// SPDX-License-Identifier: GPL-2.0-only /* * Mediatek MT7530 DSA Switch driver * Copyright (C) 2017 Sean Wang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mt7530.h" static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs) { return container_of(pcs, struct mt753x_pcs, pcs); } /* String, offset, and register size in bytes if different from 4 bytes */ static const struct mt7530_mib_desc mt7530_mib[] = { MIB_DESC(1, 0x00, "TxDrop"), MIB_DESC(1, 0x04, "TxCrcErr"), MIB_DESC(1, 0x08, "TxUnicast"), MIB_DESC(1, 0x0c, "TxMulticast"), MIB_DESC(1, 0x10, "TxBroadcast"), MIB_DESC(1, 0x14, "TxCollision"), MIB_DESC(1, 0x18, "TxSingleCollision"), MIB_DESC(1, 0x1c, "TxMultipleCollision"), MIB_DESC(1, 0x20, "TxDeferred"), MIB_DESC(1, 0x24, "TxLateCollision"), MIB_DESC(1, 0x28, "TxExcessiveCollistion"), MIB_DESC(1, 0x2c, "TxPause"), MIB_DESC(1, 0x30, "TxPktSz64"), MIB_DESC(1, 0x34, "TxPktSz65To127"), MIB_DESC(1, 0x38, "TxPktSz128To255"), MIB_DESC(1, 0x3c, "TxPktSz256To511"), MIB_DESC(1, 0x40, "TxPktSz512To1023"), MIB_DESC(1, 0x44, "Tx1024ToMax"), MIB_DESC(2, 0x48, "TxBytes"), MIB_DESC(1, 0x60, "RxDrop"), MIB_DESC(1, 0x64, "RxFiltering"), MIB_DESC(1, 0x68, "RxUnicast"), MIB_DESC(1, 0x6c, "RxMulticast"), MIB_DESC(1, 0x70, "RxBroadcast"), MIB_DESC(1, 0x74, "RxAlignErr"), MIB_DESC(1, 0x78, "RxCrcErr"), MIB_DESC(1, 0x7c, "RxUnderSizeErr"), MIB_DESC(1, 0x80, "RxFragErr"), MIB_DESC(1, 0x84, "RxOverSzErr"), MIB_DESC(1, 0x88, "RxJabberErr"), MIB_DESC(1, 0x8c, "RxPause"), MIB_DESC(1, 0x90, "RxPktSz64"), MIB_DESC(1, 0x94, "RxPktSz65To127"), MIB_DESC(1, 0x98, "RxPktSz128To255"), MIB_DESC(1, 0x9c, "RxPktSz256To511"), MIB_DESC(1, 0xa0, "RxPktSz512To1023"), MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), MIB_DESC(2, 0xa8, "RxBytes"), MIB_DESC(1, 0xb0, "RxCtrlDrop"), MIB_DESC(1, 0xb4, "RxIngressDrop"), MIB_DESC(1, 0xb8, "RxArlDrop"), }; static void mt7530_mutex_lock(struct mt7530_priv *priv) { if (priv->bus) mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); } static void mt7530_mutex_unlock(struct mt7530_priv *priv) { if (priv->bus) mutex_unlock(&priv->bus->mdio_lock); } static void core_write(struct mt7530_priv *priv, u32 reg, u32 val) { struct mii_bus *bus = priv->bus; int ret; mt7530_mutex_lock(priv); /* Write the desired MMD Devad */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_CTRL, MDIO_MMD_VEND2); if (ret < 0) goto err; /* Write the desired MMD register address */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_DATA, reg); if (ret < 0) goto err; /* Select the Function : DATA with no post increment */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR); if (ret < 0) goto err; /* Write the data into MMD's selected register */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_DATA, val); err: if (ret < 0) dev_err(&bus->dev, "failed to write mmd register\n"); mt7530_mutex_unlock(priv); } static void core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) { struct mii_bus *bus = priv->bus; u32 val; int ret; mt7530_mutex_lock(priv); /* Write the desired MMD Devad */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_CTRL, MDIO_MMD_VEND2); if (ret < 0) goto err; /* Write the desired MMD register address */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_DATA, reg); if (ret < 0) goto err; /* Select the Function : DATA with no post increment */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR); if (ret < 0) goto err; /* Read the content of the MMD's selected register */ val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_DATA); val &= ~mask; val |= set; /* Write the data into MMD's selected register */ ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MII_MMD_DATA, val); err: if (ret < 0) dev_err(&bus->dev, "failed to write mmd register\n"); mt7530_mutex_unlock(priv); } static void core_set(struct mt7530_priv *priv, u32 reg, u32 val) { core_rmw(priv, reg, 0, val); } static void core_clear(struct mt7530_priv *priv, u32 reg, u32 val) { core_rmw(priv, reg, val, 0); } static int mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) { int ret; ret = regmap_write(priv->regmap, reg, val); if (ret < 0) dev_err(priv->dev, "failed to write mt7530 register\n"); return ret; } static u32 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) { int ret; u32 val; ret = regmap_read(priv->regmap, reg, &val); if (ret) { WARN_ON_ONCE(1); dev_err(priv->dev, "failed to read mt7530 register\n"); return 0; } return val; } static void mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_mutex_lock(priv); mt7530_mii_write(priv, reg, val); mt7530_mutex_unlock(priv); } static u32 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) { return mt7530_mii_read(p->priv, p->reg); } static u32 _mt7530_read(struct mt7530_dummy_poll *p) { u32 val; mt7530_mutex_lock(p->priv); val = mt7530_mii_read(p->priv, p->reg); mt7530_mutex_unlock(p->priv); return val; } static u32 mt7530_read(struct mt7530_priv *priv, u32 reg) { struct mt7530_dummy_poll p; INIT_MT7530_DUMMY_POLL(&p, priv, reg); return _mt7530_read(&p); } static void mt7530_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) { mt7530_mutex_lock(priv); regmap_update_bits(priv->regmap, reg, mask, set); mt7530_mutex_unlock(priv); } static void mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_rmw(priv, reg, val, val); } static void mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_rmw(priv, reg, val, 0); } static int mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) { u32 val; int ret; struct mt7530_dummy_poll p; /* Set the command operating upon the MAC address entries */ val = ATC_BUSY | ATC_MAT(0) | cmd; mt7530_write(priv, MT7530_ATC, val); INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); ret = readx_poll_timeout(_mt7530_read, &p, val, !(val & ATC_BUSY), 20, 20000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } /* Additional sanity for read command if the specified * entry is invalid */ val = mt7530_read(priv, MT7530_ATC); if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) return -EINVAL; if (rsp) *rsp = val; return 0; } static void mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) { u32 reg[3]; int i; /* Read from ARL table into an array */ for (i = 0; i < 3; i++) { reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", __func__, __LINE__, i, reg[i]); } fdb->vid = (reg[1] >> CVID) & CVID_MASK; fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; } static void mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, u8 port_mask, const u8 *mac, u8 aging, u8 type) { u32 reg[3] = { 0 }; int i; reg[1] |= vid & CVID_MASK; reg[1] |= ATA2_IVL; reg[1] |= ATA2_FID(FID_BRIDGED); reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; /* STATIC_ENT indicate that entry is static wouldn't * be aged out and STATIC_EMP specified as erasing an * entry */ reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; reg[1] |= mac[5] << MAC_BYTE_5; reg[1] |= mac[4] << MAC_BYTE_4; reg[0] |= mac[3] << MAC_BYTE_3; reg[0] |= mac[2] << MAC_BYTE_2; reg[0] |= mac[1] << MAC_BYTE_1; reg[0] |= mac[0] << MAC_BYTE_0; /* Write array into the ARL table */ for (i = 0; i < 3; i++) mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); } /* Set up switch core clock for MT7530 */ static void mt7530_pll_setup(struct mt7530_priv *priv) { /* Disable core clock */ core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); /* Disable PLL */ core_write(priv, CORE_GSWPLL_GRP1, 0); /* Set core clock into 500Mhz */ core_write(priv, CORE_GSWPLL_GRP2, RG_GSWPLL_POSDIV_500M(1) | RG_GSWPLL_FBKDIV_500M(25)); /* Enable PLL */ core_write(priv, CORE_GSWPLL_GRP1, RG_GSWPLL_EN_PRE | RG_GSWPLL_POSDIV_200M(2) | RG_GSWPLL_FBKDIV_200M(32)); udelay(20); /* Enable core clock */ core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); } /* If port 6 is available as a CPU port, always prefer that as the default, * otherwise don't care. */ static struct dsa_port * mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds) { struct dsa_port *cpu_dp = dsa_to_port(ds, 6); if (dsa_port_is_cpu(cpu_dp)) return cpu_dp; return NULL; } /* Setup port 6 interface mode and TRGMII TX circuit */ static void mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u32 ncpo1, ssc_delta, xtal; /* Disable the MT7530 TRGMII clocks */ core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN); if (interface == PHY_INTERFACE_MODE_RGMII) { mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(0)); return; } mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1)); xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK; if (xtal == MT7530_XTAL_25MHZ) ssc_delta = 0x57; else ssc_delta = 0x87; if (priv->id == ID_MT7621) { /* PLL frequency: 125MHz: 1.0GBit */ if (xtal == MT7530_XTAL_40MHZ) ncpo1 = 0x0640; if (xtal == MT7530_XTAL_25MHZ) ncpo1 = 0x0a00; } else { /* PLL frequency: 250MHz: 2.0Gbit */ if (xtal == MT7530_XTAL_40MHZ) ncpo1 = 0x0c80; if (xtal == MT7530_XTAL_25MHZ) ncpo1 = 0x1400; } /* Setup the MT7530 TRGMII Tx Clock */ core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN); core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1)); core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); /* Enable the MT7530 TRGMII clocks */ core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN); } static void mt7531_pll_setup(struct mt7530_priv *priv) { enum mt7531_xtal_fsel xtal; u32 top_sig; u32 hwstrap; u32 val; val = mt7530_read(priv, MT7531_CREV); top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); hwstrap = mt7530_read(priv, MT753X_TRAP); if ((val & CHIP_REV_M) > 0) xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ : MT7531_XTAL_FSEL_25MHZ; else xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ : MT7531_XTAL_FSEL_40MHZ; /* Step 1 : Disable MT7531 COREPLL */ val = mt7530_read(priv, MT7531_PLLGP_EN); val &= ~EN_COREPLL; mt7530_write(priv, MT7531_PLLGP_EN, val); /* Step 2: switch to XTAL output */ val = mt7530_read(priv, MT7531_PLLGP_EN); val |= SW_CLKSW; mt7530_write(priv, MT7531_PLLGP_EN, val); val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_EN; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Step 3: disable PLLGP and enable program PLLGP */ val = mt7530_read(priv, MT7531_PLLGP_EN); val |= SW_PLLGP; mt7530_write(priv, MT7531_PLLGP_EN, val); /* Step 4: program COREPLL output frequency to 500MHz */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_POSDIV_M; val |= 2 << RG_COREPLL_POSDIV_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); usleep_range(25, 35); switch (xtal) { case MT7531_XTAL_FSEL_25MHZ: val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_M; val |= 0x140000 << RG_COREPLL_SDM_PCW_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); break; case MT7531_XTAL_FSEL_40MHZ: val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_M; val |= 0x190000 << RG_COREPLL_SDM_PCW_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); break; } /* Set feedback divide ratio update signal to high */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val |= RG_COREPLL_SDM_PCW_CHG; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Wait for at least 16 XTAL clocks */ usleep_range(10, 20); /* Step 5: set feedback divide ratio update signal to low */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_CHG; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Enable 325M clock for SGMII */ mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); /* Enable 250SSC clock for RGMII */ mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); /* Step 6: Enable MT7531 PLL */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val |= RG_COREPLL_EN; mt7530_write(priv, MT7531_PLLGP_CR0, val); val = mt7530_read(priv, MT7531_PLLGP_EN); val |= EN_COREPLL; mt7530_write(priv, MT7531_PLLGP_EN, val); usleep_range(25, 35); } static void mt7530_mib_reset(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); } static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum) { return mdiobus_read_nested(priv->bus, port, regnum); } static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum, u16 val) { return mdiobus_write_nested(priv->bus, port, regnum, val); } static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port, int devad, int regnum) { return mdiobus_c45_read_nested(priv->bus, port, devad, regnum); } static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad, int regnum, u16 val) { return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val); } static int mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, int regnum) { struct mt7530_dummy_poll p; u32 reg, val; int ret; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | regnum; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad); mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } ret = val & MT7531_MDIO_RW_DATA_MASK; out: mt7530_mutex_unlock(priv); return ret; } static int mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, int regnum, u16 data) { struct mt7530_dummy_poll p; u32 val, reg; int ret; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | regnum; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | data; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } out: mt7530_mutex_unlock(priv); return ret; } static int mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) { struct mt7530_dummy_poll p; int ret; u32 val; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_REG_ADDR(regnum); mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } ret = val & MT7531_MDIO_RW_DATA_MASK; out: mt7530_mutex_unlock(priv); return ret; } static int mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, u16 data) { struct mt7530_dummy_poll p; int ret; u32 reg; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, !(reg & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_REG_ADDR(regnum) | data; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, !(reg & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } out: mt7530_mutex_unlock(priv); return ret; } static int mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_read_c22(priv, port, regnum); } static int mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_read_c45(priv, port, devad, regnum); } static int mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_write_c22(priv, port, regnum, val); } static int mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum, u16 val) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_write_c45(priv, port, devad, regnum, val); } static void mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) ethtool_puts(&data, mt7530_mib[i].name); } static void mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct mt7530_priv *priv = ds->priv; const struct mt7530_mib_desc *mib; u32 reg, i; u64 hi; for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { mib = &mt7530_mib[i]; reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; data[i] = mt7530_read(priv, reg); if (mib->size == 2) { hi = mt7530_read(priv, reg + 4); data[i] |= hi << 32; } } } static int mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(mt7530_mib); } static int mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) { struct mt7530_priv *priv = ds->priv; unsigned int secs = msecs / 1000; unsigned int tmp_age_count; unsigned int error = -1; unsigned int age_count; unsigned int age_unit; /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) return -ERANGE; /* iterate through all possible age_count to find the closest pair */ for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; if (tmp_age_unit <= AGE_UNIT_MAX) { unsigned int tmp_error = secs - (tmp_age_count + 1) * (tmp_age_unit + 1); /* found a closer pair */ if (error > tmp_error) { error = tmp_error; age_count = tmp_age_count; age_unit = tmp_age_unit; } /* found the exact match, so break the loop */ if (!error) break; } } mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); return 0; } static const char *mt7530_p5_mode_str(unsigned int mode) { switch (mode) { case MUX_PHY_P0: return "MUX PHY P0"; case MUX_PHY_P4: return "MUX PHY P4"; default: return "GMAC5"; } } static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u8 tx_delay = 0; int val; mutex_lock(&priv->reg_mutex); val = mt7530_read(priv, MT753X_MTRAP); val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE; switch (priv->p5_mode) { /* MUX_PHY_P0: P0 -> P5 -> SoC MAC */ case MUX_PHY_P0: val |= MT7530_P5_PHY0_SEL; fallthrough; /* MUX_PHY_P4: P4 -> P5 -> SoC MAC */ case MUX_PHY_P4: /* Setup the MAC by default for the cpu port */ mt7530_write(priv, MT753X_PMCR_P(5), 0x56300); break; /* GMAC5: P5 -> SoC MAC or external PHY */ default: val |= MT7530_P5_MAC_SEL; break; } /* Setup RGMII settings */ if (phy_interface_mode_is_rgmii(interface)) { val |= MT7530_P5_RGMII_MODE; /* P5 RGMII RX Clock Control: delay setting for 1000M */ mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); /* Don't set delay in DSA mode */ if (!dsa_is_dsa_port(priv->ds, 5) && (interface == PHY_INTERFACE_MODE_RGMII_TXID || interface == PHY_INTERFACE_MODE_RGMII_ID)) tx_delay = 4; /* n * 0.5 ns */ /* P5 RGMII TX Clock Control: delay x */ mt7530_write(priv, MT7530_P5RGMIITXCR, CSR_RGMII_TXC_CFG(0x10 + tx_delay)); /* reduce