/* * Copyright (C) 2005 - 2015 Emulex * All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. The full GNU General * Public License is included in this distribution in the file called COPYING. * * Contact Information: * linux-drivers@emulex.com * * Emulex * 3333 Susan Street * Costa Mesa, CA 92626 */ #include #include "be.h" #include "be_cmds.h" char *be_misconfig_evt_port_state[] = { "Physical Link is functional", "Optics faulted/incorrectly installed/not installed - Reseat optics. If issue not resolved, replace.", "Optics of two types installed – Remove one optic or install matching pair of optics.", "Incompatible optics – Replace with compatible optics for card to function.", "Unqualified optics – Replace with Avago optics for Warranty and Technical Support.", "Uncertified optics – Replace with Avago-certified optics to enable link operation." }; static char *be_port_misconfig_evt_severity[] = { "KERN_WARN", "KERN_INFO", "KERN_ERR", "KERN_WARN" }; static char *phy_state_oper_desc[] = { "Link is non-operational", "Link is operational", "" }; static struct be_cmd_priv_map cmd_priv_map[] = { { OPCODE_ETH_ACPI_WOL_MAGIC_CONFIG, CMD_SUBSYSTEM_ETH, BE_PRIV_LNKMGMT | BE_PRIV_VHADM | BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_COMMON_GET_FLOW_CONTROL, CMD_SUBSYSTEM_COMMON, BE_PRIV_LNKQUERY | BE_PRIV_VHADM | BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_COMMON_SET_FLOW_CONTROL, CMD_SUBSYSTEM_COMMON, BE_PRIV_LNKMGMT | BE_PRIV_VHADM | BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_ETH_GET_PPORT_STATS, CMD_SUBSYSTEM_ETH, BE_PRIV_LNKMGMT | BE_PRIV_VHADM | BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_COMMON_GET_PHY_DETAILS, CMD_SUBSYSTEM_COMMON, BE_PRIV_LNKMGMT | BE_PRIV_VHADM | BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_LOWLEVEL_HOST_DDR_DMA, CMD_SUBSYSTEM_LOWLEVEL, BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_LOWLEVEL_LOOPBACK_TEST, CMD_SUBSYSTEM_LOWLEVEL, BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, { OPCODE_LOWLEVEL_SET_LOOPBACK_MODE, CMD_SUBSYSTEM_LOWLEVEL, BE_PRIV_DEVCFG | BE_PRIV_DEVSEC }, }; static bool be_cmd_allowed(struct be_adapter *adapter, u8 opcode, u8 subsystem) { int i; int num_entries = sizeof(cmd_priv_map)/sizeof(struct be_cmd_priv_map); u32 cmd_privileges = adapter->cmd_privileges; for (i = 0; i < num_entries; i++) if (opcode == cmd_priv_map[i].opcode && subsystem == cmd_priv_map[i].subsystem) if (!(cmd_privileges & cmd_priv_map[i].priv_mask)) return false; return true; } static inline void *embedded_payload(struct be_mcc_wrb *wrb) { return wrb->payload.embedded_payload; } static int be_mcc_notify(struct be_adapter *adapter) { struct be_queue_info *mccq = &adapter->mcc_obj.q; u32 val = 0; if (be_check_error(adapter, BE_ERROR_ANY)) return -EIO; val |= mccq->id & DB_MCCQ_RING_ID_MASK; val |= 1 << DB_MCCQ_NUM_POSTED_SHIFT; wmb(); iowrite32(val, adapter->db + DB_MCCQ_OFFSET); return 0; } /* To check if valid bit is set, check the entire word as we don't know * the endianness of the data (old entry is host endian while a new entry is * little endian) */ static inline bool be_mcc_compl_is_new(struct be_mcc_compl *compl) { u32 flags; if (compl->flags != 0) { flags = le32_to_cpu(compl->flags); if (flags & CQE_FLAGS_VALID_MASK) { compl->flags = flags; return true; } } return false; } /* Need to reset the entire word that houses the valid bit */ static inline void be_mcc_compl_use(struct be_mcc_compl *compl) { compl->flags = 0; } static struct be_cmd_resp_hdr *be_decode_resp_hdr(u32 tag0, u32 tag1) { unsigned long addr; addr = tag1; addr = ((addr << 16) << 16) | tag0; return (void *)addr; } static bool be_skip_err_log(u8 opcode, u16 base_status, u16 addl_status) { if (base_status == MCC_STATUS_NOT_SUPPORTED || base_status == MCC_STATUS_ILLEGAL_REQUEST || addl_status == MCC_ADDL_STATUS_TOO_MANY_INTERFACES || addl_status == MCC_ADDL_STATUS_INSUFFICIENT_VLANS || (opcode == OPCODE_COMMON_WRITE_FLASHROM && (base_status == MCC_STATUS_ILLEGAL_FIELD || addl_status == MCC_ADDL_STATUS_FLASH_IMAGE_CRC_MISMATCH))) return true; else return false; } /* Place holder for all the async MCC cmds wherein the caller is not in a busy * loop (has not issued be_mcc_notify_wait()) */ static void be_async_cmd_process(struct be_adapter *adapter, struct be_mcc_compl *compl, struct be_cmd_resp_hdr *resp_hdr) { enum mcc_base_status base_status = base_status(compl->status); u8 opcode = 0, subsystem = 0; if (resp_hdr) { opcode = resp_hdr->opcode; subsystem = resp_hdr->subsystem; } if (opcode == OPCODE_LOWLEVEL_LOOPBACK_TEST && subsystem == CMD_SUBSYSTEM_LOWLEVEL) { complete(&adapter->et_cmd_compl); return; } if (opcode == OPCODE_LOWLEVEL_SET_LOOPBACK_MODE && subsystem == CMD_SUBSYSTEM_LOWLEVEL) { complete(&adapter->et_cmd_compl); return; } if ((opcode == OPCODE_COMMON_WRITE_FLASHROM || opcode == OPCODE_COMMON_WRITE_OBJECT) && subsystem == CMD_SUBSYSTEM_COMMON) { adapter->flash_status = compl->status; complete(&adapter->et_cmd_compl); return; } if ((opcode == OPCODE_ETH_GET_STATISTICS || opcode == OPCODE_ETH_GET_PPORT_STATS) && subsystem == CMD_SUBSYSTEM_ETH && base_status == MCC_STATUS_SUCCESS) { be_parse_stats(adapter); adapter->stats_cmd_sent = false; return; } if (opcode == OPCODE_COMMON_GET_CNTL_ADDITIONAL_ATTRIBUTES && subsystem == CMD_SUBSYSTEM_COMMON) { if (base_status == MCC_STATUS_SUCCESS) { struct be_cmd_resp_get_cntl_addnl_attribs *resp = (void *)resp_hdr; adapter->hwmon_info.be_on_die_temp = resp->on_die_temperature; } else { adapter->be_get_temp_freq = 0; adapter->hwmon_info.be_on_die_temp = BE_INVALID_DIE_TEMP; } return; } } static int be_mcc_compl_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { enum mcc_base_status base_status; enum mcc_addl_status addl_status; struct be_cmd_resp_hdr *resp_hdr; u8 opcode = 0, subsystem = 0; /* Just swap the status to host endian; mcc tag is opaquely copied * from mcc_wrb */ be_dws_le_to_cpu(compl, 4); base_status = base_status(compl->status); addl_status = addl_status(compl->status); resp_hdr = be_decode_resp_hdr(compl->tag0, compl->tag1); if (resp_hdr) { opcode = resp_hdr->opcode; subsystem = resp_hdr->subsystem; } be_async_cmd_process(adapter, compl, resp_hdr); if (base_status != MCC_STATUS_SUCCESS && !be_skip_err_log(opcode, base_status, addl_status)) { if (base_status == MCC_STATUS_UNAUTHORIZED_REQUEST || addl_status == MCC_ADDL_STATUS_INSUFFICIENT_PRIVILEGES) { dev_warn(&adapter->pdev->dev, "VF is not privileged to issue opcode %d-%d\n", opcode, subsystem); } else { dev_err(&adapter->pdev->dev, "opcode %d-%d failed:status %d-%d\n", opcode, subsystem, base_status, addl_status); } } return compl->status; } /* Link state evt is a string of bytes; no need for endian swapping */ static void be_async_link_state_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { struct be_async_event_link_state *evt = (struct be_async_event_link_state *)compl; /* When link status changes, link speed must be re-queried from FW */ adapter->phy.link_speed = -1; /* On BEx the FW does not send a separate link status * notification for physical and logical link. * On other chips just process the logical link * status notification */ if (!BEx_chip(adapter) && !(evt->port_link_status & LOGICAL_LINK_STATUS_MASK)) return; /* For the initial link status do not rely on the ASYNC event as * it may not be received in some cases. */ if (adapter->flags & BE_FLAGS_LINK_STATUS_INIT) be_link_status_update(adapter, evt->port_link_status & LINK_STATUS_MASK); } static void be_async_port_misconfig_event_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { struct be_async_event_misconfig_port *evt = (struct be_async_event_misconfig_port *)compl; u32 sfp_misconfig_evt_word1 = le32_to_cpu(evt->event_data_word1); u32 sfp_misconfig_evt_word2 = le32_to_cpu(evt->event_data_word2); u8 phy_oper_state = PHY_STATE_OPER_MSG_NONE; struct device *dev = &adapter->pdev->dev; u8 msg_severity = DEFAULT_MSG_SEVERITY; u8 phy_state_info; u8 new_phy_state; new_phy_state = (sfp_misconfig_evt_word1 >> (adapter->hba_port_num * 8)) & 0xff; if (new_phy_state == adapter->phy_state) return; adapter->phy_state = new_phy_state; /* for older fw that doesn't populate link effect data */ if (!sfp_misconfig_evt_word2) goto log_message; phy_state_info = (sfp_misconfig_evt_word2 >> (adapter->hba_port_num * 8)) & 0xff; if (phy_state_info & PHY_STATE_INFO_VALID) { msg_severity = (phy_state_info & PHY_STATE_MSG_SEVERITY) >> 1; if (be_phy_unqualified(new_phy_state)) phy_oper_state = (phy_state_info & PHY_STATE_OPER); } log_message: /* Log an error message that would allow a user to determine * whether the SFPs have an issue */ if (be_phy_state_unknown(new_phy_state)) dev_printk(be_port_misconfig_evt_severity[msg_severity], dev, "Port %c: Unrecognized Optics state: 0x%x. %s", adapter->port_name, new_phy_state, phy_state_oper_desc[phy_oper_state]); else dev_printk(be_port_misconfig_evt_severity[msg_severity], dev, "Port %c: %s %s", adapter->port_name, be_misconfig_evt_port_state[new_phy_state], phy_state_oper_desc[phy_oper_state]); /* Log Vendor name and part no. if a misconfigured SFP is detected */ if (be_phy_misconfigured(new_phy_state)) adapter->flags |= BE_FLAGS_PHY_MISCONFIGURED; } /* Grp5 CoS Priority evt */ static void be_async_grp5_cos_priority_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { struct be_async_event_grp5_cos_priority *evt = (struct be_async_event_grp5_cos_priority *)compl; if (evt->valid) { adapter->vlan_prio_bmap = evt->available_priority_bmap; adapter->recommended_prio_bits = evt->reco_default_priority << VLAN_PRIO_SHIFT; } } /* Grp5 QOS Speed evt: qos_link_speed is in units of 10 Mbps */ static void be_async_grp5_qos_speed_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { struct be_async_event_grp5_qos_link_speed *evt = (struct be_async_event_grp5_qos_link_speed *)compl; if (adapter->phy.link_speed >= 0 && evt->physical_port == adapter->port_num) adapter->phy.link_speed = le16_to_cpu(evt->qos_link_speed) * 10; } /*Grp5 PVID evt*/ static void be_async_grp5_pvid_state_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { struct be_async_event_grp5_pvid_state *evt = (struct be_async_event_grp5_pvid_state *)compl; if (evt->enabled) { adapter->pvid = le16_to_cpu(evt->tag) & VLAN_VID_MASK; dev_info(&adapter->pdev->dev, "LPVID: %d\n", adapter->pvid); } else { adapter->pvid = 0; } } #define MGMT_ENABLE_MASK 0x4 static void be_async_grp5_fw_control_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { struct be_async_fw_control *evt = (struct be_async_fw_control *)compl; u32 evt_dw1 = le32_to_cpu(evt->event_data_word1); if (evt_dw1 & MGMT_ENABLE_MASK) { adapter->flags |= BE_FLAGS_OS2BMC; adapter->bmc_filt_mask = le32_to_cpu(evt->event_data_word2); } else { adapter->flags &= ~BE_FLAGS_OS2BMC; } } static void be_async_grp5_evt_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { u8 event_type = (compl->flags >> ASYNC_EVENT_TYPE_SHIFT) & ASYNC_EVENT_TYPE_MASK; switch (event_type) { case ASYNC_EVENT_COS_PRIORITY: be_async_grp5_cos_priority_process(adapter, compl); break; case ASYNC_EVENT_QOS_SPEED: be_async_grp5_qos_speed_process(adapter, compl); break; case ASYNC_EVENT_PVID_STATE: be_async_grp5_pvid_state_process(adapter, compl); break; /* Async event to disable/enable os2bmc and/or mac-learning */ case ASYNC_EVENT_FW_CONTROL: be_async_grp5_fw_control_process(adapter, compl); break; default: break; } } static void be_async_dbg_evt_process(struct be_adapter *adapter, struct be_mcc_compl *cmp) { u8 event_type = 0; struct be_async_event_qnq *evt = (struct be_async_event_qnq *)cmp; event_type = (cmp->flags >> ASYNC_EVENT_TYPE_SHIFT) & ASYNC_EVENT_TYPE_MASK; switch (event_type) { case ASYNC_DEBUG_EVENT_TYPE_QNQ: if (evt->valid) adapter->qnq_vid = le16_to_cpu(evt->vlan_tag); adapter->flags |= BE_FLAGS_QNQ_ASYNC_EVT_RCVD; break; default: dev_warn(&adapter->pdev->dev, "Unknown debug event 0x%x!