// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ /* ethtool support for iavf */ #include "iavf.h" #include /* ethtool statistics helpers */ /** * struct iavf_stats - definition for an ethtool statistic * @stat_string: statistic name to display in ethtool -S output * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64) * @stat_offset: offsetof() the stat from a base pointer * * This structure defines a statistic to be added to the ethtool stats buffer. * It defines a statistic as offset from a common base pointer. Stats should * be defined in constant arrays using the IAVF_STAT macro, with every element * of the array using the same _type for calculating the sizeof_stat and * stat_offset. * * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from * the iavf_add_ethtool_stat() helper function. * * The @stat_string is interpreted as a format string, allowing formatted * values to be inserted while looping over multiple structures for a given * statistics array. Thus, every statistic string in an array should have the * same type and number of format specifiers, to be formatted by variadic * arguments to the iavf_add_stat_string() helper function. **/ struct iavf_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int stat_offset; }; /* Helper macro to define an iavf_stat structure with proper size and type. * Use this when defining constant statistics arrays. Note that @_type expects * only a type name and is used multiple times. */ #define IAVF_STAT(_type, _name, _stat) { \ .stat_string = _name, \ .sizeof_stat = sizeof_field(_type, _stat), \ .stat_offset = offsetof(_type, _stat) \ } /* Helper macro for defining some statistics related to queues */ #define IAVF_QUEUE_STAT(_name, _stat) \ IAVF_STAT(struct iavf_ring, _name, _stat) /* Stats associated with a Tx or Rx ring */ static const struct iavf_stats iavf_gstrings_queue_stats[] = { IAVF_QUEUE_STAT("%s-%u.packets", stats.packets), IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes), }; /** * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer * @data: location to store the stat value * @pointer: basis for where to copy from * @stat: the stat definition * * Copies the stat data defined by the pointer and stat structure pair into * the memory supplied as data. Used to implement iavf_add_ethtool_stats and * iavf_add_queue_stats. If the pointer is null, data will be zero'd. */ static void iavf_add_one_ethtool_stat(u64 *data, void *pointer, const struct iavf_stats *stat) { char *p; if (!pointer) { /* ensure that the ethtool data buffer is zero'd for any stats * which don't have a valid pointer. */ *data = 0; return; } p = (char *)pointer + stat->stat_offset; switch (stat->sizeof_stat) { case sizeof(u64): *data = *((u64 *)p); break; case sizeof(u32): *data = *((u32 *)p); break; case sizeof(u16): *data = *((u16 *)p); break; case sizeof(u8): *data = *((u8 *)p); break; default: WARN_ONCE(1, "unexpected stat size for %s", stat->stat_string); *data = 0; } } /** * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer * @data: ethtool stats buffer * @pointer: location to copy stats from * @stats: array of stats to copy * @size: the size of the stats definition * * Copy the stats defined by the stats array using the pointer as a base into * the data buffer supplied by ethtool. Updates the data pointer to point to * the next empty location for successive calls to __iavf_add_ethtool_stats. * If pointer is null, set the data values to zero and update the pointer to * skip these stats. **/ static void __iavf_add_ethtool_stats(u64 **data, void *pointer, const struct iavf_stats stats[], const unsigned int size) { unsigned int i; for (i = 0; i < size; i++) iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]); } /** * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer * @data: ethtool stats buffer * @pointer: location where stats are stored * @stats: static const array of stat definitions * * Macro to ease the use of __iavf_add_ethtool_stats by taking a static * constant stats array and passing the ARRAY_SIZE(). This avoids typos by * ensuring that we pass the size associated with the given stats array. * * The parameter @stats is evaluated twice, so parameters with side effects * should be avoided. **/ #define iavf_add_ethtool_stats(data, pointer, stats) \ __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats)) /** * iavf_add_queue_stats - copy queue statistics into supplied buffer * @data: ethtool stats buffer * @ring: the ring to copy * * Queue statistics must be copied while protected by * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats. * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the * ring pointer is null, zero out the queue stat values and update the data * pointer. Otherwise safely copy the stats from the ring into the supplied * buffer and update the data pointer when finished. * * This function expects to be called while under rcu_read_lock(). **/ static void iavf_add_queue_stats(u64 **data, struct iavf_ring *ring) { const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats); const struct iavf_stats *stats = iavf_gstrings_queue_stats; unsigned int start; unsigned int i; /* To avoid invalid statistics values, ensure that we keep retrying * the copy until we get a consistent value according to * u64_stats_fetch_retry. But first, make sure our ring is * non-null before attempting to access its syncp. */ do { start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp); for (i = 0; i < size; i++) iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]); } while (ring && u64_stats_fetch_retry(&ring->syncp, start)); /* Once we successfully copy the stats in, update the data pointer */ *data += size; } /** * __iavf_add_stat_strings - copy stat strings into ethtool buffer * @p: ethtool supplied buffer * @stats: stat definitions array * @size: size of the stats array * * Format and copy the strings described by stats into the buffer pointed at * by p. **/ static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[], const unsigned int size, ...) { unsigned int i; for (i = 0; i < size; i++) { va_list args; va_start(args, size); vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args); *p += ETH_GSTRING_LEN; va_end(args); } } /** * iavf_add_stat_strings - copy stat strings into ethtool buffer * @p: ethtool supplied buffer * @stats: stat definitions array * * Format and copy the strings described by the const static stats value into * the buffer pointed at by p. * * The parameter @stats is evaluated twice, so parameters with side effects * should be avoided. Additionally, stats must be an array such that * ARRAY_SIZE can be called on it. **/ #define iavf_add_stat_strings(p, stats, ...) \ __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__) #define VF_STAT(_name, _stat) \ IAVF_STAT(struct