// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* Copyright 2014-2016 Freescale Semiconductor Inc. * Copyright 2016-2022 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dpaa2-eth.h" /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files * using trace events only need to #include */ #define CREATE_TRACE_POINTS #include "dpaa2-eth-trace.h" MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Freescale Semiconductor, Inc"); MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); struct ptp_qoriq *dpaa2_ptp; EXPORT_SYMBOL(dpaa2_ptp); static void dpaa2_eth_detect_features(struct dpaa2_eth_priv *priv) { priv->features = 0; if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_PTP_ONESTEP_VER_MAJOR, DPNI_PTP_ONESTEP_VER_MINOR) >= 0) priv->features |= DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT; } static void dpaa2_update_ptp_onestep_indirect(struct dpaa2_eth_priv *priv, u32 offset, u8 udp) { struct dpni_single_step_cfg cfg; cfg.en = 1; cfg.ch_update = udp; cfg.offset = offset; cfg.peer_delay = 0; if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, &cfg)) WARN_ONCE(1, "Failed to set single step register"); } static void dpaa2_update_ptp_onestep_direct(struct dpaa2_eth_priv *priv, u32 offset, u8 udp) { u32 val = 0; val = DPAA2_PTP_SINGLE_STEP_ENABLE | DPAA2_PTP_SINGLE_CORRECTION_OFF(offset); if (udp) val |= DPAA2_PTP_SINGLE_STEP_CH; if (priv->onestep_reg_base) writel(val, priv->onestep_reg_base); } static void dpaa2_ptp_onestep_reg_update_method(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpni_single_step_cfg ptp_cfg; priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_indirect; if (!(priv->features & DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT)) return; if (dpni_get_single_step_cfg(priv->mc_io, 0, priv->mc_token, &ptp_cfg)) { dev_err(dev, "dpni_get_single_step_cfg cannot retrieve onestep reg, falling back to indirect update\n"); return; } if (!ptp_cfg.ptp_onestep_reg_base) { dev_err(dev, "1588 onestep reg not available, falling back to indirect update\n"); return; } priv->onestep_reg_base = ioremap(ptp_cfg.ptp_onestep_reg_base, sizeof(u32)); if (!priv->onestep_reg_base) { dev_err(dev, "1588 onestep reg cannot be mapped, falling back to indirect update\n"); return; } priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_direct; } void *dpaa2_iova_to_virt(struct iommu_domain *domain, dma_addr_t iova_addr) { phys_addr_t phys_addr; phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; return phys_to_virt(phys_addr); } static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv, u32 fd_status, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* HW checksum validation is disabled, nothing to do here */ if (!(priv->net_dev->features & NETIF_F_RXCSUM)) return; /* Read checksum validation bits */ if (!((fd_status & DPAA2_FAS_L3CV) && (fd_status & DPAA2_FAS_L4CV))) return; /* Inform the stack there's no need to compute L3/L4 csum anymore */ skb->ip_summed = CHECKSUM_UNNECESSARY; } /* Free a received FD. * Not to be used for Tx conf FDs or on any other paths. */ static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv, const struct dpaa2_fd *fd, void *vaddr) { struct device *dev = priv->net_dev->dev.parent; dma_addr_t addr = dpaa2_fd_get_addr(fd); u8 fd_format = dpaa2_fd_get_format(fd); struct dpaa2_sg_entry *sgt; void *sg_vaddr; int i; /* If single buffer frame, just free the data buffer */ if (fd_format == dpaa2_fd_single) goto free_buf; else if (fd_format != dpaa2_fd_sg) /* We don't support any other format */ return; /* For S/G frames, we first need to free all SG entries * except the first one, which was taken care of already */ sgt = vaddr + dpaa2_fd_get_offset(fd); for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { addr = dpaa2_sg_get_addr(&sgt[i]); sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); dma_unmap_page(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); free_pages((unsigned long)sg_vaddr, 0); if (dpaa2_sg_is_final(&sgt[i])) break; } free_buf: free_pages((unsigned long)vaddr, 0); } /* Build a linear skb based on a single-buffer frame descriptor */ static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, void *fd_vaddr) { struct sk_buff *skb = NULL; u16 fd_offset = dpaa2_fd_get_offset(fd); u32 fd_length = dpaa2_fd_get_len(fd); ch->buf_count--; skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); if (unlikely(!skb)) return NULL; skb_reserve(skb, fd_offset); skb_put(skb, fd_length); return skb; } /* Build a non linear (fragmented) skb based on a S/G table */ static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, struct dpaa2_sg_entry *sgt) { struct sk_buff *skb = NULL; struct device *dev = priv->net_dev->dev.parent; void *sg_vaddr; dma_addr_t sg_addr; u16 sg_offset; u32 sg_length; struct page *page, *head_page; int page_offset; int i; for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { struct dpaa2_sg_entry *sge = &sgt[i]; /* NOTE: We only support SG entries in dpaa2_sg_single format, * but this is the only format we may receive from HW anyway */ /* Get the address and length from the S/G entry */ sg_addr = dpaa2_sg_get_addr(sge); sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); dma_unmap_page(dev, sg_addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); sg_length = dpaa2_sg_get_len(sge); if (i == 0) { /* We build the skb around the first data buffer */ skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); if (unlikely(!skb)) { /* Free the first SG entry now, since we already * unmapped it and obtained the virtual address */ free_pages((unsigned long)sg_vaddr, 0); /* We still need to subtract the buffers used * by this FD from our software counter */ while (!dpaa2_sg_is_final(&sgt[i]) && i < DPAA2_ETH_MAX_SG_ENTRIES) i++; break; } sg_offset = dpaa2_sg_get_offset(sge); skb_reserve(skb, sg_offset); skb_put(skb, sg_length); } else { /* Rest of the data buffers are stored as skb frags */ page = virt_to_page(sg_vaddr); head_page = virt_to_head_page(sg_vaddr); /* Offset in page (which may be compound). * Data in subsequent SG entries is stored from the * beginning of the buffer, so we don't need to add the * sg_offset. */ page_offset = ((unsigned long)sg_vaddr & (PAGE_SIZE - 1)) + (page_address(page) - page_address(head_page)); skb_add_rx_frag(skb, i - 1, head_page, page_offset, sg_length, priv->rx_buf_size); } if (dpaa2_sg_is_final(sge)) break; } WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); /* Count all data buffers + SG table buffer */ ch->buf_count -= i + 2; return skb; } /* Free buffers acquired from the buffer pool or which were meant to * be released in the pool */ static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count, bool xsk_zc) { struct device *dev = priv->net_dev->dev.parent; struct dpaa2_eth_swa *swa; struct xdp_buff *xdp_buff; void *vaddr; int i; for (i = 0; i < count; i++) { vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); if (!xsk_zc) { dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, DMA_BIDIRECTIONAL); free_pages((unsigned long)vaddr, 0); } else { swa = (struct dpaa2_eth_swa *) (vaddr + DPAA2_ETH_RX_HWA_SIZE); xdp_buff = swa->xsk.xdp_buff; xsk_buff_free(xdp_buff); } } } void dpaa2_eth_recycle_buf(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, dma_addr_t addr) { int retries = 0; int err; ch->recycled_bufs[ch->recycled_bufs_cnt++] = addr; if (ch->recycled_bufs_cnt < DPAA2_ETH_BUFS_PER_CMD) return; while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, ch->recycled_bufs, ch->recycled_bufs_cnt)) == -EBUSY) { if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) break; cpu_relax(); } if (err) { dpaa2_eth_free_bufs(priv, ch->recycled_bufs, ch->recycled_bufs_cnt, ch->xsk_zc); ch->buf_count -= ch->recycled_bufs_cnt; } ch->recycled_bufs_cnt = 0; } static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq, struct dpaa2_eth_xdp_fds *xdp_fds) { int total_enqueued = 0, retries = 0, enqueued; struct dpaa2_eth_drv_stats *percpu_extras; int num_fds, err, max_retries; struct dpaa2_fd *fds; percpu_extras = this_cpu_ptr(priv->percpu_extras); /* try to enqueue all the FDs until the max number of retries is hit */ fds = xdp_fds->fds; num_fds = xdp_fds->num; max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; while (total_enqueued < num_fds && retries < max_retries) { err = priv->enqueue(priv, fq, &fds[total_enqueued], 0, num_fds - total_enqueued, &enqueued); if (err == -EBUSY) { percpu_extras->tx_portal_busy += ++retries; continue; } total_enqueued += enqueued; } xdp_fds->num = 0; return total_enqueued; } static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, struct dpaa2_eth_fq *fq) { struct rtnl_link_stats64 *percpu_stats; struct dpaa2_fd *fds; int enqueued, i; percpu_stats = this_cpu_ptr(priv->percpu_stats); // enqueue the array of XDP_TX frames enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); /* update statistics */ percpu_stats->tx_packets += enqueued; fds = fq->xdp_tx_fds.fds; for (i = 0; i < enqueued; i++) { percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); ch->stats.xdp_tx++; } for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); percpu_stats->tx_errors++; ch->stats.xdp_tx_err++; } fq->xdp_tx_fds.num = 0; } void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, struct dpaa2_fd *fd, void *buf_start, u16 queue_id) { struct dpaa2_faead *faead; struct dpaa2_fd *dest_fd; struct dpaa2_eth_fq *fq; u32 ctrl, frc; /* Mark the egress frame hardware annotation area as valid */ frc = dpaa2_fd_get_frc(fd); dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); /* Instruct hardware to release the FD buffer directly into * the buffer pool once transmission is completed, instead of * sending a Tx confirmation frame to us */ ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; faead = dpaa2_get_faead(buf_start, false); faead->ctrl = cpu_to_le32(ctrl); faead->conf_fqid = 0; fq = &priv->fq[queue_id]; dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; memcpy(dest_fd, fd, sizeof(*dest_fd)); if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) return; dpaa2_eth_xdp_tx_flush(priv, ch, fq); } static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, struct dpaa2_eth_fq *rx_fq, struct dpaa2_fd *fd, void *vaddr) { dma_addr_t addr = dpaa2_fd_get_addr(fd); struct bpf_prog *xdp_prog; struct xdp_buff xdp; u32 xdp_act = XDP_PASS; int err, offset; xdp_prog = READ_ONCE(ch->xdp.prog); if (!xdp_prog) goto out; offset = dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM; xdp_init_buff(&xdp, DPAA2_ETH_RX_BUF_RAW_SIZE - offset, &ch->xdp_rxq); xdp_prepare_buff(&xdp, vaddr + offset, XDP_PACKET_HEADROOM, dpaa2_fd_get_len(fd), false); xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); /* xdp.data pointer may have changed */ dpaa2_fd_set_offset(fd, xdp.data - vaddr); dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); switch (xdp_act) { case XDP_PASS: break; case XDP_TX: dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); break; default: bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); fallthrough; case XDP_ABORTED: trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); fallthrough; case XDP_DROP: dpaa2_eth_recycle_buf(priv, ch, addr); ch->stats.xdp_drop++; break; case XDP_REDIRECT: dma_unmap_page(priv->net_dev->dev.parent, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); ch->buf_count--; /* Allow redirect use of full headroom */ xdp.data_hard_start = vaddr; xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); if (unlikely(err)) { addr = dma_map_page(priv->net_dev->dev.parent, virt_to_page(vaddr), 0, priv->rx_buf_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(priv->net_dev->dev.parent, addr))) { free_pages((unsigned long)vaddr, 0); } else { ch->buf_count++; dpaa2_eth_recycle_buf(priv, ch, addr); } ch->stats.xdp_drop++; } else { ch->stats.xdp_redirect++; } break; } ch->xdp.res |= xdp_act; out: return xdp_act; } struct sk_buff *dpaa2_eth_alloc_skb(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, u32 fd_length, void *fd_vaddr) { u16 fd_offset = dpaa2_fd_get_offset(fd); struct sk_buff *skb = NULL; unsigned int skb_len; skb_len = fd_length + dpaa2_eth_needed_headroom(NULL); skb = napi_alloc_skb(&ch->napi, skb_len); if (!skb) return NULL; skb_reserve(skb, dpaa2_eth_needed_headroom(NULL)); skb_put(skb, fd_length); memcpy(skb->data, fd_vaddr + fd_offset, fd_length); return skb; } static struct sk_buff *dpaa2_eth_copybreak(struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, void *fd_vaddr) { struct dpaa2_eth_priv *priv = ch->priv; u32 fd_length = dpaa2_fd_get_len(fd); if (fd_length > priv->rx_copybreak) return NULL; return dpaa2_eth_alloc_skb(priv, ch, fd, fd_length, fd_vaddr); } void dpaa2_eth_receive_skb(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, void *vaddr, struct dpaa2_eth_fq *fq, struct rtnl_link_stats64 *percpu_stats, struct sk_buff *skb) { struct dpaa2_fas *fas; u32 status = 0; fas = dpaa2_get_fas(vaddr, false); prefetch(fas); prefetch(skb->data); /* Get the timestamp value */ if (priv->rx_tstamp) { struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); __le64 *ts = dpaa2_get_ts(vaddr, false); u64 ns; memset(shhwtstamps, 0, sizeof(*shhwtstamps)); ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); shhwtstamps->hwtstamp = ns_to_ktime(ns); } /* Check if we need to validate the L4 csum */ if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { status = le32_to_cpu(fas->status); dpaa2_eth_validate_rx_csum(priv, status, skb); } skb->protocol = eth_type_trans(skb, priv->net_dev); skb_record_rx_queue(skb, fq->flowid); percpu_stats->rx_packets++; percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); ch->stats.bytes_per_cdan += dpaa2_fd_get_len(fd); list_add_tail(&skb->list, ch->rx_list); } /* Main Rx frame processing routine */ void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, struct dpaa2_eth_fq *fq) { dma_addr_t addr = dpaa2_fd_get_addr(fd); u8 fd_format = dpaa2_fd_get_format(fd); void *vaddr; struct sk_buff *skb; struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_drv_stats *percpu_extras; struct device *dev = priv->net_dev->dev.parent; bool recycle_rx_buf = false; void *buf_data; u32 xdp_act; /* Tracing point */ trace_dpaa2_rx_fd(priv->net_dev, fd); vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); buf_data = vaddr + dpaa2_fd_get_offset(fd); prefetch(buf_data); percpu_stats = this_cpu_ptr(priv->percpu_stats); percpu_extras = this_cpu_ptr(priv->percpu_extras); if (fd_format == dpaa2_fd_single) { xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); if (xdp_act != XDP_PASS) { percpu_stats->rx_packets++; percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); return; } skb = dpaa2_eth_copybreak(ch, fd, vaddr); if (!skb) { dma_unmap_page(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); } else { recycle_rx_buf = true; } } else if (fd_format == dpaa2_fd_sg) { WARN_ON(priv->xdp_prog); dma_unmap_page(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); free_pages((unsigned