\n", event_type); break; } } static void be_async_sliport_evt_process(struct be_adapter *adapter, struct be_mcc_compl *cmp) { u8 event_type = (cmp->flags >> ASYNC_EVENT_TYPE_SHIFT) & ASYNC_EVENT_TYPE_MASK; if (event_type == ASYNC_EVENT_PORT_MISCONFIG) be_async_port_misconfig_event_process(adapter, cmp); } static inline bool is_link_state_evt(u32 flags) { return ((flags >> ASYNC_EVENT_CODE_SHIFT) & ASYNC_EVENT_CODE_MASK) == ASYNC_EVENT_CODE_LINK_STATE; } static inline bool is_grp5_evt(u32 flags) { return ((flags >> ASYNC_EVENT_CODE_SHIFT) & ASYNC_EVENT_CODE_MASK) == ASYNC_EVENT_CODE_GRP_5; } static inline bool is_dbg_evt(u32 flags) { return ((flags >> ASYNC_EVENT_CODE_SHIFT) & ASYNC_EVENT_CODE_MASK) == ASYNC_EVENT_CODE_QNQ; } static inline bool is_sliport_evt(u32 flags) { return ((flags >> ASYNC_EVENT_CODE_SHIFT) & ASYNC_EVENT_CODE_MASK) == ASYNC_EVENT_CODE_SLIPORT; } static void be_mcc_event_process(struct be_adapter *adapter, struct be_mcc_compl *compl) { if (is_link_state_evt(compl->flags)) be_async_link_state_process(adapter, compl); else if (is_grp5_evt(compl->flags)) be_async_grp5_evt_process(adapter, compl); else if (is_dbg_evt(compl->flags)) be_async_dbg_evt_process(adapter, compl); else if (is_sliport_evt(compl->flags)) be_async_sliport_evt_process(adapter, compl); } static struct be_mcc_compl *be_mcc_compl_get(struct be_adapter *adapter) { struct be_queue_info *mcc_cq = &adapter->mcc_obj.cq; struct be_mcc_compl *compl = queue_tail_node(mcc_cq); if (be_mcc_compl_is_new(compl)) { queue_tail_inc(mcc_cq); return compl; } return NULL; } void be_async_mcc_enable(struct be_adapter *adapter) { spin_lock_bh(&adapter->mcc_cq_lock); be_cq_notify(adapter, adapter->mcc_obj.cq.id, true, 0); adapter->mcc_obj.rearm_cq = true; spin_unlock_bh(&adapter->mcc_cq_lock); } void be_async_mcc_disable(struct be_adapter *adapter) { spin_lock_bh(&adapter->mcc_cq_lock); adapter->mcc_obj.rearm_cq = false; be_cq_notify(adapter, adapter->mcc_obj.cq.id, false, 0); spin_unlock_bh(&adapter->mcc_cq_lock); } int be_process_mcc(struct be_adapter *adapter) { struct be_mcc_compl *compl; int num = 0, status = 0; struct be_mcc_obj *mcc_obj = &adapter->mcc_obj; spin_lock(&adapter->mcc_cq_lock); while ((compl = be_mcc_compl_get(adapter))) { if (compl->flags & CQE_FLAGS_ASYNC_MASK) { be_mcc_event_process(adapter, compl); } else if (compl->flags & CQE_FLAGS_COMPLETED_MASK) { status = be_mcc_compl_process(adapter, compl); atomic_dec(&mcc_obj->q.used); } be_mcc_compl_use(compl); num++; } if (num) be_cq_notify(adapter, mcc_obj->cq.id, mcc_obj->rearm_cq, num); spin_unlock(&adapter->mcc_cq_lock); return status; } /* Wait till no more pending mcc requests are present */ static int be_mcc_wait_compl(struct be_adapter *adapter) { #define mcc_timeout 120000 /* 12s timeout */ int i, status = 0; struct be_mcc_obj *mcc_obj = &adapter->mcc_obj; for (i = 0; i < mcc_timeout; i++) { if (be_check_error(adapter, BE_ERROR_ANY)) return -EIO; local_bh_disable(); status = be_process_mcc(adapter); local_bh_enable(); if (atomic_read(&mcc_obj->q.used) == 0) break; udelay(100); } if (i == mcc_timeout) { dev_err(&adapter->pdev->dev, "FW not responding\n"); be_set_error(adapter, BE_ERROR_FW); return -EIO; } return status; } /* Notify MCC requests and wait for completion */ static int be_mcc_notify_wait(struct be_adapter *adapter) { int status; struct be_mcc_wrb *wrb; struct be_mcc_obj *mcc_obj = &adapter->mcc_obj; u32 index = mcc_obj->q.head; struct be_cmd_resp_hdr *resp; index_dec(&index, mcc_obj->q.len); wrb = queue_index_node(&mcc_obj->q, index); resp = be_decode_resp_hdr(wrb->tag0, wrb->tag1); status = be_mcc_notify(adapter); if (status) goto out; status = be_mcc_wait_compl(adapter); if (status == -EIO) goto out; status = (resp->base_status | ((resp->addl_status & CQE_ADDL_STATUS_MASK) << CQE_ADDL_STATUS_SHIFT)); out: return status; } static int be_mbox_db_ready_wait(struct be_adapter *adapter, void __iomem *db) { int msecs = 0; u32 ready; do { if (be_check_error(adapter, BE_ERROR_ANY)) return -EIO; ready = ioread32(db); if (ready == 0xffffffff) return -1; ready &= MPU_MAILBOX_DB_RDY_MASK; if (ready) break; if (msecs > 4000) { dev_err(&adapter->pdev->dev, "FW not responding\n"); be_set_error(adapter, BE_ERROR_FW); be_detect_error(adapter); return -1; } msleep(1); msecs++; } while (true); return 0; } /* * Insert the mailbox address into the doorbell in two steps * Polls on the mbox doorbell till a command completion (or a timeout) occurs */ static int be_mbox_notify_wait(struct be_adapter *adapter) { int status; u32 val = 0; void __iomem *db = adapter->db + MPU_MAILBOX_DB_OFFSET; struct be_dma_mem *mbox_mem = &adapter->mbox_mem; struct be_mcc_mailbox *mbox = mbox_mem->va; struct be_mcc_compl *compl = &mbox->compl; /* wait for ready to be set */ status = be_mbox_db_ready_wait(adapter, db); if (status != 0) return status; val |= MPU_MAILBOX_DB_HI_MASK; /* at bits 2 - 31 place mbox dma addr msb bits 34 - 63 */ val |= (upper_32_bits(mbox_mem->dma) >> 2) << 2; iowrite32(val, db); /* wait for ready to be set */ status = be_mbox_db_ready_wait(adapter, db); if (status != 0) return status; val = 0; /* at bits 2 - 31 place mbox dma addr lsb bits 4 - 33 */ val |= (u32)(mbox_mem->dma >> 4) << 2; iowrite32(val, db); status = be_mbox_db_ready_wait(adapter, db); if (status != 0) return status; /* A cq entry has been made now */ if (be_mcc_compl_is_new(compl)) { status = be_mcc_compl_process(adapter, &mbox->compl); be_mcc_compl_use(compl); if (status) return status; } else { dev_err(&adapter->pdev->dev, "invalid mailbox completion\n"); return -1; } return 0; } static u16 be_POST_stage_get(struct be_adapter *adapter) { u32 sem; if (BEx_chip(adapter)) sem = ioread32(adapter->csr + SLIPORT_SEMAPHORE_OFFSET_BEx); else pci_read_config_dword(adapter->pdev, SLIPORT_SEMAPHORE_OFFSET_SH, &sem); return sem & POST_STAGE_MASK; } static int lancer_wait_ready(struct be_adapter *adapter) { #define SLIPORT_READY_TIMEOUT 30 u32 sliport_status; int i; for (i = 0; i < SLIPORT_READY_TIMEOUT; i++) { sliport_status = ioread32(adapter->db + SLIPORT_STATUS_OFFSET); if (sliport_status & SLIPORT_STATUS_RDY_MASK) return 0; if (sliport_status & SLIPORT_STATUS_ERR_MASK && !(sliport_status & SLIPORT_STATUS_RN_MASK)) return -EIO; msleep(1000); } return sliport_status ? : -1; } int be_fw_wait_ready(struct be_adapter *adapter) { u16 stage; int status, timeout = 0; struct device *dev = &adapter->pdev->dev; if (lancer_chip(adapter)) { status = lancer_wait_ready(adapter); if (status) { stage = status; goto err; } return 0; } do { /* There's no means to poll POST state on BE2/3 VFs */ if (BEx_chip(adapter) && be_virtfn(adapter)) return 0; stage = be_POST_stage_get(adapter); if (stage == POST_STAGE_ARMFW_RDY) return 0; dev_info(dev, "Waiting for POST, %ds elapsed\n", timeout); if (msleep_interruptible(2000)) { dev_err(dev, "Waiting for POST aborted\n"); return -EINTR; } timeout += 2; } while (timeout < 60); err: dev_err(dev, "POST timeout; stage=%#x\n", stage); return -ETIMEDOUT; } static inline struct be_sge *nonembedded_sgl(struct be_mcc_wrb *wrb) { return &wrb->payload.sgl[0]; } static inline void fill_wrb_tags(struct be_mcc_wrb *wrb, unsigned long addr) { wrb->tag0 = addr & 0xFFFFFFFF; wrb->tag1 = upper_32_bits(addr); } /* Don't touch the hdr after it's prepared */ /* mem will be NULL for embedded commands */ static void be_wrb_cmd_hdr_prepare(struct be_cmd_req_hdr *req_hdr, u8 subsystem, u8 opcode, int cmd_len, struct be_mcc_wrb *wrb, struct be_dma_mem *mem) { struct be_sge *sge; req_hdr->opcode = opcode; req_hdr->subsystem = subsystem; req_hdr->request_length = cpu_to_le32(cmd_len - sizeof(*req_hdr)); req_hdr->version = 0; fill_wrb_tags(wrb, (ulong) req_hdr); wrb->payload_length = cmd_len; if (mem) { wrb->embedded |= (1 & MCC_WRB_SGE_CNT_MASK) << MCC_WRB_SGE_CNT_SHIFT; sge = nonembedded_sgl(wrb); sge->pa_hi = cpu_to_le32(upper_32_bits(mem->dma)); sge->pa_lo = cpu_to_le32(mem->dma & 0xFFFFFFFF); sge->len = cpu_to_le32(mem->size); } else wrb->embedded |= MCC_WRB_EMBEDDED_MASK; be_dws_cpu_to_le(wrb, 8); } static void be_cmd_page_addrs_prepare(struct phys_addr *pages, u32 max_pages, struct be_dma_mem *mem) { int i, buf_pages = min(PAGES_4K_SPANNED(mem->va, mem->size), max_pages); u64 dma = (u64)mem->dma; for (i = 0; i < buf_pages; i++) { pages[i].lo = cpu_to_le32(dma & 0xFFFFFFFF); pages[i].hi = cpu_to_le32(upper_32_bits(dma)); dma += PAGE_SIZE_4K; } } static inline struct be_mcc_wrb *wrb_from_mbox(struct be_adapter *adapter) { struct be_dma_mem *mbox_mem = &adapter->mbox_mem; struct be_mcc_wrb *wrb = &((struct be_mcc_mailbox *)(mbox_mem->va))->wrb; memset(wrb, 0, sizeof(*wrb)); return wrb; } static struct be_mcc_wrb *wrb_from_mccq(struct be_adapter *adapter) { struct be_queue_info *mccq = &adapter->mcc_obj.q; struct be_mcc_wrb *wrb; if (!mccq->created) return NULL; if (atomic_read(&mccq->used) >= mccq->len) return NULL; wrb = queue_head_node(mccq); queue_head_inc(mccq); atomic_inc(&mccq->used); memset(wrb, 0, sizeof(*wrb)); return wrb; } static bool use_mcc(struct be_adapter *adapter) { return adapter->mcc_obj.q.created; } /* Must be used only in process context */ static int be_cmd_lock(struct be_adapter *adapter) { if (use_mcc(adapter)) { spin_lock_bh(&adapter->mcc_lock); return 0; } else { return mutex_lock_interruptible(&adapter->mbox_lock); } } /* Must be used only in process context */ static void be_cmd_unlock(struct be_adapter *adapter) { if (use_mcc(adapter)) spin_unlock_bh(&adapter->mcc_lock); else return mutex_unlock(&adapter->mbox_lock); } static struct be_mcc_wrb *be_cmd_copy(struct be_adapter *adapter, struct be_mcc_wrb *wrb) { struct be_mcc_wrb *dest_wrb; if (use_mcc(adapter)) { dest_wrb = wrb_from_mccq(adapter); if (!dest_wrb) return NULL; } else { dest_wrb = wrb_from_mbox(adapter); } memcpy(dest_wrb, wrb, sizeof(*wrb)); if (wrb->embedded & cpu_to_le32(MCC_WRB_EMBEDDED_MASK)) fill_wrb_tags(dest_wrb, (ulong) embedded_payload(wrb)); return dest_wrb; } /* Must be used only in process context */ static int be_cmd_notify_wait(struct be_adapter *adapter, struct be_mcc_wrb *wrb) { struct be_mcc_wrb *dest_wrb; int status; status = be_cmd_lock(adapter); if (status) return status; dest_wrb = be_cmd_copy(adapter, wrb); if (!dest_wrb) { status = -EBUSY; goto unlock; } if (use_mcc(adapter)) status = be_mcc_notify_wait(adapter); else status = be_mbox_notify_wait(adapter); if (!status) memcpy(wrb, dest_wrb, sizeof(*wrb)); unlock: be_cmd_unlock(adapter); return status; } /* Tell fw we're about to start firing cmds by writing a * special pattern across the wrb hdr; uses mbox */ int be_cmd_fw_init(struct be_adapter *adapter) { u8 *wrb; int status; if (lancer_chip(adapter)) return 0; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = (u8 *)wrb_from_mbox(adapter); *wrb++ = 0xFF; *wrb++ = 0x12; *wrb++ = 0x34; *wrb++ = 0xFF; *wrb++ = 0xFF; *wrb++ = 0x56; *wrb++ = 0x78; *wrb = 0xFF; status = be_mbox_notify_wait(adapter); mutex_unlock(&adapter->mbox_lock); return status; } /* Tell fw we're done with firing cmds by writing a * special pattern across the wrb hdr; uses mbox */ int be_cmd_fw_clean(struct be_adapter *adapter) { u8 *wrb; int status; if (lancer_chip(adapter)) return 0; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = (u8 *)wrb_from_mbox(adapter); *wrb++ = 0xFF; *wrb++ = 0xAA; *wrb++ = 0xBB; *wrb++ = 0xFF; *wrb++ = 0xFF; *wrb++ = 0xCC; *wrb++ = 0xDD; *wrb = 0xFF; status = be_mbox_notify_wait(adapter); mutex_unlock(&adapter->mbox_lock); return status; } int be_cmd_eq_create(struct be_adapter *adapter, struct be_eq_obj *eqo) { struct be_mcc_wrb *wrb; struct be_cmd_req_eq_create *req; struct be_dma_mem *q_mem = &eqo->q.dma_mem; int status, ver = 0; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_EQ_CREATE, sizeof(*req), wrb, NULL); /* Support for EQ_CREATEv2 available only SH-R onwards */ if (!(BEx_chip(adapter) || lancer_chip(adapter))) ver = 2; req->hdr.version = ver; req->num_pages = cpu_to_le16(PAGES_4K_SPANNED(q_mem->va, q_mem->size)); AMAP_SET_BITS(struct amap_eq_context, valid, req->context, 1); /* 4byte eqe*/ AMAP_SET_BITS(struct amap_eq_context, size, req->context, 0); AMAP_SET_BITS(struct amap_eq_context, count, req->context, __ilog2_u32(eqo->q.len / 256)); be_dws_cpu_to_le(req->context, sizeof(req->context)); be_cmd_page_addrs_prepare(req->pages, ARRAY_SIZE(req->pages), q_mem); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_eq_create *resp = embedded_payload(wrb); eqo->q.id = le16_to_cpu(resp->eq_id); eqo->msix_idx = (ver == 2) ? le16_to_cpu(resp->msix_idx) : eqo->idx; eqo->q.created = true; } mutex_unlock(&adapter->mbox_lock); return status; } /* Use MCC */ int be_cmd_mac_addr_query(struct be_adapter *adapter, u8 *mac_addr, bool permanent, u32 if_handle, u32 pmac_id) { struct be_mcc_wrb *wrb; struct be_cmd_req_mac_query *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_MAC_QUERY, sizeof(*req), wrb, NULL); req->type = MAC_ADDRESS_TYPE_NETWORK; if (permanent) { req->permanent = 1; } else { req->if_id = cpu_to_le16((u16)if_handle); req->pmac_id = cpu_to_le32(pmac_id); req->permanent = 0; } status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_mac_query *resp = embedded_payload(wrb); memcpy(mac_addr, resp->mac.addr, ETH_ALEN); } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses synchronous MCCQ */ int be_cmd_pmac_add(struct be_adapter *adapter, u8 *mac_addr, u32 if_id, u32 *pmac_id, u32 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_pmac_add *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_PMAC_ADD, sizeof(*req), wrb, NULL); req->hdr.domain = domain; req->if_id = cpu_to_le32(if_id); memcpy(req->mac_address, mac_addr, ETH_ALEN); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_pmac_add *resp = embedded_payload(wrb); *pmac_id = le32_to_cpu(resp->pmac_id); } err: spin_unlock_bh(&adapter->mcc_lock); if (status == MCC_STATUS_UNAUTHORIZED_REQUEST) status = -EPERM; return status; } /* Uses synchronous MCCQ */ int be_cmd_pmac_del(struct be_adapter *adapter, u32 if_id, int pmac_id, u32 dom) { struct be_mcc_wrb *wrb; struct be_cmd_req_pmac_del *req; int status; if (pmac_id == -1) return 0; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_PMAC_DEL, sizeof(*req), wrb, NULL); req->hdr.domain = dom; req->if_id = cpu_to_le32(if_id); req->pmac_id = cpu_to_le32(pmac_id); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses Mbox */ int be_cmd_cq_create(struct be_adapter *adapter, struct be_queue_info *cq, struct be_queue_info *eq, bool no_delay, int coalesce_wm) { struct be_mcc_wrb *wrb; struct be_cmd_req_cq_create *req; struct be_dma_mem *q_mem = &cq->dma_mem; void *ctxt; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); ctxt = &req->context; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_CQ_CREATE, sizeof(*req), wrb, NULL); req->num_pages = cpu_to_le16(PAGES_4K_SPANNED(q_mem->va, q_mem->size)); if (BEx_chip(adapter)) { AMAP_SET_BITS(struct amap_cq_context_be, coalescwm, ctxt, coalesce_wm); AMAP_SET_BITS(struct amap_cq_context_be, nodelay, ctxt, no_delay); AMAP_SET_BITS(struct amap_cq_context_be, count, ctxt, __ilog2_u32(cq->len / 256)); AMAP_SET_BITS(struct amap_cq_context_be, valid, ctxt, 1); AMAP_SET_BITS(struct amap_cq_context_be, eventable, ctxt, 1); AMAP_SET_BITS(struct amap_cq_context_be, eqid, ctxt, eq->id); } else { req->hdr.version = 2; req->page_size = 1; /* 1 for 4K */ /* coalesce-wm field in this cmd is not relevant to Lancer. * Lancer uses COMMON_MODIFY_CQ to set this field */ if (!lancer_chip(adapter)) AMAP_SET_BITS(struct