P5 RGMII Tx driving, 8mA */ mt7530_write(priv, MT7530_IO_DRV_CR, P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); } mt7530_write(priv, MT753X_MTRAP, val); dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val, mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface)); mutex_unlock(&priv->reg_mutex); } /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL) * of the Open Systems Interconnection basic reference model (OSI/RM) are * described; the medium access control (MAC) and logical link control (LLC) * sublayers. The MAC sublayer is the one facing the physical layer. * * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A * Bridge component comprises a MAC Relay Entity for interconnecting the Ports * of the Bridge, at least two Ports, and higher layer entities with at least a * Spanning Tree Protocol Entity included. * * Each Bridge Port also functions as an end station and shall provide the MAC * Service to an LLC Entity. Each instance of the MAC Service is provided to a * distinct LLC Entity that supports protocol identification, multiplexing, and * demultiplexing, for protocol data unit (PDU) transmission and reception by * one or more higher layer entities. * * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC * Entity associated with each Bridge Port is modeled as being directly * connected to the attached Local Area Network (LAN). * * On the switch with CPU port architecture, CPU port functions as Management * Port, and the Management Port functionality is provided by software which * functions as an end station. Software is connected to an IEEE 802 LAN that is * wholly contained within the system that incorporates the Bridge. Software * provides access to the LLC Entity associated with each Bridge Port by the * value of the source port field on the special tag on the frame received by * software. * * We call frames that carry control information to determine the active * topology and current extent of each Virtual Local Area Network (VLAN), i.e., * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration * Protocol Data Units (MVRPDUs), and frames from other link constrained * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and * Link Layer Discovery Protocol (LLDP), link-local frames. They are not * forwarded by a Bridge. Permanently configured entries in the filtering * database (FDB) ensure that such frames are discarded by the Forwarding * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail: * * Each of the reserved MAC addresses specified in Table 8-1 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be * permanently configured in the FDB in C-VLAN components and ERs. * * Each of the reserved MAC addresses specified in Table 8-2 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently * configured in the FDB in S-VLAN components. * * Each of the reserved MAC addresses specified in Table 8-3 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in * TPMR components. * * The FDB entries for reserved MAC addresses shall specify filtering for all * Bridge Ports and all VIDs. Management shall not provide the capability to * modify or remove entries for reserved MAC addresses. * * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of * propagation of PDUs within a Bridged Network, as follows: * * The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no * conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN) * component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward. * PDUs transmitted using this destination address, or any other addresses * that appear in Table 8-1, Table 8-2, and Table 8-3 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can * therefore travel no further than those stations that can be reached via a * single individual LAN from the originating station. * * The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an * address that no conformant S-VLAN component, C-VLAN component, or MAC * Bridge can forward; however, this address is relayed by a TPMR component. * PDUs using this destination address, or any of the other addresses that * appear in both Table 8-1 and Table 8-2 but not in Table 8-3 * (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by * any TPMRs but will propagate no further than the nearest S-VLAN component, * C-VLAN component, or MAC Bridge. * * The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address * that no conformant C-VLAN component, MAC Bridge can forward; however, it is * relayed by TPMR components and S-VLAN components. PDUs using this * destination address, or any of the other addresses that appear in Table 8-1 * but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]), * will be relayed by TPMR components and S-VLAN components but will propagate * no further than the nearest C-VLAN component or MAC Bridge. * * Because the LLC Entity associated with each Bridge Port is provided via CPU * port, we must not filter these frames but forward them to CPU port. * * In a Bridge, the transmission Port is majorly decided by ingress and egress * rules, FDB, and spanning tree Port State functions of the Forwarding Process. * For link-local frames, only CPU port should be designated as destination port * in the FDB, and the other functions of the Forwarding Process must not * interfere with the decision of the transmission Port. We call this process * trapping frames to CPU port. * * Therefore, on the switch with CPU port architecture, link-local frames must * be trapped to CPU port, and certain link-local frames received by a Port of a * Bridge comprising a TPMR component or an S-VLAN component must be excluded * from it. * * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port * MAC Relay (TPMR) component as a TPMR component supports only a subset of the * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port * doesn't count) of this architecture will either function as a standard MAC * Bridge or a standard VLAN Bridge. * * Therefore, a Bridge of this architecture can only comprise S-VLAN components, * C-VLAN components, or MAC Bridge components. Since there's no TPMR component, * we don't need to relay PDUs using the destination addresses specified on the * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge * section where they must be relayed by TPMR components. * * One option to trap link-local frames to CPU port is to add static FDB entries * with CPU port designated as destination port. However, because that * Independent VLAN Learning (IVL) is being used on every VID, each entry only * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC * Bridge component or a C-VLAN component, there would have to be 16 times 4096 * entries. This switch intellectual property can only hold a maximum of 2048 * entries. Using this option, there also isn't a mechanism to prevent * link-local frames from being discarded when the spanning tree Port State of * the reception Port is discarding. * * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4 * registers. Whilst this applies to every VID, it doesn't contain all of the * reserved MAC addresses without affecting the remaining Standard Group MAC * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF * destination addresses which may be relayed by MAC Bridges or VLAN Bridges. * The latter option provides better but not complete conformance. * * This switch intellectual property also does not provide a mechanism to trap * link-local frames with specific destination addresses to CPU port by Bridge, * to conform to the filtering rules for the distinct Bridge components. * * Therefore, regardless of the type of the Bridge component, link-local frames * with these destination addresses will be trapped to CPU port: * * 01-80-C2-00-00-[00,01,02,03,0E] * * In a Bridge comprising a MAC Bridge component or a C-VLAN component: * * Link-local frames with these destination addresses won't be trapped to CPU * port which won't conform to IEEE Std 802.1Q-2022: * * 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] * * In a Bridge comprising an S-VLAN component: * * Link-local frames with these destination addresses will be trapped to CPU * port which won't conform to IEEE Std 802.1Q-2022: * * 01-80-C2-00-00-00 * * Link-local frames with these destination addresses won't be trapped to CPU * port which won't conform to IEEE Std 802.1Q-2022: * * 01-80-C2-00-00-[04,05,06,07,08,09,0A] * * To trap link-local frames to CPU port as conformant as this switch * intellectual property can allow, link-local frames