long)vaddr, 0); percpu_extras->rx_sg_frames++; percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); } else { /* We don't support any other format */ goto err_frame_format; } if (unlikely(!skb)) goto err_build_skb; dpaa2_eth_receive_skb(priv, ch, fd, vaddr, fq, percpu_stats, skb); if (recycle_rx_buf) dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(fd)); return; err_build_skb: dpaa2_eth_free_rx_fd(priv, fd, vaddr); err_frame_format: percpu_stats->rx_dropped++; } /* Processing of Rx frames received on the error FQ * We check and print the error bits and then free the frame */ static void dpaa2_eth_rx_err(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, struct dpaa2_eth_fq *fq __always_unused) { struct device *dev = priv->net_dev->dev.parent; dma_addr_t addr = dpaa2_fd_get_addr(fd); u8 fd_format = dpaa2_fd_get_format(fd); struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_trap_item *trap_item; struct dpaa2_fapr *fapr; struct sk_buff *skb; void *buf_data; void *vaddr; vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); buf_data = vaddr + dpaa2_fd_get_offset(fd); if (fd_format == dpaa2_fd_single) { dma_unmap_page(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); } else if (fd_format == dpaa2_fd_sg) { dma_unmap_page(dev, addr, priv->rx_buf_size, DMA_BIDIRECTIONAL); skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); free_pages((unsigned long)vaddr, 0); } else { /* We don't support any other format */ dpaa2_eth_free_rx_fd(priv, fd, vaddr); goto err_frame_format; } fapr = dpaa2_get_fapr(vaddr, false); trap_item = dpaa2_eth_dl_get_trap(priv, fapr); if (trap_item) devlink_trap_report(priv->devlink, skb, trap_item->trap_ctx, &priv->devlink_port, NULL); consume_skb(skb); err_frame_format: percpu_stats = this_cpu_ptr(priv->percpu_stats); percpu_stats->rx_errors++; ch->buf_count--; } /* Consume all frames pull-dequeued into the store. This is the simplest way to * make sure we don't accidentally issue another volatile dequeue which would * overwrite (leak) frames already in the store. * * Observance of NAPI budget is not our concern, leaving that to the caller. */ static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch, struct dpaa2_eth_fq **src) { struct dpaa2_eth_priv *priv = ch->priv; struct dpaa2_eth_fq *fq = NULL; struct dpaa2_dq *dq; const struct dpaa2_fd *fd; int cleaned = 0, retries = 0; int is_last; do { dq = dpaa2_io_store_next(ch->store, &is_last); if (unlikely(!dq)) { /* If we're here, we *must* have placed a * volatile dequeue comnmand, so keep reading through * the store until we get some sort of valid response * token (either a valid frame or an "empty dequeue") */ if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { netdev_err_once(priv->net_dev, "Unable to read a valid dequeue response\n"); return -ETIMEDOUT; } continue; } fd = dpaa2_dq_fd(dq); fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); fq->consume(priv, ch, fd, fq); cleaned++; retries = 0; } while (!is_last); if (!cleaned) return 0; fq->stats.frames += cleaned; ch->stats.frames += cleaned; ch->stats.frames_per_cdan += cleaned; /* A dequeue operation only pulls frames from a single queue * into the store. Return the frame queue as an out param. */ if (src) *src = fq; return cleaned; } static int dpaa2_eth_ptp_parse(struct sk_buff *skb, u8 *msgtype, u8 *twostep, u8 *udp, u16 *correction_offset, u16 *origintimestamp_offset) { unsigned int ptp_class; struct ptp_header *hdr; unsigned int type; u8 *base; ptp_class = ptp_classify_raw(skb); if (ptp_class == PTP_CLASS_NONE) return -EINVAL; hdr = ptp_parse_header(skb, ptp_class); if (!hdr) return -EINVAL; *msgtype = ptp_get_msgtype(hdr, ptp_class); *twostep = hdr->flag_field[0] & 0x2; type = ptp_class & PTP_CLASS_PMASK; if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6) *udp = 1; else *udp = 0; base = skb_mac_header(skb); *correction_offset = (u8 *)&hdr->correction - base; *origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; return 0; } /* Configure the egress frame annotation for timestamp update */ static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, void *buf_start, struct sk_buff *skb) { struct ptp_tstamp origin_timestamp; u8 msgtype, twostep, udp; struct dpaa2_faead *faead; struct dpaa2_fas *fas; struct timespec64 ts; u16 offset1, offset2; u32 ctrl, frc; __le64 *ns; u8 *data; /* Mark the egress frame annotation area as valid */ frc = dpaa2_fd_get_frc(fd); dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); /* Set hardware annotation size */ ctrl = dpaa2_fd_get_ctrl(fd); dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); /* enable UPD (update prepanded data) bit in FAEAD field of * hardware frame annotation area */ ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; faead = dpaa2_get_faead(buf_start, true); faead->ctrl = cpu_to_le32(ctrl); if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, &offset1, &offset2) || msgtype != PTP_MSGTYPE_SYNC || twostep) { WARN_ONCE(1, "Bad packet for one-step timestamping\n"); return; } /* Mark the frame annotation status as valid */ frc = dpaa2_fd_get_frc(fd); dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV); /* Mark the PTP flag for one step timestamping */ fas = dpaa2_get_fas(buf_start, true); fas->status = cpu_to_le32(DPAA2_FAS_PTP); dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts); ns = dpaa2_get_ts(buf_start, true); *ns = cpu_to_le64(timespec64_to_ns(&ts) / DPAA2_PTP_CLK_PERIOD_NS); /* Update current time to PTP message originTimestamp field */ ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns)); data = skb_mac_header(skb); *(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb); *(__be32 *)(data + offset2 + 2) = htonl(origin_timestamp.sec_lsb); *(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec); if (priv->ptp_correction_off == offset1) return; priv->dpaa2_set_onestep_params_cb(priv, offset1, udp); priv->ptp_correction_off = offset1; } } void *dpaa2_eth_sgt_get(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_sgt_cache *sgt_cache; void *sgt_buf = NULL; int sgt_buf_size; sgt_cache = this_cpu_ptr(priv->sgt_cache); sgt_buf_size = priv->tx_data_offset + DPAA2_ETH_SG_ENTRIES_MAX * sizeof(struct dpaa2_sg_entry); if (sgt_cache->count == 0) sgt_buf = napi_alloc_frag_align(sgt_buf_size, DPAA2_ETH_TX_BUF_ALIGN); else sgt_buf = sgt_cache->buf[--sgt_cache->count]; if (!sgt_buf) return NULL; memset(sgt_buf, 0, sgt_buf_size); return sgt_buf; } void dpaa2_eth_sgt_recycle(struct dpaa2_eth_priv *priv, void *sgt_buf) { struct dpaa2_eth_sgt_cache *sgt_cache; sgt_cache = this_cpu_ptr(priv->sgt_cache); if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) skb_free_frag(sgt_buf); else sgt_cache->buf[sgt_cache->count++] = sgt_buf; } /* Create a frame descriptor based on a fragmented skb */ static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv, struct sk_buff *skb, struct dpaa2_fd *fd, void **swa_addr) { struct device *dev = priv->net_dev->dev.parent; void *sgt_buf = NULL; dma_addr_t addr; int nr_frags = skb_shinfo(skb)->nr_frags; struct dpaa2_sg_entry *sgt; int i, err; int sgt_buf_size; struct scatterlist *scl, *crt_scl; int num_sg; int num_dma_bufs; struct dpaa2_eth_swa *swa; /* Create and map scatterlist. * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have * to go beyond nr_frags+1. * Note: We don't support chained scatterlists */ if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) return -EINVAL; scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); if (unlikely(!scl)) return -ENOMEM; sg_init_table(scl, nr_frags + 1); num_sg = skb_to_sgvec(skb, scl, 0, skb->len); if (unlikely(num_sg < 0)) { err = -ENOMEM; goto dma_map_sg_failed; } num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); if (unlikely(!num_dma_bufs)) { err = -ENOMEM; goto dma_map_sg_failed; } /* Prepare the HW SGT structure */ sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry) * num_dma_bufs; sgt_buf = dpaa2_eth_sgt_get(priv); if (unlikely(!sgt_buf)) { err = -ENOMEM; goto sgt_buf_alloc_failed; } sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); /* Fill in the HW SGT structure. * * sgt_buf is zeroed out, so the following fields are implicit * in all sgt entries: * - offset is 0 * - format is 'dpaa2_sg_single' */ for_each_sg(scl, crt_scl, num_dma_bufs, i) { dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); } dpaa2_sg_set_final(&sgt[i - 1], true); /* Store the skb backpointer in the SGT buffer. * Fit the scatterlist and the number of buffers alongside the * skb backpointer in the software annotation area. We'll need * all of them on Tx Conf. */ *swa_addr = (void *)sgt_buf; swa = (struct dpaa2_eth_swa *)sgt_buf; swa->type = DPAA2_ETH_SWA_SG; swa->sg.skb = skb; swa->sg.scl = scl; swa->sg.num_sg = num_sg; swa->sg.sgt_size = sgt_buf_size; /* Separately map the SGT buffer */ addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) { err = -ENOMEM; goto dma_map_single_failed; } memset(fd, 0, sizeof(struct dpaa2_fd)); dpaa2_fd_set_offset(fd, priv->tx_data_offset); dpaa2_fd_set_format(fd, dpaa2_fd_sg); dpaa2_fd_set_addr(fd, addr); dpaa2_fd_set_len(fd, skb->len); dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); return 0; dma_map_single_failed: dpaa2_eth_sgt_recycle(priv, sgt_buf); sgt_buf_alloc_failed: dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); dma_map_sg_failed: kfree(scl); return err; } /* Create a SG frame descriptor based on a linear skb. * * This function is used on the Tx path when the skb headroom is not large * enough for the HW requirements, thus instead of realloc-ing the skb we * create a SG frame descriptor with only one entry. */ static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv, struct sk_buff *skb, struct dpaa2_fd *fd, void **swa_addr) { struct device *dev = priv->net_dev->dev.parent; struct dpaa2_sg_entry *sgt; struct dpaa2_eth_swa *swa; dma_addr_t addr, sgt_addr; void *sgt_buf = NULL; int sgt_buf_size; int err; /* Prepare the HW SGT structure */ sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry); sgt_buf = dpaa2_eth_sgt_get(priv); if (unlikely(!sgt_buf)) return -ENOMEM; sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) { err = -ENOMEM; goto data_map_failed; } /* Fill in the HW SGT structure */ dpaa2_sg_set_addr(sgt, addr); dpaa2_sg_set_len(sgt, skb->len); dpaa2_sg_set_final(sgt, true); /* Store the skb backpointer in the SGT buffer */ *swa_addr = (void *)sgt_buf; swa = (struct dpaa2_eth_swa *)sgt_buf; swa->type = DPAA2_ETH_SWA_SINGLE; swa->single.skb = skb; swa->single.sgt_size = sgt_buf_size; /* Separately map the SGT buffer */ sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, sgt_addr))) { err = -ENOMEM; goto sgt_map_failed; } memset(fd, 0, sizeof(struct dpaa2_fd)); dpaa2_fd_set_offset(fd, priv->tx_data_offset); dpaa2_fd_set_format(fd, dpaa2_fd_sg); dpaa2_fd_set_addr(fd, sgt_addr); dpaa2_fd_set_len(fd, skb->len); dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); return 0; sgt_map_failed: dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL); data_map_failed: dpaa2_eth_sgt_recycle(priv, sgt_buf); return err; } /* Create a frame descriptor based on a linear skb */ static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv, struct sk_buff *skb, struct dpaa2_fd *fd, void **swa_addr) { struct device *dev = priv->net_dev->dev.parent; u8 *buffer_start, *aligned_start; struct dpaa2_eth_swa *swa; dma_addr_t addr; buffer_start = skb->data - dpaa2_eth_needed_headroom(skb); aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, DPAA2_ETH_TX_BUF_ALIGN); if (aligned_start >= skb->head) buffer_start = aligned_start; else return -ENOMEM; /* Store a backpointer to the skb at the beginning of the buffer * (in the private data area) such that we can release it * on Tx confirm */ *swa_addr = (void *)buffer_start; swa = (struct dpaa2_eth_swa *)buffer_start; swa->type = DPAA2_ETH_SWA_SINGLE; swa->single.skb = skb; addr = dma_map_single(dev, buffer_start, skb_tail_pointer(skb) - buffer_start, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) return -ENOMEM; memset(fd, 0, sizeof(struct dpaa2_fd)); dpaa2_fd_set_addr(fd, addr); dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); dpaa2_fd_set_len(fd, skb->len); dpaa2_fd_set_format(fd, dpaa2_fd_single); dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); return 0; } /* FD freeing routine on the Tx path * * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb * back-pointed to is also freed. * This can be called either from dpaa2_eth_tx_conf() or on the error path of * dpaa2_eth_tx(). */ void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, struct dpaa2_eth_fq *fq, const struct dpaa2_fd *fd, bool in_napi) { struct device *dev = priv->net_dev->dev.parent; dma_addr_t fd_addr, sg_addr; struct sk_buff *skb = NULL; unsigned char *buffer_start; struct dpaa2_eth_swa *swa; u8 fd_format = dpaa2_fd_get_format(fd); u32 fd_len = dpaa2_fd_get_len(fd); struct dpaa2_sg_entry *sgt; int should_free_skb = 1; void *tso_hdr; int i; fd_addr = dpaa2_fd_get_addr(fd); buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); swa = (struct dpaa2_eth_swa *)buffer_start; if (fd_format == dpaa2_fd_single) { if (swa->type == DPAA2_ETH_SWA_SINGLE) { skb = swa->single.skb; /* Accessing the skb buffer is safe before dma unmap, * because we didn't map the actual skb shell. */ dma_unmap_single(dev, fd_addr, skb_tail_pointer(skb) - buffer_start, DMA_BIDIRECTIONAL); } else { WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, DMA_BIDIRECTIONAL); } } else if (fd_format == dpaa2_fd_sg) { if (swa->type == DPAA2_ETH_SWA_SG) { skb = swa->sg.skb; /* Unmap the scatterlist */ dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, DMA_BIDIRECTIONAL); kfree(swa->sg.scl); /* Unmap the SGT buffer */ dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, DMA_BIDIRECTIONAL); } else if (swa->type == DPAA2_ETH_SWA_SW_TSO) { skb = swa->tso.skb; sgt = (struct dpaa2_sg_entry *)(buffer_start + priv->tx_data_offset); /* Unmap the SGT buffer */ dma_unmap_single(dev, fd_addr, swa->tso.sgt_size, DMA_BIDIRECTIONAL); /* Unmap and free the header */ tso_hdr = dpaa2_iova_to_virt(priv->iommu_domain, dpaa2_sg_get_addr(sgt)); dma_unmap_single(dev, dpaa2_sg_get_addr(sgt), TSO_HEADER_SIZE, DMA_TO_DEVICE); kfree(tso_hdr); /* Unmap the other SG entries for the data */ for (i = 1; i < swa->tso.num_sg; i++) dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); if (!swa->tso.is_last_fd) should_free_skb = 0; } else if (swa->type == DPAA2_ETH_SWA_XSK) { /* Unmap the SGT Buffer */ dma_unmap_single(dev, fd_addr, swa->xsk.sgt_size, DMA_BIDIRECTIONAL); } else { skb = swa->single.skb; /* Unmap the SGT Buffer */ dma_unmap_single(dev, fd_addr, swa->single.sgt_size, DMA_BIDIRECTIONAL); sgt = (struct dpaa2_sg_entry *)(buffer_start + priv->tx_data_offset); sg_addr = dpaa2_sg_get_addr(sgt); dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL); } } else { netdev_dbg(priv->net_dev, "Invalid FD format\n"); return; } if (swa->type == DPAA2_ETH_SWA_XSK) { ch->xsk_tx_pkts_sent++; dpaa2_eth_sgt_recycle(priv, buffer_start); return; } if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { fq->dq_frames++; fq->dq_bytes += fd_len; } if (swa->type == DPAA2_ETH_SWA_XDP) { xdp_return_frame(swa->xdp.xdpf); return; } /* Get the timestamp value */ if (swa->type != DPAA2_ETH_SWA_SW_TSO) { if (skb->cb[0] == TX_TSTAMP) { struct skb_shared_hwtstamps shhwtstamps; __le64 *ts = dpaa2_get_ts(buffer_start, true); u64 ns; memset(&shhwtstamps, 0, sizeof(shhwtstamps)); ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); shhwtstamps.