amap_cq_context_v2, coalescwm, ctxt, coalesce_wm); AMAP_SET_BITS(struct amap_cq_context_v2, nodelay, ctxt, no_delay); AMAP_SET_BITS(struct amap_cq_context_v2, count, ctxt, __ilog2_u32(cq->len / 256)); AMAP_SET_BITS(struct amap_cq_context_v2, valid, ctxt, 1); AMAP_SET_BITS(struct amap_cq_context_v2, eventable, ctxt, 1); AMAP_SET_BITS(struct amap_cq_context_v2, eqid, ctxt, eq->id); } be_dws_cpu_to_le(ctxt, sizeof(req->context)); be_cmd_page_addrs_prepare(req->pages, ARRAY_SIZE(req->pages), q_mem); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_cq_create *resp = embedded_payload(wrb); cq->id = le16_to_cpu(resp->cq_id); cq->created = true; } mutex_unlock(&adapter->mbox_lock); return status; } static u32 be_encoded_q_len(int q_len) { u32 len_encoded = fls(q_len); /* log2(len) + 1 */ if (len_encoded == 16) len_encoded = 0; return len_encoded; } static int be_cmd_mccq_ext_create(struct be_adapter *adapter, struct be_queue_info *mccq, struct be_queue_info *cq) { struct be_mcc_wrb *wrb; struct be_cmd_req_mcc_ext_create *req; struct be_dma_mem *q_mem = &mccq->dma_mem; void *ctxt; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); ctxt = &req->context; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_MCC_CREATE_EXT, sizeof(*req), wrb, NULL); req->num_pages = cpu_to_le16(PAGES_4K_SPANNED(q_mem->va, q_mem->size)); if (BEx_chip(adapter)) { AMAP_SET_BITS(struct amap_mcc_context_be, valid, ctxt, 1); AMAP_SET_BITS(struct amap_mcc_context_be, ring_size, ctxt, be_encoded_q_len(mccq->len)); AMAP_SET_BITS(struct amap_mcc_context_be, cq_id, ctxt, cq->id); } else { req->hdr.version = 1; req->cq_id = cpu_to_le16(cq->id); AMAP_SET_BITS(struct amap_mcc_context_v1, ring_size, ctxt, be_encoded_q_len(mccq->len)); AMAP_SET_BITS(struct amap_mcc_context_v1, valid, ctxt, 1); AMAP_SET_BITS(struct amap_mcc_context_v1, async_cq_id, ctxt, cq->id); AMAP_SET_BITS(struct amap_mcc_context_v1, async_cq_valid, ctxt, 1); } /* Subscribe to Link State, Sliport Event and Group 5 Events * (bits 1, 5 and 17 set) */ req->async_event_bitmap[0] = cpu_to_le32(BIT(ASYNC_EVENT_CODE_LINK_STATE) | BIT(ASYNC_EVENT_CODE_GRP_5) | BIT(ASYNC_EVENT_CODE_QNQ) | BIT(ASYNC_EVENT_CODE_SLIPORT)); be_dws_cpu_to_le(ctxt, sizeof(req->context)); be_cmd_page_addrs_prepare(req->pages, ARRAY_SIZE(req->pages), q_mem); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_mcc_create *resp = embedded_payload(wrb); mccq->id = le16_to_cpu(resp->id); mccq->created = true; } mutex_unlock(&adapter->mbox_lock); return status; } static int be_cmd_mccq_org_create(struct be_adapter *adapter, struct be_queue_info *mccq, struct be_queue_info *cq) { struct be_mcc_wrb *wrb; struct be_cmd_req_mcc_create *req; struct be_dma_mem *q_mem = &mccq->dma_mem; void *ctxt; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); ctxt = &req->context; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_MCC_CREATE, sizeof(*req), wrb, NULL); req->num_pages = cpu_to_le16(PAGES_4K_SPANNED(q_mem->va, q_mem->size)); AMAP_SET_BITS(struct amap_mcc_context_be, valid, ctxt, 1); AMAP_SET_BITS(struct amap_mcc_context_be, ring_size, ctxt, be_encoded_q_len(mccq->len)); AMAP_SET_BITS(struct amap_mcc_context_be, cq_id, ctxt, cq->id); be_dws_cpu_to_le(ctxt, sizeof(req->context)); be_cmd_page_addrs_prepare(req->pages, ARRAY_SIZE(req->pages), q_mem); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_mcc_create *resp = embedded_payload(wrb); mccq->id = le16_to_cpu(resp->id); mccq->created = true; } mutex_unlock(&adapter->mbox_lock); return status; } int be_cmd_mccq_create(struct be_adapter *adapter, struct be_queue_info *mccq, struct be_queue_info *cq) { int status; status = be_cmd_mccq_ext_create(adapter, mccq, cq); if (status && BEx_chip(adapter)) { dev_warn(&adapter->pdev->dev, "Upgrade to F/W ver 2.102.235.0 " "or newer to avoid conflicting priorities between NIC " "and FCoE traffic"); status = be_cmd_mccq_org_create(adapter, mccq, cq); } return status; } int be_cmd_txq_create(struct be_adapter *adapter, struct be_tx_obj *txo) { struct be_mcc_wrb wrb = {0}; struct be_cmd_req_eth_tx_create *req; struct be_queue_info *txq = &txo->q; struct be_queue_info *cq = &txo->cq; struct be_dma_mem *q_mem = &txq->dma_mem; int status, ver = 0; req = embedded_payload(&wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_TX_CREATE, sizeof(*req), &wrb, NULL); if (lancer_chip(adapter)) { req->hdr.version = 1; } else if (BEx_chip(adapter)) { if (adapter->function_caps & BE_FUNCTION_CAPS_SUPER_NIC) req->hdr.version = 2; } else { /* For SH */ req->hdr.version = 2; } if (req->hdr.version > 0) req->if_id = cpu_to_le16(adapter->if_handle); req->num_pages = PAGES_4K_SPANNED(q_mem->va, q_mem->size); req->ulp_num = BE_ULP1_NUM; req->type = BE_ETH_TX_RING_TYPE_STANDARD; req->cq_id = cpu_to_le16(cq->id); req->queue_size = be_encoded_q_len(txq->len); be_cmd_page_addrs_prepare(req->pages, ARRAY_SIZE(req->pages), q_mem); ver = req->hdr.version; status = be_cmd_notify_wait(adapter, &wrb); if (!status) { struct be_cmd_resp_eth_tx_create *resp = embedded_payload(&wrb); txq->id = le16_to_cpu(resp->cid); if (ver == 2) txo->db_offset = le32_to_cpu(resp->db_offset); else txo->db_offset = DB_TXULP1_OFFSET; txq->created = true; } return status; } /* Uses MCC */ int be_cmd_rxq_create(struct be_adapter *adapter, struct be_queue_info *rxq, u16 cq_id, u16 frag_size, u32 if_id, u32 rss, u8 *rss_id) { struct be_mcc_wrb *wrb; struct be_cmd_req_eth_rx_create *req; struct be_dma_mem *q_mem = &rxq->dma_mem; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_RX_CREATE, sizeof(*req), wrb, NULL); req->cq_id = cpu_to_le16(cq_id); req->frag_size = fls(frag_size) - 1; req->num_pages = 2; be_cmd_page_addrs_prepare(req->pages, ARRAY_SIZE(req->pages), q_mem); req->interface_id = cpu_to_le32(if_id); req->max_frame_size = cpu_to_le16(BE_MAX_JUMBO_FRAME_SIZE); req->rss_queue = cpu_to_le32(rss); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_eth_rx_create *resp = embedded_payload(wrb); rxq->id = le16_to_cpu(resp->id); rxq->created = true; *rss_id = resp->rss_id; } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Generic destroyer function for all types of queues * Uses Mbox */ int be_cmd_q_destroy(struct be_adapter *adapter, struct be_queue_info *q, int queue_type) { struct be_mcc_wrb *wrb; struct be_cmd_req_q_destroy *req; u8 subsys = 0, opcode = 0; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); switch (queue_type) { case QTYPE_EQ: subsys = CMD_SUBSYSTEM_COMMON; opcode = OPCODE_COMMON_EQ_DESTROY; break; case QTYPE_CQ: subsys = CMD_SUBSYSTEM_COMMON; opcode = OPCODE_COMMON_CQ_DESTROY; break; case QTYPE_TXQ: subsys = CMD_SUBSYSTEM_ETH; opcode = OPCODE_ETH_TX_DESTROY; break; case QTYPE_RXQ: subsys = CMD_SUBSYSTEM_ETH; opcode = OPCODE_ETH_RX_DESTROY; break; case QTYPE_MCCQ: subsys = CMD_SUBSYSTEM_COMMON; opcode = OPCODE_COMMON_MCC_DESTROY; break; default: BUG(); } be_wrb_cmd_hdr_prepare(&req->hdr, subsys, opcode, sizeof(*req), wrb, NULL); req->id = cpu_to_le16(q->id); status = be_mbox_notify_wait(adapter); q->created = false; mutex_unlock(&adapter->mbox_lock); return status; } /* Uses MCC */ int be_cmd_rxq_destroy(struct be_adapter *adapter, struct be_queue_info *q) { struct be_mcc_wrb *wrb; struct be_cmd_req_q_destroy *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_RX_DESTROY, sizeof(*req), wrb, NULL); req->id = cpu_to_le16(q->id); status = be_mcc_notify_wait(adapter); q->created = false; err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Create an rx filtering policy configuration on an i/f * Will use MBOX only if MCCQ has not been created. */ int be_cmd_if_create(struct be_adapter *adapter, u32 cap_flags, u32 en_flags, u32 *if_handle, u32 domain) { struct be_mcc_wrb wrb = {0}; struct be_cmd_req_if_create *req; int status; req = embedded_payload(&wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_INTERFACE_CREATE, sizeof(*req), &wrb, NULL); req->hdr.domain = domain; req->capability_flags = cpu_to_le32(cap_flags); req->enable_flags = cpu_to_le32(en_flags); req->pmac_invalid = true; status = be_cmd_notify_wait(adapter, &wrb); if (!status) { struct be_cmd_resp_if_create *resp = embedded_payload(&wrb); *if_handle = le32_to_cpu(resp->interface_id); /* Hack to retrieve VF's pmac-id on BE3 */ if (BE3_chip(adapter) && be_virtfn(adapter)) adapter->pmac_id[0] = le32_to_cpu(resp->pmac_id); } return status; } /* Uses MCCQ if available else MBOX */ int be_cmd_if_destroy(struct be_adapter *adapter, int interface_id, u32 domain) { struct be_mcc_wrb wrb = {0}; struct be_cmd_req_if_destroy *req; int status; if (interface_id == -1) return 0; req = embedded_payload(&wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_INTERFACE_DESTROY, sizeof(*req), &wrb, NULL); req->hdr.domain = domain; req->interface_id = cpu_to_le32(interface_id); status = be_cmd_notify_wait(adapter, &wrb); return status; } /* Get stats is a non embedded command: the request is not embedded inside * WRB but is a separate dma memory block * Uses asynchronous MCC */ int be_cmd_get_stats(struct be_adapter *adapter, struct be_dma_mem *nonemb_cmd) { struct be_mcc_wrb *wrb; struct be_cmd_req_hdr *hdr; int status = 0; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } hdr = nonemb_cmd->va; be_wrb_cmd_hdr_prepare(hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_GET_STATISTICS, nonemb_cmd->size, wrb, nonemb_cmd); /* version 1 of the cmd is not supported only by BE2 */ if (BE2_chip(adapter)) hdr->version = 0; if (BE3_chip(adapter) || lancer_chip(adapter)) hdr->version = 1; else hdr->version = 2; status = be_mcc_notify(adapter); if (status) goto err; adapter->stats_cmd_sent = true; err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Lancer Stats */ int lancer_cmd_get_pport_stats(struct be_adapter *adapter, struct be_dma_mem *nonemb_cmd) { struct be_mcc_wrb *wrb; struct lancer_cmd_req_pport_stats *req; int status = 0; if (!be_cmd_allowed(adapter, OPCODE_ETH_GET_PPORT_STATS, CMD_SUBSYSTEM_ETH)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = nonemb_cmd->va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_GET_PPORT_STATS, nonemb_cmd->size, wrb, nonemb_cmd); req->cmd_params.params.pport_num = cpu_to_le16(adapter->hba_port_num); req->cmd_params.params.reset_stats = 0; status = be_mcc_notify(adapter); if (status) goto err; adapter->stats_cmd_sent = true; err: spin_unlock_bh(&adapter->mcc_lock); return status; } static int be_mac_to_link_speed(int mac_speed) { switch (mac_speed) { case PHY_LINK_SPEED_ZERO: return 0; case PHY_LINK_SPEED_10MBPS: return 10; case PHY_LINK_SPEED_100MBPS: return 100; case PHY_LINK_SPEED_1GBPS: return 1000; case PHY_LINK_SPEED_10GBPS: return 10000; case PHY_LINK_SPEED_20GBPS: return 20000; case PHY_LINK_SPEED_25GBPS: return 25000; case PHY_LINK_SPEED_40GBPS: return 40000; } return 0; } /* Uses synchronous mcc * Returns link_speed in Mbps */ int be_cmd_link_status_query(struct be_adapter *adapter, u16 *link_speed, u8 *link_status, u32 dom) { struct be_mcc_wrb *wrb; struct be_cmd_req_link_status *req; int status; spin_lock_bh(&adapter->mcc_lock); if (link_status) *link_status = LINK_DOWN; wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_LINK_STATUS_QUERY, sizeof(*req), wrb, NULL); /* version 1 of the cmd is not supported only by BE2 */ if (!BE2_chip(adapter)) req->hdr.version = 1; req->hdr.domain = dom; status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_link_status *resp = embedded_payload(wrb); if (link_speed) { *link_speed = resp->link_speed ? le16_to_cpu(resp->link_speed) * 10 : be_mac_to_link_speed(resp->mac_speed); if (!resp->logical_link_status) *link_speed = 0; } if (link_status) *link_status = resp->logical_link_status; } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses synchronous mcc */ int be_cmd_get_die_temperature(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_cntl_addnl_attribs *req; int status = 0; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_CNTL_ADDITIONAL_ATTRIBUTES, sizeof(*req), wrb, NULL); status = be_mcc_notify(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses synchronous mcc */ int be_cmd_get_fat_dump_len(struct be_adapter *adapter, u32 *dump_size) { struct be_mcc_wrb wrb = {0}; struct be_cmd_req_get_fat *req; int status; req = embedded_payload(&wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_MANAGE_FAT, sizeof(*req), &wrb, NULL); req->fat_operation = cpu_to_le32(QUERY_FAT); status = be_cmd_notify_wait(adapter, &wrb); if (!status) { struct be_cmd_resp_get_fat *resp = embedded_payload(&wrb); if (dump_size && resp->log_size) *dump_size = le32_to_cpu(resp->log_size) - sizeof(u32); } return status; } int be_cmd_get_fat_dump(struct be_adapter *adapter, u32 buf_len, void *buf) { struct be_dma_mem get_fat_cmd; struct be_mcc_wrb *wrb; struct be_cmd_req_get_fat *req; u32 offset = 0, total_size, buf_size, log_offset = sizeof(u32), payload_len; int status; if (buf_len == 0) return 0; total_size = buf_len; get_fat_cmd.size = sizeof(struct be_cmd_req_get_fat) + 60*1024; get_fat_cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, get_fat_cmd.size, &get_fat_cmd.dma, GFP_ATOMIC); if (!get_fat_cmd.va) return -ENOMEM; spin_lock_bh(&adapter->mcc_lock); while (total_size) { buf_size = min(total_size, (u32)60*1024); total_size -= buf_size; wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = get_fat_cmd.va; payload_len = sizeof(struct be_cmd_req_get_fat) + buf_size; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_MANAGE_FAT, payload_len, wrb, &get_fat_cmd); req->fat_operation = cpu_to_le32(RETRIEVE_FAT); req->read_log_offset = cpu_to_le32(log_offset); req->read_log_length = cpu_to_le32(buf_size); req->data_buffer_size = cpu_to_le32(buf_size); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_fat *resp = get_fat_cmd.va; memcpy(buf + offset, resp->data_buffer, le32_to_cpu(resp->read_log_length)); } else { dev_err(&adapter->pdev->dev, "FAT Table Retrieve error\n"); goto err; } offset += buf_size; log_offset += buf_size; } err: dma_free_coherent(&adapter->pdev->dev, get_fat_cmd.size, get_fat_cmd.va, get_fat_cmd.dma); spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses synchronous mcc */ int be_cmd_get_fw_ver(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_fw_version *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_FW_VERSION, sizeof(*req), wrb, NULL); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_fw_version *resp = embedded_payload(wrb); strlcpy(adapter->fw_ver, resp->firmware_version_string, sizeof(adapter->fw_ver)); strlcpy(adapter->fw_on_flash, resp->fw_on_flash_version_string, sizeof(adapter->fw_on_flash)); } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* set the EQ delay interval of an EQ to specified value * Uses async mcc */ static int __be_cmd_modify_eqd(struct be_adapter *adapter, struct be_set_eqd *set_eqd, int num) { struct be_mcc_wrb *wrb; struct be_cmd_req_modify_eq_delay *req; int status = 0, i; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_MODIFY_EQ_DELAY, sizeof(*req), wrb, NULL); req->num_eq = cpu_to_le32(num); for (i = 0; i < num; i++) { req->set_eqd[i].eq_id = cpu_to_le32(set_eqd[i].eq_id); req->set_eqd[i].phase = 0; req->set_eqd[i].delay_multiplier = cpu_to_le32(set_eqd[i].delay_multiplier); } status = be_mcc_notify(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_modify_eqd(struct be_adapter *adapter, struct be_set_eqd *set_eqd, int num) { int num_eqs, i = 0; while (num) { num_eqs = min(num, 8); __be_cmd_modify_eqd(adapter, &set_eqd[i], num_eqs); i += num_eqs; num -= num_eqs; } return 0; } /* Uses sycnhronous mcc */ int be_cmd_vlan_config(struct be_adapter *adapter, u32 if_id, u16 *vtag_array, u32 num, u32 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_vlan_config *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_VLAN_CONFIG, sizeof(*req), wrb, NULL); req->hdr.domain = domain; req->interface_id = if_id; req->untagged = BE_IF_FLAGS_UNTAGGED & be_if_cap_flags(adapter) ? 1 : 0; req->num_vlan = num; memcpy(req->normal_vlan, vtag_array, req->num_vlan * sizeof(vtag_array[0])); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } static int __be_cmd_rx_filter(struct be_adapter *adapter, u32 flags, u32 value) { struct be_mcc_wrb *wrb; struct be_dma_mem *mem = &adapter->rx_filter; struct be_cmd_req_rx_filter *req = mem->va; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } memset(req, 0, sizeof(*req)); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_NTWK_RX_FILTER, sizeof(*req), wrb, mem); req->if_id = cpu_to_le32(adapter->if_handle); req->if_flags_mask = cpu_to_le32(flags); req->if_flags = (value == ON) ? req->if_flags_mask : 0; if (flags & BE_IF_FLAGS_MULTICAST) { struct netdev_hw_addr *ha; int i = 0; /* Reset mcast promisc mode if already set by setting mask * and not setting flags field */ req->if_flags_mask |= cpu_to_le32(BE_IF_FLAGS_MCAST_PROMISCUOUS & be_if_cap_flags(adapter)); req->mcast_num = cpu_to_le32(netdev_mc_count(adapter->netdev)); netdev_for_each_mc_addr(ha, adapter->netdev) memcpy(req->mcast_mac[i++].byte, ha->addr, ETH_ALEN); } status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_rx_filter(struct be_adapter *adapter, u32 flags, u32 value) { struct device *dev = &adapter->pdev->dev; if ((flags & be_if_cap_flags(adapter)) != flags) { dev_warn(dev, "Cannot set rx filter flags 0x%x\n", flags); dev_warn(dev, "Interface is capable of 0x%x flags only\n", be_if_cap_flags(adapter)); } flags &= be_if_cap_flags(adapter); if (!flags) return -ENOTSUPP; return __be_cmd_rx_filter(adapter, flags, value); } /* Uses synchrounous mcc */ int be_cmd_set_flow_control(struct be_adapter *adapter, u32 tx_fc, u32 rx_fc) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_flow_control *req; int status; if (!be_cmd_allowed(adapter, OPCODE_COMMON_SET_FLOW_CONTROL, CMD_SUBSYSTEM_COMMON)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_FLOW_CONTROL, sizeof(*req), wrb, NULL); req->hdr.version = 1; req->tx_flow_control = cpu_to_le16((u16)tx_fc); req->rx_flow_control = cpu_to_le16((u16)rx_fc); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); if (base_status(status) == MCC_STATUS_FEATURE_NOT_SUPPORTED) return -EOPNOTSUPP; return status; } /* Uses sycn mcc */ int be_cmd_get_flow_control(struct be_adapter *adapter, u32 *tx_fc, u32 *rx_fc) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_flow_control *req; int status; if (!be_cmd_allowed(adapter, OPCODE_COMMON_GET_FLOW_CONTROL, CMD_SUBSYSTEM_COMMON)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_FLOW_CONTROL, sizeof(*req), wrb, NULL); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_flow_control *resp = embedded_payload(wrb); *tx_fc = le16_to_cpu(resp->tx_flow_control); *rx_fc = le16_to_cpu(resp->rx_flow_control); } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses mbox */ int be_cmd_query_fw_cfg(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_query_fw_cfg *req; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_QUERY_FIRMWARE_CONFIG, sizeof(*req), wrb, NULL); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_query_fw_cfg *resp = embedded_payload(wrb); adapter->port_num = le32_to_cpu(resp->phys_port); adapter->function_mode = le32_to_cpu(resp->function_mode); adapter->function_caps = le32_to_cpu(resp->function_caps); adapter->asic_rev = le32_to_cpu(resp->asic_revision) & 0xFF; dev_info(&adapter->pdev->dev, "FW config: function_mode=0x%x, function_caps=0x%x\n", adapter->function_mode, adapter->function_caps); } mutex_unlock(&adapter->mbox_lock); return status; } /* Uses mbox */ int be_cmd_reset_function(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_hdr *req; int status; if (lancer_chip(adapter)) { iowrite32(SLI_PORT_CONTROL_IP_MASK, adapter->db + SLIPORT_CONTROL_OFFSET); status = lancer_wait_ready(adapter); if (status) dev_err(&adapter->pdev->dev, "Adapter in non recoverable error\n"); return status; } if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(req, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_FUNCTION_RESET, sizeof(*req), wrb, NULL); status = be_mbox_notify_wait(adapter); mutex_unlock(&adapter->mbox_lock); return status; } int be_cmd_rss_config(struct be_adapter *adapter, u8 *rsstable, u32 rss_hash_opts, u16 table_size, const u8 *rss_hkey) { struct be_mcc_wrb *wrb; struct be_cmd_req_rss_config *req; int status; if (!(be_if_cap_flags(adapter) & BE_IF_FLAGS_RSS)) return 0; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_RSS_CONFIG, sizeof(*req), wrb, NULL); req->if_id = cpu_to_le32(adapter->if_handle); req->enable_rss = cpu_to_le16(rss_hash_opts); req->cpu_table_size_log2 = cpu_to_le16(fls(table_size) - 1); if (!BEx_chip(adapter)) req->hdr.version = 1; memcpy(req->cpu_table, rsstable, table_size); memcpy(req->hash, rss_hkey, RSS_HASH_KEY_LEN); be_dws_cpu_to_le(req->hash, sizeof(req->hash)); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses sync mcc */ int be_cmd_set_beacon_state(struct be_adapter *adapter, u8 port_num, u8 bcn, u8 sts, u8 state) { struct be_mcc_wrb *wrb; struct be_cmd_req_enable_disable_beacon *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_ENABLE_DISABLE_BEACON, sizeof(*req), wrb, NULL); req->port_num = port_num; req->beacon_state = state; req->beacon_duration = bcn; req->status_duration = sts; status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses sync mcc */ int be_cmd_get_beacon_state(struct be_adapter *adapter, u8 port_num, u32 *state) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_beacon_state *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_BEACON_STATE, sizeof(*req), wrb, NULL); req->port_num = port_num; status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_beacon_state *resp = embedded_payload(wrb); *state = resp->beacon_state; } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Uses sync mcc */ int be_cmd_read_port_transceiver_data(struct be_adapter *adapter, u8 page_num, u8 *data) { struct be_dma_mem cmd; struct be_mcc_wrb *wrb; struct be_cmd_req_port_type *req; int status; if (page_num > TR_PAGE_A2) return -EINVAL; cmd.size = sizeof(struct be_cmd_resp_port_type); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_ATOMIC); if (!cmd.va) { dev_err(&adapter->pdev->dev, "Memory allocation failed\n"); return -ENOMEM; } spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_READ_TRANSRECV_DATA, cmd.size, wrb, &cmd); req->port = cpu_to_le32(adapter->hba_port_num); req->page_num = cpu_to_le32(page_num); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_port_type *resp = cmd.va; memcpy(data, resp->page_data, PAGE_DATA_LEN); } err: spin_unlock_bh(&adapter->mcc_lock); dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); return status; } static int lancer_cmd_write_object(struct be_adapter *adapter, struct be_dma_mem *cmd, u32 data_size, u32 data_offset, const char *obj_name, u32 *data_written, u8 *change_status, u8 *addn_status) { struct be_mcc_wrb *wrb; struct lancer_cmd_req_write_object *req; struct lancer_cmd_resp_write_object *resp; void *ctxt = NULL; int status; spin_lock_bh(&adapter->mcc_lock); adapter->flash_status = 0; wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err_unlock; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_WRITE_OBJECT, sizeof(struct lancer_cmd_req_write_object), wrb, NULL); ctxt = &req->context; AMAP_SET_BITS(struct amap_lancer_write_obj_context, write_length, ctxt, data_size); if (data_size == 0) AMAP_SET_BITS(struct amap_lancer_write_obj_context, eof, ctxt, 1); else AMAP_SET_BITS(struct amap_lancer_write_obj_context, eof, ctxt, 0); be_dws_cpu_to_le(ctxt, sizeof(req->context)); req->write_offset = cpu_to_le32(data_offset); strlcpy(req->object_name, obj_name, sizeof(req->object_name)); req->descriptor_count = cpu_to_le32(1); req->buf_len = cpu_to_le32(data_size); req->addr_low = cpu_to_le32((cmd->dma + sizeof(struct lancer_cmd_req_write_object)) & 0xFFFFFFFF); req->addr_high = cpu_to_le32(upper_32_bits(cmd->dma + sizeof(struct lancer_cmd_req_write_object))); status = be_mcc_notify(adapter); if (status) goto err_unlock; spin_unlock_bh(&adapter->mcc_lock); if (!wait_for_completion_timeout(&adapter->et_cmd_compl, msecs_to_jiffies(60000))) status = -ETIMEDOUT; else status = adapter->flash_status; resp = embedded_payload(wrb); if (!status) { *data_written = le32_to_cpu(resp->actual_write_len); *change_status = resp->change_status; } else { *addn_status = resp->additional_status; } return status; err_unlock: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_query_cable_type(struct be_adapter *adapter) { u8 page_data[PAGE_DATA_LEN]; int status; status = be_cmd_read_port_transceiver_data(adapter, TR_PAGE_A0, page_data); if (!status) { switch (adapter->phy.interface_type) { case PHY_TYPE_QSFP: adapter->phy.cable_type = page_data[QSFP_PLUS_CABLE_TYPE_OFFSET]; break; case PHY_TYPE_SFP_PLUS_10GB: adapter->phy.cable_type = page_data[SFP_PLUS_CABLE_TYPE_OFFSET]; break; default: adapter->phy.cable_type = 0; break; } } return status; } int be_cmd_query_sfp_info(struct be_adapter *adapter) { u8 page_data[PAGE_DATA_LEN]; int status; status = be_cmd_read_port_transceiver_data(adapter, TR_PAGE_A0, page_data); if (!status) { strlcpy(adapter->phy.vendor_name, page_data + SFP_VENDOR_NAME_OFFSET, SFP_VENDOR_NAME_LEN - 1); strlcpy(adapter->phy.vendor_pn, page_data + SFP_VENDOR_PN_OFFSET, SFP_VENDOR_NAME_LEN - 1); } return status; } static int lancer_cmd_delete_object(struct be_adapter *adapter, const char *obj_name) { struct lancer_cmd_req_delete_object *req; struct be_mcc_wrb *wrb; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_DELETE_OBJECT, sizeof(*req), wrb, NULL); strlcpy(req->object_name, obj_name, sizeof(req->object_name)); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int lancer_cmd_read_object(struct be_adapter *adapter, struct be_dma_mem *cmd, u32 data_size, u32 data_offset, const char *obj_name, u32 *data_read, u32 *eof, u8 *addn_status) { struct be_mcc_wrb *wrb; struct lancer_cmd_req_read_object *req; struct lancer_cmd_resp_read_object *resp; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err_unlock; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_READ_OBJECT, sizeof(struct lancer_cmd_req_read_object), wrb, NULL); req->desired_read_len = cpu_to_le32(data_size); req->read_offset = cpu_to_le32(data_offset); strcpy(req->object_name, obj_name); req->descriptor_count = cpu_to_le32(1); req->buf_len = cpu_to_le32(data_size); req->addr_low = cpu_to_le32((cmd->dma & 0xFFFFFFFF)); req->addr_high = cpu_to_le32(upper_32_bits(cmd->dma)); status = be_mcc_notify_wait(adapter); resp = embedded_payload(wrb); if (!status) { *data_read = le32_to_cpu(resp->actual_read_len); *eof = le32_to_cpu(resp->eof); } else { *addn_status = resp->additional_status; } err_unlock: spin_unlock_bh(&adapter->mcc_lock); return status; } static int be_cmd_write_flashrom(struct be_adapter *adapter, struct be_dma_mem *cmd, u32 flash_type, u32 flash_opcode, u32 img_offset, u32 buf_size) { struct be_mcc_wrb *wrb; struct be_cmd_write_flashrom *req; int status; spin_lock_bh(&adapter->mcc_lock); adapter->flash_status = 0; wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err_unlock; } req = cmd->va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_WRITE_FLASHROM, cmd->size, wrb, cmd); req->params.op_type = cpu_to_le32(flash_type); if (flash_type == OPTYPE_OFFSET_SPECIFIED) req->params.offset = cpu_to_le32(img_offset); req->params.op_code = cpu_to_le32(flash_opcode); req->params.data_buf_size = cpu_to_le32(buf_size); status = be_mcc_notify(adapter); if (status) goto