ]) { struct ice_prof_id_key inkey; inkey.xlt1 = ptg; inkey.xlt2_cdid = cpu_to_le16(vsig); inkey.flags = cpu_to_le16(flags); switch (hw->blk[blk].prof.cdid_bits) { case 0: break; case 2: #define ICE_CD_2_M 0xC000U #define ICE_CD_2_S 14 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); break; case 4: #define ICE_CD_4_M 0xF000U #define ICE_CD_4_S 12 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); break; case 8: #define ICE_CD_8_M 0xFF00U #define ICE_CD_8_S 16 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); break; default: ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); break; } return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, nm_msk, 0, ICE_TCAM_KEY_SZ / 2); } /** * ice_tcam_write_entry - write TCAM entry * @hw: pointer to the HW struct * @blk: the block in which to write profile ID to * @idx: the entry index to write to * @prof_id: profile ID * @ptg: packet type group (PTG) portion of key * @vsig: VSIG portion of key * @cdid: CDID portion of key * @flags: flag portion of key * @vl_msk: valid mask * @dc_msk: don't care mask * @nm_msk: never match mask */ static int ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) { struct ice_prof_tcam_entry; int status; status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); if (!status) { hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); hw->blk[blk].prof.t[idx].prof_id = prof_id; } return status; } /** * ice_vsig_get_ref - returns number of VSIs belong to a VSIG * @hw: pointer to the hardware structure * @blk: HW block * @vsig: VSIG to query * @refs: pointer to variable to receive the reference count */ static int ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) { u16 idx = vsig & ICE_VSIG_IDX_M; struct ice_vsig_vsi *ptr; *refs = 0; if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) return -ENOENT; ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; while (ptr) { (*refs)++; ptr = ptr->next_vsi; } return 0; } /** * ice_has_prof_vsig - check to see if VSIG has a specific profile * @hw: pointer to the hardware structure * @blk: HW block * @vsig: VSIG to check against * @hdl: profile handle */ static bool ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) { u16 idx = vsig & ICE_VSIG_IDX_M; struct ice_vsig_prof *ent; list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) if (ent->profile_cookie == hdl) return true; ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", vsig); return false; } /** * ice_prof_bld_es - build profile ID extraction sequence changes * @hw: pointer to the HW struct * @blk: hardware block * @bld: the update package buffer build to add to * @chgs: the list of changes to make in hardware */ static int ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, struct ice_buf_build *bld, struct list_head *chgs) { u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); struct ice_chs_chg *tmp; list_for_each_entry(tmp, chgs, list_entry) if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { u16 off = tmp->prof_id * hw->blk[blk].es.fvw; struct ice_pkg_es *p; u32 id; id = ice_sect_id(blk, ICE_VEC_TBL); p = ice_pkg_buf_alloc_section(bld, id, struct_size(p, es, 1) + vec_size - sizeof(p->es[0])); if (!p) return -ENOSPC; p->count = cpu_to_le16(1); p->offset = cpu_to_le16(tmp->prof_id); memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); } return 0; } /** * ice_prof_bld_tcam - build profile ID TCAM changes * @hw: pointer to the HW struct * @blk: hardware block * @bld: the update package buffer build to add to * @chgs: the list of changes to make in hardware */ static int ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, struct ice_buf_build *bld, struct list_head *chgs) { struct ice_chs_chg *tmp; list_for_each_entry(tmp, chgs, list_entry) if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { struct ice_prof_id_section *p; u32 id; id = ice_sect_id(blk, ICE_PROF_TCAM); p = ice_pkg_buf_alloc_section(bld, id, struct_size(p, entry, 1)); if (!p) return -ENOSPC; p->count = cpu_to_le16(1); p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); p->entry[0].prof_id = tmp->prof_id; memcpy(p->entry[0].key, &hw->blk[blk].prof.t[tmp->tcam_idx].key, sizeof(hw->blk[blk].prof.t->key)); } return 0; } /** * ice_prof_bld_xlt1 - build XLT1 changes * @blk: hardware block * @bld: the update package buffer build to add to * @chgs: the list of changes to make in hardware */ static int ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, struct list_head *chgs) { struct ice_chs_chg *tmp; list_for_each_entry(tmp, chgs, list_entry) if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { struct ice_xlt1_section *p; u32 id; id = ice_sect_id(blk, ICE_XLT1); p = ice_pkg_buf_alloc_section(bld, id, struct_size(p, value, 1)); if (!p) return -ENOSPC; p->count = cpu_to_le16(1); p->offset = cpu_to_le16(tmp->ptype); p->value[0] = tmp->ptg; } return 0; } /** * ice_prof_bld_xlt2 - build XLT2 changes * @blk: hardware block * @bld: the update package buffer build to add to * @chgs: the list of changes to make in hardware */ static int ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, struct list_head *chgs) { struct ice_chs_chg *tmp; list_for_each_entry(tmp, chgs, list_entry) { struct ice_xlt2_section *p; u32 id; switch (tmp->type) { case ICE_VSIG_ADD: case