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &shhwtstamps); } else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { mutex_unlock(&priv->onestep_tstamp_lock); } } /* Free SGT buffer allocated on tx */ if (fd_format != dpaa2_fd_single) dpaa2_eth_sgt_recycle(priv, buffer_start); /* Move on with skb release. If we are just confirming multiple FDs * from the same TSO skb then only the last one will need to free the * skb. */ if (should_free_skb) napi_consume_skb(skb, in_napi); } static int dpaa2_eth_build_gso_fd(struct dpaa2_eth_priv *priv, struct sk_buff *skb, struct dpaa2_fd *fd, int *num_fds, u32 *total_fds_len) { struct device *dev = priv->net_dev->dev.parent; int hdr_len, total_len, data_left, fd_len; int num_sge, err, i, sgt_buf_size; struct dpaa2_fd *fd_start = fd; struct dpaa2_sg_entry *sgt; struct dpaa2_eth_swa *swa; dma_addr_t sgt_addr, addr; dma_addr_t tso_hdr_dma; unsigned int index = 0; struct tso_t tso; char *tso_hdr; void *sgt_buf; /* Initialize the TSO handler, and prepare the first payload */ hdr_len = tso_start(skb, &tso); *total_fds_len = 0; total_len = skb->len - hdr_len; while (total_len > 0) { /* Prepare the HW SGT structure for this frame */ sgt_buf = dpaa2_eth_sgt_get(priv); if (unlikely(!sgt_buf)) { netdev_err(priv->net_dev, "dpaa2_eth_sgt_get() failed\n"); err = -ENOMEM; goto err_sgt_get; } sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); /* Determine the data length of this frame */ data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); total_len -= data_left; fd_len = data_left + hdr_len; /* Prepare packet headers: MAC + IP + TCP */ tso_hdr = kmalloc(TSO_HEADER_SIZE, GFP_ATOMIC); if (!tso_hdr) { err = -ENOMEM; goto err_alloc_tso_hdr; } tso_build_hdr(skb, tso_hdr, &tso, data_left, total_len == 0); tso_hdr_dma = dma_map_single(dev, tso_hdr, TSO_HEADER_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, tso_hdr_dma)) { netdev_err(priv->net_dev, "dma_map_single(tso_hdr) failed\n"); err = -ENOMEM; goto err_map_tso_hdr; } /* Setup the SG entry for the header */ dpaa2_sg_set_addr(sgt, tso_hdr_dma); dpaa2_sg_set_len(sgt, hdr_len); dpaa2_sg_set_final(sgt, data_left <= 0); /* Compose the SG entries for each fragment of data */ num_sge = 1; while (data_left > 0) { int size; /* Move to the next SG entry */ sgt++; size = min_t(int, tso.size, data_left); addr = dma_map_single(dev, tso.data, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, addr)) { netdev_err(priv->net_dev, "dma_map_single(tso.data) failed\n"); err = -ENOMEM; goto err_map_data; } dpaa2_sg_set_addr(sgt, addr); dpaa2_sg_set_len(sgt, size); dpaa2_sg_set_final(sgt, size == data_left); num_sge++; /* Build the data for the __next__ fragment */ data_left -= size; tso_build_data(skb, &tso, size); } /* Store the skb backpointer in the SGT buffer */ sgt_buf_size = priv->tx_data_offset + num_sge * sizeof(struct dpaa2_sg_entry); swa = (struct dpaa2_eth_swa *)sgt_buf; swa->type = DPAA2_ETH_SWA_SW_TSO; swa->tso.skb = skb; swa->tso.num_sg = num_sge; swa->tso.sgt_size = sgt_buf_size; swa->tso.is_last_fd = total_len == 0 ? 1 : 0; /* Separately map the SGT buffer */ sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, sgt_addr))) { netdev_err(priv->net_dev, "dma_map_single(sgt_buf) failed\n"); err = -ENOMEM; goto err_map_sgt; } /* Setup the frame descriptor */ memset(fd, 0, sizeof(struct dpaa2_fd)); dpaa2_fd_set_offset(fd, priv->tx_data_offset); dpaa2_fd_set_format(fd, dpaa2_fd_sg); dpaa2_fd_set_addr(fd, sgt_addr); dpaa2_fd_set_len(fd, fd_len); dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); *total_fds_len += fd_len; /* Advance to the next frame descriptor */ fd++; index++; } *num_fds = index; return 0; err_map_sgt: err_map_data: /* Unmap all the data S/G entries for the current FD */ sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); for (i = 1; i < num_sge; i++) dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); /* Unmap the header entry */ dma_unmap_single(dev, tso_hdr_dma, TSO_HEADER_SIZE, DMA_TO_DEVICE); err_map_tso_hdr: kfree(tso_hdr); err_alloc_tso_hdr: dpaa2_eth_sgt_recycle(priv, sgt_buf); err_sgt_get: /* Free all the other FDs that were already fully created */ for (i = 0; i < index; i++) dpaa2_eth_free_tx_fd(priv, NULL, NULL, &fd_start[i], false); return err; } static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int total_enqueued = 0, retries = 0, enqueued; struct dpaa2_eth_drv_stats *percpu_extras; struct rtnl_link_stats64 *percpu_stats; unsigned int needed_headroom; int num_fds = 1, max_retries; struct dpaa2_eth_fq *fq; struct netdev_queue *nq; struct dpaa2_fd *fd; u16 queue_mapping; void *swa = NULL; u8 prio = 0; int err, i; u32 fd_len; percpu_stats = this_cpu_ptr(priv->percpu_stats); percpu_extras = this_cpu_ptr(priv->percpu_extras); fd = (this_cpu_ptr(priv->fd))->array; needed_headroom = dpaa2_eth_needed_headroom(skb); /* We'll be holding a back-reference to the skb until Tx Confirmation; * we don't want that overwritten by a concurrent Tx with a cloned skb. */ skb = skb_unshare(skb, GFP_ATOMIC); if (unlikely(!skb)) { /* skb_unshare() has already freed the skb */ percpu_stats->tx_dropped++; return NETDEV_TX_OK; } /* Setup the FD fields */ if (skb_is_gso(skb)) { err = dpaa2_eth_build_gso_fd(priv, skb, fd, &num_fds, &fd_len); percpu_extras->tx_sg_frames += num_fds; percpu_extras->tx_sg_bytes += fd_len; percpu_extras->tx_tso_frames += num_fds; percpu_extras->tx_tso_bytes += fd_len; } else if (skb_is_nonlinear(skb)) { err = dpaa2_eth_build_sg_fd(priv, skb, fd, &swa); percpu_extras->tx_sg_frames++; percpu_extras->tx_sg_bytes += skb->len; fd_len = dpaa2_fd_get_len(fd); } else if (skb_headroom(skb) < needed_headroom) { err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, fd, &swa); percpu_extras->tx_sg_frames++; percpu_extras->tx_sg_bytes += skb->len; percpu_extras->tx_converted_sg_frames++; percpu_extras->tx_converted_sg_bytes += skb->len; fd_len = dpaa2_fd_get_len(fd); } else { err = dpaa2_eth_build_single_fd(priv, skb, fd, &swa); fd_len = dpaa2_fd_get_len(fd); } if (unlikely(err)) { percpu_stats->tx_dropped++; goto err_build_fd; } if (swa && skb->cb[0]) dpaa2_eth_enable_tx_tstamp(priv, fd, swa, skb); /* Tracing point */ for (i = 0; i < num_fds; i++) trace_dpaa2_tx_fd(net_dev, &fd[i]); /* TxConf FQ selection relies on queue id from the stack. * In case of a forwarded frame from another DPNI interface, we choose * a queue affined to the same core that processed the Rx frame */ queue_mapping = skb_get_queue_mapping(skb); if (net_dev->num_tc) { prio = netdev_txq_to_tc(net_dev, queue_mapping); /* Hardware interprets priority level 0 as being the highest, * so we need to do a reverse mapping to the netdev tc index */ prio = net_dev->num_tc - prio - 1; /* We have only one FQ array entry for all Tx hardware queues * with the same flow id (but different priority levels) */ queue_mapping %= dpaa2_eth_queue_count(priv); } fq = &priv->fq[queue_mapping]; nq = netdev_get_tx_queue(net_dev, queue_mapping); netdev_tx_sent_queue(nq, fd_len); /* Everything that happens after this enqueues might race with * the Tx confirmation callback for this frame */ max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; while (total_enqueued < num_fds && retries < max_retries) { err = priv->enqueue(priv, fq, &fd[total_enqueued], prio, num_fds - total_enqueued, &enqueued); if (err == -EBUSY) { retries++; continue; } total_enqueued += enqueued; } percpu_extras->tx_portal_busy += retries; if (unlikely(err < 0)) { percpu_stats->tx_errors++; /* Clean up everything, including freeing the skb */ dpaa2_eth_free_tx_fd(priv, NULL, fq, fd, false); netdev_tx_completed_queue(nq, 1, fd_len); } else { percpu_stats->tx_packets += total_enqueued; percpu_stats->tx_bytes += fd_len; } return NETDEV_TX_OK; err_build_fd: dev_kfree_skb(skb); return NETDEV_TX_OK; } static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work) { struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv, tx_onestep_tstamp); struct sk_buff *skb; while (true) { skb = skb_dequeue(&priv->tx_skbs); if (!skb) return; /* Lock just before TX one-step timestamping packet, * and release the lock in dpaa2_eth_free_tx_fd when * confirm the packet has been sent on hardware, or * when clean up during transmit failure. */ mutex_lock(&priv->onestep_tstamp_lock); __dpaa2_eth_tx(skb, priv->net_dev); } } static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); u8 msgtype, twostep, udp; u16 offset1, offset2; /* Utilize skb->cb[0] for timestamping request per skb */ skb->cb[0] = 0; if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) { if (priv->tx_tstamp_type == HWTSTAMP_TX_ON) skb->cb[0] = TX_TSTAMP; else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC; } /* TX for one-step timestamping PTP Sync packet */ if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, &offset1, &offset2)) if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0) { skb_queue_tail(&priv->tx_skbs, skb); queue_work(priv->dpaa2_ptp_wq, &priv->tx_onestep_tstamp); return NETDEV_TX_OK; } /* Use two-step timestamping if not one-step timestamping * PTP Sync packet */ skb->cb[0] = TX_TSTAMP; } /* TX for other packets */ return __dpaa2_eth_tx(skb, net_dev); } /* Tx confirmation frame processing routine */ static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, struct dpaa2_eth_fq *fq) { struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_drv_stats *percpu_extras; u32 fd_len = dpaa2_fd_get_len(fd); u32 fd_errors; /* Tracing point */ trace_dpaa2_tx_conf_fd(priv->net_dev, fd); percpu_extras = this_cpu_ptr(priv->percpu_extras); percpu_extras->tx_conf_frames++; percpu_extras->tx_conf_bytes += fd_len; ch->stats.bytes_per_cdan += fd_len; /* Check frame errors in the FD field */ fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; dpaa2_eth_free_tx_fd(priv, ch, fq, fd, true); if (likely(!fd_errors)) return; if (net_ratelimit()) netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", fd_errors); percpu_stats = this_cpu_ptr(priv->percpu_stats); /* Tx-conf logically pertains to the egress path. */ percpu_stats->tx_errors++; } static int dpaa2_eth_set_rx_vlan_filtering(struct dpaa2_eth_priv *priv, bool enable) { int err; err = dpni_enable_vlan_filter(priv->mc_io, 0, priv->mc_token, enable); if (err) { netdev_err(priv->net_dev, "dpni_enable_vlan_filter failed\n"); return err; } return 0; } static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) { int err; err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_RX_L3_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(RX_L3_CSUM) failed\n"); return err; } err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_RX_L4_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(RX_L4_CSUM) failed\n"); return err; } return 0; } static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) { int err; err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_TX_L3_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); return err; } err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_TX_L4_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); return err; } return 0; } /* Perform a single release command to add buffers * to the specified buffer pool */ static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch) { struct xdp_buff *xdp_buffs[DPAA2_ETH_BUFS_PER_CMD]; struct device *dev = priv->net_dev->dev.parent; u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; struct dpaa2_eth_swa *swa; struct page *page; dma_addr_t addr; int retries = 0; int i = 0, err; u32 batch; /* Allocate buffers visible to WRIOP */ if (!ch->xsk_zc) { for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { /* Also allocate skb shared info and alignment padding. * There is one page for each Rx buffer. WRIOP sees * the entire page except for a tailroom reserved for * skb shared info */ page = dev_alloc_pages(0); if (!page) goto err_alloc; addr = dma_map_page(dev, page, 0, priv->rx_buf_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) goto err_map; buf_array[i] = addr; /* tracing point */ trace_dpaa2_eth_buf_seed(priv->net_dev, page_address(page), DPAA2_ETH_RX_BUF_RAW_SIZE, addr, priv->rx_buf_size, ch->bp->bpid); } } else if (xsk_buff_can_alloc(ch->xsk_pool, DPAA2_ETH_BUFS_PER_CMD)) { /* Allocate XSK buffers for AF_XDP fast path in batches * of DPAA2_ETH_BUFS_PER_CMD. Bail out if the UMEM cannot * provide enough buffers at the moment */ batch = xsk_buff_alloc_batch(ch->xsk_pool, xdp_buffs, DPAA2_ETH_BUFS_PER_CMD); if (!batch) goto err_alloc; for (i = 0; i < batch; i++) { swa = (struct dpaa2_eth_swa *)(xdp_buffs[i]->data_hard_start + DPAA2_ETH_RX_HWA_SIZE); swa->xsk.xdp_buff = xdp_buffs[i]; addr = xsk_buff_xdp_get_frame_dma(xdp_buffs[i]); if (unlikely(dma_mapping_error(dev, addr))) goto err_map; buf_array[i] = addr; trace_dpaa2_xsk_buf_seed(priv->net_dev, xdp_buffs[i]->data_hard_start, DPAA2_ETH_RX_BUF_RAW_SIZE, addr, priv->rx_buf_size, ch->bp->bpid); } } release_bufs: /* In case the portal is busy, retry until successful */ while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, buf_array, i)) == -EBUSY) { if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) break; cpu_relax(); } /* If release command failed, clean up and bail out; * not much else we can do about it */ if (err) { dpaa2_eth_free_bufs(priv, buf_array, i, ch->xsk_zc); return 0; } return i; err_map: if (!ch->xsk_zc) { __free_pages(page, 0); } else { for (; i < batch; i++) xsk_buff_free(xdp_buffs[i]); } err_alloc: /* If we managed to allocate at least some buffers, * release them to hardware */ if (i) goto release_bufs; return 0; } static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch) { int i; int new_count; for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) { new_count = dpaa2_eth_add_bufs(priv, ch); ch->buf_count += new_count; if (new_count < DPAA2_ETH_BUFS_PER_CMD) return -ENOMEM; } return 0; } static void dpaa2_eth_seed_pools(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; struct dpaa2_eth_channel *channel; int i, err = 0; for (i = 0; i < priv->num_channels; i++) { channel = priv->channel[i]; err = dpaa2_eth_seed_pool(priv, channel); /* Not much to do; the buffer pool, though not filled up, * may still contain some buffers which would enable us * to limp on. */ if (err) netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", channel->bp->dev->obj_desc.id, channel->bp->bpid); } } /* * Drain