err_unlock; spin_unlock_bh(&adapter->mcc_lock); if (!wait_for_completion_timeout(&adapter->et_cmd_compl, msecs_to_jiffies(40000))) status = -ETIMEDOUT; else status = adapter->flash_status; return status; err_unlock: spin_unlock_bh(&adapter->mcc_lock); return status; } static int be_cmd_get_flash_crc(struct be_adapter *adapter, u8 *flashed_crc, u16 img_optype, u32 img_offset, u32 crc_offset) { struct be_cmd_read_flash_crc *req; struct be_mcc_wrb *wrb; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_READ_FLASHROM, sizeof(*req), wrb, NULL); req->params.op_type = cpu_to_le32(img_optype); if (img_optype == OPTYPE_OFFSET_SPECIFIED) req->params.offset = cpu_to_le32(img_offset + crc_offset); else req->params.offset = cpu_to_le32(crc_offset); req->params.op_code = cpu_to_le32(FLASHROM_OPER_REPORT); req->params.data_buf_size = cpu_to_le32(0x4); status = be_mcc_notify_wait(adapter); if (!status) memcpy(flashed_crc, req->crc, 4); err: spin_unlock_bh(&adapter->mcc_lock); return status; } static char flash_cookie[2][16] = {"*** SE FLAS", "H DIRECTORY *** "}; static bool phy_flashing_required(struct be_adapter *adapter) { return (adapter->phy.phy_type == PHY_TYPE_TN_8022 && adapter->phy.interface_type == PHY_TYPE_BASET_10GB); } static bool is_comp_in_ufi(struct be_adapter *adapter, struct flash_section_info *fsec, int type) { int i = 0, img_type = 0; struct flash_section_info_g2 *fsec_g2 = NULL; if (BE2_chip(adapter)) fsec_g2 = (struct flash_section_info_g2 *)fsec; for (i = 0; i < MAX_FLASH_COMP; i++) { if (fsec_g2) img_type = le32_to_cpu(fsec_g2->fsec_entry[i].type); else img_type = le32_to_cpu(fsec->fsec_entry[i].type); if (img_type == type) return true; } return false; } static struct flash_section_info *get_fsec_info(struct be_adapter *adapter, int header_size, const struct firmware *fw) { struct flash_section_info *fsec = NULL; const u8 *p = fw->data; p += header_size; while (p < (fw->data + fw->size)) { fsec = (struct flash_section_info *)p; if (!memcmp(flash_cookie, fsec->cookie, sizeof(flash_cookie))) return fsec; p += 32; } return NULL; } static int be_check_flash_crc(struct be_adapter *adapter, const u8 *p, u32 img_offset, u32 img_size, int hdr_size, u16 img_optype, bool *crc_match) { u32 crc_offset; int status; u8 crc[4]; status = be_cmd_get_flash_crc(adapter, crc, img_optype, img_offset, img_size - 4); if (status) return status; crc_offset = hdr_size + img_offset + img_size - 4; /* Skip flashing, if crc of flashed region matches */ if (!memcmp(crc, p + crc_offset, 4)) *crc_match = true; else *crc_match = false; return status; } static int be_flash(struct be_adapter *adapter, const u8 *img, struct be_dma_mem *flash_cmd, int optype, int img_size, u32 img_offset) { u32 flash_op, num_bytes, total_bytes = img_size, bytes_sent = 0; struct be_cmd_write_flashrom *req = flash_cmd->va; int status; while (total_bytes) { num_bytes = min_t(u32, 32 * 1024, total_bytes); total_bytes -= num_bytes; if (!total_bytes) { if (optype == OPTYPE_PHY_FW) flash_op = FLASHROM_OPER_PHY_FLASH; else flash_op = FLASHROM_OPER_FLASH; } else { if (optype == OPTYPE_PHY_FW) flash_op = FLASHROM_OPER_PHY_SAVE; else flash_op = FLASHROM_OPER_SAVE; } memcpy(req->data_buf, img, num_bytes); img += num_bytes; status = be_cmd_write_flashrom(adapter, flash_cmd, optype, flash_op, img_offset + bytes_sent, num_bytes); if (base_status(status) == MCC_STATUS_ILLEGAL_REQUEST && optype == OPTYPE_PHY_FW) break; else if (status) return status; bytes_sent += num_bytes; } return 0; } /* For BE2, BE3 and BE3-R */ static int be_flash_BEx(struct be_adapter *adapter, const struct firmware *fw, struct be_dma_mem *flash_cmd, int num_of_images) { int img_hdrs_size = (num_of_images * sizeof(struct image_hdr)); struct device *dev = &adapter->pdev->dev; struct flash_section_info *fsec = NULL; int status, i, filehdr_size, num_comp; const struct flash_comp *pflashcomp; bool crc_match; const u8 *p; struct flash_comp gen3_flash_types[] = { { BE3_ISCSI_PRIMARY_IMAGE_START, OPTYPE_ISCSI_ACTIVE, BE3_COMP_MAX_SIZE, IMAGE_FIRMWARE_ISCSI}, { BE3_REDBOOT_START, OPTYPE_REDBOOT, BE3_REDBOOT_COMP_MAX_SIZE, IMAGE_BOOT_CODE}, { BE3_ISCSI_BIOS_START, OPTYPE_BIOS, BE3_BIOS_COMP_MAX_SIZE, IMAGE_OPTION_ROM_ISCSI}, { BE3_PXE_BIOS_START, OPTYPE_PXE_BIOS, BE3_BIOS_COMP_MAX_SIZE, IMAGE_OPTION_ROM_PXE}, { BE3_FCOE_BIOS_START, OPTYPE_FCOE_BIOS, BE3_BIOS_COMP_MAX_SIZE, IMAGE_OPTION_ROM_FCOE}, { BE3_ISCSI_BACKUP_IMAGE_START, OPTYPE_ISCSI_BACKUP, BE3_COMP_MAX_SIZE, IMAGE_FIRMWARE_BACKUP_ISCSI}, { BE3_FCOE_PRIMARY_IMAGE_START, OPTYPE_FCOE_FW_ACTIVE, BE3_COMP_MAX_SIZE, IMAGE_FIRMWARE_FCOE}, { BE3_FCOE_BACKUP_IMAGE_START, OPTYPE_FCOE_FW_BACKUP, BE3_COMP_MAX_SIZE, IMAGE_FIRMWARE_BACKUP_FCOE}, { BE3_NCSI_START, OPTYPE_NCSI_FW, BE3_NCSI_COMP_MAX_SIZE, IMAGE_NCSI}, { BE3_PHY_FW_START, OPTYPE_PHY_FW, BE3_PHY_FW_COMP_MAX_SIZE, IMAGE_FIRMWARE_PHY} }; struct flash_comp gen2_flash_types[] = { { BE2_ISCSI_PRIMARY_IMAGE_START, OPTYPE_ISCSI_ACTIVE, BE2_COMP_MAX_SIZE, IMAGE_FIRMWARE_ISCSI}, { BE2_REDBOOT_START, OPTYPE_REDBOOT, BE2_REDBOOT_COMP_MAX_SIZE, IMAGE_BOOT_CODE}, { BE2_ISCSI_BIOS_START, OPTYPE_BIOS, BE2_BIOS_COMP_MAX_SIZE, IMAGE_OPTION_ROM_ISCSI}, { BE2_PXE_BIOS_START, OPTYPE_PXE_BIOS, BE2_BIOS_COMP_MAX_SIZE, IMAGE_OPTION_ROM_PXE}, { BE2_FCOE_BIOS_START, OPTYPE_FCOE_BIOS, BE2_BIOS_COMP_MAX_SIZE, IMAGE_OPTION_ROM_FCOE}, { BE2_ISCSI_BACKUP_IMAGE_START, OPTYPE_ISCSI_BACKUP, BE2_COMP_MAX_SIZE, IMAGE_FIRMWARE_BACKUP_ISCSI}, { BE2_FCOE_PRIMARY_IMAGE_START, OPTYPE_FCOE_FW_ACTIVE, BE2_COMP_MAX_SIZE, IMAGE_FIRMWARE_FCOE}, { BE2_FCOE_BACKUP_IMAGE_START, OPTYPE_FCOE_FW_BACKUP, BE2_COMP_MAX_SIZE, IMAGE_FIRMWARE_BACKUP_FCOE} }; if (BE3_chip(adapter)) { pflashcomp = gen3_flash_types; filehdr_size = sizeof(struct flash_file_hdr_g3); num_comp = ARRAY_SIZE(gen3_flash_types); } else { pflashcomp = gen2_flash_types; filehdr_size = sizeof(struct flash_file_hdr_g2); num_comp = ARRAY_SIZE(gen2_flash_types); img_hdrs_size = 0; } /* Get flash section info*/ fsec = get_fsec_info(adapter, filehdr_size + img_hdrs_size, fw); if (!fsec) { dev_err(dev, "Invalid Cookie. FW image may be corrupted\n"); return -1; } for (i = 0; i < num_comp; i++) { if (!is_comp_in_ufi(adapter, fsec, pflashcomp[i].img_type)) continue; if ((pflashcomp[i].optype == OPTYPE_NCSI_FW) && memcmp(adapter->fw_ver, "3.102.148.0", 11) < 0) continue; if (pflashcomp[i].optype == OPTYPE_PHY_FW && !phy_flashing_required(adapter)) continue; if (pflashcomp[i].optype == OPTYPE_REDBOOT) { status = be_check_flash_crc(adapter, fw->data, pflashcomp[i].offset, pflashcomp[i].size, filehdr_size + img_hdrs_size, OPTYPE_REDBOOT, &crc_match); if (status) { dev_err(dev, "Could not get CRC for 0x%x region\n", pflashcomp[i].optype); continue; } if (crc_match) continue; } p = fw->data + filehdr_size + pflashcomp[i].offset + img_hdrs_size; if (p + pflashcomp[i].size > fw->data + fw->size) return -1; status = be_flash(adapter, p, flash_cmd, pflashcomp[i].optype, pflashcomp[i].size, 0); if (status) { dev_err(dev, "Flashing section type 0x%x failed\n", pflashcomp[i].img_type); return status; } } return 0; } static u16 be_get_img_optype(struct flash_section_entry fsec_entry) { u32 img_type = le32_to_cpu(fsec_entry.type); u16 img_optype = le16_to_cpu(fsec_entry.optype); if (img_optype != 0xFFFF) return img_optype; switch (img_type) { case IMAGE_FIRMWARE_ISCSI: img_optype = OPTYPE_ISCSI_ACTIVE; break; case IMAGE_BOOT_CODE: img_optype = OPTYPE_REDBOOT; break; case IMAGE_OPTION_ROM_ISCSI: img_optype = OPTYPE_BIOS; break; case IMAGE_OPTION_ROM_PXE: img_optype = OPTYPE_PXE_BIOS; break; case IMAGE_OPTION_ROM_FCOE: img_optype = OPTYPE_FCOE_BIOS; break; case IMAGE_FIRMWARE_BACKUP_ISCSI: img_optype = OPTYPE_ISCSI_BACKUP; break; case IMAGE_NCSI: img_optype = OPTYPE_NCSI_FW; break; case IMAGE_FLASHISM_JUMPVECTOR: img_optype = OPTYPE_FLASHISM_JUMPVECTOR; break; case IMAGE_FIRMWARE_PHY: img_optype = OPTYPE_SH_PHY_FW; break; case IMAGE_REDBOOT_DIR: img_optype = OPTYPE_REDBOOT_DIR; break; case IMAGE_REDBOOT_CONFIG: img_optype = OPTYPE_REDBOOT_CONFIG; break; case IMAGE_UFI_DIR: img_optype = OPTYPE_UFI_DIR; break; default: break; } return img_optype; } static int be_flash_skyhawk(struct be_adapter *adapter, const struct firmware *fw, struct be_dma_mem *flash_cmd, int num_of_images) { int img_hdrs_size = num_of_images * sizeof(struct image_hdr); bool crc_match, old_fw_img, flash_offset_support = true; struct device *dev = &adapter->pdev->dev; struct flash_section_info *fsec = NULL; u32 img_offset, img_size, img_type; u16 img_optype, flash_optype; int status, i, filehdr_size; const u8 *p; filehdr_size = sizeof(struct flash_file_hdr_g3); fsec = get_fsec_info(adapter, filehdr_size + img_hdrs_size, fw); if (!fsec) { dev_err(dev, "Invalid Cookie. FW image may be corrupted\n"); return -EINVAL; } retry_flash: for (i = 0; i < le32_to_cpu(fsec->fsec_hdr.num_images); i++) { img_offset = le32_to_cpu(fsec->fsec_entry[i].offset); img_size = le32_to_cpu(fsec->fsec_entry[i].pad_size); img_type = le32_to_cpu(fsec->fsec_entry[i].type); img_optype = be_get_img_optype(fsec->fsec_entry[i]); old_fw_img = fsec->fsec_entry[i].optype == 0xFFFF; if (img_optype == 0xFFFF) continue; if (flash_offset_support) flash_optype = OPTYPE_OFFSET_SPECIFIED; else flash_optype = img_optype; /* Don't bother verifying CRC if an old FW image is being * flashed */ if (old_fw_img) goto flash; status = be_check_flash_crc(adapter, fw->data, img_offset, img_size, filehdr_size + img_hdrs_size, flash_optype, &crc_match); if (base_status(status) == MCC_STATUS_ILLEGAL_REQUEST || base_status(status) == MCC_STATUS_ILLEGAL_FIELD) { /* The current FW image on the card does not support * OFFSET based flashing. Retry using older mechanism * of OPTYPE based flashing */ if (flash_optype == OPTYPE_OFFSET_SPECIFIED) { flash_offset_support = false; goto retry_flash; } /* The current FW image on the card does not recognize * the new FLASH op_type. The FW download is partially * complete. Reboot the server now to enable FW image * to recognize the new FLASH op_type. To complete the * remaining process, download the same FW again after * the reboot. */ dev_err(dev, "Flash incomplete. Reset the server\n"); dev_err(dev, "Download FW image again after reset\n"); return -EAGAIN; } else if (status) { dev_err(dev, "Could not get CRC for 0x%x region\n", img_optype); return -EFAULT; } if (crc_match) continue; flash: p = fw->data + filehdr_size + img_offset + img_hdrs_size; if (p + img_size > fw->data + fw->size) return -1; status = be_flash(adapter, p, flash_cmd, flash_optype, img_size, img_offset); /* The current FW image on the card does not support OFFSET * based flashing. Retry using older mechanism of OPTYPE based * flashing */ if (base_status(status) == MCC_STATUS_ILLEGAL_FIELD && flash_optype == OPTYPE_OFFSET_SPECIFIED) { flash_offset_support = false; goto retry_flash; } /* For old FW images ignore ILLEGAL_FIELD error or errors on * UFI_DIR region */ if (old_fw_img && (base_status(status) == MCC_STATUS_ILLEGAL_FIELD || (img_optype == OPTYPE_UFI_DIR && base_status(status) == MCC_STATUS_FAILED))) { continue; } else if (status) { dev_err(dev, "Flashing section type 0x%x failed\n", img_type); switch (addl_status(status)) { case MCC_ADDL_STATUS_MISSING_SIGNATURE: dev_err(dev, "Digital signature missing in FW\n"); return -EINVAL; case MCC_ADDL_STATUS_INVALID_SIGNATURE: dev_err(dev, "Invalid digital signature in FW\n"); return -EINVAL; default: return -EFAULT; } } } return 0; } int lancer_fw_download(struct be_adapter *adapter, const struct firmware *fw) { struct device *dev = &adapter->pdev->dev; struct be_dma_mem flash_cmd; const u8 *data_ptr = NULL; u8 *dest_image_ptr = NULL; size_t image_size = 0; u32 chunk_size = 0; u32 data_written = 0; u32 offset = 0; int status = 0; u8 add_status = 0; u8 change_status; if (!IS_ALIGNED(fw->size, sizeof(u32))) { dev_err(dev, "FW image size should be multiple of 4\n"); return -EINVAL; } flash_cmd.size = sizeof(struct lancer_cmd_req_write_object) + LANCER_FW_DOWNLOAD_CHUNK; flash_cmd.va = dma_zalloc_coherent(dev, flash_cmd.size, &flash_cmd.dma, GFP_KERNEL); if (!flash_cmd.va) return -ENOMEM; dest_image_ptr = flash_cmd.va + sizeof(struct lancer_cmd_req_write_object); image_size = fw->size; data_ptr = fw->data; while (image_size) { chunk_size = min_t(u32, image_size, LANCER_FW_DOWNLOAD_CHUNK); /* Copy the image chunk content. */ memcpy(dest_image_ptr, data_ptr, chunk_size); status = lancer_cmd_write_object(adapter, &flash_cmd, chunk_size, offset, LANCER_FW_DOWNLOAD_LOCATION, &data_written, &change_status, &add_status); if (status) break; offset += data_written; data_ptr += data_written; image_size -= data_written; } if (!status) { /* Commit the FW written */ status = lancer_cmd_write_object(adapter, &flash_cmd, 0, offset, LANCER_FW_DOWNLOAD_LOCATION, &data_written, &change_status, &add_status); } dma_free_coherent(dev, flash_cmd.size, flash_cmd.va, flash_cmd.dma); if (status) { dev_err(dev, "Firmware load error\n"); return be_cmd_status(status); } dev_info(dev, "Firmware flashed successfully\n"); if (change_status == LANCER_FW_RESET_NEEDED) { dev_info(dev, "Resetting adapter to activate new FW\n"); status = lancer_physdev_ctrl(adapter, PHYSDEV_CONTROL_FW_RESET_MASK); if (status) { dev_err(dev, "Adapter busy, could not reset FW\n"); dev_err(dev, "Reboot server to activate new FW\n"); } } else if (change_status != LANCER_NO_RESET_NEEDED) { dev_info(dev, "Reboot server to activate new FW\n"); } return 0; } /* Check if the flash image file is compatible with the adapter that * is being flashed. */ static bool be_check_ufi_compatibility(struct be_adapter *adapter, struct flash_file_hdr_g3 *fhdr) { if (!fhdr) { dev_err(&adapter->pdev->dev, "Invalid FW UFI