iavf_adapter, _name, _stat) static const struct iavf_stats iavf_gstrings_stats[] = { VF_STAT("rx_bytes", current_stats.rx_bytes), VF_STAT("rx_unicast", current_stats.rx_unicast), VF_STAT("rx_multicast", current_stats.rx_multicast), VF_STAT("rx_broadcast", current_stats.rx_broadcast), VF_STAT("rx_discards", current_stats.rx_discards), VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol), VF_STAT("tx_bytes", current_stats.tx_bytes), VF_STAT("tx_unicast", current_stats.tx_unicast), VF_STAT("tx_multicast", current_stats.tx_multicast), VF_STAT("tx_broadcast", current_stats.tx_broadcast), VF_STAT("tx_discards", current_stats.tx_discards), VF_STAT("tx_errors", current_stats.tx_errors), }; #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats) #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats) /* For now we have one and only one private flag and it is only defined * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead * of leaving all this code sitting around empty we will strip it unless * our one private flag is actually available. */ struct iavf_priv_flags { char flag_string[ETH_GSTRING_LEN]; u32 flag; bool read_only; }; #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \ .flag_string = _name, \ .flag = _flag, \ .read_only = _read_only, \ } static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = { IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0), }; #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags) /** * iavf_get_link_ksettings - Get Link Speed and Duplex settings * @netdev: network interface device structure * @cmd: ethtool command * * Reports speed/duplex settings. Because this is a VF, we don't know what * kind of link we really have, so we fake it. **/ static int iavf_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct iavf_adapter *adapter = netdev_priv(netdev); ethtool_link_ksettings_zero_link_mode(cmd, supported); cmd->base.autoneg = AUTONEG_DISABLE; cmd->base.port = PORT_NONE; cmd->base.duplex = DUPLEX_FULL; if (ADV_LINK_SUPPORT(adapter)) { if (adapter->link_speed_mbps && adapter->link_speed_mbps < U32_MAX) cmd->base.speed = adapter->link_speed_mbps; else cmd->base.speed = SPEED_UNKNOWN; return 0; } switch (adapter->link_speed) { case VIRTCHNL_LINK_SPEED_40GB: cmd->base.speed = SPEED_40000; break; case VIRTCHNL_LINK_SPEED_25GB: cmd->base.speed = SPEED_25000; break; case VIRTCHNL_LINK_SPEED_20GB: cmd->base.speed = SPEED_20000; break; case VIRTCHNL_LINK_SPEED_10GB: cmd->base.speed = SPEED_10000; break; case VIRTCHNL_LINK_SPEED_5GB: cmd->base.speed = SPEED_5000; break; case VIRTCHNL_LINK_SPEED_2_5GB: cmd->base.speed = SPEED_2500; break; case VIRTCHNL_LINK_SPEED_1GB: cmd->base.speed = SPEED_1000; break; case VIRTCHNL_LINK_SPEED_100MB: cmd->base.speed = SPEED_100; break; default: break; } return 0; } /** * iavf_get_sset_count - Get length of string set * @netdev: network interface device structure * @sset: id of string set * * Reports size of various string tables. **/ static int iavf_get_sset_count(struct net_device *netdev, int sset) { /* Report the maximum number queues, even if not every queue is * currently configured. Since allocation of queues is in pairs, * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set * at device creation and never changes. */ if (sset == ETH_SS_STATS) return IAVF_STATS_LEN + (IAVF_QUEUE_STATS_LEN * 2 * netdev->real_num_tx_queues); else if (sset == ETH_SS_PRIV_FLAGS) return IAVF_PRIV_FLAGS_STR_LEN; else return -EINVAL; } /** * iavf_get_ethtool_stats - report device statistics * @netdev: network interface device structure * @stats: ethtool statistics structure * @data: pointer to data buffer * * All statistics are added to the data buffer as an array of u64. **/ static void iavf_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct iavf_adapter *adapter = netdev_priv(netdev); unsigned int i; /* Explicitly request stats refresh */ iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_REQUEST_STATS); iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats); rcu_read_lock(); /* As num_active_queues describe both tx and rx queues, we can use * it to iterate over rings' stats. */ for (i = 0; i < adapter->num_active_queues; i++) { struct iavf_ring *ring; /* Tx rings stats */ ring = &adapter->tx_rings[i]; iavf_add_queue_stats(&data, ring); /* Rx rings stats */ ring = &adapter->rx_rings[i]; iavf_add_queue_stats(&data, ring); } rcu_read_unlock(); } /** * iavf_get_priv_flag_strings - Get private flag strings * @netdev: network interface device structure * @data: buffer for string data * * Builds the private flags string table **/ static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data) { unsigned int i; for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { snprintf(data, ETH_GSTRING_LEN, "%s", iavf_gstrings_priv_flags[i].flag_string); data += ETH_GSTRING_LEN; } } /** * iavf_get_stat_strings - Get stat strings * @netdev: network interface device structure * @data: buffer for string data * * Builds the statistics string table **/ static void iavf_get_stat_strings(struct net_device *netdev, u8 *data) { unsigned int i; iavf_add_stat_strings(&data, iavf_gstrings_stats); /* Queues are always allocated in pairs, so we just use * real_num_tx_queues for both Tx and Rx queues. */ for (i = 0; i < netdev->real_num_tx_queues; i++) { iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, "tx", i); iavf_add_stat_strings(&data, iavf_gstrings_queue_stats, "rx", i); } } /** * iavf_get_strings - Get string set * @netdev: network interface device structure * @sset: id of string set * @data: buffer for string data * * Builds string tables for various string sets **/ static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data) { switch (sset) { case ETH_SS_STATS: iavf_get_stat_strings(netdev, data); break; case ETH_SS_PRIV_FLAGS: iavf_get_priv_flag_strings(netdev, data); break; default: break; } } /** * iavf_get_priv_flags - report device private flags * @netdev: network interface device structure * * The get string set count and the string set should be matched for each * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags * array. * * Returns a u32 bitmap of flags. **/ static u32 iavf_get_priv_flags(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); u32 i, ret_flags = 0; for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { const struct iavf_priv_flags *priv_flags; priv_flags = &iavf_gstrings_priv_flags[i]; if (priv_flags->flag & adapter->flags) ret_flags |= BIT(i); } return ret_flags; } /** * iavf_set_priv_flags - set private flags * @netdev: network interface device structure * @flags: bit flags to be set **/ static int iavf_set_priv_flags(struct net_device *netdev, u32 flags) { struct iavf_adapter *adapter = netdev_priv(netdev); u32 orig_flags, new_flags, changed_flags; int ret = 0; u32 i; orig_flags = READ_ONCE(adapter->flags); new_flags = orig_flags; for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) { const struct iavf_priv_flags *priv_flags; priv_flags = &iavf_gstrings_priv_flags[i]; if (flags & BIT(i)) new_flags |= priv_flags->flag; else new_flags &= ~(priv_flags->flag); if (priv_flags->read_only && ((orig_flags ^ new_flags) & ~BIT(i))) return -EOPNOTSUPP; } /* Before we finalize any flag changes, any checks which we need to * perform to determine if the new flags will be supported should go * here... */ /* Compare and exchange the new flags into place. If we failed, that * is if cmpxchg returns anything but the old value, this means * something else must have modified the flags variable since we * copied it. We'll just punt with an error and log something in the * message buffer. */ if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) { dev_warn(&adapter->pdev->dev, "Unable to update adapter->flags as it was modified by another thread...