ICE_VSI_MOVE: case ICE_VSIG_REM: id = ice_sect_id(blk, ICE_XLT2); p = ice_pkg_buf_alloc_section(bld, id, struct_size(p, value, 1)); if (!p) return -ENOSPC; p->count = cpu_to_le16(1); p->offset = cpu_to_le16(tmp->vsi); p->value[0] = cpu_to_le16(tmp->vsig); break; default: break; } } return 0; } /** * ice_upd_prof_hw - update hardware using the change list * @hw: pointer to the HW struct * @blk: hardware block * @chgs: the list of changes to make in hardware */ static int ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, struct list_head *chgs) { struct ice_buf_build *b; struct ice_chs_chg *tmp; u16 pkg_sects; u16 xlt1 = 0; u16 xlt2 = 0; u16 tcam = 0; u16 es = 0; int status; u16 sects; /* count number of sections we need */ list_for_each_entry(tmp, chgs, list_entry) { switch (tmp->type) { case ICE_PTG_ES_ADD: if (tmp->add_ptg) xlt1++; if (tmp->add_prof) es++; break; case ICE_TCAM_ADD: tcam++; break; case ICE_VSIG_ADD: case ICE_VSI_MOVE: case ICE_VSIG_REM: xlt2++; break; default: break; } } sects = xlt1 + xlt2 + tcam + es; if (!sects) return 0; /* Build update package buffer */ b = ice_pkg_buf_alloc(hw); if (!b) return -ENOMEM; status = ice_pkg_buf_reserve_section(b, sects); if (status) goto error_tmp; /* Preserve order of table update: ES, TCAM, PTG, VSIG */ if (es) { status = ice_prof_bld_es(hw, blk, b, chgs); if (status) goto error_tmp; } if (tcam) { status = ice_prof_bld_tcam(hw, blk, b, chgs); if (status) goto error_tmp; } if (xlt1) { status = ice_prof_bld_xlt1(blk, b, chgs); if (status) goto error_tmp; } if (xlt2) { status = ice_prof_bld_xlt2(blk, b, chgs); if (status) goto error_tmp; } /* After package buffer build check if the section count in buffer is * non-zero and matches the number of sections detected for package * update. */ pkg_sects = ice_pkg_buf_get_active_sections(b); if (!pkg_sects || pkg_sects != sects) { status = -EINVAL; goto error_tmp; } /* update package */ status = ice_update_pkg(hw, ice_pkg_buf(b), 1); if (status == -EIO) ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); error_tmp: ice_pkg_buf_free(hw, b); return status; } /** * ice_update_fd_mask - set Flow Director Field Vector mask for a profile * @hw: pointer to the HW struct * @prof_id: profile ID * @mask_sel: mask select * * This function enable any of the masks selected by the mask select parameter * for the profile specified. */ static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) { wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, GLQF_FDMASK_SEL(prof_id), mask_sel); } struct ice_fd_src_dst_pair { u8 prot_id; u8 count; u16 off; }; static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { /* These are defined in pairs */ { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, { ICE_PROT_IPV4_IL, 2, 12 }, { ICE_PROT_IPV4_IL, 2, 16 }, { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, { ICE_PROT_IPV6_IL, 8, 8 }, { ICE_PROT_IPV6_IL, 8, 24 }, { ICE_PROT_TCP_IL, 1, 0 }, { ICE_PROT_TCP_IL, 1, 2 }, { ICE_PROT_UDP_OF, 1, 0 }, { ICE_PROT_UDP_OF, 1, 2 }, { ICE_PROT_UDP_IL_OR_S, 1, 0 }, { ICE_PROT_UDP_IL_OR_S, 1, 2 }, { ICE_PROT_SCTP_IL, 1, 0 }, { ICE_PROT_SCTP_IL, 1, 2 } }; #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) /** * ice_update_fd_swap - set register appropriately for a FD FV extraction * @hw: pointer to the HW struct * @prof_id: profile ID * @es: extraction sequence (length of array is determined by the block) */ static int ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) { DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; #define ICE_FD_FV_NOT_FOUND (-2) s8 first_free = ICE_FD_FV_NOT_FOUND; u8 used[ICE_MAX_FV_WORDS] = { 0 }; s8 orig_free, si; u32 mask_sel = 0; u8 i, j, k; bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); /* This code assumes that the Flow Director field vectors are assigned * from the end of the FV indexes working towards the zero index, that * only complete fields will be included and will be consecutive, and * that there are no gaps between valid indexes. */ /* Determine swap fields present */ for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { /* Find the first free entry, assuming right to left population. * This is where we can start adding additional pairs if needed. */ if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != ICE_PROT_INVALID) first_free = i - 1; for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) if (es[i].prot_id == ice_fd_pairs[j].prot_id && es[i].off == ice_fd_pairs[j].off) { __set_bit(j, pair_list); pair_start[j] = i; } } orig_free = first_free; /* determine missing swap fields that need to be added */ for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { u8 bit1 = test_bit(i + 1, pair_list); u8 bit0 = test_bit(i, pair_list); if (bit0 ^ bit1) { u8 index; /* add the appropriate 'paired' entry */ if (!bit0) index = i; else index = i + 1; /* check for room */ if (first_free + 1 < (s8)ice_fd_pairs[index].count) return -ENOSPC; /* place in extraction sequence */ for (k = 0; k < ice_fd_pairs[index].count; k++) { es[first_free - k].prot_id = ice_fd_pairs[index].prot_id; es[first_free - k].off = ice_fd_pairs[index].off + (k * 2); if (k > first_free) return -EIO; /* keep track of non-relevant fields */ mask_sel |= BIT(first_free - k); } pair_start[index] = first_free; first_free -= ice_fd_pairs[index].count; } } /* fill in the swap array */ si = hw->blk[ICE_BLK_FD].es.fvw - 1; while (si >= 0) { u8 indexes_used = 1; /* assume flat at this index */ #define ICE_SWAP_VALID 0x80 used[si] = si | ICE_SWAP_VALID; if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { si -= indexes_used; continue; } /* check for a swap location */ for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) if (es[si].prot_id == ice_fd_pairs[j].prot_id && es[si].off == ice_fd_pairs[j].off) { u8 idx; /* determine the appropriate matching field */ idx = j + ((j % 2) ? -1 : 1); indexes_used = ice_fd_pairs[idx].count; for (k = 0; k < indexes_used; k++) { used[si - k] = (pair_start[idx] - k) | ICE_SWAP_VALID; } break; } si -= indexes_used; } /* for each set of 4 swap and 4 inset indexes, write the appropriate * register */ for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { u32 raw_swap = 0; u32 raw_in = 0; for (k = 0; k < 4; k++) { u8 idx; idx = (j * 4) + k; if (used[idx] && !(mask_sel & BIT(idx))) { raw_swap |= used[idx] << (k * BITS_PER_BYTE); #define ICE_INSET_DFLT 0x9f raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); } } /* write the appropriate swap register set */ wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); /* write the appropriate inset register set */ wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); } /* initially clear the mask select for this profile */ ice_update_fd_mask(hw, prof_id, 0); return 0; } /* The entries here needs to match the order of enum ice_ptype_attrib */ static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, }; /** * ice_get_ptype_attrib_info - get PTYPE attribute information * @type: attribute type * @info: pointer to variable to the attribute information */ static void ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, struct ice_ptype_attrib_info *info) { *info = ice_ptype_attributes[type]; } /** * ice_add_prof_attrib - add any PTG with attributes to profile * @prof: pointer to the profile to which PTG entries will be added * @ptg: PTG to be added * @ptype: PTYPE that needs to be looked up * @attr: array of attributes that will be considered * @attr_cnt: number of elements in the attribute array */ static int ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, const struct ice_ptype_attributes *attr, u16 attr_cnt) { bool found = false; u16 i; for (i = 0; i < attr_cnt; i++) if (attr[i].ptype == ptype) { found = true; prof->ptg[prof->ptg_cnt] = ptg; ice_get_ptype_attrib_info(attr[i].attrib, &prof->attr[prof->ptg_cnt]); if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) return -ENOSPC; } if (!found) return -ENOENT; return 0; } /** * ice_add_prof - add profile * @hw: pointer to the HW struct * @blk: hardware block * @id: profile tracking ID * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) * @attr: array of attributes * @attr_cnt: number of elements in attr array * @es: extraction sequence (length of array is determined by the block) * @masks: mask for extraction sequence * * This function registers a profile, which matches a set of PTYPES with a * particular extraction sequence. While the hardware profile is allocated * it will not be written until the first call to ice_add_flow that specifies * the ID value used here. */ int ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], const struct ice_ptype_attributes *attr, u16 attr_cnt, struct ice_fv_word *es, u16 *masks) { u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); struct ice_prof_map *prof; u8 byte = 0; u8 prof_id; int status; bitmap_zero(ptgs_used, ICE_XLT1_CNT); mutex_lock(&hw->blk[blk].es.prof_map_lock); /* search for existing profile */ status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id); if (status) { /* allocate profile ID */ status = ice_alloc_prof_id(hw, blk, &prof_id); if (status) goto err_ice_add_prof; if (blk == ICE_BLK_FD) { /* For Flow Director block, the extraction sequence may * need to be altered in the case where there are paired * fields that have no match. This is necessary because * for Flow Director, src and dest fields need to paired * for filter programming and these values are swapped * during Tx. */ status = ice_update_fd_swap(hw, prof_id, es); if (status) goto err_ice_add_prof; } status = ice_update_prof_masking(hw, blk, prof_id, masks); if (status) goto err_ice_add_prof; /* and write new es */ ice_write_es(hw, blk, prof_id, es); } ice_prof_inc_ref(hw, blk, prof_id); /* add profile info */ prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); if (!prof) { status = -ENOMEM; goto err_ice_add_prof; } prof->profile_cookie = id; prof->prof_id = prof_id; prof->ptg_cnt = 0; prof->context = 0; /* build list of ptgs */ while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { u8 bit; if (!ptypes[byte]) { bytes--; byte++; continue; } /* Examine 8 bits per byte */ for_each_set_bit(bit, (unsigned long *)&ptypes[byte], BITS_PER_BYTE) { u16 ptype; u8 ptg; ptype = byte * BITS_PER_BYTE + bit; /* The package should place all ptypes in a non-zero * PTG, so the following call should never fail. */ if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) continue; /* If PTG is already added, skip and continue */ if (test_bit(ptg, ptgs_used)) continue; __set_bit(ptg, ptgs_used); /* Check to