are made to be regarded as * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual * property only lets the frames regarded as BPDUs bypass the spanning tree Port * State function of the Forwarding Process. * * The only remaining interference is the ingress rules. When the reception Port * has no PVID assigned on software, VLAN-untagged frames won't be allowed in. * There doesn't seem to be a mechanism on the switch intellectual property to * have link-local frames bypass this function of the Forwarding Process. */ static void mt753x_trap_frames(struct mt7530_priv *priv) { /* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them * VLAN-untagged. */ mt7530_rmw(priv, MT753X_BPC, PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK | BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK, PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) | BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | TO_CPU_FW_CPU_ONLY); /* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress * them VLAN-untagged. */ mt7530_rmw(priv, MT753X_RGAC1, R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK | R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK, R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR | R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | TO_CPU_FW_CPU_ONLY); /* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress * them VLAN-untagged. */ mt7530_rmw(priv, MT753X_RGAC2, R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK | R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK, R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR | R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) | TO_CPU_FW_CPU_ONLY); } static void mt753x_cpu_port_enable(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; /* Enable Mediatek header mode on the cpu port */ mt7530_write(priv, MT7530_PVC_P(port), PORT_SPEC_TAG); /* Enable flooding on the CPU port */ mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port))); /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that * is affine to the inbound user port. */ if (priv->id == ID_MT7531 || priv->id == ID_MT7988 || priv->id == ID_EN7581) mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port))); /* CPU port gets connected to all user ports of * the switch. */ mt7530_write(priv, MT7530_PCR_P(port), PCR_MATRIX(dsa_user_ports(priv->ds))); /* Set to fallback mode for independent VLAN learning */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); } static int mt7530_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct dsa_port *dp = dsa_to_port(ds, port); struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); /* Allow the user port gets connected to the cpu port and also * restore the port matrix if the port is the member of a certain * bridge. */ if (dsa_port_is_user(dp)) { struct dsa_port *cpu_dp = dp->cpu_dp; priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index)); } priv->ports[port].enable = true; mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, priv->ports[port].pm); mutex_unlock(&priv->reg_mutex); if (priv->id != ID_MT7530 && priv->id != ID_MT7621) return 0; if (port == 5) mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS); else if (port == 6) mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS); return 0; } static void mt7530_port_disable(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); /* Clear up all port matrix which could be restored in the next * enablement for the port. */ priv->ports[port].enable = false; mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX_CLR); mutex_unlock(&priv->reg_mutex); if (priv->id != ID_MT7530 && priv->id != ID_MT7621) return; /* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */ if (port == 5 && priv->p5_mode == GMAC5) mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS); else if (port == 6) mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS); } static int mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) { struct mt7530_priv *priv = ds->priv; int length; u32 val; /* When a new MTU is set, DSA always set the CPU port's MTU to the * largest MTU of the user ports. Because the switch only has a global * RX length register, only allowing CPU port here is enough. */ if (!dsa_is_cpu_port(ds, port)) return 0; mt7530_mutex_lock(priv); val = mt7530_mii_read(priv, MT7530_GMACCR); val &= ~MAX_RX_PKT_LEN_MASK; /* RX length also includes Ethernet header, MTK tag, and FCS length */ length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; if (length <= 1522) { val |= MAX_RX_PKT_LEN_1522; } else if (length <= 1536) { val |= MAX_RX_PKT_LEN_1536; } else if (length <= 1552) { val |= MAX_RX_PKT_LEN_1552; } else { val &= ~MAX_RX_JUMBO_MASK; val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); val |= MAX_RX_PKT_LEN_JUMBO; } mt7530_mii_write(priv, MT7530_GMACCR, val); mt7530_mutex_unlock(priv); return 0; } static int mt7530_port_max_mtu(struct dsa_switch *ds, int port) { return MT7530_MAX_MTU; } static void mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct mt7530_priv *priv = ds->priv; u32 stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = MT7530_STP_DISABLED; break; case BR_STATE_BLOCKING: stp_state = MT7530_STP_BLOCKING; break; case BR_STATE_LISTENING: stp_state = MT7530_STP_LISTENING; break; case BR_STATE_LEARNING: stp_state = MT7530_STP_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = MT7530_STP_FORWARDING; break; } mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED), FID_PST(FID_BRIDGED, stp_state)); } static void mt7530_update_port_member(struct mt7530_priv *priv, int port, const struct net_device *bridge_dev, bool join) __must_hold(&priv->reg_mutex) { struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp; struct mt7530_port *p = &priv->ports[port], *other_p; struct dsa_port *cpu_dp = dp->cpu_dp; u32 port_bitmap = BIT(cpu_dp->index); int other_port; bool isolated; dsa_switch_for_each_user_port(other_dp, priv->ds) { other_port = other_dp->index; other_p = &priv->ports[other_port]; if (dp == other_dp) continue; /* Add/remove this port to/from the port matrix of the other * ports in the same bridge. If the port is disabled, port * matrix is kept and not being setup until the port becomes * enabled. */ if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev)) continue; isolated = p->isolated && other_p->isolated; if (join && !isolated) { other_p->pm |= PCR_MATRIX(BIT(port)); port_bitmap |= BIT(other_port); } else { other_p->pm &= ~PCR_MATRIX(BIT(port)); } if (other_p->enable) mt7530_rmw(priv, MT7530_PCR_P(other_port), PCR_MATRIX_MASK, other_p->pm); } /* Add/remove the all other ports to this port matrix. For !join * (leaving the bridge), only the CPU port will remain in the port matrix * of this port. */ p->pm = PCR_MATRIX(port_bitmap); if (priv->ports[port].enable) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm); } static int mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD | BR_ISOLATED)) return -EINVAL; return 0; } static int mt7530_port_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct mt7530_priv *priv = ds->priv; if (flags.mask & BR_LEARNING) mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS, flags.val & BR_LEARNING ? 0 : SA_DIS); if (flags.mask & BR_FLOOD) mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)), flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0); if (flags.mask & BR_MCAST_FLOOD) mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)), flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0); if (flags.mask & BR_BCAST_FLOOD) mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)), flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0); if (flags.mask & BR_ISOLATED) { struct dsa_port *dp = dsa_to_port(ds, port); struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp); priv->ports[port].isolated = !!