\n"); return -EAGAIN; } changed_flags = orig_flags ^ new_flags; /* Process any additional changes needed as a result of flag changes. * The changed_flags value reflects the list of bits that were changed * in the code above. */ /* issue a reset to force legacy-rx change to take effect */ if (changed_flags & IAVF_FLAG_LEGACY_RX) { if (netif_running(netdev)) { iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); ret = iavf_wait_for_reset(adapter); if (ret) netdev_warn(netdev, "Changing private flags timeout or interrupted waiting for reset"); } } return ret; } /** * iavf_get_msglevel - Get debug message level * @netdev: network interface device structure * * Returns current debug message level. **/ static u32 iavf_get_msglevel(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); return adapter->msg_enable; } /** * iavf_set_msglevel - Set debug message level * @netdev: network interface device structure * @data: message level * * Set current debug message level. Higher values cause the driver to * be noisier. **/ static void iavf_set_msglevel(struct net_device *netdev, u32 data) { struct iavf_adapter *adapter = netdev_priv(netdev); if (IAVF_DEBUG_USER & data) adapter->hw.debug_mask = data; adapter->msg_enable = data; } /** * iavf_get_drvinfo - Get driver info * @netdev: network interface device structure * @drvinfo: ethool driver info structure * * Returns information about the driver and device for display to the user. **/ static void iavf_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct iavf_adapter *adapter = netdev_priv(netdev); strscpy(drvinfo->driver, iavf_driver_name, 32); strscpy(drvinfo->fw_version, "N/A", 4); strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN; } /** * iavf_get_ringparam - Get ring parameters * @netdev: network interface device structure * @ring: ethtool ringparam structure * @kernel_ring: ethtool extenal ringparam structure * @extack: netlink extended ACK report struct * * Returns current ring parameters. TX and RX rings are reported separately, * but the number of rings is not reported. **/ static void iavf_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct iavf_adapter *adapter = netdev_priv(netdev); ring->rx_max_pending = IAVF_MAX_RXD; ring->tx_max_pending = IAVF_MAX_TXD; ring->rx_pending = adapter->rx_desc_count; ring->tx_pending = adapter->tx_desc_count; } /** * iavf_set_ringparam - Set ring parameters * @netdev: network interface device structure * @ring: ethtool ringparam structure * @kernel_ring: ethtool external ringparam structure * @extack: netlink extended ACK report struct * * Sets ring parameters. TX and RX rings are controlled separately, but the * number of rings is not specified, so all rings get the same settings. **/ static int iavf_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct iavf_adapter *adapter = netdev_priv(netdev); u32 new_rx_count, new_tx_count; int ret = 0; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; if (ring->tx_pending > IAVF_MAX_TXD || ring->tx_pending < IAVF_MIN_TXD || ring->rx_pending > IAVF_MAX_RXD || ring->rx_pending < IAVF_MIN_RXD) { netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD, IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE); return -EINVAL; } new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); if (new_tx_count != ring->tx_pending) netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", new_tx_count); new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE); if (new_rx_count != ring->rx_pending) netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", new_rx_count); /* if nothing to do return success */ if ((new_tx_count == adapter->tx_desc_count) && (new_rx_count == adapter->rx_desc_count)) { netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); return 0; } if (new_tx_count != adapter->tx_desc_count) { netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n", adapter->tx_desc_count, new_tx_count); adapter->tx_desc_count = new_tx_count; } if (new_rx_count != adapter->rx_desc_count) { netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n", adapter->rx_desc_count, new_rx_count); adapter->rx_desc_count = new_rx_count; } if (netif_running(netdev)) { iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); ret = iavf_wait_for_reset(adapter); if (ret) netdev_warn(netdev, "Changing ring parameters timeout or interrupted waiting for reset"); } return ret; } /** * __iavf_get_coalesce - get per-queue coalesce settings * @netdev: the netdev to check * @ec: ethtool coalesce data structure * @queue: which queue to pick * * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs * are per queue. If queue is <0 then we default to queue 0 as the * representative value. **/ static int __iavf_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, int queue) { struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_ring *rx_ring, *tx_ring; /* Rx and Tx usecs per queue value. If user doesn't specify the * queue, return queue 0's value to represent. */ if (queue < 0) queue = 0; else if (queue >= adapter->num_active_queues) return -EINVAL; rx_ring = &adapter->rx_rings[queue]; tx_ring = &adapter->tx_rings[queue]; if (ITR_IS_DYNAMIC(rx_ring->itr_setting)) ec->use_adaptive_rx_coalesce = 1; if (ITR_IS_DYNAMIC(tx_ring->itr_setting)) ec->use_adaptive_tx_coalesce = 1; ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; return 0; } /** * iavf_get_coalesce - Get interrupt coalescing settings * @netdev: network interface device structure * @ec: ethtool coalesce structure * @kernel_coal: ethtool CQE mode setting structure * @extack: extack for reporting error messages * * Returns current coalescing settings. This is referred to elsewhere in the * driver as Interrupt Throttle Rate, as this is how the hardware describes * this functionality. Note that if per-queue settings