file"); return false; } /* First letter of the build version is used to identify * which chip this image file is meant for. */ switch (fhdr->build[0]) { case BLD_STR_UFI_TYPE_SH: if (!skyhawk_chip(adapter)) return false; break; case BLD_STR_UFI_TYPE_BE3: if (!BE3_chip(adapter)) return false; break; case BLD_STR_UFI_TYPE_BE2: if (!BE2_chip(adapter)) return false; break; default: return false; } /* In BE3 FW images the "asic_type_rev" field doesn't track the * asic_rev of the chips it is compatible with. * When asic_type_rev is 0 the image is compatible only with * pre-BE3-R chips (asic_rev < 0x10) */ if (BEx_chip(adapter) && fhdr->asic_type_rev == 0) return adapter->asic_rev < 0x10; else return (fhdr->asic_type_rev >= adapter->asic_rev); } int be_fw_download(struct be_adapter *adapter, const struct firmware *fw) { struct device *dev = &adapter->pdev->dev; struct flash_file_hdr_g3 *fhdr3; struct image_hdr *img_hdr_ptr; int status = 0, i, num_imgs; struct be_dma_mem flash_cmd; fhdr3 = (struct flash_file_hdr_g3 *)fw->data; if (!be_check_ufi_compatibility(adapter, fhdr3)) { dev_err(dev, "Flash image is not compatible with adapter\n"); return -EINVAL; } flash_cmd.size = sizeof(struct be_cmd_write_flashrom); flash_cmd.va = dma_zalloc_coherent(dev, flash_cmd.size, &flash_cmd.dma, GFP_KERNEL); if (!flash_cmd.va) return -ENOMEM; num_imgs = le32_to_cpu(fhdr3->num_imgs); for (i = 0; i < num_imgs; i++) { img_hdr_ptr = (struct image_hdr *)(fw->data + (sizeof(struct flash_file_hdr_g3) + i * sizeof(struct image_hdr))); if (!BE2_chip(adapter) && le32_to_cpu(img_hdr_ptr->imageid) != 1) continue; if (skyhawk_chip(adapter)) status = be_flash_skyhawk(adapter, fw, &flash_cmd, num_imgs); else status = be_flash_BEx(adapter, fw, &flash_cmd, num_imgs); } dma_free_coherent(dev, flash_cmd.size, flash_cmd.va, flash_cmd.dma); if (!status) dev_info(dev, "Firmware flashed successfully\n"); return status; } int be_cmd_enable_magic_wol(struct be_adapter *adapter, u8 *mac, struct be_dma_mem *nonemb_cmd) { struct be_mcc_wrb *wrb; struct be_cmd_req_acpi_wol_magic_config *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = nonemb_cmd->va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_ACPI_WOL_MAGIC_CONFIG, sizeof(*req), wrb, nonemb_cmd); memcpy(req->magic_mac, mac, ETH_ALEN); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_set_loopback(struct be_adapter *adapter, u8 port_num, u8 loopback_type, u8 enable) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_lmode *req; int status; if (!be_cmd_allowed(adapter, OPCODE_LOWLEVEL_SET_LOOPBACK_MODE, CMD_SUBSYSTEM_LOWLEVEL)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err_unlock; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_LOWLEVEL, OPCODE_LOWLEVEL_SET_LOOPBACK_MODE, sizeof(*req), wrb, NULL); req->src_port = port_num; req->dest_port = port_num; req->loopback_type = loopback_type; req->loopback_state = enable; status = be_mcc_notify(adapter); if (status) goto err_unlock; spin_unlock_bh(&adapter->mcc_lock); if (!wait_for_completion_timeout(&adapter->et_cmd_compl, msecs_to_jiffies(SET_LB_MODE_TIMEOUT))) status = -ETIMEDOUT; return status; err_unlock: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_loopback_test(struct be_adapter *adapter, u32 port_num, u32 loopback_type, u32 pkt_size, u32 num_pkts, u64 pattern) { struct be_mcc_wrb *wrb; struct be_cmd_req_loopback_test *req; struct be_cmd_resp_loopback_test *resp; int status; if (!be_cmd_allowed(adapter, OPCODE_LOWLEVEL_LOOPBACK_TEST, CMD_SUBSYSTEM_LOWLEVEL)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_LOWLEVEL, OPCODE_LOWLEVEL_LOOPBACK_TEST, sizeof(*req), wrb, NULL); req->hdr.timeout = cpu_to_le32(15); req->pattern = cpu_to_le64(pattern); req->src_port = cpu_to_le32(port_num); req->dest_port = cpu_to_le32(port_num); req->pkt_size = cpu_to_le32(pkt_size); req->num_pkts = cpu_to_le32(num_pkts); req->loopback_type = cpu_to_le32(loopback_type); status = be_mcc_notify(adapter); if (status) goto err; spin_unlock_bh(&adapter->mcc_lock); wait_for_completion(&adapter->et_cmd_compl); resp = embedded_payload(wrb); status = le32_to_cpu(resp->status); return status; err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_ddr_dma_test(struct be_adapter *adapter, u64 pattern, u32 byte_cnt, struct be_dma_mem *cmd) { struct be_mcc_wrb *wrb; struct be_cmd_req_ddrdma_test *req; int status; int i, j = 0; if (!be_cmd_allowed(adapter, OPCODE_LOWLEVEL_HOST_DDR_DMA, CMD_SUBSYSTEM_LOWLEVEL)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd->va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_LOWLEVEL, OPCODE_LOWLEVEL_HOST_DDR_DMA, cmd->size, wrb, cmd); req->pattern = cpu_to_le64(pattern); req->byte_count = cpu_to_le32(byte_cnt); for (i = 0; i < byte_cnt; i++) { req->snd_buff[i] = (u8)(pattern >> (j*8)); j++; if (j > 7) j = 0; } status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_ddrdma_test *resp; resp = cmd->va; if ((memcmp(resp->rcv_buff, req->snd_buff, byte_cnt) != 0) || resp->snd_err) { status = -1; } } err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_get_seeprom_data(struct be_adapter *adapter, struct be_dma_mem *nonemb_cmd) { struct be_mcc_wrb *wrb; struct be_cmd_req_seeprom_read *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = nonemb_cmd->va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SEEPROM_READ, sizeof(*req), wrb, nonemb_cmd); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_get_phy_info(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_phy_info *req; struct be_dma_mem cmd; int status; if (!be_cmd_allowed(adapter, OPCODE_COMMON_GET_PHY_DETAILS, CMD_SUBSYSTEM_COMMON)) return -EPERM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } cmd.size = sizeof(struct be_cmd_req_get_phy_info); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_ATOMIC); if (!cmd.va) { dev_err(&adapter->pdev->dev, "Memory alloc failure\n"); status = -ENOMEM; goto err; } req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_PHY_DETAILS, sizeof(*req), wrb, &cmd); status = be_mcc_notify_wait(adapter); if (!status) { struct be_phy_info *resp_phy_info = cmd.va + sizeof(struct be_cmd_req_hdr); adapter->phy.phy_type = le16_to_cpu(resp_phy_info->phy_type); adapter->phy.interface_type = le16_to_cpu(resp_phy_info->interface_type); adapter->phy.auto_speeds_supported = le16_to_cpu(resp_phy_info->auto_speeds_supported); adapter->phy.fixed_speeds_supported = le16_to_cpu(resp_phy_info->fixed_speeds_supported); adapter->phy.misc_params = le32_to_cpu(resp_phy_info->misc_params); if (BE2_chip(adapter)) { adapter->phy.fixed_speeds_supported = BE_SUPPORTED_SPEED_10GBPS | BE_SUPPORTED_SPEED_1GBPS; } } dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); err: spin_unlock_bh(&adapter->mcc_lock); return status; } static int be_cmd_set_qos(struct be_adapter *adapter, u32 bps, u32 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_qos *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_QOS, sizeof(*req), wrb, NULL); req->hdr.domain = domain; req->valid_bits = cpu_to_le32(BE_QOS_BITS_NIC); req->max_bps_nic = cpu_to_le32(bps); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_get_cntl_attributes(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_cntl_attribs *req; struct be_cmd_resp_cntl_attribs *resp; int status, i; int payload_len = max(sizeof(*req), sizeof(*resp)); struct mgmt_controller_attrib *attribs; struct be_dma_mem attribs_cmd; u32 *serial_num; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; memset(&attribs_cmd, 0, sizeof(struct be_dma_mem)); attribs_cmd.size = sizeof(struct be_cmd_resp_cntl_attribs); attribs_cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, attribs_cmd.size, &attribs_cmd.dma, GFP_ATOMIC); if (!attribs_cmd.va) { dev_err(&adapter->pdev->dev, "Memory allocation failure\n"); status = -ENOMEM; goto err; } wrb = wrb_from_mbox(adapter); if (!wrb) { status = -EBUSY; goto err; } req = attribs_cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_CNTL_ATTRIBUTES, payload_len, wrb, &attribs_cmd); status = be_mbox_notify_wait(adapter); if (!status) { attribs = attribs_cmd.va + sizeof(struct be_cmd_resp_hdr); adapter->hba_port_num = attribs->hba_attribs.phy_port; serial_num = attribs->hba_attribs.controller_serial_number; for (i = 0; i < CNTL_SERIAL_NUM_WORDS; i++) adapter->serial_num[i] = le32_to_cpu(serial_num[i]) & (BIT_MASK(16) - 1); } err: mutex_unlock(&adapter->mbox_lock); if (attribs_cmd.va) dma_free_coherent(&adapter->pdev->dev, attribs_cmd.size, attribs_cmd.va, attribs_cmd.dma); return status; } /* Uses mbox */ int be_cmd_req_native_mode(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_func_cap *req; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_DRIVER_FUNCTION_CAP, sizeof(*req), wrb, NULL); req->valid_cap_flags = cpu_to_le32(CAPABILITY_SW_TIMESTAMPS | CAPABILITY_BE3_NATIVE_ERX_API); req->cap_flags = cpu_to_le32(CAPABILITY_BE3_NATIVE_ERX_API); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_set_func_cap *resp = embedded_payload(wrb); adapter->be3_native = le32_to_cpu(resp->cap_flags) & CAPABILITY_BE3_NATIVE_ERX_API; if (!adapter->be3_native) dev_warn(&adapter->pdev->dev, "adapter not in advanced mode\n"); } err: mutex_unlock(&adapter->mbox_lock); return status; } /* Get privilege(s) for a function */ int be_cmd_get_fn_privileges(struct be_adapter *adapter, u32 *privilege, u32 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_fn_privileges *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_FN_PRIVILEGES, sizeof(*req), wrb, NULL); req->hdr.domain = domain; status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_fn_privileges *resp = embedded_payload(wrb); *privilege = le32_to_cpu(resp->privilege_mask); /* In UMC mode FW does not return right privileges. * Override with correct privilege equivalent to PF. */ if (BEx_chip(adapter) && be_is_mc(adapter) && be_physfn(adapter)) *privilege = MAX_PRIVILEGES; } err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Set privilege(s) for a function */ int be_cmd_set_fn_privileges(struct be_adapter *adapter, u32 privileges, u32 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_fn_privileges *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_FN_PRIVILEGES, sizeof(*req), wrb, NULL); req->hdr.domain = domain; if (lancer_chip(adapter)) req->privileges_lancer = cpu_to_le32(privileges); else req->privileges = cpu_to_le32(privileges); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* pmac_id_valid: true => pmac_id is supplied and MAC address is requested. * pmac_id_valid: false => pmac_id or MAC address is requested. * If pmac_id is returned, pmac_id_valid is returned as true */ int be_cmd_get_mac_from_list(struct be_adapter *adapter, u8 *mac, bool *pmac_id_valid, u32 *pmac_id, u32 if_handle, u8 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_mac_list *req; int status; int mac_count; struct be_dma_mem get_mac_list_cmd; int i; memset(&get_mac_list_cmd, 0, sizeof(struct be_dma_mem)); get_mac_list_cmd.size = sizeof(struct be_cmd_resp_get_mac_list); get_mac_list_cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, get_mac_list_cmd.size, &get_mac_list_cmd.dma, GFP_ATOMIC); if (!get_mac_list_cmd.va) { dev_err(&adapter->pdev->dev, "Memory allocation failure during GET_MAC_LIST\n"); return -ENOMEM; } spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto out; } req = get_mac_list_cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_MAC_LIST, get_mac_list_cmd.size, wrb, &get_mac_list_cmd); req->hdr.domain = domain; req->mac_type = MAC_ADDRESS_TYPE_NETWORK; if (*pmac_id_valid) { req->mac_id = cpu_to_le32(*pmac_id); req->iface_id = cpu_to_le16(if_handle); req->perm_override = 0; } else { req->perm_override = 1; } status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_mac_list *resp = get_mac_list_cmd.va; if (*pmac_id_valid) { memcpy(mac, resp->macid_macaddr.mac_addr_id.macaddr, ETH_ALEN); goto out; } mac_count = resp->true_mac_count + resp->pseudo_mac_count; /* Mac list returned could contain one or more active mac_ids * or one or more true or pseudo permanent mac addresses. * If an active mac_id is present, return first active mac_id * found. */ for (i = 0; i < mac_count; i++) { struct get_list_macaddr *mac_entry; u16 mac_addr_size; u32 mac_id; mac_entry = &resp->macaddr_list[i]; mac_addr_size = le16_to_cpu(mac_entry->mac_addr_size); /* mac_id is a 32 bit value and mac_addr size * is 6 bytes */ if (mac_addr_size == sizeof(u32)) { *pmac_id_valid = true; mac_id = mac_entry->mac_addr_id.s_mac_id.mac_id; *pmac_id = le32_to_cpu(mac_id); goto out; } } /* If no active mac_id found, return first mac addr */ *pmac_id_valid = false; memcpy(mac, resp->macaddr_list[0].mac_addr_id.macaddr, ETH_ALEN); } out: spin_unlock_bh(&adapter->mcc_lock); dma_free_coherent(&adapter->pdev->dev, get_mac_list_cmd.size, get_mac_list_cmd.va, get_mac_list_cmd.dma); return status; } int be_cmd_get_active_mac(struct be_adapter *adapter, u32 curr_pmac_id, u8 *mac, u32 if_handle, bool active, u32 domain) { if (!active) be_cmd_get_mac_from_list(adapter, mac, &active, &curr_pmac_id, if_handle, domain); if (BEx_chip(adapter)) return be_cmd_mac_addr_query(adapter, mac, false, if_handle, curr_pmac_id); else /* Fetch the MAC address using pmac_id */ return be_cmd_get_mac_from_list(adapter, mac, &active, &curr_pmac_id, if_handle, domain); } int be_cmd_get_perm_mac(struct be_adapter *adapter, u8 *mac) { int status; bool pmac_valid = false; eth_zero_addr(mac); if (BEx_chip(adapter)) { if (be_physfn(adapter)) status = be_cmd_mac_addr_query(adapter, mac, true, 0, 0); else status = be_cmd_mac_addr_query(adapter, mac, false, adapter->if_handle, 0); } else { status = be_cmd_get_mac_from_list(adapter, mac, &pmac_valid, NULL, adapter->if_handle, 0); } return status; } /* Uses synchronous MCCQ */ int be_cmd_set_mac_list(struct be_adapter *adapter, u8 *mac_array, u8 mac_count, u32 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_mac_list *req; int status; struct be_dma_mem cmd; memset(&cmd, 0, sizeof(struct be_dma_mem)); cmd.size = sizeof(struct be_cmd_req_set_mac_list); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_KERNEL); if (!cmd.va) return -ENOMEM; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_MAC_LIST, sizeof(*req), wrb, &cmd); req->hdr.domain = domain; req->mac_count = mac_count; if (mac_count) memcpy(req->mac, mac_array, ETH_ALEN*mac_count); status = be_mcc_notify_wait(adapter); err: dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); spin_unlock_bh(&adapter->mcc_lock); return status; } /* Wrapper to delete any active MACs and provision the new mac. * Changes to MAC_LIST are allowed iff none of the MAC addresses in the * current list are active. */ int be_cmd_set_mac(struct be_adapter *adapter, u8 *mac, int if_id, u32 dom) { bool active_mac = false; u8 old_mac[ETH_ALEN]; u32 pmac_id; int status; status = be_cmd_get_mac_from_list(adapter, old_mac, &active_mac, &pmac_id, if_id, dom); if (!status && active_mac) be_cmd_pmac_del(adapter, if_id, pmac_id, dom); return be_cmd_set_mac_list(adapter, mac, mac ? 