the specified number of buffers from one of the DPNI's private buffer * pools. * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD */ static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int bpid, int count) { u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; bool xsk_zc = false; int retries = 0; int i, ret; for (i = 0; i < priv->num_channels; i++) if (priv->channel[i]->bp->bpid == bpid) xsk_zc = priv->channel[i]->xsk_zc; do { ret = dpaa2_io_service_acquire(NULL, bpid, buf_array, count); if (ret < 0) { if (ret == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) continue; netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); return; } dpaa2_eth_free_bufs(priv, buf_array, ret, xsk_zc); retries = 0; } while (ret); } static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv, int bpid) { int i; /* Drain the buffer pool */ dpaa2_eth_drain_bufs(priv, bpid, DPAA2_ETH_BUFS_PER_CMD); dpaa2_eth_drain_bufs(priv, bpid, 1); /* Setup to zero the buffer count of all channels which were * using this buffer pool. */ for (i = 0; i < priv->num_channels; i++) if (priv->channel[i]->bp->bpid == bpid) priv->channel[i]->buf_count = 0; } static void dpaa2_eth_drain_pools(struct dpaa2_eth_priv *priv) { int i; for (i = 0; i < priv->num_bps; i++) dpaa2_eth_drain_pool(priv, priv->bp[i]->bpid); } /* Function is called from softirq context only, so we don't need to guard * the access to percpu count */ static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch) { int new_count; if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) return 0; do { new_count = dpaa2_eth_add_bufs(priv, ch); if (unlikely(!new_count)) { /* Out of memory; abort for now, we'll try later on */ break; } ch->buf_count += new_count; } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) return -ENOMEM; return 0; } static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_sgt_cache *sgt_cache; u16 count; int k, i; for_each_possible_cpu(k) { sgt_cache = per_cpu_ptr(priv->sgt_cache, k); count = sgt_cache->count; for (i = 0; i < count; i++) skb_free_frag(sgt_cache->buf[i]); sgt_cache->count = 0; } } static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch) { int err; int dequeues = -1; /* Retry while portal is busy */ do { err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, ch->store); dequeues++; cpu_relax(); } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); ch->stats.dequeue_portal_busy += dequeues; if (unlikely(err)) ch->stats.pull_err++; return err; } /* NAPI poll routine * * Frames are dequeued from the QMan channel associated with this NAPI context. * Rx, Tx confirmation and (if configured) Rx error frames all count * towards the NAPI budget. */ static int dpaa2_eth_poll(struct napi_struct *napi, int budget) { struct dpaa2_eth_channel *ch; struct dpaa2_eth_priv *priv; int rx_cleaned = 0, txconf_cleaned = 0; struct dpaa2_eth_fq *fq, *txc_fq = NULL; struct netdev_queue *nq; int store_cleaned, work_done; bool work_done_zc = false; struct list_head rx_list; int retries = 0; u16 flowid; int err; ch = container_of(napi, struct dpaa2_eth_channel, napi); ch->xdp.res = 0; priv = ch->priv; INIT_LIST_HEAD(&rx_list); ch->rx_list = &rx_list; if (ch->xsk_zc) { work_done_zc = dpaa2_xsk_tx(priv, ch); /* If we reached the XSK Tx per NAPI threshold, we're done */ if (work_done_zc) { work_done = budget; goto out; } } do { err = dpaa2_eth_pull_channel(ch); if (unlikely(err)) break; /* Refill pool if appropriate */ dpaa2_eth_refill_pool(priv, ch); store_cleaned = dpaa2_eth_consume_frames(ch, &fq); if (store_cleaned <= 0) break; if (fq->type == DPAA2_RX_FQ) { rx_cleaned += store_cleaned; flowid = fq->flowid; } else { txconf_cleaned += store_cleaned; /* We have a single Tx conf FQ on this channel */ txc_fq = fq; } /* If we either consumed the whole NAPI budget with Rx frames * or we reached the Tx confirmations threshold, we're done. */ if (rx_cleaned >= budget || txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { work_done = budget; if (ch->xdp.res & XDP_REDIRECT) xdp_do_flush(); goto out; } } while (store_cleaned); if (ch->xdp.res & XDP_REDIRECT) xdp_do_flush(); /* Update NET DIM with the values for this CDAN */ dpaa2_io_update_net_dim(ch->dpio, ch->stats.frames_per_cdan, ch->stats.bytes_per_cdan); ch->stats.frames_per_cdan = 0; ch->stats.bytes_per_cdan = 0; /* We didn't consume the entire budget, so finish napi and * re-enable data availability notifications */ napi_complete_done(napi, rx_cleaned); do { err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); cpu_relax(); } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); WARN_ONCE(err, "CDAN notifications rearm failed on core %d", ch->nctx.desired_cpu); work_done = max(rx_cleaned, 1); out: netif_receive_skb_list(ch->rx_list); if (ch->xsk_tx_pkts_sent) { xsk_tx_completed(ch->xsk_pool, ch->xsk_tx_pkts_sent); ch->xsk_tx_pkts_sent = 0; } if (txc_fq && txc_fq->dq_frames) { nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); netdev_tx_completed_queue(nq, txc_fq->dq_frames, txc_fq->dq_bytes); txc_fq->dq_frames = 0; txc_fq->dq_bytes = 0; } if (rx_cleaned && ch->xdp.res & XDP_TX) dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]); return work_done; } static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *ch; int i; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; napi_enable(&ch->napi); } } static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *ch; int i; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; napi_disable(&ch->napi); } } void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, bool tx_pause, bool pfc) { struct dpni_taildrop td = {0}; struct dpaa2_eth_fq *fq; int i, err; /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if * flow control is disabled (as it might interfere with either the * buffer pool depletion trigger for pause frames or with the group * congestion trigger for PFC frames) */ td.enable = !tx_pause; if (priv->rx_fqtd_enabled == td.enable) goto set_cgtd; td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; td.units = DPNI_CONGESTION_UNIT_BYTES; for (i = 0; i < priv->num_fqs; i++) { fq = &priv->fq[i]; if (fq->type != DPAA2_RX_FQ) continue; err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, DPNI_QUEUE_RX, fq->tc, fq->flowid, &td); if (err) { netdev_err(priv->net_dev, "dpni_set_taildrop(FQ) failed\n"); return; } } priv->rx_fqtd_enabled = td.enable; set_cgtd: /* Congestion group taildrop: threshold is in frames, per group * of FQs belonging to the same traffic class * Enabled if general Tx pause disabled or if PFCs are enabled * (congestion group threhsold for PFC generation is lower than the * CG taildrop threshold, so it won't interfere with it; we also * want frames in non-PFC enabled traffic classes to be kept in check) */ td.enable = !tx_pause || pfc; if (priv->rx_cgtd_enabled == td.enable) return; td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); td.units = DPNI_CONGESTION_UNIT_FRAMES; for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_GROUP, DPNI_QUEUE_RX, i, 0, &td); if (err) { netdev_err(priv->net_dev, "dpni_set_taildrop(CG) failed\n"); return; } } priv->rx_cgtd_enabled = td.enable; } static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv) { struct dpni_link_state state = {0}; bool tx_pause; int err; err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); if (unlikely(err)) { netdev_err(priv->net_dev, "dpni_get_link_state() failed\n"); return err; } /* If Tx pause frame settings have changed, we need to update * Rx FQ taildrop configuration as well. We configure taildrop * only when pause frame generation is disabled. */ tx_pause = dpaa2_eth_tx_pause_enabled(state.options); dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); /* When we manage the MAC/PHY using phylink there is no need * to manually update the netif_carrier. * We can avoid locking because we are called from the "link changed" * IRQ handler, which is the same as the "endpoint changed" IRQ handler * (the writer to priv->mac), so we cannot race with it. */ if (dpaa2_mac_is_type_phy(priv->mac)) goto out; /* Chech link state; speed / duplex changes are not treated yet */ if (priv->link_state.up == state.up) goto out; if (state.up) { netif_carrier_on(priv->net_dev); netif_tx_start_all_queues(priv->net_dev); } else { netif_tx_stop_all_queues(priv->net_dev); netif_carrier_off(priv->net_dev); } netdev_info(priv->net_dev, "Link Event: state %s\n", state.up ? "up" : "down"); out: priv->link_state = state; return 0; } static int dpaa2_eth_open(struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int err; dpaa2_eth_seed_pools(priv); mutex_lock(&priv->mac_lock); if (!dpaa2_eth_is_type_phy(priv)) { /* We'll only start the txqs when the link is actually ready; * make sure we don't race against the link up notification, * which may come immediately after dpni_enable(); */ netif_tx_stop_all_queues(net_dev); /* Also, explicitly set carrier off, otherwise * netif_carrier_ok() will return true and cause 'ip link show' * to report the LOWER_UP flag, even though the link * notification wasn't even received. */ netif_carrier_off(net_dev); } dpaa2_eth_enable_ch_napi(priv); err = dpni_enable(priv->mc_io, 0, priv->mc_token); if (err < 0) { mutex_unlock(&priv->mac_lock); netdev_err(net_dev, "dpni_enable() failed\n"); goto enable_err; } if (dpaa2_eth_is_type_phy(priv)) dpaa2_mac_start(priv->mac); mutex_unlock(&priv->mac_lock); return 0; enable_err: dpaa2_eth_disable_ch_napi(priv); dpaa2_eth_drain_pools(priv); return err; } /* Total number of in-flight frames on ingress queues */ static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_fq *fq; u32 fcnt = 0, bcnt = 0, total = 0; int i, err; for (i = 0; i < priv->num_fqs; i++) { fq = &priv->fq[i]; err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); if (err) { netdev_warn(priv->net_dev, "query_fq_count failed"); break; } total += fcnt; } return total; } static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) { int retries = 10; u32 pending; do { pending = dpaa2_eth_ingress_fq_count(priv); if (pending) msleep(100); } while (pending && --retries); } #define DPNI_TX_PENDING_VER_MAJOR 7 #define DPNI_TX_PENDING_VER_MINOR 13 static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) { union dpni_statistics stats; int retries = 10; int err; if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, DPNI_TX_PENDING_VER_MINOR) < 0) goto out; do { err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, &stats); if (err) goto out; if (stats.page_6.tx_pending_frames == 0) return; } while (--retries); out: msleep(500); } static int dpaa2_eth_stop(struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int dpni_enabled = 0; int retries = 10; mutex_lock(&priv->mac_lock); if (dpaa2_eth_is_type_phy(priv)) { dpaa2_mac_stop(priv->mac); } else { netif_tx_stop_all_queues(net_dev); netif_carrier_off(net_dev); } mutex_unlock(&priv->mac_lock); /* On dpni_disable(), the MC firmware will: * - stop MAC Rx and wait for all Rx frames to be enqueued to software * - cut off WRIOP dequeues from egress FQs and wait until transmission * of all in flight Tx frames is finished (and corresponding Tx conf * frames are enqueued back to software) * * Before calling dpni_disable(), we wait for all Tx frames to arrive * on WRIOP. After it finishes, wait until all remaining frames on Rx * and Tx conf queues are consumed on NAPI poll. */ dpaa2_eth_wait_for_egress_fq_empty(priv); do { dpni_disable(priv->mc_io, 0, priv->mc_token); dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); if (dpni_enabled) /* Allow the hardware some slack */ msleep(100); } while (dpni_enabled && --retries); if (!retries) { netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); /* Must go on and disable NAPI nonetheless, so we don't crash at * the next "ifconfig up" */ } dpaa2_eth_wait_for_ingress_fq_empty(priv); dpaa2_eth_disable_ch_napi(priv); /* Empty the buffer pool */ dpaa2_eth_drain_pools(priv); /* Empty the Scatter-Gather Buffer cache */ dpaa2_eth_sgt_cache_drain(priv); return 0; } static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct device *dev = net_dev->dev.parent; int err; err = eth_mac_addr(net_dev, addr); if (err < 0) { dev_err(dev, "eth_mac_addr() failed (%d)\n", err); return err; } err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, net_dev->dev_addr); if (err) { dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); return err; } return 0; } /** Fill in counters maintained by the GPP driver. These may be different from * the hardware counters obtained by ethtool. */ static void dpaa2_eth_get_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct rtnl_link_stats64 *percpu_stats; u64 *cpustats; u64 *netstats = (u64 *)stats; int i, j; int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); for_each_possible_cpu(i) { percpu_stats = per_cpu_ptr(priv->percpu_stats, i); cpustats = (u64 *)percpu_stats; for (j = 0; j < num; j++) netstats[j] += cpustats[j]; } } /* Copy mac unicast addresses from @net_dev to @priv. * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. */ static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev, struct dpaa2_eth_priv *priv) { struct netdev_hw_addr *ha; int err; netdev_for_each_uc_addr(ha, net_dev) { err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, ha->addr); if (err) netdev_warn(priv->net_dev, "Could not add ucast MAC %pM to the filtering table (err %d)\n", ha->addr, err); } } /* Copy mac multicast addresses from @net_dev to @priv * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. */ static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev, struct dpaa2_eth_priv *priv) { struct netdev_hw_addr *ha; int err; netdev_for_each_mc_addr(ha, net_dev) { err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, ha->addr); if (err) netdev_warn(priv->net_dev, "Could not add mcast MAC %pM to the filtering table (err %d)\n", ha->addr, err); } } static int dpaa2_eth_rx_add_vid(struct net_device *net_dev, __be16 vlan_proto, u16 vid) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int err; err = dpni_add_vlan_id(priv->mc_io, 0, priv->mc_token, vid, 0, 0, 0); if (err) { netdev_warn(priv->net_dev, "Could not add the vlan id %u\n", vid); return err; } return 0; } static int dpaa2_eth_rx_kill_vid(struct net_device *net_dev, __be16 vlan_proto, u16 vid) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int err; err = dpni_remove_vlan_id(priv->mc_io, 0, priv->mc_token, vid); if (err) { netdev_warn(priv->net_dev, "Could not remove the vlan id %u\n", vid); return err; } return 0; } static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int uc_count = netdev_uc_count(net_dev); int mc_count = netdev_mc_count(net_dev); u8 max_mac = priv->dpni_attrs.mac_filter_entries; u32 options = priv->dpni_attrs.options; u16 mc_token = priv->mc_token; struct fsl_mc_io *mc_io = priv->mc_io; int err; /* Basic sanity checks; these probably indicate a misconfiguration */ if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) netdev_info(net_dev, "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", max_mac); /* Force promiscuous if the uc or mc counts exceed our capabilities. */ if (uc_count > max_mac) { netdev_info(net_dev, "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", uc_count, max_mac); goto force_promisc; } if (mc_count + uc_count > max_mac) { netdev_info(net_dev, "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", uc_count + mc_count, max_mac); goto force_mc_promisc; } /* Adjust promisc settings due to flag combinations */ if (net_dev->flags & IFF_PROMISC) goto force_promisc; if (net_dev->flags & IFF_ALLMULTI) { /* First, rebuild unicast filtering table. This should be done * in promisc mode, in order to avoid frame loss while we * progressively add entries to the table. * We don't know whether we had been in promisc already, and * making an MC call to find out is expensive; so set uc promisc * nonetheless. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set uc promisc\n"); /* Actual uc table reconstruction. */ err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); if (err) netdev_warn(net_dev, "Can't clear uc filters\n"); dpaa2_eth_add_uc_hw_addr(net_dev, priv); /* Finally, clear uc promisc and set mc promisc as requested. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); if (err) netdev_warn(net_dev, "Can't clear uc promisc\n"); goto force_mc_promisc; } /* Neither unicast, nor multicast promisc will be on... eventually. * For now, rebuild mac filtering tables while forcing both of them on. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); /* Actual mac filtering tables reconstruction */ err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); if (err) netdev_warn(net_dev, "Can't clear mac filters\n"); dpaa2_eth_add_mc_hw_addr(net_dev, priv); dpaa2_eth_add_uc_hw_addr(net_dev, priv); /* Now we can clear both ucast and mcast promisc, without risking * to drop legitimate frames anymore. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); if (err) netdev_warn(net_dev, "Can't clear ucast promisc\n"); err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); if (err) netdev_warn(net_dev, "Can't clear mcast promisc\n"); return; force_promisc: err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set ucast promisc\n"); force_mc_promisc: err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set mcast promisc\n"); } static int dpaa2_eth_set_features(struct net_device *net_dev, netdev_features_t features) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); netdev_features_t changed = features ^ net_dev->features; bool enable; int err; if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); err = dpaa2_eth_set_rx_vlan_filtering(priv, enable); if (err) return err; } if (changed & NETIF_F_RXCSUM) { enable = !!(features & NETIF_F_RXCSUM); err = dpaa2_eth_set_rx_csum(priv, enable); if (err) return err; } if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); err = dpaa2_eth_set_tx_csum(priv, enable); if (err) return err; } return 0; } static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct dpaa2_eth_priv *priv = netdev_priv(dev); struct hwtstamp_config config; if (!dpaa2_ptp) return -EINVAL; if (copy_from_user(&config, rq->ifr_data, sizeof(config))) return -EFAULT; switch (config.tx_type) { case HWTSTAMP_TX_OFF: case HWTSTAMP_TX_ON: case HWTSTAMP_TX_ONESTEP_SYNC: priv->tx_tstamp_type = config.tx_type; break; default: return -ERANGE; } if (config.rx_filter == HWTSTAMP_FILTER_NONE) { priv->rx_tstamp = false; } else { priv->rx_tstamp = true; /* TS is set for all frame types, not only those requested */ config.rx_filter = HWTSTAMP_FILTER_ALL; } if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) dpaa2_ptp_onestep_reg_update_method(priv); return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct dpaa2_eth_priv *priv = netdev_priv(dev); int err; if (cmd == SIOCSHWTSTAMP) return dpaa2_eth_ts_ioctl(dev, rq, cmd); mutex_lock(&priv->mac_lock); if (dpaa2_eth_is_type_phy(priv)) { err = phylink_mii_ioctl(priv->mac->phylink, rq, cmd); mutex_unlock(&priv->mac_lock); return err; } mutex_unlock(&priv->mac_lock); return -EOPNOTSUPP; } static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) { int mfl, linear_mfl; mfl = DPAA2_ETH_L2_MAX_FRM(mtu); linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; if (mfl > linear_mfl) { netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", linear_mfl - VLAN_ETH_HLEN); return false; } return true; } static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) { int mfl, err; /* We enforce a maximum Rx frame length based on MTU only if we have * an XDP program attached (in order to avoid Rx S/G frames). * Otherwise, we accept all incoming frames as long as they are not * larger than maximum size supported in hardware */ if (has_xdp) mfl = DPAA2_ETH_L2_MAX_FRM(mtu); else mfl = DPAA2_ETH_MFL; err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); if (err) { netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); return err; } return 0; } static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) { struct dpaa2_eth_priv *priv = netdev_priv(dev); int err; if (!priv->xdp_prog) goto out; if (!xdp_mtu_valid(priv, new_mtu)) return -EINVAL; err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true); if (err) return err; out: WRITE_ONCE(dev->mtu, new_mtu); return 0; } static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) { struct dpni_buffer_layout buf_layout = {0}; int err; err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, &buf_layout); if (err) { netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); return err; } /* Reserve extra headroom for XDP header size changes */ buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + (has_xdp ? XDP_PACKET_HEADROOM : 0); buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, &buf_layout); if (err) { netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); return err; } return 0; } static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog) { struct dpaa2_eth_priv *priv = netdev_priv(dev); struct dpaa2_eth_channel *ch; struct bpf_prog *old; bool up, need_update; int i, err; if (prog && !xdp_mtu_valid(priv, dev->mtu)) return -EINVAL; if (prog) bpf_prog_add(prog, priv->num_channels); up = netif_running(dev); need_update = (!!priv->xdp_prog != !!prog); if (up) dev_close(dev); /* While in xdp mode, enforce a maximum Rx frame size based on MTU. * Also, when switching between xdp/non-xdp modes we need to reconfigure * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, * so we are sure no old format buffers will be used from now on. */ if (need_update) { err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog); if (err) goto out_err; err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog); if (err) goto out_err; } old = xchg(&priv->xdp_prog, prog); if (old) bpf_prog_put(old); for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; old = xchg(&ch->xdp.prog, prog); if (old) bpf_prog_put(old); } if (up) { err = dev_open(dev, NULL); if (err) return err; } return 0; out_err: if (prog) bpf_prog_sub(prog, priv->num_channels); if (up) dev_open(dev, NULL); return err; } static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return dpaa2_eth_setup_xdp(dev, xdp->prog); case XDP_SETUP_XSK_POOL: return dpaa2_xsk_setup_pool(dev, xdp->xsk.pool, xdp->xsk.queue_id); default: return -EINVAL; } return 0; } static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, struct xdp_frame *xdpf, struct dpaa2_fd *fd) { struct device *dev = net_dev->dev.parent; unsigned int needed_headroom; struct dpaa2_eth_swa *swa; void *buffer_start, *aligned_start; dma_addr_t addr; /* We require a minimum headroom to be able to transmit the frame. * Otherwise return an error and let the original net_device handle it */ needed_headroom = dpaa2_eth_needed_headroom(NULL); if (xdpf->headroom < needed_headroom) return -EINVAL; /* Setup the FD fields */ memset(fd, 0, sizeof(*fd)); /* Align FD address, if possible */ buffer_start = xdpf->data - needed_headroom; aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, DPAA2_ETH_TX_BUF_ALIGN); if (aligned_start >= xdpf->data - xdpf->headroom) buffer_start = aligned_start; swa = (struct dpaa2_eth_swa *)buffer_start; /* fill in necessary fields here */ swa->type = DPAA2_ETH_SWA_XDP; swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; swa->xdp.xdpf = xdpf; addr = dma_map_single(dev, buffer_start, swa->xdp.dma_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) return -ENOMEM; dpaa2_fd_set_addr(fd, addr); dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); dpaa2_fd_set_len(fd, xdpf->len); dpaa2_fd_set_format(fd, dpaa2_fd_single); dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); return 0; } static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, struct xdp_frame **frames, u32 flags) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct dpaa2_eth_xdp_fds *xdp_redirect_fds; struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_fq *fq; struct dpaa2_fd *fds; int enqueued, i, err; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; if (!netif_running(net_dev)) return -ENETDOWN; fq = &priv->fq[smp_processor_id()]; xdp_redirect_fds = &fq->xdp_redirect_fds; fds = xdp_redirect_fds->fds; percpu_stats = this_cpu_ptr(priv->percpu_stats); /* create a FD for each xdp_frame in the list received */ for (i = 0; i < n; i++) { err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); if (err) break; } xdp_redirect_fds->num = i; /* enqueue all the frame descriptors */ enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); /* update statistics */ percpu_stats->tx_packets += enqueued; for (i = 0; i < enqueued; i++) percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); return enqueued; } static int update_xps(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; int i, num_queues, netdev_queues; struct dpaa2_eth_fq *fq; cpumask_var_t xps_mask; int err = 0; if (!alloc_cpumask_var(&xps_mask, GFP_KERNEL)) return -ENOMEM; num_queues = dpaa2_eth_queue_count(priv); netdev_queues = (net_dev->num_tc ? : 1) * num_queues; /* The first entries in priv->fq array are Tx/Tx conf * queues, so only process those */ for (i = 0; i < netdev_queues; i++) { fq = &priv->fq[i % num_queues]; cpumask_clear(xps_mask); cpumask_set_cpu(fq->target_cpu, xps_mask); err = netif_set_xps_queue(net_dev, xps_mask, i); if (err) { netdev_warn_once(net_dev, "Error setting XPS queue\n"); break; } } free_cpumask_var(xps_mask); return err; } static int dpaa2_eth_setup_mqprio(struct net_device *net_dev, struct tc_mqprio_qopt *mqprio) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); u8 num_tc, num_queues; int i; mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; num_queues = dpaa2_eth_queue_count(priv); num_tc = mqprio->num_tc; if (num_tc == net_dev->num_tc) return 0; if (num_tc > dpaa2_eth_tc_count(priv)) { netdev_err(net_dev, "Max %d traffic classes supported\n", dpaa2_eth_tc_count(priv)); return -EOPNOTSUPP; } if (!num_tc) { netdev_reset_tc(net_dev); netif_set_real_num_tx_queues(net_dev, num_queues); goto out; } netdev_set_num_tc(net_dev, num_tc); netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); for (i = 0; i < num_tc; i++) netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); out: update_xps(priv); return 0; } #define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8) static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p) { struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params; struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 }; struct dpni_tx_shaping_cfg tx_er_shaper = { 0 }; int err; if (p->command == TC_TBF_STATS) return -EOPNOTSUPP; /* Only per port Tx shaping */ if (p->parent != TC_H_ROOT) return -EOPNOTSUPP; if (p->command == TC_TBF_REPLACE) { if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) { netdev_err(net_dev, "burst size cannot be greater than %d\n", DPAA2_ETH_MAX_BURST_SIZE); return -EINVAL; } tx_cr_shaper.max_burst_size = cfg->max_size; /* The TBF interface is in bytes/s, whereas DPAA2 expects the * rate in Mbits/s */ tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps); } err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper, &tx_er_shaper, 0); if (err) { netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err); return err; } return 0; } static int dpaa2_eth_setup_tc(struct net_device *net_dev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_MQPRIO: return dpaa2_eth_setup_mqprio(net_dev, type_data); case TC_SETUP_QDISC_TBF: return dpaa2_eth_setup_tbf(net_dev, type_data); default: return -EOPNOTSUPP; } } static const struct net_device_ops dpaa2_eth_ops = { .ndo_open = dpaa2_eth_open, .ndo_start_xmit = dpaa2_eth_tx, .ndo_stop = dpaa2_eth_stop, .ndo_set_mac_address = dpaa2_eth_set_addr, .ndo_get_stats64 = dpaa2_eth_get_stats, .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, .ndo_set_features = dpaa2_eth_set_features, .ndo_eth_ioctl = dpaa2_eth_ioctl, .ndo_change_mtu = dpaa2_eth_change_mtu, .ndo_bpf = dpaa2_eth_xdp, .