have been modified this * only represents the settings of queue 0. **/ static int iavf_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { return __iavf_get_coalesce(netdev, ec, -1); } /** * iavf_get_per_queue_coalesce - get coalesce values for specific queue * @netdev: netdev to read * @ec: coalesce settings from ethtool * @queue: the queue to read * * Read specific queue's coalesce settings. **/ static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue, struct ethtool_coalesce *ec) { return __iavf_get_coalesce(netdev, ec, queue); } /** * iavf_set_itr_per_queue - set ITR values for specific queue * @adapter: the VF adapter struct to set values for * @ec: coalesce settings from ethtool * @queue: the queue to modify * * Change the ITR settings for a specific queue. **/ static int iavf_set_itr_per_queue(struct iavf_adapter *adapter, struct ethtool_coalesce *ec, int queue) { struct iavf_ring *rx_ring = &adapter->rx_rings[queue]; struct iavf_ring *tx_ring = &adapter->tx_rings[queue]; struct iavf_q_vector *q_vector; u16 itr_setting; itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; if (ec->rx_coalesce_usecs != itr_setting && ec->use_adaptive_rx_coalesce) { netif_info(adapter, drv, adapter->netdev, "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n"); return -EINVAL; } itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC; if (ec->tx_coalesce_usecs != itr_setting && ec->use_adaptive_tx_coalesce) { netif_info(adapter, drv, adapter->netdev, "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n"); return -EINVAL; } rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs); tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs); rx_ring->itr_setting |= IAVF_ITR_DYNAMIC; if (!ec->use_adaptive_rx_coalesce) rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; tx_ring->itr_setting |= IAVF_ITR_DYNAMIC; if (!ec->use_adaptive_tx_coalesce) tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC; q_vector = rx_ring->q_vector; q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); q_vector = tx_ring->q_vector; q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); /* The interrupt handler itself will take care of programming * the Tx and Rx ITR values based on the values we have entered * into the q_vector, no need to write the values now. */ return 0; } /** * __iavf_set_coalesce - set coalesce settings for particular queue * @netdev: the netdev to change * @ec: ethtool coalesce settings * @queue: the queue to change * * Sets the coalesce settings for a particular queue. **/ static int __iavf_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, int queue) { struct iavf_adapter *adapter = netdev_priv(netdev); int i; if (ec->rx_coalesce_usecs == 0) { if (ec->use_adaptive_rx_coalesce) netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n"); } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) || (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) { netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n"); return -EINVAL; } else if (ec->tx_coalesce_usecs == 0) { if (ec->use_adaptive_tx_coalesce) netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n"); } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) || (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) { netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n"); return -EINVAL; } /* Rx and Tx usecs has per queue value. If user doesn't specify the * queue, apply to all queues. */ if (queue < 0) { for (i = 0; i < adapter->num_active_queues; i++) if (iavf_set_itr_per_queue(adapter, ec, i)) return -EINVAL; } else if (queue < adapter->num_active_queues) { if (iavf_set_itr_per_queue(adapter, ec, queue)) return -EINVAL; } else { netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n", adapter->num_active_queues - 1); return -EINVAL; } return 0; } /** * iavf_set_coalesce - Set interrupt coalescing settings * @netdev: network interface device structure * @ec: ethtool coalesce structure * @kernel_coal: ethtool CQE mode setting structure * @extack: extack for reporting error messages * * Change current coalescing settings for every queue. **/ static int iavf_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { return __iavf_set_coalesce(netdev, ec, -1); } /** * iavf_set_per_queue_coalesce - set specific queue's coalesce settings * @netdev: the netdev to change * @ec: ethtool's coalesce settings * @queue: the queue to modify * * Modifies a specific queue's coalesce settings. */ static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue, struct ethtool_coalesce *ec) { return __iavf_set_coalesce(netdev, ec, queue); } /** * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool * flow type values * @flow: filter type to be converted * * Returns the corresponding ethtool flow type. */ static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow) { switch (flow) { case IAVF_FDIR_FLOW_IPV4_TCP: return TCP_V4_FLOW; case IAVF_FDIR_FLOW_IPV4_UDP: return UDP_V4_FLOW; case IAVF_FDIR_FLOW_IPV4_SCTP: return SCTP_V4_FLOW; case IAVF_FDIR_FLOW_IPV4_AH: return AH_V4_FLOW; case IAVF_FDIR_FLOW_IPV4_ESP: return ESP_V4_FLOW; case IAVF_FDIR_FLOW_IPV4_OTHER: return IPV4_USER_FLOW; case IAVF_FDIR_FLOW_IPV6_TCP: return TCP_V6_FLOW; case IAVF_FDIR_FLOW_IPV6_UDP: return UDP_V6_FLOW; case IAVF_FDIR_FLOW_IPV6_SCTP: return SCTP_V6_FLOW; case IAVF_FDIR_FLOW_IPV6_AH: return AH_V6_FLOW; case IAVF_FDIR_FLOW_IPV6_ESP: return ESP_V6_FLOW; case IAVF_FDIR_FLOW_IPV6_OTHER: return IPV6_USER_FLOW; case IAVF_FDIR_FLOW_NON_IP_L2: return ETHER_FLOW; default: /* 0 is undefined ethtool flow */ return 0; } } /** * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum * @eth: Ethtool flow type to be converted * * Returns flow enum */ static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth) { switch (eth) { case TCP_V4_FLOW: return IAVF_FDIR_FLOW_IPV4_TCP; case UDP_V4_FLOW: return IAVF_FDIR_FLOW_IPV4_UDP; case SCTP_V4_FLOW: return IAVF_FDIR_FLOW_IPV4_SCTP; case AH_V4_FLOW: return IAVF_FDIR_FLOW_IPV4_AH; case ESP_V4_FLOW: return IAVF_FDIR_FLOW_IPV4_ESP; case IPV4_USER_FLOW: return IAVF_FDIR_FLOW_IPV4_OTHER; case TCP_V6_FLOW: return IAVF_FDIR_FLOW_IPV6_TCP; case UDP_V6_FLOW: return IAVF_FDIR_FLOW_IPV6_UDP; case SCTP_V6_FLOW: return IAVF_FDIR_FLOW_IPV6_SCTP; case AH_V6_FLOW: return IAVF_FDIR_FLOW_IPV6_AH; case ESP_V6_FLOW: return IAVF_FDIR_FLOW_IPV6_ESP; case IPV6_USER_FLOW: return IAVF_FDIR_FLOW_IPV6_OTHER; case ETHER_FLOW: return IAVF_FDIR_FLOW_NON_IP_L2; default: return IAVF_FDIR_FLOW_NONE; } } /** * iavf_is_mask_valid - check mask field set * @mask: full mask to check * @field: field for which mask should be valid * * If the mask is fully set return true. If it is not valid for field return * false. */ static bool iavf_is_mask_valid(u64 mask, u64 field) { return (mask & field) == field; } /** * iavf_parse_rx_flow_user_data - deconstruct user-defined data * @fsp: pointer to ethtool Rx flow specification * @fltr: pointer to Flow Director filter for userdef data storage * * Returns 0 on success, negative error value on failure */ static int iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp, struct iavf_fdir_fltr *fltr) { struct iavf_flex_word *flex; int i, cnt = 0; if (!