(flags.val & BR_ISOLATED); mutex_lock(&priv->reg_mutex); mt7530_update_port_member(priv, port, bridge_dev, true); mutex_unlock(&priv->reg_mutex); } return 0; } static int mt7530_port_bridge_join(struct dsa_switch *ds, int port, struct dsa_bridge bridge, bool *tx_fwd_offload, struct netlink_ext_ack *extack) { struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); mt7530_update_port_member(priv, port, bridge.dev, true); /* Set to fallback mode for independent VLAN learning */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); mutex_unlock(&priv->reg_mutex); return 0; } static void mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; bool all_user_ports_removed = true; int i; /* This is called after .port_bridge_leave when leaving a VLAN-aware * bridge. Don't set standalone ports to fallback mode. */ if (dsa_port_bridge_dev_get(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK, VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) | MT7530_VLAN_ACC_ALL); /* Set PVID to 0 */ mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID_DEF); for (i = 0; i < priv->ds->num_ports; i++) { if (dsa_is_user_port(ds, i) && dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { all_user_ports_removed = false; break; } } /* CPU port also does the same thing until all user ports belonging to * the CPU port get out of VLAN filtering mode. */ if (all_user_ports_removed) { struct dsa_port *dp = dsa_to_port(ds, port); struct dsa_port *cpu_dp = dp->cpu_dp; mt7530_write(priv, MT7530_PCR_P(cpu_dp->index), PCR_MATRIX(dsa_user_ports(priv->ds))); mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } } static void mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; /* Trapped into security mode allows packet forwarding through VLAN * table lookup. */ if (dsa_is_user_port(ds, port)) { mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_SECURITY_MODE); mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID(priv->ports[port].pvid)); /* Only accept tagged frames if PVID is not set */ if (!priv->ports[port].pvid) mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_TAGGED); /* Set the port as a user port which is to be able to recognize * VID from incoming packets before fetching entry within the * VLAN table. */ mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, VLAN_ATTR(MT7530_VLAN_USER) | PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); } else { /* Also set CPU ports to the "user" VLAN port attribute, to * allow VLAN classification, but keep the EG_TAG attribute as * "consistent" (i.o.w. don't change its value) for packets * received by the switch from the CPU, so that tagged packets * are forwarded to user ports as tagged, and untagged as * untagged. */ mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK, VLAN_ATTR(MT7530_VLAN_USER)); } } static void mt7530_port_bridge_leave(struct dsa_switch *ds, int port, struct dsa_bridge bridge) { struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); mt7530_update_port_member(priv, port, bridge.dev, false); /* When a port is removed from the bridge, the port would be set up * back to the default as is at initial boot which is a VLAN-unaware * port. */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_MATRIX_MODE); mutex_unlock(&priv->reg_mutex); } static int mt7530_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; int ret; u8 port_mask = BIT(port); mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; int ret; u8 port_mask = BIT(port); mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct mt7530_priv *priv = ds->priv; struct mt7530_fdb _fdb = { 0 }; int cnt = MT7530_NUM_FDB_RECORDS; int ret = 0; u32 rsp = 0; mutex_lock(&priv->reg_mutex); ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); if (ret < 0) goto err; do { if (rsp & ATC_SRCH_HIT) { mt7530_fdb_read(priv, &_fdb); if (_fdb.port_mask & BIT(port)) { ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, data); if (ret < 0) break; } } } while (--cnt && !(rsp & ATC_SRCH_END) && !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); err: mutex_unlock(&priv->reg_mutex); return 0; } static int mt7530_port_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; const u8 *addr = mdb->addr; u16 vid = mdb->vid; u8 port_mask = 0; int ret; mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) & PORT_MAP_MASK; port_mask |= BIT(port); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; const u8 *addr = mdb->addr; u16 vid = mdb->vid; u8 port_mask = 0; int ret; mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) & PORT_MAP_MASK; port_mask &= ~BIT(port); mt7530_fdb_write(priv, vid, port_mask, addr, -1, port_mask ? STATIC_ENT : STATIC_EMP); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) { struct mt7530_dummy_poll p; u32 val; int ret; val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; mt7530_write(priv, MT7530_VTCR, val); INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); ret = readx_poll_timeout(_mt7530_read, &p, val, !(val & VTCR_BUSY), 20, 20000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); return ret; } val = mt7530_read(priv, MT7530_VTCR); if (val & VTCR_INVALID) { dev_err(priv->dev, "read VTCR invalid\n"); return -EINVAL; } return 0; } static int mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, struct netlink_ext_ack *extack) { struct dsa_port *dp = dsa_to_port(ds, port); struct dsa_port *cpu_dp = dp->cpu_dp; if (vlan_filtering) { /* The port is being kept as VLAN-unaware port when bridge is * set up with vlan_filtering not being set, Otherwise, the * port and the corresponding CPU port is required the setup * for becoming a VLAN-aware port. */ mt7530_port_set_vlan_aware(ds, port); mt7530_port_set_vlan_aware(ds, cpu_dp->index); } else { mt7530_port_set_vlan_unaware(ds, port); } return 0; } static void mt7530_hw_vlan_add(struct mt7530_priv *priv, struct mt7530_hw_vlan_entry *entry) { struct dsa_port *dp = dsa_to_port(priv->ds, entry->port); u8 new_members; u32 val; new_members = entry->old_members | BIT(entry->port); /* Validate the entry with independent learning, create egress tag per * VLAN and joining the port as one of the port members. */ val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); /* Decide whether adding tag or not for those outgoing packets from the * port inside the VLAN. * CPU port is always taken as a tagged port for serving more than one * VLANs across and also being applied with egress type stack mode for * that VLAN tags would be appended after hardware special tag used as * DSA tag. */ if (dsa_port_is_cpu(dp)) val = MT7530_VLAN_EGRESS_STACK; else if (entry->untagged) val = MT7530_VLAN_EGRESS_UNTAG; else val = MT7530_VLAN_EGRESS_TAG; mt7530_rmw(priv, MT7530_VAWD2, ETAG_CTRL_P_MASK(entry->port), ETAG_CTRL_P(entry->port, val)); } static void mt7530_hw_vlan_del(struct mt7530_priv *priv, struct mt7530_hw_vlan_entry *entry) { u8 new_members; u32 val; new_members = entry->old_members & ~BIT(entry->port); val = mt7530_read(priv, MT7530_VAWD1); if (!(val & VLAN_VALID)) { dev_err(priv->dev, "Cannot be deleted due to invalid entry\n"); return; } if (new_members) { val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); } else { mt7530_write(priv, MT7530_VAWD1, 0); mt7530_write(priv, MT7530_VAWD2, 0); } } static void mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, struct mt7530_hw_vlan_entry *entry, mt7530_vlan_op vlan_op) { u32 val; /* Fetch entry */ mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); val = mt7530_read(priv, MT7530_VAWD1); entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; /* Manipulate entry */ vlan_op(priv, entry); /* Flush result to hardware */ mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); } static int mt7530_setup_vlan0(struct mt7530_priv *priv) { u32 val; /* Validate the entry with independent learning, keep the original * ingress tag attribute. */ val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0); } static int mt7530_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; struct mt7530_hw_vlan_entry new_entry; struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); mt7530_hw_vlan_entry_init(&new_entry, port, untagged); mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); if (pvid) { priv->ports[port].pvid = vlan->vid; /* Accept all frames if PVID is set */ mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_ALL); /* Only configure PVID if VLAN filtering is enabled */ if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID(vlan->vid)); } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) { /* This VLAN is overwritten without PVID, so unset it */ priv->ports[port].pvid = G0_PORT_VID_DEF; /* Only accept tagged frames if the port is VLAN-aware */ if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_TAGGED); mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } mutex_unlock(&priv->reg_mutex); return 0; } static int mt7530_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct mt7530_hw_vlan_entry target_entry; struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); mt7530_hw_vlan_entry_init(&target_entry, port, 0); mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, mt7530_hw_vlan_del); /* PVID is being restored to the default whenever the PVID port * is being removed from the