1 : 0, dom); } int be_cmd_set_hsw_config(struct be_adapter *adapter, u16 pvid, u32 domain, u16 intf_id, u16 hsw_mode, u8 spoofchk) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_hsw_config *req; void *ctxt; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); ctxt = &req->context; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_HSW_CONFIG, sizeof(*req), wrb, NULL); req->hdr.domain = domain; AMAP_SET_BITS(struct amap_set_hsw_context, interface_id, ctxt, intf_id); if (pvid) { AMAP_SET_BITS(struct amap_set_hsw_context, pvid_valid, ctxt, 1); AMAP_SET_BITS(struct amap_set_hsw_context, pvid, ctxt, pvid); } if (!BEx_chip(adapter) && hsw_mode) { AMAP_SET_BITS(struct amap_set_hsw_context, interface_id, ctxt, adapter->hba_port_num); AMAP_SET_BITS(struct amap_set_hsw_context, pport, ctxt, 1); AMAP_SET_BITS(struct amap_set_hsw_context, port_fwd_type, ctxt, hsw_mode); } /* Enable/disable both mac and vlan spoof checking */ if (!BEx_chip(adapter) && spoofchk) { AMAP_SET_BITS(struct amap_set_hsw_context, mac_spoofchk, ctxt, spoofchk); AMAP_SET_BITS(struct amap_set_hsw_context, vlan_spoofchk, ctxt, spoofchk); } be_dws_cpu_to_le(req->context, sizeof(req->context)); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } /* Get Hyper switch config */ int be_cmd_get_hsw_config(struct be_adapter *adapter, u16 *pvid, u32 domain, u16 intf_id, u8 *mode, bool *spoofchk) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_hsw_config *req; void *ctxt; int status; u16 vid; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); ctxt = &req->context; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_HSW_CONFIG, sizeof(*req), wrb, NULL); req->hdr.domain = domain; AMAP_SET_BITS(struct amap_get_hsw_req_context, interface_id, ctxt, intf_id); AMAP_SET_BITS(struct amap_get_hsw_req_context, pvid_valid, ctxt, 1); if (!BEx_chip(adapter) && mode) { AMAP_SET_BITS(struct amap_get_hsw_req_context, interface_id, ctxt, adapter->hba_port_num); AMAP_SET_BITS(struct amap_get_hsw_req_context, pport, ctxt, 1); } be_dws_cpu_to_le(req->context, sizeof(req->context)); status = be_mcc_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_hsw_config *resp = embedded_payload(wrb); be_dws_le_to_cpu(&resp->context, sizeof(resp->context)); vid = AMAP_GET_BITS(struct amap_get_hsw_resp_context, pvid, &resp->context); if (pvid) *pvid = le16_to_cpu(vid); if (mode) *mode = AMAP_GET_BITS(struct amap_get_hsw_resp_context, port_fwd_type, &resp->context); if (spoofchk) *spoofchk = AMAP_GET_BITS(struct amap_get_hsw_resp_context, spoofchk, &resp->context); } err: spin_unlock_bh(&adapter->mcc_lock); return status; } static bool be_is_wol_excluded(struct be_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; if (be_virtfn(adapter)) return true; switch (pdev->subsystem_device) { case OC_SUBSYS_DEVICE_ID1: case OC_SUBSYS_DEVICE_ID2: case OC_SUBSYS_DEVICE_ID3: case OC_SUBSYS_DEVICE_ID4: return true; default: return false; } } int be_cmd_get_acpi_wol_cap(struct be_adapter *adapter) { struct be_mcc_wrb *wrb; struct be_cmd_req_acpi_wol_magic_config_v1 *req; int status = 0; struct be_dma_mem cmd; if (!be_cmd_allowed(adapter, OPCODE_ETH_ACPI_WOL_MAGIC_CONFIG, CMD_SUBSYSTEM_ETH)) return -EPERM; if (be_is_wol_excluded(adapter)) return status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; memset(&cmd, 0, sizeof(struct be_dma_mem)); cmd.size = sizeof(struct be_cmd_resp_acpi_wol_magic_config_v1); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_ATOMIC); if (!cmd.va) { dev_err(&adapter->pdev->dev, "Memory allocation failure\n"); status = -ENOMEM; goto err; } wrb = wrb_from_mbox(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_ETH, OPCODE_ETH_ACPI_WOL_MAGIC_CONFIG, sizeof(*req), wrb, &cmd); req->hdr.version = 1; req->query_options = BE_GET_WOL_CAP; status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_acpi_wol_magic_config_v1 *resp; resp = (struct be_cmd_resp_acpi_wol_magic_config_v1 *)cmd.va; adapter->wol_cap = resp->wol_settings; if (adapter->wol_cap & BE_WOL_CAP) adapter->wol_en = true; } err: mutex_unlock(&adapter->mbox_lock); if (cmd.va) dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); return status; } int be_cmd_set_fw_log_level(struct be_adapter *adapter, u32 level) { struct be_dma_mem extfat_cmd; struct be_fat_conf_params *cfgs; int status; int i, j; memset(&extfat_cmd, 0, sizeof(struct be_dma_mem)); extfat_cmd.size = sizeof(struct be_cmd_resp_get_ext_fat_caps); extfat_cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, extfat_cmd.size, &extfat_cmd.dma, GFP_ATOMIC); if (!extfat_cmd.va) return -ENOMEM; status = be_cmd_get_ext_fat_capabilites(adapter, &extfat_cmd); if (status) goto err; cfgs = (struct be_fat_conf_params *) (extfat_cmd.va + sizeof(struct be_cmd_resp_hdr)); for (i = 0; i < le32_to_cpu(cfgs->num_modules); i++) { u32 num_modes = le32_to_cpu(cfgs->module[i].num_modes); for (j = 0; j < num_modes; j++) { if (cfgs->module[i].trace_lvl[j].mode == MODE_UART) cfgs->module[i].trace_lvl[j].dbg_lvl = cpu_to_le32(level); } } status = be_cmd_set_ext_fat_capabilites(adapter, &extfat_cmd, cfgs); err: dma_free_coherent(&adapter->pdev->dev, extfat_cmd.size, extfat_cmd.va, extfat_cmd.dma); return status; } int be_cmd_get_fw_log_level(struct be_adapter *adapter) { struct be_dma_mem extfat_cmd; struct be_fat_conf_params *cfgs; int status, j; int level = 0; memset(&extfat_cmd, 0, sizeof(struct be_dma_mem)); extfat_cmd.size = sizeof(struct be_cmd_resp_get_ext_fat_caps); extfat_cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, extfat_cmd.size, &extfat_cmd.dma, GFP_ATOMIC); if (!extfat_cmd.va) { dev_err(&adapter->pdev->dev, "%s: Memory allocation failure\n", __func__); goto err; } status = be_cmd_get_ext_fat_capabilites(adapter, &extfat_cmd); if (!status) { cfgs = (struct be_fat_conf_params *)(extfat_cmd.va + sizeof(struct be_cmd_resp_hdr)); for (j = 0; j < le32_to_cpu(cfgs->module[0].num_modes); j++) { if (cfgs->module[0].trace_lvl[j].mode == MODE_UART) level = cfgs->module[0].trace_lvl[j].dbg_lvl; } } dma_free_coherent(&adapter->pdev->dev, extfat_cmd.size, extfat_cmd.va, extfat_cmd.dma); err: return level; } int be_cmd_get_ext_fat_capabilites(struct be_adapter *adapter, struct be_dma_mem *cmd) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_ext_fat_caps *req; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd->va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_EXT_FAT_CAPABILITES, cmd->size, wrb, cmd); req->parameter_type = cpu_to_le32(1); status = be_mbox_notify_wait(adapter); err: mutex_unlock(&adapter->mbox_lock); return status; } int be_cmd_set_ext_fat_capabilites(struct be_adapter *adapter, struct be_dma_mem *cmd, struct be_fat_conf_params *configs) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_ext_fat_caps *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd->va; memcpy(&req->set_params, configs, sizeof(struct be_fat_conf_params)); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_EXT_FAT_CAPABILITES, cmd->size, wrb, cmd); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_query_port_name(struct be_adapter *adapter) { struct be_cmd_req_get_port_name *req; struct be_mcc_wrb *wrb; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_PORT_NAME, sizeof(*req), wrb, NULL); if (!BEx_chip(adapter)) req->hdr.version = 1; status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_port_name *resp = embedded_payload(wrb); adapter->port_name = resp->port_name[adapter->hba_port_num]; } else { adapter->port_name = adapter->hba_port_num + '0'; } mutex_unlock(&adapter->mbox_lock); return status; } /* When more than 1 NIC descriptor is present in the descriptor list, * the caller must specify the pf_num to obtain the NIC descriptor * corresponding to its pci function. * get_vft must be true when the caller wants the VF-template desc of the * PF-pool. * The pf_num should be set to PF_NUM_IGNORE when the caller knows * that only it's NIC descriptor is present in the descriptor list. */ static struct be_nic_res_desc *be_get_nic_desc(u8 *buf, u32 desc_count, bool get_vft, u8 pf_num) { struct be_res_desc_hdr *hdr = (struct be_res_desc_hdr *)buf; struct be_nic_res_desc *nic; int i; for (i = 0; i < desc_count; i++) { if (hdr->desc_type == NIC_RESOURCE_DESC_TYPE_V0 || hdr->desc_type == NIC_RESOURCE_DESC_TYPE_V1) { nic = (struct be_nic_res_desc *)hdr; if ((pf_num == PF_NUM_IGNORE || nic->pf_num == pf_num) && (!get_vft || nic->flags & BIT(VFT_SHIFT))) return nic; } hdr->desc_len = hdr->desc_len ? : RESOURCE_DESC_SIZE_V0; hdr = (void *)hdr + hdr->desc_len; } return NULL; } static struct be_nic_res_desc *be_get_vft_desc(u8 *buf, u32 desc_count, u8 pf_num) { return be_get_nic_desc(buf, desc_count, true, pf_num); } static struct be_nic_res_desc *be_get_func_nic_desc(u8 *buf, u32 desc_count, u8 pf_num) { return be_get_nic_desc(buf, desc_count, false, pf_num); } static struct be_pcie_res_desc *be_get_pcie_desc(u8 *buf, u32 desc_count, u8 pf_num) { struct be_res_desc_hdr *hdr = (struct be_res_desc_hdr *)buf; struct be_pcie_res_desc *pcie; int i; for (i = 0; i < desc_count; i++) { if (hdr->desc_type == PCIE_RESOURCE_DESC_TYPE_V0 || hdr->desc_type == PCIE_RESOURCE_DESC_TYPE_V1) { pcie = (struct be_pcie_res_desc *)hdr; if (pcie->pf_num == pf_num) return pcie; } hdr->desc_len = hdr->desc_len ? : RESOURCE_DESC_SIZE_V0; hdr = (void *)hdr + hdr->desc_len; } return NULL; } static struct be_port_res_desc *be_get_port_desc(u8 *buf, u32 desc_count) { struct be_res_desc_hdr *hdr = (struct be_res_desc_hdr *)buf; int i; for (i = 0; i < desc_count; i++) { if (hdr->desc_type == PORT_RESOURCE_DESC_TYPE_V1) return (struct be_port_res_desc *)hdr; hdr->desc_len = hdr->desc_len ? : RESOURCE_DESC_SIZE_V0; hdr = (void *)hdr + hdr->desc_len; } return NULL; } static void be_copy_nic_desc(struct be_resources *res, struct be_nic_res_desc *desc) { res->max_uc_mac = le16_to_cpu(desc->unicast_mac_count); res->max_vlans = le16_to_cpu(desc->vlan_count); res->max_mcast_mac = le16_to_cpu(desc->mcast_mac_count); res->max_tx_qs = le16_to_cpu(desc->txq_count); res->max_rss_qs = le16_to_cpu(desc->rssq_count); res->max_rx_qs = le16_to_cpu(desc->rq_count); res->max_evt_qs = le16_to_cpu(desc->eq_count); res->max_cq_count = le16_to_cpu(desc->cq_count); res->max_iface_count = le16_to_cpu(desc->iface_count); res->max_mcc_count = le16_to_cpu(desc->mcc_count); /* Clear flags that driver is not interested in */ res->if_cap_flags = le32_to_cpu(desc->cap_flags) & BE_IF_CAP_FLAGS_WANT; } /* Uses Mbox */ int be_cmd_get_func_config(struct be_adapter *adapter, struct be_resources *res) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_func_config *req; int status; struct be_dma_mem cmd; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; memset(&cmd, 0, sizeof(struct be_dma_mem)); cmd.size = sizeof(struct be_cmd_resp_get_func_config); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_ATOMIC); if (!cmd.va) { dev_err(&adapter->pdev->dev, "Memory alloc failure\n"); status = -ENOMEM; goto err; } wrb = wrb_from_mbox(adapter); if (!wrb) { status = -EBUSY; goto err; } req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_FUNC_CONFIG, cmd.size, wrb, &cmd); if (skyhawk_chip(adapter)) req->hdr.version = 1; status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_func_config *resp = cmd.va; u32 desc_count = le32_to_cpu(resp->desc_count); struct be_nic_res_desc *desc; /* GET_FUNC_CONFIG returns resource descriptors of the * current function only. So, pf_num should be set to * PF_NUM_IGNORE. */ desc = be_get_func_nic_desc(resp->func_param, desc_count, PF_NUM_IGNORE); if (!desc) { status = -EINVAL; goto err; } /* Store pf_num & vf_num for later use in GET_PROFILE_CONFIG */ adapter->pf_num = desc->pf_num; adapter->vf_num = desc->vf_num; if (res) be_copy_nic_desc(res, desc); } err: mutex_unlock(&adapter->mbox_lock); if (cmd.va) dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); return status; } /* Will use MBOX only if MCCQ has not been created */ int be_cmd_get_profile_config(struct be_adapter *adapter, struct be_resources *res, u8 query, u8 domain) { struct be_cmd_resp_get_profile_config *resp; struct be_cmd_req_get_profile_config *req; struct be_nic_res_desc *vf_res; struct be_pcie_res_desc *pcie; struct be_port_res_desc *port; struct be_nic_res_desc *nic; struct be_mcc_wrb wrb = {0}; struct be_dma_mem cmd; u16 desc_count; int status; memset(&cmd, 0, sizeof(struct be_dma_mem)); cmd.size = sizeof(struct