(fsp->flow_type & FLOW_EXT)) return 0; for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) { #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0) #define IAVF_USERDEF_FLEX_OFFS_S 16 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S) #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0) u32 value = be32_to_cpu(fsp->h_ext.data[i]); u32 mask = be32_to_cpu(fsp->m_ext.data[i]); if (!value || !mask) continue; if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M)) return -EINVAL; /* 504 is the maximum value for offsets, and offset is measured * from the start of the MAC address. */ #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504 flex = &fltr->flex_words[cnt++]; flex->word = value & IAVF_USERDEF_FLEX_WORD_M; flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >> IAVF_USERDEF_FLEX_OFFS_S; if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL) return -EINVAL; } fltr->flex_cnt = cnt; return 0; } /** * iavf_fill_rx_flow_ext_data - fill the additional data * @fsp: pointer to ethtool Rx flow specification * @fltr: pointer to Flow Director filter to get additional data */ static void iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp, struct iavf_fdir_fltr *fltr) { if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1]) return; fsp->flow_type |= FLOW_EXT; memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data)); memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data)); } /** * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data * @adapter: the VF adapter structure that contains filter list * @cmd: ethtool command data structure to receive the filter data * * Returns 0 as expected for success by ethtool */ static int iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct iavf_fdir_fltr *rule = NULL; int ret = 0; if (!FDIR_FLTR_SUPPORT(adapter)) return -EOPNOTSUPP; spin_lock_bh(&adapter->fdir_fltr_lock); rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); if (!rule) { ret = -EINVAL; goto release_lock; } fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type); memset(&fsp->m_u, 0, sizeof(fsp->m_u)); memset(&fsp->m_ext, 0, sizeof(fsp->m_ext)); switch (fsp->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port; fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port; fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos; fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port; fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port; fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos; break; case AH_V4_FLOW: case ESP_V4_FLOW: fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi; fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos; fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi; fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos; break; case IPV4_USER_FLOW: fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip; fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip; fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header; fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos; fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4; fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto; fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip; fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip; fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header; fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos; fsp->m_u.usr_ip4_spec.ip_ver = 0xFF; fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto; break; case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, sizeof(struct in6_addr)); memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, sizeof(struct in6_addr)); fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port; fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port; fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass; memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, sizeof(struct in6_addr)); memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, sizeof(struct in6_addr)); fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port; fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port; fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass; break; case AH_V6_FLOW: case ESP_V6_FLOW: memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, sizeof(struct in6_addr)); memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, sizeof(struct in6_addr)); fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi; fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass; memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, sizeof(struct in6_addr)); memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, sizeof(struct in6_addr)); fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi; fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass; break; case IPV6_USER_FLOW: memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip, sizeof(struct in6_addr)); memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip, sizeof(struct in6_addr)); fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header; fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass; fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto; memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip, sizeof(struct in6_addr)); memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip, sizeof(struct in6_addr)); fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header; fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass; fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto; break; case ETHER_FLOW: fsp->h_u.ether_spec.h_proto = rule->eth_data.etype; fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype; break; default: ret = -EINVAL; break; } iavf_fill_rx_flow_ext_data(fsp, rule); if (rule->action == VIRTCHNL_ACTION_DROP) fsp->ring_cookie = RX_CLS_FLOW_DISC; else fsp->ring_cookie = rule->q_index; release_lock: spin_unlock_bh(&adapter->fdir_fltr_lock); return ret; } /** * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters * @adapter: the VF adapter structure containing the filter list * @cmd: ethtool command data structure * @rule_locs: ethtool array passed in from OS to receive filter IDs * * Returns 0 as expected for success by ethtool */ static int iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct iavf_fdir_fltr *fltr; unsigned int cnt = 0; int val = 0; if (!FDIR_FLTR_SUPPORT(adapter)) return -EOPNOTSUPP; cmd->data = IAVF_MAX_FDIR_FILTERS; spin_lock_bh(&adapter->fdir_fltr_lock); list_for_each_entry(fltr, &adapter->fdir_list_head, list) { if (cnt == cmd->rule_cnt) { val = -EMSGSIZE; goto release_lock; } rule_locs[cnt] = fltr->loc; cnt++; } release_lock: spin_unlock_bh(&adapter->fdir_fltr_lock); if (!val) cmd->rule_cnt = cnt; return val; } /** * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter * @adapter: pointer to the VF adapter structure * @fsp: pointer to ethtool Rx flow specification * @fltr: filter structure */ static int iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp, struct iavf_fdir_fltr *fltr) { u32 flow_type, q_index = 0; enum virtchnl_action act; int err; if (fsp->ring_cookie == RX_CLS_FLOW_DISC) { act = VIRTCHNL_ACTION_DROP; } else { q_index = fsp->ring_cookie; if (q_index >= adapter->num_active_queues) return -EINVAL; act = VIRTCHNL_ACTION_QUEUE; } fltr->action = act; fltr->loc = fsp->location; fltr->q_index = q_index; if (fsp->flow_type & FLOW_EXT) { memcpy(fltr->ext_data.usr_def, fsp->h_ext.data, sizeof(fltr->ext_data.usr_def)); memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data, sizeof(fltr->ext_mask.usr_def)); } flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS); fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type); switch (flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src; fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst; fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc; fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst; fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos; fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src; fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst; fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc; fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst; fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos; fltr->ip_ver = 4; break; case AH_V4_FLOW: case ESP_V4_FLOW: fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src; fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst; fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi; fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos; fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src; fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst; fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi; fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos; fltr->ip_ver = 4; break; case IPV4_USER_FLOW: fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src; fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst; fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes; fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos; fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto; fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src; fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst; fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes; fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos; fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto; fltr->ip_ver = 4; break; case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, sizeof(struct in6_addr)); fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc; fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst; fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass; memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, sizeof(struct in6_addr)); fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc; fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst; fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass; fltr->ip_ver = 6; break; case AH_V6_FLOW: case ESP_V6_FLOW: memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst, sizeof(struct in6_addr)); fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi; fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass; memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst, sizeof(struct in6_addr)); fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi; fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass; fltr->ip_ver = 6; break; case IPV6_USER_FLOW: memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst, sizeof(struct in6_addr)); fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes; fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass; fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto; memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst, sizeof(struct in6_addr)); fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes; fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass; fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto; fltr->ip_ver = 6; break; case ETHER_FLOW: fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto; fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto; break; default: /* not doing un-parsed flow types */ return -EINVAL; } err = iavf_validate_fdir_fltr_masks(adapter, fltr); if (err) return err; if (iavf_fdir_is_dup_fltr(adapter, fltr)) return -EEXIST; err = iavf_parse_rx_flow_user_data(fsp, fltr); if (err) return err; return iavf_fill_fdir_add_msg(adapter, fltr); } /** * iavf_add_fdir_ethtool - add Flow Director filter * @adapter: pointer to the VF adapter structure * @cmd: command to add Flow Director filter * * Returns 0 on success and negative values for failure */ static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = &cmd->fs; struct iavf_fdir_fltr *fltr; int count = 50; int err; if (!FDIR_FLTR_SUPPORT(adapter)) return -EOPNOTSUPP; if (fsp->flow_type & FLOW_MAC_EXT) return -EINVAL; spin_lock_bh(&adapter->fdir_fltr_lock); if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) { spin_unlock_bh(&adapter->fdir_fltr_lock); dev_err(&adapter->pdev->dev, "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n", IAVF_MAX_FDIR_FILTERS); return -ENOSPC; } if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) { dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n"); spin_unlock_bh(&adapter->fdir_fltr_lock); return -EEXIST; } spin_unlock_bh(&adapter->fdir_fltr_lock); fltr = kzalloc(sizeof(*fltr), GFP_KERNEL); if (!fltr) return -ENOMEM; while (!mutex_trylock(&adapter->crit_lock)) { if (--count == 0) { kfree(fltr); return -EINVAL; } udelay(1); } err = iavf_add_fdir_fltr_info(adapter, fsp, fltr); if (err) goto ret; spin_lock_bh(&adapter->fdir_fltr_lock); iavf_fdir_list_add_fltr(adapter, fltr); adapter->fdir_active_fltr++; fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST; adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; spin_unlock_bh(&adapter->fdir_fltr_lock); mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); ret: if (err && fltr) kfree(fltr); mutex_unlock(&adapter->crit_lock); return err; } /** * iavf_del_fdir_ethtool - delete Flow Director filter * @adapter: pointer to the VF adapter structure * @cmd: command to delete Flow Director filter * * Returns 0 on success and