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, .ndo_xsk_wakeup = dpaa2_xsk_wakeup, .ndo_setup_tc = dpaa2_eth_setup_tc, .ndo_vlan_rx_add_vid = dpaa2_eth_rx_add_vid, .ndo_vlan_rx_kill_vid = dpaa2_eth_rx_kill_vid }; static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx) { struct dpaa2_eth_channel *ch; ch = container_of(ctx, struct dpaa2_eth_channel, nctx); /* Update NAPI statistics */ ch->stats.cdan++; /* NAPI can also be scheduled from the AF_XDP Tx path. Mark a missed * so that it can be rescheduled again. */ if (!napi_if_scheduled_mark_missed(&ch->napi)) napi_schedule(&ch->napi); } /* Allocate and configure a DPCON object */ static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv) { struct fsl_mc_device *dpcon; struct device *dev = priv->net_dev->dev.parent; int err; err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPCON, &dpcon); if (err) { if (err == -ENXIO) { dev_dbg(dev, "Waiting for DPCON\n"); err = -EPROBE_DEFER; } else { dev_info(dev, "Not enough DPCONs, will go on as-is\n"); } return ERR_PTR(err); } err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); if (err) { dev_err(dev, "dpcon_open() failed\n"); goto free; } err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); if (err) { dev_err(dev, "dpcon_reset() failed\n"); goto close; } err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); if (err) { dev_err(dev, "dpcon_enable() failed\n"); goto close; } return dpcon; close: dpcon_close(priv->mc_io, 0, dpcon->mc_handle); free: fsl_mc_object_free(dpcon); return ERR_PTR(err); } static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv, struct fsl_mc_device *dpcon) { dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); dpcon_close(priv->mc_io, 0, dpcon->mc_handle); fsl_mc_object_free(dpcon); } static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *channel; struct dpcon_attr attr; struct device *dev = priv->net_dev->dev.parent; int err; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; channel->dpcon = dpaa2_eth_setup_dpcon(priv); if (IS_ERR(channel->dpcon)) { err = PTR_ERR(channel->dpcon); goto err_setup; } err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, &attr); if (err) { dev_err(dev, "dpcon_get_attributes() failed\n"); goto err_get_attr; } channel->dpcon_id = attr.id; channel->ch_id = attr.qbman_ch_id; channel->priv = priv; return channel; err_get_attr: dpaa2_eth_free_dpcon(priv, channel->dpcon); err_setup: kfree(channel); return ERR_PTR(err); } static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *channel) { dpaa2_eth_free_dpcon(priv, channel->dpcon); kfree(channel); } /* DPIO setup: allocate and configure QBMan channels, setup core affinity * and register data availability notifications */ static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv) { struct dpaa2_io_notification_ctx *nctx; struct dpaa2_eth_channel *channel; struct dpcon_notification_cfg dpcon_notif_cfg; struct device *dev = priv->net_dev->dev.parent; int i, err; /* We want the ability to spread ingress traffic (RX, TX conf) to as * many cores as possible, so we need one channel for each core * (unless there's fewer queues than cores, in which case the extra * channels would be wasted). * Allocate one channel per core and register it to the core's * affine DPIO. If not enough channels are available for all cores * or if some cores don't have an affine DPIO, there will be no * ingress frame processing on those cores. */ cpumask_clear(&priv->dpio_cpumask); for_each_online_cpu(i) { /* Try to allocate a channel */ channel = dpaa2_eth_alloc_channel(priv); if (IS_ERR_OR_NULL(channel)) { err = PTR_ERR_OR_ZERO(channel); if (err == -EPROBE_DEFER) dev_dbg(dev, "waiting for affine channel\n"); else dev_info(dev, "No affine channel for cpu %d and above\n", i); goto err_alloc_ch; } priv->channel[priv->num_channels] = channel; nctx = &channel->nctx; nctx->is_cdan = 1; nctx->cb = dpaa2_eth_cdan_cb; nctx->id = channel->ch_id; nctx->desired_cpu = i; /* Register the new context */ channel->dpio = dpaa2_io_service_select(i); err = dpaa2_io_service_register(channel->dpio, nctx, dev); if (err) { dev_dbg(dev, "No affine DPIO for cpu %d\n", i); /* If no affine DPIO for this core, there's probably * none available for next cores either. Signal we want * to retry later, in case the DPIO devices weren't * probed yet. */ err = -EPROBE_DEFER; goto err_service_reg; } /* Register DPCON notification with MC */ dpcon_notif_cfg.dpio_id = nctx->dpio_id; dpcon_notif_cfg.priority = 0; dpcon_notif_cfg.user_ctx = nctx->qman64; err = dpcon_set_notification(priv->mc_io, 0, channel->dpcon->mc_handle, &dpcon_notif_cfg); if (err) { dev_err(dev, "dpcon_set_notification failed()\n"); goto err_set_cdan; } /* If we managed to allocate a channel and also found an affine * DPIO for this core, add it to the final mask */ cpumask_set_cpu(i, &priv->dpio_cpumask); priv->num_channels++; /* Stop if we already have enough channels to accommodate all * RX and TX conf queues */ if (priv->num_channels == priv->dpni_attrs.num_queues) break; } return 0; err_set_cdan: dpaa2_io_service_deregister(channel->dpio, nctx, dev); err_service_reg: dpaa2_eth_free_channel(priv, channel); err_alloc_ch: if (err == -EPROBE_DEFER) { for (i = 0; i < priv->num_channels; i++) { channel = priv->channel[i]; nctx = &channel->nctx; dpaa2_io_service_deregister(channel->dpio, nctx, dev); dpaa2_eth_free_channel(priv, channel); } priv->num_channels = 0; return err; } if (cpumask_empty(&priv->dpio_cpumask)) { dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); return -ENODEV; } dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", cpumask_pr_args(&priv->dpio_cpumask)); return 0; } static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpaa2_eth_channel *ch; int i; /* deregister CDAN notifications and free channels */ for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); dpaa2_eth_free_channel(priv, ch); } } static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv, int cpu) { struct device *dev = priv->net_dev->dev.parent; int i; for (i = 0; i < priv->num_channels; i++) if (priv->channel[i]->nctx.desired_cpu == cpu) return priv->channel[i]; /* We should never get here. Issue a warning and return * the first channel, because it's still better than nothing */ dev_warn(dev, "No affine channel found for cpu %d\n", cpu); return priv->channel[0]; } static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpaa2_eth_fq *fq; int rx_cpu, txc_cpu; int i; /* For each FQ, pick one channel/CPU to deliver frames to. * This may well change at runtime, either through irqbalance or * through direct user intervention. */ rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); for (i = 0; i < priv->num_fqs; i++) { fq = &priv->fq[i]; switch (fq->type) { case DPAA2_RX_FQ: case DPAA2_RX_ERR_FQ: fq->target_cpu = rx_cpu; rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); if (rx_cpu >= nr_cpu_ids) rx_cpu = cpumask_first(&priv->dpio_cpumask); break; case DPAA2_TX_CONF_FQ: fq->target_cpu = txc_cpu; txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); if (txc_cpu >= nr_cpu_ids) txc_cpu = cpumask_first(&priv->dpio_cpumask); break; default: dev_err(dev, "Unknown FQ type: %d\n", fq->type); } fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu); } update_xps(priv); } static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv) { int i, j; /* We have one TxConf FQ per Tx flow. * The number of Tx and Rx queues is the same. * Tx queues come first in the fq array. */ for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; priv->fq[priv->num_fqs++].flowid = (u16)i; } for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; priv->fq[priv->num_fqs].tc = (u8)j; priv->fq[priv->num_fqs++].flowid = (u16)i; } } /* We have exactly one Rx error queue per DPNI */ priv->fq[priv->num_fqs].type = DPAA2_RX_ERR_FQ; priv->fq[priv->num_fqs++].consume = dpaa2_eth_rx_err; /* For each FQ, decide on which core to process incoming frames */ dpaa2_eth_set_fq_affinity(priv); } /* Allocate and configure a buffer pool */ struct dpaa2_eth_bp *dpaa2_eth_allocate_dpbp(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct fsl_mc_device *dpbp_dev; struct dpbp_attr dpbp_attrs; struct dpaa2_eth_bp *bp; int err; err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, &dpbp_dev); if (err) { if (err == -ENXIO) err = -EPROBE_DEFER; else dev_err(dev, "DPBP device allocation failed\n"); return ERR_PTR(err); } bp = kzalloc(sizeof(*bp), GFP_KERNEL); if (!bp) { err = -ENOMEM; goto err_alloc; } err = dpbp_open(priv->mc_io, 0, dpbp_dev->obj_desc.id, &dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_open() failed\n"); goto err_open; } err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_reset() failed\n"); goto err_reset; } err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_enable() failed\n"); goto err_enable; } err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, &dpbp_attrs); if (err) { dev_err(dev, "dpbp_get_attributes() failed\n"); goto err_get_attr; } bp->dev = dpbp_dev; bp->bpid = dpbp_attrs.bpid; return bp; err_get_attr: dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); err_enable: err_reset: dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); err_open: kfree(bp); err_alloc: fsl_mc_object_free(dpbp_dev); return ERR_PTR(err); } static int dpaa2_eth_setup_default_dpbp(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_bp *bp; int i; bp = dpaa2_eth_allocate_dpbp(priv); if (IS_ERR(bp)) return PTR_ERR(bp); priv->bp[DPAA2_ETH_DEFAULT_BP_IDX] = bp; priv->num_bps++; for (i = 0; i < priv->num_channels; i++) priv->channel[i]->bp = bp; return 0; } void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_bp *bp) { int idx_bp; /* Find the index at which this BP is stored */ for (idx_bp = 0; idx_bp < priv->num_bps; idx_bp++) if (priv->bp[idx_bp] == bp) break; /* Drain the pool and disable the associated MC object */ dpaa2_eth_drain_pool(priv, bp->bpid); dpbp_disable(priv->mc_io, 0, bp->dev->mc_handle); dpbp_close(priv->mc_io, 0, bp->dev->mc_handle); fsl_mc_object_free(bp->dev); kfree(bp); /* Move the last in use DPBP over in this position */ priv->bp[idx_bp] = priv->bp[priv->num_bps - 1]; priv->num_bps--; } static void dpaa2_eth_free_dpbps(struct dpaa2_eth_priv *priv) { int i; for (i = 0; i < priv->num_bps; i++) dpaa2_eth_free_dpbp(priv, priv->bp[i]); } static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpni_buffer_layout buf_layout = {0}; u16 rx_buf_align; int err; /* We need to check for WRIOP version 1.0.0, but depending on the MC * version, this number is not always provided correctly on rev1. * We need to check for both alternatives in this situation. */ if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; else rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; /* We need to ensure that the buffer size seen by WRIOP is a multiple * of 64 or 256 bytes depending on the WRIOP version. */ priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); /* tx buffer */ buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; buf_layout.pass_timestamp = true; buf_layout.pass_frame_status = true; buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | DPNI_BUF_LAYOUT_OPT_TIMESTAMP | DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, &buf_layout); if (err) { dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); return err; } /* tx-confirm buffer */ buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP | DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX_CONFIRM, &buf_layout); if (err) { dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); return err; } /* Now that we've set our tx buffer layout, retrieve the minimum * required tx data offset. */ err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, &priv->tx_data_offset); if (err) { dev_err(dev, "dpni_get_tx_data_offset() failed\n"); return err; } if ((priv->tx_data_offset % 64) != 0) dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", priv->tx_data_offset); /* rx buffer */ buf_layout.pass_frame_status = true; buf_layout.pass_parser_result = true; buf_layout.data_align = rx_buf_align; buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); buf_layout.private_data_size = 0; buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | DPNI_BUF_LAYOUT_OPT_TIMESTAMP; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, &buf_layout); if (err) { dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); return err; } return 0; } #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq, struct dpaa2_fd *fd, u8 prio, u32 num_frames __always_unused, int *frames_enqueued) { int err; err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, priv->tx_qdid, prio, fq->tx_qdbin, fd); if (!err && frames_enqueued) *frames_enqueued = 1; return err; } static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq, struct dpaa2_fd *fd, u8 prio, u32 num_frames, int *frames_enqueued) { int err; err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, fq->tx_fqid[prio], fd, num_frames); if (err == 0) return -EBUSY; if (frames_enqueued) *frames_enqueued = err; return 0; } static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv) { if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, DPNI_ENQUEUE_FQID_VER_MINOR) < 0) priv->enqueue = dpaa2_eth_enqueue_qd; else priv->enqueue = dpaa2_eth_enqueue_fq_multiple; } static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpni_link_cfg link_cfg = {0}; int err; /* Get the default link options so we don't override other flags */ err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); if (err) { dev_err(dev, "dpni_get_link_cfg() failed\n"); return err; } /* By default, enable both Rx and Tx pause frames */ link_cfg.options |= DPNI_LINK_OPT_PAUSE; link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); if (err) { dev_err(dev, "dpni_set_link_cfg() failed\n"); return err; } priv->link_state.options = link_cfg.options; return 0; } static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv) { struct dpni_queue_id qid = {0}; struct dpaa2_eth_fq *fq; struct dpni_queue queue; int i, j, err; /* We only use Tx FQIDs for FQID-based enqueue, so check * if DPNI version supports it before updating FQIDs */ if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, DPNI_ENQUEUE_FQID_VER_MINOR) < 0) return; for (i = 0; i < priv->num_fqs; i++) { fq = &priv->fq[i]; if (fq->type != DPAA2_TX_CONF_FQ) continue; for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, j, fq->flowid, &queue, &qid); if (err) goto out_err; fq->tx_fqid[j] = qid.fqid; if (fq->tx_fqid[j] == 0) goto out_err; } } priv->enqueue = dpaa2_eth_enqueue_fq_multiple; return; out_err: netdev_info(priv->net_dev, "Error reading Tx FQID, fallback to QDID-based enqueue\n"); priv->enqueue = dpaa2_eth_enqueue_qd; } /* Configure ingress classification based on VLAN PCP */ static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpkg_profile_cfg kg_cfg = {0}; struct dpni_qos_tbl_cfg qos_cfg = {0}; struct dpni_rule_cfg key_params; void *dma_mem, *key, *mask; u8 key_size = 2; /* VLAN TCI field */ int i, pcp, err; /* VLAN-based classification only makes sense if we have multiple * traffic classes. * Also, we need to extract just the 3-bit PCP field from the VLAN * header and we can only do that by using a mask */ if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { dev_dbg(dev, "VLAN-based QoS classification not supported\n"); return -EOPNOTSUPP; } dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); if (!dma_mem) return -ENOMEM; kg_cfg.num_extracts = 1; kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); if (err) { dev_err(dev, "dpni_prepare_key_cfg failed\n"); goto out_free_tbl; } /* set QoS table */ qos_cfg.default_tc = 0; qos_cfg.discard_on_miss = 0; qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { dev_err(dev, "QoS table DMA mapping failed\n"); err = -ENOMEM; goto out_free_tbl; } err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); if (err) { dev_err(dev, "dpni_set_qos_table failed\n"); goto out_unmap_tbl; } /* Add QoS table entries */ key = kzalloc(key_size * 2, GFP_KERNEL); if (!key) { err = -ENOMEM; goto out_unmap_tbl; } mask = key + key_size; *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); key_params.key_iova = dma_map_single(dev, key, key_size * 2, DMA_TO_DEVICE); if (dma_mapping_error(dev, key_params.key_iova)) { dev_err(dev, "Qos table entry DMA mapping failed\n"); err = -ENOMEM; goto out_free_key; } key_params.mask_iova = key_params.key_iova + key_size; key_params.key_size = key_size; /* We add rules for PCP-based distribution starting with highest * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic * classes to accommodate all priority levels, the lowest ones end up * on TC 0 which was configured as default */ for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); dma_sync_single_for_device(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, &key_params, i, i); if (err) { dev_err(dev, "dpni_add_qos_entry failed\n"); dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); goto out_unmap_key; } } priv->vlan_cls_enabled = true; /* Table and key memory is not persistent, clean everything up after * configuration is finished */ out_unmap_key: dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); out_free_key: kfree(key); out_unmap_tbl: dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, DMA_TO_DEVICE); out_free_tbl: kfree(dma_mem); return err; } /* Configure the DPNI object this interface is associated with */ static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev) { struct device *dev = &ls_dev->dev; struct dpaa2_eth_priv *priv; struct net_device *net_dev; int err; net_dev = dev_get_drvdata(dev); priv = netdev_priv(net_dev); /* get a handle for the DPNI object */ err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); if (err) { dev_err(dev, "dpni_open() failed\n"); return err; } /* Check if we can work with this DPNI object */ err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, &priv->dpni_ver_minor); if (err) { dev_err(dev, "dpni_get_api_version() failed\n"); goto close; } if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", priv->dpni_ver_major, priv->dpni_ver_minor, DPNI_VER_MAJOR, DPNI_VER_MINOR); err = -EOPNOTSUPP; goto close; } ls_dev->mc_io = priv->mc_io; ls_dev->mc_handle = priv->mc_token; err = dpni_reset(priv->mc_io, 0, priv->mc_token); if (err) { dev_err(dev, "dpni_reset() failed\n"); goto close; } err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, &priv->dpni_attrs); if (err) { dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); goto close; } err = dpaa2_eth_set_buffer_layout(priv); if (err) goto close; dpaa2_eth_set_enqueue_mode(priv); /* Enable pause frame support */ if (dpaa2_eth_has_pause_support(priv)) { err = dpaa2_eth_set_pause(priv); if (err) goto close; } err = dpaa2_eth_set_vlan_qos(priv); if (err && err != -EOPNOTSUPP) goto close; priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), sizeof(struct dpaa2_eth_cls_rule), GFP_KERNEL); if (!priv->cls_rules) { err = -ENOMEM; goto close; } return 0; close: dpni_close(priv->mc_io, 0, priv->mc_token); return err; } static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv) { int err; err = dpni_reset(priv->mc_io, 0, priv->mc_token); if (err) netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", err); dpni_close(priv->mc_io, 0, priv->mc_token); } static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq) { struct device *dev = priv->net_dev->dev.parent; struct dpni_queue queue; struct dpni_queue_id qid; int err; err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); if (err) { dev_err(dev, "dpni_get_queue(RX) failed\n"); return err; } fq->fqid = qid.fqid; queue.destination.id = fq->channel->dpcon_id; queue.destination.type = DPNI_DEST_DPCON; queue.destination.priority = 1; queue.user_context = (u64)(uintptr_t)fq; err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, fq->tc, fq->flowid, DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, &queue); if (err) { dev_err(dev, "dpni_set_queue(RX) failed\n"); return err; } /* xdp_rxq setup */ /* only once for each channel */ if (fq->tc > 0) return 0; err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, fq->flowid, 0); if (err) { dev_err(dev, "xdp_rxq_info_reg failed\n"); return err; } err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, MEM_TYPE_PAGE_ORDER0, NULL); if (err) { dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); return err; } return 0; } static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq) { struct device *dev = priv->net_dev->dev.parent; struct dpni_queue queue; struct dpni_queue_id qid; int i, err; for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, i, fq->flowid, &queue, &qid); if (err) { dev_err(dev, "dpni_get_queue(TX) failed\n"); return err; } fq->tx_fqid[i] = qid.fqid; } /* All Tx queues belonging to the same flowid have the same qdbin */ fq->tx_qdbin = qid.qdbin; err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, &queue, &qid); if (err) { dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); return err; } fq->fqid = qid.fqid; queue.destination.id = fq->channel->dpcon_id; queue.destination.type = DPNI_DEST_DPCON; queue.destination.priority = 0; queue.user_context = (u64)(uintptr_t)fq; err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, &queue); if (err) { dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); return err; } return 0; } static int setup_rx_err_flow(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq) { struct device *dev = priv->net_dev->dev.parent; struct dpni_queue q = { { 0 } }; struct dpni_queue_id qid; u8 q_opt = DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST; int err; err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX_ERR, 0, 0, &q, &qid); if (err) { dev_err(dev, "dpni_get_queue() failed (%d)\n", err); return err; } fq->fqid = qid.fqid; q.destination.id = fq->channel->dpcon_id; q.destination.type = DPNI_DEST_DPCON; q.destination.priority = 1; q.user_context = (u64)(uintptr_t)fq; err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX_ERR, 0, 0, q_opt, &q); if (err) { dev_err(dev, "dpni_set_queue() failed (%d)\n", err); return err; } return 0; } /* Supported header fields for Rx hash distribution key */ static const struct dpaa2_eth_dist_fields dist_fields[] = { { /* L2 header */ .rxnfc_field = RXH_L2DA, .cls_prot = NET_PROT_ETH, .cls_field = NH_FLD_ETH_DA, .id = DPAA2_ETH_DIST_ETHDST, .size = 6, }, { .cls_prot = NET_PROT_ETH, .cls_field = NH_FLD_ETH_SA, .id = DPAA2_ETH_DIST_ETHSRC, .size = 6, }, { /* This is the last ethertype field parsed: * depending on frame format, it can be the MAC ethertype * or the VLAN etype. */ .cls_prot = NET_PROT_ETH, .cls_field = NH_FLD_ETH_TYPE, .id = DPAA2_ETH_DIST_ETHTYPE, .size = 2, }, { /* VLAN header */ .rxnfc_field = RXH_VLAN, .cls_prot = NET_PROT_VLAN, .cls_field = NH_FLD_VLAN_TCI, .id = DPAA2_ETH_DIST_VLAN, .size = 2, }, { /* IP header */ .rxnfc_field = RXH_IP_SRC, .cls_prot = NET_PROT_IP, .cls_field = NH_FLD_IP_SRC, .id = DPAA2_ETH_DIST_IPSRC, .size = 4, }, { .rxnfc_field = RXH_IP_DST, .cls_prot = NET_PROT_IP, .cls_field = NH_FLD_IP_DST, .id = DPAA2_ETH_DIST_IPDST, .size = 4, }, { .rxnfc_field = RXH_L3_PROTO, .cls_prot = NET_PROT_IP, .cls_field = NH_FLD_IP_PROTO, .id = DPAA2_ETH_DIST_IPPROTO, .size = 1, }, { /* Using UDP ports, this is functionally equivalent to raw * byte pairs from L4 header. */ .rxnfc_field = RXH_L4_B_0_1, .cls_prot = NET_PROT_UDP, .cls_field = NH_FLD_UDP_PORT_SRC, .id = DPAA2_ETH_DIST_L4SRC, .size = 2, }, { .rxnfc_field = RXH_L4_B_2_3, .cls_prot = NET_PROT_UDP, .cls_field = NH_FLD_UDP_PORT_DST, .id = DPAA2_ETH_DIST_L4DST, .size = 2, }, }; /* Configure the Rx hash key using the legacy API */ static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) { struct device *dev = priv->net_dev->dev.parent; struct dpni_rx_tc_dist_cfg dist_cfg; int i, err = 0; memset(&dist_cfg, 0, sizeof(dist_cfg)); dist_cfg.key_cfg_iova = key; dist_cfg.dist_size = dpaa2_eth_queue_count(priv); dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, i, &dist_cfg); if (err) { dev_err(dev, "dpni_set_rx_tc_dist failed\n"); break; } } return err; } /* Configure the Rx hash key using the new API */ static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) { struct device *dev = priv->net_dev->dev.parent; struct dpni_rx_dist_cfg dist_cfg; int i, err = 0; memset(&dist_cfg, 0, sizeof(dist_cfg)); dist_cfg.key_cfg_iova = key; dist_cfg.dist_size = dpaa2_eth_queue_count(priv); dist_cfg.enable = 1; for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { dist_cfg.tc = i; err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); if (err) { dev_err(dev, "dpni_set_rx_hash_dist failed\n"); break; } /* If the flow steering / hashing key is shared between all * traffic classes, install it just once */ if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) break; } return err; } /* Configure the Rx flow classification key */ static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) { struct device *dev = priv->net_dev->dev.parent; struct dpni_rx_dist_cfg dist_cfg; int i, err = 0; memset(&dist_cfg, 0, sizeof(dist_cfg)); dist_cfg.key_cfg_iova = key; dist_cfg.dist_size = dpaa2_eth_queue_count(priv); dist_cfg.enable = 1; for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { dist_cfg.tc = i; err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); if (err) { dev_err(dev, "dpni_set_rx_fs_dist failed\n"); break; } /* If the flow steering / hashing key is shared between all * traffic classes, install it just once */ if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) break; } return err; } /* Size of the Rx flow classification key */ int dpaa2_eth_cls_key_size(u64 fields) { int i, size = 0; for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { if (!(fields & dist_fields[i].id)) continue; size += dist_fields[i].size; } return size; } /* Offset of header field in Rx classification key */ int dpaa2_eth_cls_fld_off(int prot, int field) { int i, off = 0; for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { if (dist_fields[i].cls_prot == prot && dist_fields[i].cls_field == field) return off; off += dist_fields[i].size; } WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); return 0; } /* Prune unused fields from the classification rule. * Used when masking is not supported */ void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) { int off = 0, new_off = 0; int i, size; for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { size = dist_fields[i].size; if (dist_fields[i].id & fields) { memcpy(key_mem + new_off, key_mem + off, size); new_off += size; } off += size; } } /* Set Rx distribution (hash or flow classification) key * flags is a combination of RXH_ bits */ static int dpaa2_eth_set_dist_key(struct net_device *net_dev, enum dpaa2_eth_rx_dist type, u64 flags) { struct device *dev = net_dev->dev.parent; struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct dpkg_profile_cfg cls_cfg; u32 rx_hash_fields = 0; dma_addr_t key_iova; u8 *dma_mem; int i; int err = 0; memset(&cls_cfg, 0, sizeof(cls_cfg)); for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { struct dpkg_extract *key = &cls_cfg.extracts[cls_cfg.num_extracts]; /* For both Rx hashing and classification keys * we set only the selected fields. */ if (!(flags & dist_fields[i].id)) continue; if (type == DPAA2_ETH_RX_DIST_HASH) rx_hash_fields |= dist_fields[i].rxnfc_field; if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { dev_err(dev, "error adding key extraction rule, too many rules?\n"); return -E2BIG; } key->type = DPKG_EXTRACT_FROM_HDR; key->extract.from_hdr.prot = dist_fields[i].cls_prot; key->extract.from_hdr.type = DPKG_FULL_FIELD; key->extract.from_hdr.field = dist_fields[i].cls_field; cls_cfg.num_extracts++; } dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); if (!dma_mem) return -ENOMEM; err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); if (err) { dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); goto free_key; } /* Prepare for setting the rx dist */ key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, key_iova)) { dev_err(dev, "DMA mapping failed\n"); err = -ENOMEM; goto free_key; } if (type == DPAA2_ETH_RX_DIST_HASH) { if (dpaa2_eth_has_legacy_dist(priv)) err = dpaa2_eth_config_legacy_hash_key(priv, key_iova); else err = dpaa2_eth_config_hash_key(priv, key_iova); } else { err = dpaa2_eth_config_cls_key(priv, key_iova); } dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, DMA_TO_DEVICE); if (!err && type == DPAA2_ETH_RX_DIST_HASH) priv->rx_hash_fields = rx_hash_fields; free_key: kfree(dma_mem); return err; } int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); u64 key = 0; int i; if (!dpaa2_eth_hash_enabled(priv)) return -EOPNOTSUPP; for (i = 0; i < ARRAY_SIZE(dist_fields); i++) if (dist_fields[i].rxnfc_field & flags) key |= dist_fields[i].id; return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); } int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) { return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); } static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; int err; /* Check if we actually support Rx flow classification */ if (dpaa2_eth_has_legacy_dist(priv)) { dev_dbg(dev, "Rx cls not supported by current MC version\n"); return -EOPNOTSUPP; } if (!dpaa2_eth_fs_enabled(priv)) { dev_dbg(dev, "Rx cls disabled in DPNI options\n"); return -EOPNOTSUPP; } if (!dpaa2_eth_hash_enabled(priv)) { dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); return -EOPNOTSUPP; } /* If there is no support for masking in the classification table, * we don't set a default key, as it will depend on the rules * added by the user at runtime. */ if (!dpaa2_eth_fs_mask_enabled(priv)) goto out; err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); if (err) return err; out: priv->rx_cls_enabled = 1; return 0; } /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, * frame queues and channels */ static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_bp *bp = priv->bp[DPAA2_ETH_DEFAULT_BP_IDX]; struct net_device *net_dev = priv->net_dev; struct dpni_pools_cfg pools_params = { 0 }; struct device *dev = net_dev->dev.parent; struct dpni_error_cfg err_cfg; int err = 0; int i; pools_params.num_dpbp = 1; pools_params.pools[0].dpbp_id = bp->dev->obj_desc.id; pools_params.pools[0].backup_pool = 0; pools_params.pools[0].buffer_size = priv->rx_buf_size; err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); if (err) { dev_err(dev, "dpni_set_pools() failed\n"); return err; } /* have the interface implicitly distribute traffic based on * the default hash key */ err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); if (err && err != -EOPNOTSUPP) dev_err(dev, "Failed to configure hashing\n"); /* Configure the flow classification key; it includes all * supported header fields and cannot be modified at runtime */ err = dpaa2_eth_set_default_cls(priv); if (err && err != -EOPNOTSUPP) dev_err(dev, "Failed to configure Rx classification key\n"); /* Configure handling of error frames */ err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; err_cfg.set_frame_annotation = 1; err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, &err_cfg); if (err) { dev_err(dev, "dpni_set_errors_behavior failed\n"); return err; } /* Configure Rx and Tx conf queues to generate CDANs */ for (i = 0; i < priv->num_fqs; i++) { switch (priv->fq[i].type) { case DPAA2_RX_FQ: err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]); break; case DPAA2_TX_CONF_FQ: err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]); break; case DPAA2_RX_ERR_FQ: err = setup_rx_err_flow(priv, &priv->fq[i]); break; default: dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); return -EINVAL; } if (err) return err; } err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, &priv->tx_qdid); if (err) { dev_err(dev, "dpni_get_qdid() failed\n"); return err; } return 0; } /* Allocate rings for storing incoming frame descriptors */ static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; int i; for (i = 0; i < priv->num_channels; i++) { priv->channel[i]->store = dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); if (!priv->channel[i]->store) { netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); goto err_ring; } } return 0; err_ring: for (i = 0; i < priv->num_channels; i++) { if (!priv->channel[i]->store) break; dpaa2_io_store_destroy(priv->channel[i]->store); } return -ENOMEM; } static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv) { int i; for (i = 0; i < priv->num_channels; i++) dpaa2_io_store_destroy(priv->channel[i]->store); } static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; int err; /* Get firmware address, if any */ err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); if (err) { dev_err(dev, "dpni_get_port_mac_addr() failed\n"); return err; } /* Get DPNI attributes address, if any */ err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, dpni_mac_addr); if (err) { dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); return err; } /* First check if firmware has any address configured by bootloader */ if (!is_zero_ether_addr(mac_addr)) { /* If the DPMAC addr != DPNI addr, update it */ if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); if (err) { dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); return err; } } eth_hw_addr_set(net_dev, mac_addr); } else if (is_zero_ether_addr(dpni_mac_addr)) { /* No MAC address configured, fill in net_dev->dev_addr * with a random one */ eth_hw_addr_random(net_dev); dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, net_dev->dev_addr); if (err) { dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); return err; } /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all * practical purposes, this will be our "permanent" mac address, * at least until the next reboot. This move will also permit * register_netdevice() to properly fill up net_dev->perm_addr. */ net_dev->addr_assign_type = NET_ADDR_PERM; } else { /* NET_ADDR_PERM is default, all we have to do is * fill in the device addr. */ eth_hw_addr_set(net_dev, dpni_mac_addr); } return 0; } static int dpaa2_eth_netdev_init(struct net_device *net_dev) { struct device *dev = net_dev->dev.parent; struct dpaa2_eth_priv *priv = netdev_priv(net_dev); u32 options = priv->dpni_attrs.options; u64 supported = 0, not_supported = 0; u8 bcast_addr[ETH_ALEN]; u8 num_queues; int err; net_dev->netdev_ops = &dpaa2_eth_ops; net_dev->ethtool_ops = &dpaa2_ethtool_ops; err = dpaa2_eth_set_mac_addr(priv); if (err) return err; /* Explicitly add the broadcast address to the MAC filtering table */ eth_broadcast_addr(bcast_addr); err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); if (err) { dev_err(dev, "dpni_add_mac_addr() failed\n"); return err; } /* Set MTU upper limit; lower limit is 68B (default value) */ net_dev->max_mtu = DPAA2_ETH_MAX_MTU; err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, DPAA2_ETH_MFL); if (err) { dev_err(dev, "dpni_set_max_frame_length() failed\n"); return err; } /* Set actual number of queues in the net device */ num_queues = dpaa2_eth_queue_count(priv); err = netif_set_real_num_tx_queues(net_dev, num_queues); if (err) { dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); return err; } err = netif_set_real_num_rx_queues(net_dev, num_queues); if (err) { dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); return err; } dpaa2_eth_detect_features(priv); /* Capabilities listing */ supported |= IFF_LIVE_ADDR_CHANGE; if (options & DPNI_OPT_NO_MAC_FILTER) not_supported |= IFF_UNICAST_FLT; else supported |= IFF_UNICAST_FLT; net_dev->priv_flags |= supported; net_dev->priv_flags &= ~not_supported; net_dev->lltx = true; /* Features */ net_dev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_TC | NETIF_F_TSO; net_dev->gso_max_segs = DPAA2_ETH_ENQUEUE_MAX_FDS; net_dev->hw_features = net_dev->features; net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT; if (priv->dpni_attrs.wriop_version >= DPAA2_WRIOP_VERSION(3, 0, 0) && priv->dpni_attrs.num_queues <= 8) net_dev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; if (priv->dpni_attrs.vlan_filter_entries) net_dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; return 0; } static int dpaa2_eth_poll_link_state(void *arg) { struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; int err; while (!kthread_should_stop()) { err = dpaa2_eth_link_state_update(priv); if (unlikely(err)) return err; msleep(DPAA2_ETH_LINK_STATE_REFRESH); } return 0; } static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) { struct fsl_mc_device *dpni_dev, *dpmac_dev; struct dpaa2_mac *mac; int err; dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); dpmac_dev = fsl_mc_get_endpoint(dpni_dev, 0); if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) { netdev_dbg(priv->net_dev, "waiting for mac\n"); return PTR_ERR(dpmac_dev); } if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) return 0; mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); if (!mac) return -ENOMEM; mac->mc_dev = dpmac_dev; mac->mc_io = priv->mc_io; mac->net_dev = priv->net_dev; err = dpaa2_mac_open(mac); if (err) goto err_free_mac; if (dpaa2_mac_is_type_phy(mac)) { err = dpaa2_mac_connect(mac); if (err) { if (err == -EPROBE_DEFER) netdev_dbg(priv->net_dev, "could not connect to MAC\n"); else netdev_err(priv->net_dev, "Error connecting to the MAC endpoint: %pe", ERR_PTR(err)); goto err_close_mac; } } mutex_lock(&priv->mac_lock); priv->mac = mac; mutex_unlock(&priv->mac_lock); return 0; err_close_mac: dpaa2_mac_close(mac); err_free_mac: kfree(mac); return err; } static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) { struct dpaa2_mac *mac; mutex_lock(&priv->mac_lock); mac = priv->mac; priv->mac = NULL; mutex_unlock(&priv->mac_lock); if (!mac) return; if (dpaa2_mac_is_type_phy(mac)) dpaa2_mac_disconnect(mac); dpaa2_mac_close(mac); kfree(mac); } static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) { u32 status = ~0; struct device *dev = (struct device *)arg; struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); struct net_device *net_dev = dev_get_drvdata(dev); struct dpaa2_eth_priv *priv = netdev_priv(net_dev); bool had_mac; int err; err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, DPNI_IRQ_INDEX, &status); if (unlikely(err)) { netdev_err(net_dev, "Can't get irq status (err %d)\n", err); return IRQ_HANDLED; } if (status & DPNI_IRQ_EVENT_LINK_CHANGED) dpaa2_eth_link_state_update(netdev_priv(net_dev)); if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { dpaa2_eth_set_mac_addr(netdev_priv(net_dev)); dpaa2_eth_update_tx_fqids(priv); /* We can avoid locking because the "endpoint changed" IRQ * handler is the only one who changes priv->mac at runtime, * so we are not racing with anyone. */ had_mac = !!priv->mac; if (had_mac) dpaa2_eth_disconnect_mac(priv); else dpaa2_eth_connect_mac(priv); } return IRQ_HANDLED; } static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev) { int err = 0; struct fsl_mc_device_irq *irq; err = fsl_mc_allocate_irqs(ls_dev); if (err) { dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); return err; } irq = ls_dev->irqs[0]; err = devm_request_threaded_irq(&ls_dev->dev, irq->virq, NULL, dpni_irq0_handler_thread, IRQF_NO_SUSPEND | IRQF_ONESHOT, dev_name(&ls_dev->dev), &ls_dev->dev); if (err < 0) { dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); goto free_mc_irq; } err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | DPNI_IRQ_EVENT_ENDPOINT_CHANGED); if (err < 0) { dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); goto free_irq; } err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, DPNI_IRQ_INDEX, 1); if (err < 0) { dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); goto free_irq; } return 0; free_irq: devm_free_irq(&ls_dev->dev, irq->virq, &ls_dev->dev); free_mc_irq: fsl_mc_free_irqs(ls_dev); return err; } static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv) { int i; struct dpaa2_eth_channel *ch; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll); } } static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv) { int i; struct dpaa2_eth_channel *ch; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; netif_napi_del(&ch->napi); } } static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) { struct device *dev; struct net_device *net_dev = NULL; struct dpaa2_eth_priv *priv = NULL; int err = 0; dev = &dpni_dev->dev; /* Net device */ net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); if (!net_dev) { dev_err(dev, "alloc_etherdev_mq() failed\n"); return -ENOMEM; } SET_NETDEV_DEV(net_dev, dev); dev_set_drvdata(dev, net_dev); priv = netdev_priv(net_dev); priv->net_dev = net_dev; SET_NETDEV_DEVLINK_PORT(net_dev, &priv->devlink_port); mutex_init(&priv->mac_lock); priv->iommu_domain = iommu_get_domain_for_dev(dev); priv->tx_tstamp_type = HWTSTAMP_TX_OFF; priv->rx_tstamp = false; priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", 0, 0); if (!priv->dpaa2_ptp_wq) { err = -ENOMEM; goto err_wq_alloc; } INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp); mutex_init(&priv->onestep_tstamp_lock); skb_queue_head_init(&priv->tx_skbs); priv->rx_copybreak = DPAA2_ETH_DEFAULT_COPYBREAK; /* Obtain a MC portal */ err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &priv->mc_io); if (err) { if (err == -ENXIO) { dev_dbg(dev, "waiting for MC portal\n"); err = -EPROBE_DEFER; } else { dev_err(dev, "MC portal allocation failed\n"); } goto err_portal_alloc; } /* MC objects initialization and configuration */ err = dpaa2_eth_setup_dpni(dpni_dev); if (err) goto err_dpni_setup; err = dpaa2_eth_setup_dpio(priv); if (err) goto err_dpio_setup; dpaa2_eth_setup_fqs(priv); err = dpaa2_eth_setup_default_dpbp(priv); if (err) goto err_dpbp_setup; err = dpaa2_eth_bind_dpni(priv); if (err) goto err_bind; /* Add a NAPI context for each channel */ dpaa2_eth_add_ch_napi(priv); /* Percpu statistics */ priv->percpu_stats = alloc_percpu(*priv->percpu_stats); if (!priv->percpu_stats) { dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); err = -ENOMEM; goto err_alloc_percpu_stats; } priv->percpu_extras = alloc_percpu(*priv->percpu_extras); if (!priv->percpu_extras) { dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); err = -ENOMEM; goto err_alloc_percpu_extras; } priv->sgt_cache = alloc_percpu(*priv->sgt_cache); if (!priv->sgt_cache) { dev_err(dev, "alloc_percpu(sgt_cache) failed\n"); err = -ENOMEM; goto err_alloc_sgt_cache; } priv->fd = alloc_percpu(*priv->fd); if (!priv->fd) { dev_err(dev, "alloc_percpu(fds) failed\n"); err = -ENOMEM; goto err_alloc_fds; } err = dpaa2_eth_netdev_init(net_dev); if (err) goto err_netdev_init; /* Configure checksum offload based on current interface flags */ err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); if (err) goto err_csum; err = dpaa2_eth_set_tx_csum(priv, !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); if (err) goto err_csum; err = dpaa2_eth_alloc_rings(priv); if (err) goto err_alloc_rings; #ifdef CONFIG_FSL_DPAA2_ETH_DCB if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; } else { dev_dbg(dev, "PFC not supported\n"); } #endif err = dpaa2_eth_connect_mac(priv); if (err) goto err_connect_mac; err = dpaa2_eth_setup_irqs(dpni_dev); if (err) { netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv, "%s_poll_link", net_dev->name); if (IS_ERR(priv->poll_thread)) { dev_err(dev, "Error starting polling thread\n"); goto err_poll_thread; } priv->do_link_poll = true; } err = dpaa2_eth_dl_alloc(priv); if (err) goto err_dl_register; err = dpaa2_eth_dl_traps_register(priv); if (err) goto err_dl_trap_register; err = dpaa2_eth_dl_port_add(priv); if (err) goto err_dl_port_add; net_dev->needed_headroom = DPAA2_ETH_SWA_SIZE + DPAA2_ETH_TX_BUF_ALIGN; err = register_netdev(net_dev); if (err < 0) { dev_err(dev, "register_netdev() failed\n"); goto err_netdev_reg; } #ifdef CONFIG_DEBUG_FS dpaa2_dbg_add(priv); #endif dpaa2_eth_dl_register(priv); dev_info(dev, "Probed interface %s\n", net_dev->name); return 0; err_netdev_reg: dpaa2_eth_dl_port_del(priv); err_dl_port_add: dpaa2_eth_dl_traps_unregister(priv); err_dl_trap_register: dpaa2_eth_dl_free(priv); err_dl_register: if (priv->do_link_poll) kthread_stop(priv->poll_thread); else fsl_mc_free_irqs(dpni_dev); err_poll_thread: dpaa2_eth_disconnect_mac(priv); err_connect_mac: dpaa2_eth_free_rings(priv); err_alloc_rings: err_csum: err_netdev_init: free_percpu(priv->fd); err_alloc_fds: free_percpu(priv->sgt_cache); err_alloc_sgt_cache: free_percpu(priv->percpu_extras); err_alloc_percpu_extras: free_percpu(priv->percpu_stats); err_alloc_percpu_stats: dpaa2_eth_del_ch_napi(priv); err_bind: dpaa2_eth_free_dpbps(priv); err_dpbp_setup: dpaa2_eth_free_dpio(priv); err_dpio_setup: dpaa2_eth_free_dpni(priv); err_dpni_setup: fsl_mc_portal_free(priv->mc_io); err_portal_alloc: destroy_workqueue(priv->dpaa2_ptp_wq); err_wq_alloc: dev_set_drvdata(dev, NULL); free_netdev(net_dev); return err; } static void dpaa2_eth_remove(struct fsl_mc_device *ls_dev) { struct device *dev; struct net_device *net_dev; struct dpaa2_eth_priv *priv; dev = &ls_dev->dev; net_dev = dev_get_drvdata(dev); priv = netdev_priv(net_dev); dpaa2_eth_dl_unregister(priv); #ifdef CONFIG_DEBUG_FS dpaa2_dbg_remove(priv); #endif unregister_netdev(net_dev); dpaa2_eth_dl_port_del(priv); dpaa2_eth_dl_traps_unregister(priv); dpaa2_eth_dl_free(priv); if (priv->do_link_poll) kthread_stop(priv->poll_thread); else fsl_mc_free_irqs(ls_dev); dpaa2_eth_disconnect_mac(priv); dpaa2_eth_free_rings(priv); free_percpu(priv->fd); free_percpu(priv->sgt_cache); free_percpu(priv->percpu_stats); free_percpu(priv->percpu_extras); dpaa2_eth_del_ch_napi(priv); dpaa2_eth_free_dpbps(priv); dpaa2_eth_free_dpio(priv); dpaa2_eth_free_dpni(priv); if (priv->onestep_reg_base) iounmap(priv->onestep_reg_base); fsl_mc_portal_free(priv->mc_io); destroy_workqueue(priv->dpaa2_ptp_wq); dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); free_netdev(net_dev); } static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { { .vendor = FSL_MC_VENDOR_FREESCALE, .obj_type = "dpni", }, { .vendor = 0x0 } }; MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); static struct fsl_mc_driver dpaa2_eth_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = dpaa2_eth_probe, .remove = dpaa2_eth_remove, .match_id_table = dpaa2_eth_match_id_table }; static int __init dpaa2_eth_driver_init(void) { int err; dpaa2_eth_dbg_init(); err = fsl_mc_driver_register(&dpaa2_eth_driver); if (err) { dpaa2_eth_dbg_exit(); return err; } return 0; } static void __exit dpaa2_eth_driver_exit(void) { dpaa2_eth_dbg_exit(); fsl_mc_driver_unregister(&dpaa2_eth_driver); } module_init(dpaa2_eth_driver_init); module_exit(dpaa2_eth_driver_exit);