see there are any attributes for * this PTYPE, and add them if found. */ status = ice_add_prof_attrib(prof, ptg, ptype, attr, attr_cnt); if (status == -ENOSPC) break; if (status) { /* This is simple a PTYPE/PTG with no * attribute */ prof->ptg[prof->ptg_cnt] = ptg; prof->attr[prof->ptg_cnt].flags = 0; prof->attr[prof->ptg_cnt].mask = 0; if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) break; } } bytes--; byte++; } list_add(&prof->list, &hw->blk[blk].es.prof_map); status = 0; err_ice_add_prof: mutex_unlock(&hw->blk[blk].es.prof_map_lock); return status; } /** * ice_search_prof_id - Search for a profile tracking ID * @hw: pointer to the HW struct * @blk: hardware block * @id: profile tracking ID * * This will search for a profile tracking ID which was previously added. * The profile map lock should be held before calling this function. */ static struct ice_prof_map * ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) { struct ice_prof_map *entry = NULL; struct ice_prof_map *map; list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) if (map->profile_cookie == id) { entry = map; break; } return entry; } /** * ice_vsig_prof_id_count - count profiles in a VSIG * @hw: pointer to the HW struct * @blk: hardware block * @vsig: VSIG to remove the profile from */ static u16 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) { u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; struct ice_vsig_prof *p; list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) count++; return count; } /** * ice_rel_tcam_idx - release a TCAM index * @hw: pointer to the HW struct * @blk: hardware block * @idx: the index to release */ static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) { /* Masks to invoke a never match entry */ u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; int status; /* write the TCAM entry */ status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, dc_msk, nm_msk); if (status) return status; /* release the TCAM entry */ status = ice_free_tcam_ent(hw, blk, idx); return status; } /** * ice_rem_prof_id - remove one profile from a VSIG * @hw: pointer to the HW struct * @blk: hardware block * @prof: pointer to profile structure to remove */ static int ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, struct ice_vsig_prof *prof) { int status; u16 i; for (i = 0; i < prof->tcam_count; i++) if (prof->tcam[i].in_use) { prof->tcam[i].in_use = false; status = ice_rel_tcam_idx(hw, blk, prof->tcam[i].tcam_idx); if (status) return -EIO; } return 0; } /** * ice_rem_vsig - remove VSIG * @hw: pointer to the HW struct * @blk: hardware block * @vsig: the VSIG to remove * @chg: the change list */ static int ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, struct list_head *chg) { u16 idx = vsig & ICE_VSIG_IDX_M; struct ice_vsig_vsi *vsi_cur; struct ice_vsig_prof *d, *t; int status; /* remove TCAM entries */ list_for_each_entry_safe(d, t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) { status = ice_rem_prof_id(hw, blk, d); if (status) return status; list_del(&d->list); devm_kfree(ice_hw_to_dev(hw), d); } /* Move all VSIS associated with this VSIG to the default VSIG */ vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; /* If the VSIG has at least 1 VSI then iterate through the list * and remove the VSIs before deleting the group. */ if (vsi_cur) do { struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; struct ice_chs_chg *p; p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; p->type = ICE_VSIG_REM; p->orig_vsig = vsig; p->vsig = ICE_DEFAULT_VSIG; p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; list_add(&p->list_entry, chg); vsi_cur = tmp; } while (vsi_cur); return ice_vsig_free(hw, blk, vsig); } /** * ice_rem_prof_id_vsig - remove a specific profile from a VSIG * @hw: pointer to the HW struct * @blk: hardware block * @vsig: VSIG to remove the profile from * @hdl: profile handle indicating which profile to remove * @chg: list to receive a record of changes */ static int ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, struct list_head *chg) { u16 idx = vsig & ICE_VSIG_IDX_M; struct ice_vsig_prof *p, *t; int status; list_for_each_entry_safe(p, t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) if (p->profile_cookie == hdl) { if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) /* this is the last profile, remove the VSIG */ return ice_rem_vsig(hw, blk, vsig, chg); status = ice_rem_prof_id(hw, blk, p); if (!status) { list_del(&p->list); devm_kfree(ice_hw_to_dev(hw), p); } return status; } return -ENOENT; } /** * ice_rem_flow_all - remove all flows with a particular profile * @hw: pointer to the HW struct * @blk: hardware block * @id: profile tracking ID */ static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) { struct ice_chs_chg *del, *tmp; struct list_head chg; int status; u16 i; INIT_LIST_HEAD(&chg); for (i = 1; i < ICE_MAX_VSIGS; i++) if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { if (ice_has_prof_vsig(hw, blk, i, id)) { status = ice_rem_prof_id_vsig(hw, blk, i, id, &chg); if (status) goto err_ice_rem_flow_all; } } status = ice_upd_prof_hw(hw, blk, &chg); err_ice_rem_flow_all: list_for_each_entry_safe(del, tmp, &chg, list_entry) { list_del(&del->list_entry); devm_kfree(ice_hw_to_dev(hw), del); } return