be_cmd_resp_get_profile_config); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_ATOMIC); if (!cmd.va) return -ENOMEM; req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_PROFILE_CONFIG, cmd.size, &wrb, &cmd); if (!lancer_chip(adapter)) req->hdr.version = 1; req->type = ACTIVE_PROFILE_TYPE; req->hdr.domain = domain; /* When QUERY_MODIFIABLE_FIELDS_TYPE bit is set, cmd returns the * descriptors with all bits set to "1" for the fields which can be * modified using SET_PROFILE_CONFIG cmd. */ if (query == RESOURCE_MODIFIABLE) req->type |= QUERY_MODIFIABLE_FIELDS_TYPE; status = be_cmd_notify_wait(adapter, &wrb); if (status) goto err; resp = cmd.va; desc_count = le16_to_cpu(resp->desc_count); pcie = be_get_pcie_desc(resp->func_param, desc_count, adapter->pf_num); if (pcie) res->max_vfs = le16_to_cpu(pcie->num_vfs); port = be_get_port_desc(resp->func_param, desc_count); if (port) adapter->mc_type = port->mc_type; nic = be_get_func_nic_desc(resp->func_param, desc_count, adapter->pf_num); if (nic) be_copy_nic_desc(res, nic); vf_res = be_get_vft_desc(resp->func_param, desc_count, adapter->pf_num); if (vf_res) res->vf_if_cap_flags = vf_res->cap_flags; err: if (cmd.va) dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); return status; } /* Will use MBOX only if MCCQ has not been created */ static int be_cmd_set_profile_config(struct be_adapter *adapter, void *desc, int size, int count, u8 version, u8 domain) { struct be_cmd_req_set_profile_config *req; struct be_mcc_wrb wrb = {0}; struct be_dma_mem cmd; int status; memset(&cmd, 0, sizeof(struct be_dma_mem)); cmd.size = sizeof(struct be_cmd_req_set_profile_config); cmd.va = dma_zalloc_coherent(&adapter->pdev->dev, cmd.size, &cmd.dma, GFP_ATOMIC); if (!cmd.va) return -ENOMEM; req = cmd.va; be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_PROFILE_CONFIG, cmd.size, &wrb, &cmd); req->hdr.version = version; req->hdr.domain = domain; req->desc_count = cpu_to_le32(count); memcpy(req->desc, desc, size); status = be_cmd_notify_wait(adapter, &wrb); if (cmd.va) dma_free_coherent(&adapter->pdev->dev, cmd.size, cmd.va, cmd.dma); return status; } /* Mark all fields invalid */ static void be_reset_nic_desc(struct be_nic_res_desc *nic) { memset(nic, 0, sizeof(*nic)); nic->unicast_mac_count = 0xFFFF; nic->mcc_count = 0xFFFF; nic->vlan_count = 0xFFFF; nic->mcast_mac_count = 0xFFFF; nic->txq_count = 0xFFFF; nic->rq_count = 0xFFFF; nic->rssq_count = 0xFFFF; nic->lro_count = 0xFFFF; nic->cq_count = 0xFFFF; nic->toe_conn_count = 0xFFFF; nic->eq_count = 0xFFFF; nic->iface_count = 0xFFFF; nic->link_param = 0xFF; nic->channel_id_param = cpu_to_le16(0xF000); nic->acpi_params = 0xFF; nic->wol_param = 0x0F; nic->tunnel_iface_count = 0xFFFF; nic->direct_tenant_iface_count = 0xFFFF; nic->bw_min = 0xFFFFFFFF; nic->bw_max = 0xFFFFFFFF; } /* Mark all fields invalid */ static void be_reset_pcie_desc(struct be_pcie_res_desc *pcie) { memset(pcie, 0, sizeof(*pcie)); pcie->sriov_state = 0xFF; pcie->pf_state = 0xFF; pcie->pf_type = 0xFF; pcie->num_vfs = 0xFFFF; } int be_cmd_config_qos(struct be_adapter *adapter, u32 max_rate, u16 link_speed, u8 domain) { struct be_nic_res_desc nic_desc; u32 bw_percent; u16 version = 0; if (BE3_chip(adapter)) return be_cmd_set_qos(adapter, max_rate / 10, domain); be_reset_nic_desc(&nic_desc); nic_desc.pf_num = adapter->pf_num; nic_desc.vf_num = domain; nic_desc.bw_min = 0; if (lancer_chip(adapter)) { nic_desc.hdr.desc_type = NIC_RESOURCE_DESC_TYPE_V0; nic_desc.hdr.desc_len = RESOURCE_DESC_SIZE_V0; nic_desc.flags = (1 << QUN_SHIFT) | (1 << IMM_SHIFT) | (1 << NOSV_SHIFT); nic_desc.bw_max = cpu_to_le32(max_rate / 10); } else { version = 1; nic_desc.hdr.desc_type = NIC_RESOURCE_DESC_TYPE_V1; nic_desc.hdr.desc_len = RESOURCE_DESC_SIZE_V1; nic_desc.flags = (1 << IMM_SHIFT) | (1 << NOSV_SHIFT); bw_percent = max_rate ? (max_rate * 100) / link_speed : 100; nic_desc.bw_max = cpu_to_le32(bw_percent); } return be_cmd_set_profile_config(adapter, &nic_desc, nic_desc.hdr.desc_len, 1, version, domain); } static void be_fill_vf_res_template(struct be_adapter *adapter, struct be_resources pool_res, u16 num_vfs, u16 num_vf_qs, struct be_nic_res_desc *nic_vft) { u32 vf_if_cap_flags = pool_res.vf_if_cap_flags; struct be_resources res_mod = {0}; /* Resource with fields set to all '1's by GET_PROFILE_CONFIG cmd, * which are modifiable using SET_PROFILE_CONFIG cmd. */ be_cmd_get_profile_config(adapter, &res_mod, RESOURCE_MODIFIABLE, 0); /* If RSS IFACE capability flags are modifiable for a VF, set the * capability flag as valid and set RSS and DEFQ_RSS IFACE flags if * more than 1 RSSQ is available for a VF. * Otherwise, provision only 1 queue pair for VF. */ if (res_mod.vf_if_cap_flags & BE_IF_FLAGS_RSS) { nic_vft->flags |= BIT(IF_CAPS_FLAGS_VALID_SHIFT); if (num_vf_qs > 1) { vf_if_cap_flags |= BE_IF_FLAGS_RSS; if (pool_res.if_cap_flags & BE_IF_FLAGS_DEFQ_RSS) vf_if_cap_flags |= BE_IF_FLAGS_DEFQ_RSS; } else { vf_if_cap_flags &= ~(BE_IF_FLAGS_RSS | BE_IF_FLAGS_DEFQ_RSS); } } else { num_vf_qs = 1; } if (res_mod.vf_if_cap_flags & BE_IF_FLAGS_VLAN_PROMISCUOUS) { nic_vft->flags |= BIT(IF_CAPS_FLAGS_VALID_SHIFT); vf_if_cap_flags &= ~BE_IF_FLAGS_VLAN_PROMISCUOUS; } nic_vft->cap_flags = cpu_to_le32(vf_if_cap_flags); nic_vft->rq_count = cpu_to_le16(num_vf_qs); nic_vft->txq_count = cpu_to_le16(num_vf_qs); nic_vft->rssq_count = cpu_to_le16(num_vf_qs); nic_vft->cq_count = cpu_to_le16(pool_res.max_cq_count / (num_vfs + 1)); /* Distribute unicast MACs, VLANs, IFACE count and MCCQ count equally * among the PF and it's VFs, if the fields are changeable */ if (res_mod.max_uc_mac == FIELD_MODIFIABLE) nic_vft->unicast_mac_count = cpu_to_le16(pool_res.max_uc_mac / (num_vfs + 1)); if (res_mod.max_vlans == FIELD_MODIFIABLE) nic_vft->vlan_count = cpu_to_le16(pool_res.max_vlans / (num_vfs + 1)); if (res_mod.max_iface_count == FIELD_MODIFIABLE) nic_vft->iface_count = cpu_to_le16(pool_res.max_iface_count / (num_vfs + 1)); if (res_mod.max_mcc_count == FIELD_MODIFIABLE) nic_vft->mcc_count = cpu_to_le16(pool_res.max_mcc_count / (num_vfs + 1)); } int be_cmd_set_sriov_config(struct be_adapter *adapter, struct be_resources pool_res, u16 num_vfs, u16 num_vf_qs) { struct { struct be_pcie_res_desc pcie; struct be_nic_res_desc nic_vft; } __packed desc; /* PF PCIE descriptor */ be_reset_pcie_desc(&desc.pcie); desc.pcie.hdr.desc_type = PCIE_RESOURCE_DESC_TYPE_V1; desc.pcie.hdr.desc_len = RESOURCE_DESC_SIZE_V1; desc.pcie.flags = BIT(IMM_SHIFT) | BIT(NOSV_SHIFT); desc.pcie.pf_num = adapter->pdev->devfn; desc.pcie.sriov_state = num_vfs ? 1 : 0; desc.pcie.num_vfs = cpu_to_le16(num_vfs); /* VF NIC Template descriptor */ be_reset_nic_desc(&desc.nic_vft); desc.nic_vft.hdr.desc_type = NIC_RESOURCE_DESC_TYPE_V1; desc.nic_vft.hdr.desc_len = RESOURCE_DESC_SIZE_V1; desc.nic_vft.flags = BIT(VFT_SHIFT) | BIT(IMM_SHIFT) | BIT(NOSV_SHIFT); desc.nic_vft.pf_num = adapter->pdev->devfn; desc.nic_vft.vf_num = 0; be_fill_vf_res_template(adapter, pool_res, num_vfs, num_vf_qs, &desc.nic_vft); return be_cmd_set_profile_config(adapter, &desc, 2 * RESOURCE_DESC_SIZE_V1, 2, 1, 0); } int be_cmd_manage_iface(struct be_adapter *adapter, u32 iface, u8 op) { struct be_mcc_wrb *wrb; struct be_cmd_req_manage_iface_filters *req; int status; if (iface == 0xFFFFFFFF) return -1; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_MANAGE_IFACE_FILTERS, sizeof(*req), wrb, NULL); req->op = op; req->target_iface_id = cpu_to_le32(iface); status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_set_vxlan_port(struct be_adapter *adapter, __be16 port) { struct be_port_res_desc port_desc; memset(&port_desc, 0, sizeof(port_desc)); port_desc.hdr.desc_type = PORT_RESOURCE_DESC_TYPE_V1; port_desc.hdr.desc_len = RESOURCE_DESC_SIZE_V1; port_desc.flags = (1 << IMM_SHIFT) | (1 << NOSV_SHIFT); port_desc.link_num = adapter->hba_port_num; if (port) { port_desc.nv_flags = NV_TYPE_VXLAN | (1 << SOCVID_SHIFT) | (1 << RCVID_SHIFT); port_desc.nv_port = swab16(port); } else { port_desc.nv_flags = NV_TYPE_DISABLED; port_desc.nv_port = 0; } return be_cmd_set_profile_config(adapter, &port_desc, RESOURCE_DESC_SIZE_V1, 1, 1, 0); } int be_cmd_get_if_id(struct be_adapter *adapter, struct be_vf_cfg *vf_cfg, int vf_num) { struct be_mcc_wrb *wrb; struct be_cmd_req_get_iface_list *req; struct be_cmd_resp_get_iface_list *resp; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_IFACE_LIST, sizeof(*resp), wrb, NULL); req->hdr.domain = vf_num + 1; status = be_mcc_notify_wait(adapter); if (!status) { resp = (struct be_cmd_resp_get_iface_list *)req; vf_cfg->if_handle = le32_to_cpu(resp->if_desc.if_id); } err: spin_unlock_bh(&adapter->mcc_lock); return status; } static int lancer_wait_idle(struct be_adapter *adapter) { #define SLIPORT_IDLE_TIMEOUT 30 u32 reg_val; int status = 0, i; for (i = 0; i < SLIPORT_IDLE_TIMEOUT; i++) { reg_val = ioread32(adapter->db + PHYSDEV_CONTROL_OFFSET); if ((reg_val & PHYSDEV_CONTROL_INP_MASK) == 0) break; ssleep(1); } if (i == SLIPORT_IDLE_TIMEOUT) status = -1; return status; } int lancer_physdev_ctrl(struct be_adapter *adapter, u32 mask) { int status = 0; status = lancer_wait_idle(adapter); if (status) return status; iowrite32(mask, adapter->db + PHYSDEV_CONTROL_OFFSET); return status; } /* Routine to check whether dump image is present or not */ bool dump_present(struct be_adapter *adapter) { u32 sliport_status = 0; sliport_status = ioread32(adapter->db + SLIPORT_STATUS_OFFSET); return !!(sliport_status & SLIPORT_STATUS_DIP_MASK); } int lancer_initiate_dump(struct be_adapter *adapter) { struct device *dev = &adapter->pdev->dev; int status; if (dump_present(adapter)) { dev_info(dev, "Previous dump not cleared, not forcing dump\n"); return -EEXIST; } /* give firmware reset and diagnostic dump */ status = lancer_physdev_ctrl(adapter, PHYSDEV_CONTROL_FW_RESET_MASK | PHYSDEV_CONTROL_DD_MASK); if (status < 0) { dev_err(dev, "FW reset failed\n"); return status; } status = lancer_wait_idle(adapter); if (status) return status; if (!dump_present(adapter)) { dev_err(dev, "FW dump not generated\n"); return -EIO; } return 0; } int lancer_delete_dump(struct be_adapter *adapter) { int status; status = lancer_cmd_delete_object(adapter, LANCER_FW_DUMP_FILE); return be_cmd_status(status); } /* Uses sync mcc */ int be_cmd_enable_vf(struct be_adapter *adapter, u8 domain) { struct be_mcc_wrb *wrb; struct be_cmd_enable_disable_vf *req; int status; if (BEx_chip(adapter)) return 0; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_ENABLE_DISABLE_VF, sizeof(*req), wrb, NULL); req->hdr.domain = domain; req->enable = 1; status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_intr_set(struct be_adapter *adapter, bool intr_enable) { struct be_mcc_wrb *wrb; struct be_cmd_req_intr_set *req; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_INTERRUPT_ENABLE, sizeof(*req), wrb, NULL); req->intr_enabled = intr_enable; status = be_mbox_notify_wait(adapter); mutex_unlock(&adapter->mbox_lock); return status; } /* Uses MBOX */ int be_cmd_get_active_profile(struct be_adapter *adapter, u16 *profile_id) { struct be_cmd_req_get_active_profile *req; struct be_mcc_wrb *wrb; int status; if (mutex_lock_interruptible(&adapter->mbox_lock)) return -1; wrb = wrb_from_mbox(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_GET_ACTIVE_PROFILE, sizeof(*req), wrb, NULL); status = be_mbox_notify_wait(adapter); if (!status) { struct be_cmd_resp_get_active_profile *resp = embedded_payload(wrb); *profile_id = le16_to_cpu(resp->active_profile_id); } err: mutex_unlock(&adapter->mbox_lock); return status; } int __be_cmd_set_logical_link_config(struct be_adapter *adapter, int link_state, int version, u8 domain) { struct be_mcc_wrb *wrb; struct be_cmd_req_set_ll_link *req; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(&req->hdr, CMD_SUBSYSTEM_COMMON, OPCODE_COMMON_SET_LOGICAL_LINK_CONFIG, sizeof(*req), wrb, NULL); req->hdr.version = version; req->hdr.domain = domain; if (link_state == IFLA_VF_LINK_STATE_ENABLE || link_state == IFLA_VF_LINK_STATE_AUTO) req->link_config |= PLINK_ENABLE; if (link_state == IFLA_VF_LINK_STATE_AUTO) req->link_config |= PLINK_TRACK; status = be_mcc_notify_wait(adapter); err: spin_unlock_bh(&adapter->mcc_lock); return status; } int be_cmd_set_logical_link_config(struct be_adapter *adapter, int link_state, u8 domain) { int status; if (BEx_chip(adapter)) return -EOPNOTSUPP; status = __be_cmd_set_logical_link_config(adapter, link_state, 2, domain); /* Version 2 of the command will not be recognized by older FW. * On such a failure issue version 1 of the command. */ if (base_status(status) == MCC_STATUS_ILLEGAL_REQUEST) status = __be_cmd_set_logical_link_config(adapter, link_state, 1, domain); return status; } int be_roce_mcc_cmd(void *netdev_handle, void *wrb_payload, int wrb_payload_size, u16 *cmd_status, u16 *ext_status) { struct be_adapter *adapter = netdev_priv(netdev_handle); struct be_mcc_wrb *wrb; struct be_cmd_req_hdr *hdr = (struct be_cmd_req_hdr *)wrb_payload; struct be_cmd_req_hdr *req; struct be_cmd_resp_hdr *resp; int status; spin_lock_bh(&adapter->mcc_lock); wrb = wrb_from_mccq(adapter); if (!wrb) { status = -EBUSY; goto err; } req = embedded_payload(wrb); resp = embedded_payload(wrb); be_wrb_cmd_hdr_prepare(req, hdr->subsystem, hdr->opcode, wrb_payload_size, wrb, NULL); memcpy(req, wrb_payload, wrb_payload_size); be_dws_cpu_to_le(req, wrb_payload_size); status = be_mcc_notify_wait(adapter); if (cmd_status) *cmd_status = (status & 0xffff); if (ext_status) *ext_status = 0; memcpy(wrb_payload, resp, sizeof(*resp) + resp->response_length); be_dws_le_to_cpu(wrb_payload, sizeof(*resp) + resp->response_length); err: spin_unlock_bh(&adapter->mcc_lock); return status; } EXPORT_SYMBOL(be_roce_mcc_cmd);