negative values for failure */ static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct iavf_fdir_fltr *fltr = NULL; int err = 0; if (!FDIR_FLTR_SUPPORT(adapter)) return -EOPNOTSUPP; spin_lock_bh(&adapter->fdir_fltr_lock); fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location); if (fltr) { if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) { fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST; adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; } else { err = -EBUSY; } } else if (adapter->fdir_active_fltr) { err = -EINVAL; } spin_unlock_bh(&adapter->fdir_fltr_lock); if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST) mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); return err; } /** * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input * @cmd: ethtool rxnfc command * * This function parses the rxnfc command and returns intended * header types for RSS configuration */ static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd) { u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE; switch (cmd->flow_type) { case TCP_V4_FLOW: hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; break; case UDP_V4_FLOW: hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; break; case SCTP_V4_FLOW: hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4; break; case TCP_V6_FLOW: hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP | IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; break; case UDP_V6_FLOW: hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP | IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; break; case SCTP_V6_FLOW: hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP | IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6; break; default: break; } return hdrs; } /** * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input * @cmd: ethtool rxnfc command * * This function parses the rxnfc command and returns intended hash fields for * RSS configuration */ static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd) { u64 hfld = IAVF_ADV_RSS_HASH_INVALID; if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) { switch (cmd->flow_type) { case TCP_V4_FLOW: case UDP_V4_FLOW: case SCTP_V4_FLOW: if (cmd->data & RXH_IP_SRC) hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA; if (cmd->data & RXH_IP_DST) hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA; break; case TCP_V6_FLOW: case UDP_V6_FLOW: case SCTP_V6_FLOW: if (cmd->data & RXH_IP_SRC) hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA; if (cmd->data & RXH_IP_DST) hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA; break; default: break; } } if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) { switch (cmd->flow_type) { case TCP_V4_FLOW: case TCP_V6_FLOW: if (cmd->data & RXH_L4_B_0_1) hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT; if (cmd->data & RXH_L4_B_2_3) hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT; break; case UDP_V4_FLOW: case UDP_V6_FLOW: if (cmd->data & RXH_L4_B_0_1) hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT; if (cmd->data & RXH_L4_B_2_3) hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT; break; case SCTP_V4_FLOW: case SCTP_V6_FLOW: if (cmd->data & RXH_L4_B_0_1) hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT; if (cmd->data & RXH_L4_B_2_3) hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT; break; default: break; } } return hfld; } /** * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash * @adapter: pointer to the VF adapter structure * @cmd: ethtool rxnfc command * * Returns Success if the flow input set is supported. */ static int iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) { struct iavf_adv_rss *rss_old, *rss_new; bool rss_new_add = false; int count = 50, err = 0; u64 hash_flds; u32 hdrs; if (!ADV_RSS_SUPPORT(adapter)) return -EOPNOTSUPP; hdrs = iavf_adv_rss_parse_hdrs(cmd); if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) return -EINVAL; hash_flds = iavf_adv_rss_parse_hash_flds(cmd); if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) return -EINVAL; rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL); if (!rss_new) return -ENOMEM; if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) { kfree(rss_new); return -EINVAL; } while (!mutex_trylock(&adapter->crit_lock)) { if (--count == 0) { kfree(rss_new); return -EINVAL; } udelay(1); } spin_lock_bh(&adapter->adv_rss_lock); rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); if (rss_old) { if (rss_old->state != IAVF_ADV_RSS_ACTIVE) { err = -EBUSY; } else if (rss_old->hash_flds != hash_flds) { rss_old->state = IAVF_ADV_RSS_ADD_REQUEST; rss_old->hash_flds = hash_flds; memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg, sizeof(rss_new->cfg_msg)); adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; } else { err = -EEXIST; } } else { rss_new_add = true; rss_new->state = IAVF_ADV_RSS_ADD_REQUEST; rss_new->packet_hdrs = hdrs; rss_new->hash_flds = hash_flds; list_add_tail(&rss_new->list, &adapter->adv_rss_list_head); adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG; } spin_unlock_bh(&adapter->adv_rss_lock); if (!err) mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); mutex_unlock(&adapter->crit_lock); if (!rss_new_add) kfree(rss_new); return err; } /** * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type * @adapter: pointer to the VF adapter structure * @cmd: ethtool rxnfc command * * Returns Success if the flow input set is supported. */ static int iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd) { struct iavf_adv_rss *rss; u64 hash_flds; u32 hdrs; if (!ADV_RSS_SUPPORT(adapter)) return -EOPNOTSUPP; cmd->data = 0; hdrs = iavf_adv_rss_parse_hdrs(cmd); if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE) return -EINVAL; spin_lock_bh(&adapter->adv_rss_lock); rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs); if (rss) hash_flds = rss->hash_flds; else hash_flds = IAVF_ADV_RSS_HASH_INVALID; spin_unlock_bh(&adapter->adv_rss_lock); if (hash_flds == IAVF_ADV_RSS_HASH_INVALID) return -EINVAL; if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA | IAVF_ADV_RSS_HASH_FLD_IPV6_SA)) cmd->data |= (u64)RXH_IP_SRC; if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA | IAVF_ADV_RSS_HASH_FLD_IPV6_DA)) cmd->data |= (u64)RXH_IP_DST; if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT | IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT | IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT)) cmd->data |= (u64)RXH_L4_B_0_1; if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT | IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT | IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT)) cmd->data |= (u64)RXH_L4_B_2_3; return 0; } /** * iavf_set_rxnfc - command to set Rx flow rules. * @netdev: network interface