status; } /** * ice_rem_prof - remove profile * @hw: pointer to the HW struct * @blk: hardware block * @id: profile tracking ID * * This will remove the profile specified by the ID parameter, which was * previously created through ice_add_prof. If any existing entries * are associated with this profile, they will be removed as well. */ int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) { struct ice_prof_map *pmap; int status; mutex_lock(&hw->blk[blk].es.prof_map_lock); pmap = ice_search_prof_id(hw, blk, id); if (!pmap) { status = -ENOENT; goto err_ice_rem_prof; } /* remove all flows with this profile */ status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); if (status) goto err_ice_rem_prof; /* dereference profile, and possibly remove */ ice_prof_dec_ref(hw, blk, pmap->prof_id); list_del(&pmap->list); devm_kfree(ice_hw_to_dev(hw), pmap); err_ice_rem_prof: mutex_unlock(&hw->blk[blk].es.prof_map_lock); return status; } /** * ice_get_prof - get profile * @hw: pointer to the HW struct * @blk: hardware block * @hdl: profile handle * @chg: change list */ static int ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, struct list_head *chg) { struct ice_prof_map *map; struct ice_chs_chg *p; int status = 0; u16 i; mutex_lock(&hw->blk[blk].es.prof_map_lock); /* Get the details on the profile specified by the handle ID */ map = ice_search_prof_id(hw, blk, hdl); if (!map) { status = -ENOENT; goto err_ice_get_prof; } for (i = 0; i < map->ptg_cnt; i++) if (!hw->blk[blk].es.written[map->prof_id]) { /* add ES to change list */ p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) { status = -ENOMEM; goto err_ice_get_prof; } p->type = ICE_PTG_ES_ADD; p->ptype = 0; p->ptg = map->ptg[i]; p->add_ptg = 0; p->add_prof = 1; p->prof_id = map->prof_id; hw->blk[blk].es.written[map->prof_id] = true; list_add(&p->list_entry, chg); } err_ice_get_prof: mutex_unlock(&hw->blk[blk].es.prof_map_lock); /* let caller clean up the change list */ return status; } /** * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG * @hw: pointer to the HW struct * @blk: hardware block * @vsig: VSIG from which to copy the list * @lst: output list * * This routine makes a copy of the list of profiles in the specified VSIG. */ static int ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, struct list_head *lst) { struct ice_vsig_prof *ent1, *ent2; u16 idx = vsig & ICE_VSIG_IDX_M; list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) { struct ice_vsig_prof *p; /* copy to the input list */ p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), GFP_KERNEL); if (!p) goto err_ice_get_profs_vsig; list_add_tail(&p->list, lst); } return 0; err_ice_get_profs_vsig: list_for_each_entry_safe(ent1, ent2, lst, list) { list_del(&ent1->list); devm_kfree(ice_hw_to_dev(hw), ent1); } return -ENOMEM; } /** * ice_add_prof_to_lst - add profile entry to a list * @hw: pointer to the HW struct * @blk: hardware block * @lst: the list to be added to * @hdl: profile handle of entry to add */ static int ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, struct list_head *lst, u64 hdl) { struct ice_prof_map *map; struct ice_vsig_prof *p; int status = 0; u16 i; mutex_lock(&hw->blk[blk].es.prof_map_lock); map = ice_search_prof_id(hw, blk, hdl); if (!map) { status = -ENOENT; goto err_ice_add_prof_to_lst; } p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) { status = -ENOMEM; goto err_ice_add_prof_to_lst; } p->profile_cookie = map->profile_cookie; p->prof_id = map->prof_id; p->tcam_count = map->ptg_cnt; for (i = 0; i < map->ptg_cnt; i++) { p->tcam[i].prof_id = map->prof_id; p->tcam[i].tcam_idx = ICE_INVALID_TCAM; p->tcam[i].ptg = map->ptg[i]; } list_add(&p->list, lst); err_ice_add_prof_to_lst: mutex_unlock(&hw->blk[blk].es.prof_map_lock); return status; } /** * ice_move_vsi - move VSI to another VSIG * @hw: pointer to the HW struct * @blk: hardware block * @vsi: the VSI to move * @vsig: the VSIG to move the VSI to * @chg: the change list */ static int ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, struct list_head *chg) { struct ice_chs_chg *p; u16 orig_vsig; int status; p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); if (!status) status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); if (status) { devm_kfree(ice_hw_to_dev(hw), p); return status; } p->type = ICE_VSI_MOVE; p->vsi = vsi; p->orig_vsig = orig_vsig; p->vsig = vsig; list_add(&p->list_entry, chg); return 0; } /** * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list * @hw: pointer to the HW struct * @idx: the index of the TCAM entry to remove * @chg: the list of change structures to search */ static void ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) { struct ice_chs_chg *pos, *tmp; list_for_each_entry_safe(tmp, pos, chg, list_entry) if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { list_del(&tmp->list_entry); devm_kfree(ice_hw_to_dev(hw), tmp); } } /** * ice_prof_tcam_ena_dis - add enable or disable TCAM change * @hw: pointer to the HW struct * @blk: hardware block * @enable: true to enable, false to disable * @vsig: the VSIG of the TCAM entry * @tcam: pointer the TCAM info structure of the TCAM to disable * @chg: the change list * * This function appends an enable or disable TCAM entry in the change log */ static int ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, u16 vsig, struct ice_tcam_inf *tcam, struct list_head *chg) { struct ice_chs_chg *p; int status; u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; /* if disabling, free the TCAM */ if (!enable) { status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); /* if we have already created a change for this TCAM entry, then * we need to remove that entry, in order to prevent writing to * a TCAM entry we no longer will have ownership of. */ ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); tcam->tcam_idx = 0; tcam->in_use = 0; return status; } /* for re-enabling, reallocate a TCAM */ /* for entries with empty attribute masks, allocate entry from * the bottom of the TCAM table; otherwise, allocate from the * top of the table in order to give it higher priority */ status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, &tcam->tcam_idx); if (status) return status; /* add TCAM to change list */ p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, tcam->ptg, vsig, 0, tcam->attr.flags, vl_msk, dc_msk, nm_msk); if (status) goto err_ice_prof_tcam_ena_dis; tcam->in_use = 1; p->type = ICE_TCAM_ADD; p->add_tcam_idx = true; p->prof_id = tcam->prof_id; p->ptg = tcam->ptg; p->vsig = 0; p->tcam_idx = tcam->tcam_idx; /* log change */ list_add(&p->list_entry, chg); return 0; err_ice_prof_tcam_ena_dis: devm_kfree(ice_hw_to_dev(hw), p); return status; } /** * ice_adj_prof_priorities - adjust profile based on priorities * @hw: pointer to the HW struct * @blk: hardware block * @vsig: the VSIG for which to adjust profile priorities * @chg: the change list */ static int ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, struct list_head *chg) { DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); struct ice_vsig_prof *t; int status; u16 idx; bitmap_zero(ptgs_used, ICE_XLT1_CNT); idx = vsig & ICE_VSIG_IDX_M; /* Priority is based on the order in which the profiles are added. The * newest added profile has highest priority and the oldest added * profile has the lowest priority. Since the profile property list for * a VSIG is sorted from newest to oldest, this code traverses the list * in order and enables the first of each PTG that it finds (that is not * already enabled); it also disables any duplicate PTGs that it finds * in the older profiles (that are currently enabled). */ list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, list) { u16 i; for (i = 0; i < t->tcam_count; i++) { /* Scan the priorities from newest to oldest. * Make sure that the newest profiles take priority. */ if (test_bit(t->tcam[i].ptg, ptgs_used) && t->tcam[i].in_use) { /* need to mark this PTG as never match, as it * was already in use and therefore duplicate * (and lower priority) */ status = ice_prof_tcam_ena_dis(hw, blk, false, vsig, &t->tcam[i], chg); if (status) return status; } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && !t->tcam[i].in_use) { /* need to enable this PTG, as it in not in use * and not enabled (highest priority) */ status = ice_prof_tcam_ena_dis(hw, blk, true, vsig, &t->tcam[i], chg); if (status) return status; } /* keep track of used ptgs */ __set_bit(t->tcam[i].ptg, ptgs_used); } } return 0; } /** * ice_add_prof_id_vsig - add profile to VSIG * @hw: pointer to the HW struct * @blk: hardware block * @vsig: the VSIG to which this profile is to be added * @hdl: the profile handle indicating the profile to add * @rev: true to add entries to the end of the list * @chg: the change list */ static int ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, bool rev, struct list_head *chg) { /* Masks that ignore flags */ u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; struct ice_prof_map *map; struct ice_vsig_prof *t; struct ice_chs_chg *p; u16 vsig_idx, i; int status = 0; /* Error, if this VSIG already has this profile */ if (ice_has_prof_vsig(hw, blk, vsig, hdl)) return -EEXIST; /* new VSIG profile structure */ t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); if (!t) return -ENOMEM; mutex_lock(&hw->blk[blk].es.prof_map_lock); /* Get the details on the profile specified by the handle ID */ map = ice_search_prof_id(hw, blk, hdl); if (!map) { status = -ENOENT; goto err_ice_add_prof_id_vsig; } t->profile_cookie = map->profile_cookie; t->prof_id = map->prof_id; t->tcam_count = map->ptg_cnt; /* create TCAM entries */ for (i = 0; i < map->ptg_cnt; i++) { u16 tcam_idx; /* add TCAM to change list */ p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) { status = -ENOMEM; goto err_ice_add_prof_id_vsig; } /* allocate the TCAM entry index */ /* for entries with empty attribute masks, allocate entry from * the bottom of the TCAM table; otherwise, allocate from the * top of the table in order to give it higher priority */ status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, &tcam_idx); if (status) { devm_kfree(ice_hw_to_dev(hw), p); goto err_ice_add_prof_id_vsig; } t->tcam[i].ptg = map->ptg[i]; t->tcam[i].prof_id = map->prof_id; t->tcam[i].tcam_idx = tcam_idx; t->tcam[i].attr = map->attr[i]; t->tcam[i].in_use = true; p->type = ICE_TCAM_ADD; p->add_tcam_idx = true; p->prof_id = t->tcam[i].prof_id; p->ptg = t->tcam[i].ptg; p->vsig = vsig; p->tcam_idx = t->tcam[i].tcam_idx; /* write the TCAM entry */ status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, t->tcam[i].prof_id, t->tcam[i].ptg, vsig, 0, 0, vl_msk, dc_msk, nm_msk); if (status) { devm_kfree(ice_hw_to_dev(hw), p); goto err_ice_add_prof_id_vsig; } /* log change */ list_add(&p->list_entry, chg); } /* add profile to VSIG */ vsig_idx = vsig & ICE_VSIG_IDX_M; if (rev) list_add_tail(&t->list, &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); else list_add(&t->list, &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); mutex_unlock(&hw->blk[blk].es.prof_map_lock); return status; err_ice_add_prof_id_vsig: mutex_unlock(&hw->blk[blk].es.prof_map_lock); /* let caller clean up the change list */ devm_kfree(ice_hw_to_dev(hw), t); return status; } /** * ice_create_prof_id_vsig - add a new VSIG with a single profile * @hw: pointer to the HW struct * @blk: hardware block * @vsi: the initial VSI that will be in VSIG * @hdl: the profile handle of the profile that will be added to the VSIG * @chg: the change list */ static int ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, struct list_head *chg) { struct ice_chs_chg *p; u16 new_vsig; int status; p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; new_vsig = ice_vsig_alloc(hw, blk); if (!new_vsig) { status = -EIO; goto err_ice_create_prof_id_vsig; } status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); if (status) goto err_ice_create_prof_id_vsig; status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); if (status) goto err_ice_create_prof_id_vsig; p->type = ICE_VSIG_ADD; p->vsi = vsi; p->orig_vsig = ICE_DEFAULT_VSIG; p->vsig = new_vsig; list_add(&p->list_entry, chg); return 0; err_ice_create_prof_id_vsig: /* let caller clean up the change list */ devm_kfree(ice_hw_to_dev(hw), p); return status; } /** * ice_create_vsig_from_lst - create a new VSIG with a list of profiles * @hw: pointer to the HW struct * @blk: hardware block * @vsi: the initial VSI that will be in VSIG * @lst: the list of profile that will be added to the VSIG * @new_vsig: return of new VSIG * @chg: the change list */ static int ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, struct list_head *lst, u16 *new_vsig, struct list_head *chg) { struct ice_vsig_prof *t; int status; u16 vsig; vsig = ice_vsig_alloc(hw, blk); if (!vsig) return -EIO; status = ice_move_vsi(hw, blk, vsi, vsig, chg); if (status) return status; list_for_each_entry(t, lst, list) { /* Reverse the order here since we are copying the list */ status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, true, chg); if (status) return status; } *new_vsig = vsig; return 0; } /** * ice_find_prof_vsig - find a VSIG with a specific profile handle * @hw: pointer to the HW struct * @blk: hardware block * @hdl: the profile handle of the profile to search for * @vsig: returns the VSIG with the matching profile */ static bool ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) { struct ice_vsig_prof *t; struct list_head lst; int status; INIT_LIST_HEAD(&lst); t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) return false; t->profile_cookie = hdl; list_add(&t->list, &lst); status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); list_del(&t->list); kfree(t); return !status; } /** * ice_add_prof_id_flow - add profile flow * @hw: pointer to the HW struct * @blk: hardware block * @vsi: the VSI to enable with the profile specified by ID * @hdl: profile handle * * Calling this function will update the hardware tables to enable the * profile indicated by the ID parameter for the VSIs specified in the VSI * array. Once successfully called, the flow will be enabled. */ int ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) { struct ice_vsig_prof *tmp1, *del1; struct ice_chs_chg *tmp, *del; struct list_head union_lst; struct list_head chg; int status; u16 vsig; INIT_LIST_HEAD(&union_lst); INIT_LIST_HEAD(&chg); /* Get profile */ status = ice_get_prof(hw, blk, hdl, &chg); if (status) return status; /* determine if VSI is already part of a VSIG */ status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); if (!status && vsig) { bool only_vsi; u16 or_vsig; u16 ref; /* found in VSIG */ or_vsig = vsig; /* make sure that there is no overlap/conflict between the new * characteristics and the existing ones; we don't support that * scenario */ if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { status = -EEXIST; goto err_ice_add_prof_id_flow; } /* last VSI in the VSIG? */ status = ice_vsig_get_ref(hw, blk, vsig, &ref); if (status) goto err_ice_add_prof_id_flow; only_vsi = (ref == 1); /* create a union of the current profiles and the one being * added */ status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); if (status) goto err_ice_add_prof_id_flow; status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); if (status) goto err_ice_add_prof_id_flow; /* search for an existing VSIG with an exact charc match */ status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); if (!status) { /* move VSI to the VSIG that matches */ status = ice_move_vsi(hw, blk, vsi, vsig, &chg); if (status) goto err_ice_add_prof_id_flow; /* VSI has been moved out of or_vsig. If the or_vsig had * only that VSI it is now empty and can be removed. */ if (only_vsi) { status = ice_rem_vsig(hw, blk, or_vsig, &chg); if (status) goto err_ice_add_prof_id_flow; } } else if (only_vsi) { /* If the original VSIG only contains one VSI, then it * will be the requesting VSI. In this case the VSI is * not sharing entries and we can simply add the new * profile to the VSIG. */ status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, &chg); if (status) goto err_ice_add_prof_id_flow; /* Adjust priorities */ status = ice_adj_prof_priorities(hw, blk, vsig, &chg); if (status) goto err_ice_add_prof_id_flow; } else { /* No match, so we need a new VSIG */ status = ice_create_vsig_from_lst(hw, blk, vsi, &union_lst, &vsig, &chg); if (status) goto err_ice_add_prof_id_flow; /* Adjust priorities */ status = ice_adj_prof_priorities(hw, blk, vsig, &chg); if (status) goto err_ice_add_prof_id_flow; } } else { /* need to find or add a VSIG */ /* search for an existing VSIG with an exact charc match */ if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { /* found an exact match */ /* add or move VSI to the VSIG that matches */ status = ice_move_vsi(hw, blk, vsi, vsig, &chg); if (status) goto err_ice_add_prof_id_flow; } else { /* we did not find an exact match */ /* we need to add a VSIG */ status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, &chg); if (status) goto err_ice_add_prof_id_flow; } } /* update hardware */ if (!status) status = ice_upd_prof_hw(hw, blk, &chg); err_ice_add_prof_id_flow: list_for_each_entry_safe(del, tmp, &chg, list_entry) { list_del(&del->list_entry); devm_kfree(ice_hw_to_dev(hw), del); } list_for_each_entry_safe(del1, tmp1, &union_lst, list) { list_del(&del1->list); devm_kfree(ice_hw_to_dev(hw), del1); } return status; } /** * ice_rem_prof_from_list - remove a profile from list * @hw: pointer to the HW struct * @lst: list to remove the profile from * @hdl: the profile handle indicating the profile to remove */ static int ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) { struct ice_vsig_prof *ent, *tmp; list_for_each_entry_safe(ent, tmp, lst, list) if (ent->profile_cookie == hdl) { list_del(&ent->list); devm_kfree(ice_hw_to_dev(hw), ent); return 0; } return -ENOENT; } /** * ice_rem_prof_id_flow - remove flow * @hw: pointer to the HW struct * @blk: hardware block * @vsi: the VSI from which to remove the profile specified by ID * @hdl: profile tracking handle * * Calling this function will update the hardware tables to remove the * profile indicated by the ID parameter for the VSIs specified in the VSI * array. Once successfully called, the flow will be disabled. */ int ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) { struct ice_vsig_prof *tmp1, *del1; struct ice_chs_chg *tmp, *del; struct list_head chg, copy; int status; u16 vsig; INIT_LIST_HEAD(©); INIT_LIST_HEAD(&chg); /* determine if VSI is already part of a VSIG */ status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); if (!status && vsig) { bool last_profile; bool only_vsi; u16 ref; /* found in VSIG */ last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; status = ice_vsig_get_ref(hw, blk, vsig, &ref); if (status) goto err_ice_rem_prof_id_flow; only_vsi = (ref == 1); if (only_vsi) { /* If the original VSIG only contains one reference, * which will be the requesting VSI, then the VSI is not * sharing entries and we can simply remove the specific * characteristics from the VSIG. */ if (last_profile) { /* If there are no profiles left for this VSIG, * then simply remove the VSIG. */ status = ice_rem_vsig(hw, blk, vsig, &chg); if (status) goto err_ice_rem_prof_id_flow; } else { status = ice_rem_prof_id_vsig(hw, blk, vsig, hdl, &chg); if (status) goto err_ice_rem_prof_id_flow; /* Adjust priorities */ status = ice_adj_prof_priorities(hw, blk, vsig, &chg); if (status) goto err_ice_rem_prof_id_flow; } } else { /* Make a copy of the VSIG's list of Profiles */ status = ice_get_profs_vsig(hw, blk, vsig, ©); if (status) goto err_ice_rem_prof_id_flow; /* Remove specified profile entry from the list */ status = ice_rem_prof_from_list(hw, ©, hdl); if (status) goto err_ice_rem_prof_id_flow; if (list_empty(©)) { status = ice_move_vsi(hw, blk, vsi, ICE_DEFAULT_VSIG, &chg); if (status) goto err_ice_rem_prof_id_flow; } else if (!ice_find_dup_props_vsig(hw, blk, ©, &vsig)) { /* found an exact match */ /* add or move VSI to the VSIG that matches */ /* Search for a VSIG with a matching profile * list */ /* Found match, move VSI to the matching VSIG */ status = ice_move_vsi(hw, blk, vsi, vsig, &chg); if (status) goto err_ice_rem_prof_id_flow; } else { /* since no existing VSIG supports this * characteristic pattern, we need to create a * new VSIG and TCAM entries */ status = ice_create_vsig_from_lst(hw, blk, vsi, ©, &vsig, &chg); if (status) goto err_ice_rem_prof_id_flow; /* Adjust priorities */ status = ice_adj_prof_priorities(hw, blk, vsig, &chg); if (status) goto err_ice_rem_prof_id_flow; } } } else { status = -ENOENT; } /* update hardware tables */ if (!status) status = ice_upd_prof_hw(hw, blk, &chg); err_ice_rem_prof_id_flow: list_for_each_entry_safe(del, tmp, &chg, list_entry) { list_del(&del->list_entry); devm_kfree(ice_hw_to_dev(hw), del); } list_for_each_entry_safe(del1, tmp1, ©, list) { list_del(&del1->list); devm_kfree(ice_hw_to_dev(hw), del1); } return status; }