device structure * @cmd: ethtool rxnfc command * * Returns 0 for success and negative values for errors */ static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) { struct iavf_adapter *adapter = netdev_priv(netdev); int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_SRXCLSRLINS: ret = iavf_add_fdir_ethtool(adapter, cmd); break; case ETHTOOL_SRXCLSRLDEL: ret = iavf_del_fdir_ethtool(adapter, cmd); break; case ETHTOOL_SRXFH: ret = iavf_set_adv_rss_hash_opt(adapter, cmd); break; default: break; } return ret; } /** * iavf_get_rxnfc - command to get RX flow classification rules * @netdev: network interface device structure * @cmd: ethtool rxnfc command * @rule_locs: pointer to store rule locations * * Returns Success if the command is supported. **/ static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct iavf_adapter *adapter = netdev_priv(netdev); int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_GRXRINGS: cmd->data = adapter->num_active_queues; ret = 0; break; case ETHTOOL_GRXCLSRLCNT: if (!FDIR_FLTR_SUPPORT(adapter)) break; spin_lock_bh(&adapter->fdir_fltr_lock); cmd->rule_cnt = adapter->fdir_active_fltr; spin_unlock_bh(&adapter->fdir_fltr_lock); cmd->data = IAVF_MAX_FDIR_FILTERS; ret = 0; break; case ETHTOOL_GRXCLSRULE: ret = iavf_get_ethtool_fdir_entry(adapter, cmd); break; case ETHTOOL_GRXCLSRLALL: ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs); break; case ETHTOOL_GRXFH: ret = iavf_get_adv_rss_hash_opt(adapter, cmd); break; default: break; } return ret; } /** * iavf_get_channels: get the number of channels supported by the device * @netdev: network interface device structure * @ch: channel information structure * * For the purposes of our device, we only use combined channels, i.e. a tx/rx * queue pair. Report one extra channel to match our "other" MSI-X vector. **/ static void iavf_get_channels(struct net_device *netdev, struct ethtool_channels *ch) { struct iavf_adapter *adapter = netdev_priv(netdev); /* Report maximum channels */ ch->max_combined = adapter->vsi_res->num_queue_pairs; ch->max_other = NONQ_VECS; ch->other_count = NONQ_VECS; ch->combined_count = adapter->num_active_queues; } /** * iavf_set_channels: set the new channel count * @netdev: network interface device structure * @ch: channel information structure * * Negotiate a new number of channels with the PF then do a reset. During * reset we'll realloc queues and fix the RSS table. Returns 0 on success, * negative on failure. **/ static int iavf_set_channels(struct net_device *netdev, struct ethtool_channels *ch) { struct iavf_adapter *adapter = netdev_priv(netdev); u32 num_req = ch->combined_count; int ret = 0; if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) { dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n"); return -EINVAL; } /* All of these should have already been checked by ethtool before this * even gets to us, but just to be sure. */ if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs) return -EINVAL; if (num_req == adapter->num_active_queues) return 0; if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS) return -EINVAL; adapter->num_req_queues = num_req; adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED; iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); ret = iavf_wait_for_reset(adapter); if (ret) netdev_warn(netdev, "Changing channel count timeout or interrupted waiting for reset"); return ret; } /** * iavf_get_rxfh_key_size - get the RSS hash key size * @netdev: network interface device structure * * Returns the table size. **/ static u32 iavf_get_rxfh_key_size(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); return adapter->rss_key_size; } /** * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size * @netdev: network interface device structure * * Returns the table size. **/ static u32 iavf_get_rxfh_indir_size(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); return adapter->rss_lut_size; } /** * iavf_get_rxfh - get the rx flow hash indirection table * @netdev: network interface device structure * @indir: indirection table * @key: hash key * @hfunc: hash function in use * * Reads the indirection table directly from the hardware. Always returns 0. **/ static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, u8 *hfunc) { struct iavf_adapter *adapter = netdev_priv(netdev); u16 i; if (hfunc) *hfunc = ETH_RSS_HASH_TOP; if (key) memcpy(key, adapter->rss_key, adapter->rss_key_size); if (indir) /* Each 32 bits pointed by 'indir' is stored with a lut entry */ for (i = 0; i < adapter->rss_lut_size; i++) indir[i] = (u32)adapter->rss_lut[i]; return 0; } /** * iavf_set_rxfh - set the rx flow hash indirection table * @netdev: network interface device structure * @indir: indirection table * @key: hash key * @hfunc: hash function to use * * Returns -EINVAL if the table specifies an invalid queue id, otherwise * returns 0 after programming the table. **/ static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir, const u8 *key, const u8 hfunc) { struct iavf_adapter *adapter = netdev_priv(netdev); u16 i; /* Only support toeplitz hash function */ if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) return -EOPNOTSUPP; if (!key && !indir) return 0; if (key) memcpy(adapter->rss_key, key, adapter->rss_key_size); if (indir) { /* Each 32 bits pointed by 'indir' is stored with a lut entry */ for (i = 0; i < adapter->rss_lut_size; i++) adapter->rss_lut[i] = (u8)(indir[i]); } return iavf_config_rss(adapter); } static const struct ethtool_ops iavf_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_USECS | ETHTOOL_COALESCE_USE_ADAPTIVE, .get_drvinfo = iavf_get_drvinfo, .get_link = ethtool_op_get_link, .get_ringparam = iavf_get_ringparam, .set_ringparam = iavf_set_ringparam, .get_strings = iavf_get_strings, .get_ethtool_stats = iavf_get_ethtool_stats, .get_sset_count = iavf_get_sset_count, .get_priv_flags = iavf_get_priv_flags, .set_priv_flags = iavf_set_priv_flags, .get_msglevel = iavf_get_msglevel, .set_msglevel = iavf_set_msglevel, .get_coalesce = iavf_get_coalesce, .set_coalesce = iavf_set_coalesce, .get_per_queue_coalesce = iavf_get_per_queue_coalesce, .set_per_queue_coalesce = iavf_set_per_queue_coalesce, .set_rxnfc = iavf_set_rxnfc, .get_rxnfc = iavf_get_rxnfc, .get_rxfh_indir_size = iavf_get_rxfh_indir_size, .get_rxfh = iavf_get_rxfh, .set_rxfh = iavf_set_rxfh, .get_channels = iavf_get_channels, .set_channels = iavf_set_channels, .get_rxfh_key_size = iavf_get_rxfh_key_size, .get_link_ksettings = iavf_get_link_ksettings, }; /** * iavf_set_ethtool_ops - Initialize ethtool ops struct * @netdev: network interface device structure * * Sets ethtool ops struct in our netdev so that ethtool can call * our functions. **/ void iavf_set_ethtool_ops(struct net_device *netdev) { netdev->ethtool_ops = &iavf_ethtool_ops; }