VLAN. */ if (priv->ports[port].pvid == vlan->vid) { priv->ports[port].pvid = G0_PORT_VID_DEF; /* Only accept tagged frames if the port is VLAN-aware */ if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_TAGGED); mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } mutex_unlock(&priv->reg_mutex); return 0; } static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack) { struct mt7530_priv *priv = ds->priv; int monitor_port; u32 val; /* Check for existent entry */ if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) return -EEXIST; val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); /* MT7530 only supports one monitor port */ monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val); if (val & MT753X_MIRROR_EN(priv->id) && monitor_port != mirror->to_local_port) return -EEXIST; val |= MT753X_MIRROR_EN(priv->id); val &= ~MT753X_MIRROR_PORT_MASK(priv->id); val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port); mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); val = mt7530_read(priv, MT7530_PCR_P(port)); if (ingress) { val |= PORT_RX_MIR; priv->mirror_rx |= BIT(port); } else { val |= PORT_TX_MIR; priv->mirror_tx |= BIT(port); } mt7530_write(priv, MT7530_PCR_P(port), val); return 0; } static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct mt7530_priv *priv = ds->priv; u32 val; val = mt7530_read(priv, MT7530_PCR_P(port)); if (mirror->ingress) { val &= ~PORT_RX_MIR; priv->mirror_rx &= ~BIT(port); } else { val &= ~PORT_TX_MIR; priv->mirror_tx &= ~BIT(port); } mt7530_write(priv, MT7530_PCR_P(port), val); if (!priv->mirror_rx && !priv->mirror_tx) { val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); val &= ~MT753X_MIRROR_EN(priv->id); mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); } } static enum dsa_tag_protocol mtk_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { return DSA_TAG_PROTO_MTK; } #ifdef CONFIG_GPIOLIB static inline u32 mt7530_gpio_to_bit(unsigned int offset) { /* Map GPIO offset to register bit * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 * [10: 8] port 2 LED 0..2 as GPIO 6..8 * [14:12] port 3 LED 0..2 as GPIO 9..11 * [18:16] port 4 LED 0..2 as GPIO 12..14 */ return BIT(offset + offset / 3); } static int mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); } static void mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); if (value) mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); else mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); } static int mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; } static int mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); return 0; } static int mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); if (value) mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); else mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); mt7530_set(priv, MT7530_LED_GPIO_OE, bit); return 0; } static int mt7530_setup_gpio(struct mt7530_priv *priv) { struct device *dev = priv->dev; struct gpio_chip *gc; gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); if (!gc) return -ENOMEM; mt7530_write(priv, MT7530_LED_GPIO_OE, 0); mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); mt7530_write(priv, MT7530_LED_IO_MODE, 0); gc->label = "mt7530"; gc->parent = dev; gc->owner = THIS_MODULE; gc->get_direction = mt7530_gpio_get_direction; gc->direction_input = mt7530_gpio_direction_input; gc->direction_output = mt7530_gpio_direction_output; gc->get = mt7530_gpio_get; gc->set = mt7530_gpio_set; gc->base = -1; gc->ngpio = 15; gc->can_sleep = true; return devm_gpiochip_add_data(dev, gc, priv); } #endif /* CONFIG_GPIOLIB */ static irqreturn_t mt7530_irq_thread_fn(int irq, void *dev_id) { struct mt7530_priv *priv = dev_id; bool handled = false; u32 val; int p; mt7530_mutex_lock(priv); val = mt7530_mii_read(priv, MT7530_SYS_INT_STS); mt7530_mii_write(priv, MT7530_SYS_INT_STS, val); mt7530_mutex_unlock(priv); for (p = 0; p < MT7530_NUM_PHYS; p++) { if (BIT(p) & val) { unsigned int irq; irq = irq_find_mapping(priv->irq_domain, p); handle_nested_irq(irq); handled = true; } } return IRQ_RETVAL(handled); } static void mt7530_irq_mask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable &= ~BIT(d->hwirq); } static void mt7530_irq_unmask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable |= BIT(d->hwirq); } static void mt7530_irq_bus_lock(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); mt7530_mutex_lock(priv); } static void mt7530_irq_bus_sync_unlock(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); mt7530_mutex_unlock(priv); } static struct irq_chip mt7530_irq_chip = { .name = KBUILD_MODNAME, .irq_mask = mt7530_irq_mask, .irq_unmask = mt7530_irq_unmask, .irq_bus_lock = mt7530_irq_bus_lock, .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock, }; static int mt7530_irq_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, domain->host_data); irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq); irq_set_nested_thread(irq, true); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops mt7530_irq_domain_ops = { .map = mt7530_irq_map, .xlate = irq_domain_xlate_onecell, }; static void mt7988_irq_mask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable &= ~BIT(d->hwirq); mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); } static void mt7988_irq_unmask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable |= BIT(d->hwirq); mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); } static struct irq_chip mt7988_irq_chip = { .name = KBUILD_MODNAME, .irq_mask = mt7988_irq_mask, .irq_unmask = mt7988_irq_unmask, }; static int mt7988_irq_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, domain->host_data); irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq); irq_set_nested_thread(irq, true); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops mt7988_irq_domain_ops = { .map = mt7988_irq_map, .xlate = irq_domain_xlate_onecell, }; static void mt7530_setup_mdio_irq(struct mt7530_priv *priv) { struct dsa_switch *ds = priv->ds; int p; for (p = 0; p < MT7530_NUM_PHYS; p++) { if (BIT(p) & ds->phys_mii_mask) { unsigned int irq; irq = irq_create_mapping(priv->irq_domain, p); ds->user_mii_bus->irq[p] = irq; } } } static int mt7530_setup_irq(struct mt7530_priv *priv) { struct device *dev = priv->dev; struct device_node *np = dev->of_node; int ret; if (!of_property_read_bool(np, "interrupt-controller")) { dev_info(dev, "no interrupt support\n"); return 0; } priv->irq = of_irq_get(np, 0); if (priv->irq <= 0) { dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq); return priv->irq ? : -EINVAL; } if (priv->id == ID_MT7988 || priv->id == ID_EN7581) priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, &mt7988_irq_domain_ops, priv); else priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, &mt7530_irq_domain_ops, priv); if (!priv->irq_domain) { dev_err(dev, "failed to create IRQ domain\n"); return -ENOMEM; } /* This register must be set for MT7530 to properly fire interrupts */ if (priv->id == ID_MT7530 || priv->id == ID_MT7621) mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL); ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn, IRQF_ONESHOT, KBUILD_MODNAME, priv); if (ret) { irq_domain_remove(priv->irq_domain); dev_err(dev, "failed to request IRQ: %d\n", ret); return ret; } return 0; } static void mt7530_free_mdio_irq(struct mt7530_priv *priv) { int p; for (p = 0; p < MT7530_NUM_PHYS; p++) { if (BIT(p) & priv->ds->phys_mii_mask) { unsigned int irq; irq = irq_find_mapping(priv->irq_domain, p); irq_dispose_mapping(irq); } } } static void mt7530_free_irq_common(struct mt7530_priv *priv) { free_irq(priv->irq, priv); irq_domain_remove(priv->irq_domain); } static void mt7530_free_irq(struct mt7530_priv *priv) { struct device_node *mnp, *np = priv->dev->of_node; mnp = of_get_child_by_name(np, "mdio"); if (!mnp) mt7530_free_mdio_irq(priv); of_node_put(mnp); mt7530_free_irq_common(priv); } static int mt7530_setup_mdio(struct mt7530_priv *priv) { struct device_node *mnp, *np = priv->dev->of_node; struct dsa_switch *ds = priv->ds; struct device *dev = priv->dev; struct mii_bus *bus; static int idx; int ret = 0; mnp = of_get_child_by_name(np, "mdio"); if (mnp && !of_device_is_available(mnp)) goto out; bus = devm_mdiobus_alloc(dev); if (!bus) { ret = -ENOMEM; goto out; } if (!mnp) ds->user_mii_bus = bus; bus->priv = priv; bus->name = KBUILD_MODNAME "-mii"; snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++); bus->read = mt753x_phy_read_c22; bus->write = mt753x_phy_write_c22; bus->read_c45 = mt753x_phy_read_c45; bus->write_c45 = mt753x_phy_write_c45; bus->parent = dev; bus->phy_mask = ~ds->phys_mii_mask; if (priv->irq && !mnp) mt7530_setup_mdio_irq(priv); ret = devm_of_mdiobus_register(dev, bus, mnp); if (ret) { dev_err(dev, "failed to register MDIO bus: %d\n", ret); if (priv->irq && !mnp) mt7530_free_mdio_irq(priv); } out: of_node_put(mnp); return ret; } static int mt7530_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; struct device_node *dn = NULL; struct device_node *phy_node; struct device_node *mac_np; struct mt7530_dummy_poll p; phy_interface_t interface; struct dsa_port *cpu_dp; u32 id, val; int ret, i; /* The parent node of conduit netdev which holds the common system * controller also is the container for two GMACs nodes representing * as two netdev instances. */ dsa_switch_for_each_cpu_port(cpu_dp, ds) { dn = cpu_dp->conduit->dev.of_node->parent; /* It doesn't matter which CPU port is found first, * their conduits should share the same parent OF node */ break; } if (!dn) { dev_err(ds->dev, "parent OF node of DSA conduit not found"); return -EINVAL; } ds->assisted_learning_on_cpu_port = true; ds->mtu_enforcement_ingress = true; if (priv->id == ID_MT7530) { regulator_set_voltage(priv->core_pwr, 1000000, 1000000); ret = regulator_enable(priv->core_pwr); if (ret < 0) { dev_err(priv->dev, "Failed to enable core power: %d\n", ret); return ret; } regulator_set_voltage(priv->io_pwr, 3300000, 3300000); ret = regulator_enable(priv->io_pwr); if (ret < 0) { dev_err(priv->dev, "Failed to enable io pwr: %d\n", ret); return ret; } } /* Reset whole chip through gpio pin or memory-mapped registers for * different type of hardware */ if (priv->mcm) { reset_control_assert(priv->rstc); usleep_range(5000, 5100); reset_control_deassert(priv->rstc); } else { gpiod_set_value_cansleep(priv->reset, 0); usleep_range(5000, 5100); gpiod_set_value_cansleep(priv->reset, 1); } /* Waiting for MT7530 got to stable */ INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP); ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 20, 1000000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } id = mt7530_read(priv, MT7530_CREV); id >>= CHIP_NAME_SHIFT; if (id != MT7530_ID) { dev_err(priv->dev, "chip %x can't be supported\n", id); return -ENODEV; } if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) { dev_err(priv->dev, "MT7530 with a 20MHz XTAL is not supported!\n"); return -EINVAL; } /* Reset the switch through internal reset */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); /* Lower Tx driving for TRGMII path */ for (i = 0; i < NUM_TRGMII_CTRL; i++) mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), TD_DM_DRVP(8) | TD_DM_DRVN(8)); for (i = 0; i < NUM_TRGMII_CTRL; i++) mt7530_rmw(priv, MT7530_TRGMII_RD(i), RD_TAP_MASK, RD_TAP(16)); /* Allow modifying the trap and directly access PHY registers via the * MDIO bus the switch is on. */ mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP | MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP); if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ) mt7530_pll_setup(priv); mt753x_trap_frames(priv); /* Enable and reset MIB counters */ mt7530_mib_reset(ds); for (i = 0; i < priv->ds->num_ports; i++) { /* Clear link settings and enable force mode to force link down * on all ports until they're enabled later. */ mt7530_rmw(priv, MT753X_PMCR_P(i), PMCR_LINK_SETTINGS_MASK | MT753X_FORCE_MODE(priv->id), MT753X_FORCE_MODE(priv->id)); /* Disable forwarding by default on all ports */ mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, PCR_MATRIX_CLR); /* Disable learning by default on all ports */ mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); if (dsa_is_cpu_port(ds, i)) { mt753x_cpu_port_enable(ds, i); } else { mt7530_port_disable(ds, i); /* Set default PVID to 0 on all user ports */ mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } /* Enable consistent egress tag */ mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } /* Allow mirroring frames received on the local port (monitor port). */ mt7530_set(priv, MT753X_AGC, LOCAL_EN); /* Setup VLAN ID 0 for VLAN-unaware bridges */ ret = mt7530_setup_vlan0(priv); if (ret) return ret; /* Check for PHY muxing on port 5 */ if (dsa_is_unused_port(ds, 5)) { /* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY. * Set priv->p5_mode to the appropriate value if PHY muxing is * detected. */ for_each_child_of_node(dn, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; ret = of_property_read_u32(mac_np, "reg", &id); if (ret < 0 || id != 1) continue; phy_node = of_parse_phandle(mac_np, "phy-handle", 0); if (!phy_node) continue; if (phy_node->parent == priv->dev->of_node->parent || phy_node->parent->parent == priv->dev->of_node) { ret = of_get_phy_mode(mac_np, &interface); if (ret && ret != -ENODEV) { of_node_put(mac_np); of_node_put(phy_node); return ret; } id = of_mdio_parse_addr(ds->dev, phy_node); if (id == 0) priv->p5_mode = MUX_PHY_P0; if (id == 4) priv->p5_mode = MUX_PHY_P4; } of_node_put(mac_np); of_node_put(phy_node); break; } if (priv->p5_mode == MUX_PHY_P0 || priv->p5_mode == MUX_PHY_P4) { mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS); mt7530_setup_port5(ds, interface); } } #ifdef CONFIG_GPIOLIB if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { ret = mt7530_setup_gpio(priv); if (ret) return ret; } #endif /* CONFIG_GPIOLIB */ /* Flush the FDB table */ ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); if (ret < 0) return ret; return 0; } static int mt7531_setup_common(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; int ret, i; mt753x_trap_frames(priv); /* Enable and reset MIB counters */ mt7530_mib_reset(ds); /* Disable flooding on all ports */ mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK); for (i = 0; i < priv->ds->num_ports; i++) { /* Clear link settings and enable force mode to force link down * on all ports until they're enabled later. */ mt7530_rmw(priv, MT753X_PMCR_P(i), PMCR_LINK_SETTINGS_MASK | MT753X_FORCE_MODE(priv->id), MT753X_FORCE_MODE(priv->id)); /* Disable forwarding by default on all ports */ mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, PCR_MATRIX_CLR); /* Disable learning by default on all ports */ mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); if (dsa_is_cpu_port(ds, i)) { mt753x_cpu_port_enable(ds, i); } else { mt7530_port_disable(ds, i); /* Set default PVID to 0 on all user ports */ mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } /* Enable consistent egress tag */ mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } /* Allow mirroring frames received on the local port (monitor port). */ mt7530_set(priv, MT753X_AGC, LOCAL_EN); /* Flush the FDB table */ ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); if (ret < 0) return ret; return 0; } static int mt7531_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; struct mt7530_dummy_poll p; u32 val, id; int ret, i; /* Reset whole chip through gpio pin or memory-mapped registers for * different type of hardware */ if (priv->mcm) { reset_control_assert(priv->rstc); usleep_range(5000, 5100); reset_control_deassert(priv->rstc); } else { gpiod_set_value_cansleep(priv->reset, 0); usleep_range(5000, 5100); gpiod_set_value_cansleep(priv->reset, 1); } /* Waiting for MT7530 got to stable */ INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP); ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 20, 1000000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } id = mt7530_read(priv, MT7531_CREV); id >>= CHIP_NAME_SHIFT; if (id != MT7531_ID) { dev_err(priv->dev, "chip %x can't be supported\n", id); return -ENODEV; } /* MT7531AE has got two SGMII units. One for port 5, one for port 6. * MT7531BE has got only one SGMII unit which is for port 6. */ val = mt7530_read(priv, MT7531_TOP_SIG_SR); priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN); /* Force link down on all ports before internal reset */ for (i = 0; i < priv->ds->num_ports; i++) mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK); /* Reset the switch through internal reset */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); if (!priv->p5_sgmii) { mt7531_pll_setup(priv); } else { /* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on * MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO * to expose the MDIO bus of the switch. */ mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, MT7531_EXT_P_MDC_11); mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, MT7531_EXT_P_MDIO_12); } mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, MT7531_GPIO0_INTERRUPT); /* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since * phy_device has not yet been created provided for * phy_[read,write]_mmd_indirect is called, we provide our own * mt7531_ind_mmd_phy_[read,write] to complete this function. */ val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MDIO_MMD_VEND2, CORE_PLL_GROUP4); val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE; val &= ~MT7531_PHY_PLL_OFF; mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr), MDIO_MMD_VEND2, CORE_PLL_GROUP4, val); /* Disable EEE advertisement on the switch PHYs. */ for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr); i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS; i++) { mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0); } ret = mt7531_setup_common(ds); if (ret) return ret; /* Setup VLAN ID 0 for VLAN-unaware bridges */ ret = mt7530_setup_vlan0(priv); if (ret) return ret; ds->assisted_learning_on_cpu_port = true; ds->mtu_enforcement_ingress = true; return 0; } static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 4: __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); break; /* Port 5 supports rgmii with delays, mii, and gmii. */ case 5: phy_interface_set_rgmii(config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); break; /* Port 6 supports rgmii and trgmii. */ case 6: __set_bit(PHY_INTERFACE_MODE_RGMII, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_TRGMII, config->supported_interfaces); break; } } static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct mt7530_priv *priv = ds->priv; config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 4: __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); break; /* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on * MT7531AE. */ case 5: if (!priv->p5_sgmii) { phy_interface_set_rgmii(config->supported_interfaces); break; } fallthrough; /* Port 6 supports sgmii/802.3z. */ case 6: __set_bit(PHY_INTERFACE_MODE_SGMII, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_1000BASEX, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_2500BASEX, config->supported_interfaces); config->mac_capabilities |= MAC_2500FD; break; } } static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 3: __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; break; /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */ case 6: __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); config->mac_capabilities |= MAC_10000FD; break; } } static void en7581_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 4: __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD; break; /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */ case 6: __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); config->mac_capabilities |= MAC_10000FD; break; } } static void mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; if (port == 5) mt7530_setup_port5(priv->ds, interface); else if (port == 6) mt7530_setup_port6(priv->ds, interface); } static void mt7531_rgmii_setup(struct mt7530_priv *priv, phy_interface_t interface, struct phy_device *phydev) { u32 val; val = mt7530_read(priv, MT7531_CLKGEN_CTRL); val |= GP_CLK_EN; val &= ~GP_MODE_MASK; val |= GP_MODE(MT7531_GP_MODE_RGMII); val &= ~CLK_SKEW_IN_MASK; val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); val &= ~CLK_SKEW_OUT_MASK; val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; /* Do not adjust rgmii delay when vendor phy driver presents. */ if (!phydev || phy_driver_is_genphy(phydev)) { val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); switch (interface) { case PHY_INTERFACE_MODE_RGMII: val |= TXCLK_NO_REVERSE; val |= RXCLK_NO_DELAY; break; case PHY_INTERFACE_MODE_RGMII_RXID: val |= TXCLK_NO_REVERSE; break; case PHY_INTERFACE_MODE_RGMII_TXID: val |= RXCLK_NO_DELAY; break; case PHY_INTERFACE_MODE_RGMII_ID: break; default: break; } } mt7530_write(priv, MT7531_CLKGEN_CTRL, val); } static void mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; struct phy_device *phydev; struct dsa_port *dp; if (phy_interface_mode_is_rgmii(interface)) { dp = dsa_to_port(ds, port); phydev = dp->user->phydev; mt7531_rgmii_setup(priv, interface, phydev); } } static struct phylink_pcs * mt753x_phylink_mac_select_pcs(struct phylink_config *config, phy_interface_t interface) { struct dsa_port *dp = dsa_phylink_to_port(config); struct mt7530_priv *priv = dp->ds->priv; switch (interface) { case PHY_INTERFACE_MODE_TRGMII: return &priv->pcs[dp->index].pcs; case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: return priv->ports[dp->index].sgmii_pcs; default: return NULL; } } static void mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct dsa_port *dp = dsa_phylink_to_port(config); struct dsa_switch *ds = dp->ds; struct mt7530_priv *priv; int port = dp->index; priv = ds->priv; if ((port == 5 || port == 6) && priv->info->mac_port_config) priv->info->mac_port_config(ds, port, mode, state->interface); /* Are we connected to external phy */ if (port == 5 && dsa_is_user_port(ds, 5)) mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY); } static void mt753x_phylink_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct dsa_port *dp = dsa_phylink_to_port(config); struct mt7530_priv *priv = dp->ds->priv; mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK); } static void mt753x_phylink_mac_link_up(struct phylink_config *config, struct phy_device *phydev, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct dsa_port *dp = dsa_phylink_to_port(config); struct mt7530_priv *priv = dp->ds->priv; u32 mcr; mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK; switch (speed) { case SPEED_1000: case SPEED_2500: case SPEED_10000: mcr |= PMCR_FORCE_SPEED_1000; break; case SPEED_100: mcr |= PMCR_FORCE_SPEED_100; break; } if (duplex == DUPLEX_FULL) { mcr |= PMCR_FORCE_FDX; if (tx_pause) mcr |= PMCR_FORCE_TX_FC_EN; if (rx_pause) mcr |= PMCR_FORCE_RX_FC_EN; } if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) { switch (speed) { case SPEED_1000: case SPEED_2500: mcr |= PMCR_FORCE_EEE1G; break; case SPEED_100: mcr |= PMCR_FORCE_EEE100; break; } } mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr); } static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct mt7530_priv *priv = ds->priv; config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE; priv->info->mac_port_get_caps(ds, port, config); } static int mt753x_pcs_validate(struct phylink_pcs *pcs, unsigned long *supported, const struct phylink_link_state *state) { /* Autonegotiation is not supported in TRGMII nor 802.3z modes */ if (state->interface == PHY_INTERFACE_MODE_TRGMII || phy_interface_mode_is_8023z(state->interface)) phylink_clear(supported, Autoneg); return 0; } static void mt7530_pcs_get_state(struct phylink_pcs *pcs, struct phylink_link_state *state) { struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; int port = pcs_to_mt753x_pcs(pcs)->port; u32 pmsr; pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); state->link = (pmsr & PMSR_LINK); state->an_complete = state->link; state->duplex = !!(pmsr & PMSR_DPX); switch (pmsr & PMSR_SPEED_MASK) { case PMSR_SPEED_10: state->speed = SPEED_10; break; case PMSR_SPEED_100: state->speed = SPEED_100; break; case PMSR_SPEED_1000: state->speed = SPEED_1000; break; default: state->speed = SPEED_UNKNOWN; break; } state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); if (pmsr & PMSR_RX_FC) state->pause |= MLO_PAUSE_RX; if (pmsr & PMSR_TX_FC) state->pause |= MLO_PAUSE_TX; } static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, phy_interface_t interface, const unsigned long *advertising, bool permit_pause_to_mac) { return 0; } static void mt7530_pcs_an_restart(struct phylink_pcs *pcs) { } static const struct phylink_pcs_ops mt7530_pcs_ops = { .pcs_validate = mt753x_pcs_validate, .pcs_get_state = mt7530_pcs_get_state, .pcs_config = mt753x_pcs_config, .pcs_an_restart = mt7530_pcs_an_restart, }; static int mt753x_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; int ret = priv->info->sw_setup(ds); int i; if (ret) return ret; ret = mt7530_setup_irq(priv); if (ret) return ret; ret = mt7530_setup_mdio(priv); if (ret && priv->irq) mt7530_free_irq_common(priv); if (ret) return ret; /* Initialise the PCS devices */ for (i = 0; i < priv->ds->num_ports; i++) { priv->pcs[i].pcs.ops = priv->info->pcs_ops; priv->pcs[i].pcs.neg_mode = true; priv->pcs[i].priv = priv; priv->pcs[i].port = i; } if (priv->create_sgmii) { ret = priv->create_sgmii(priv); if (ret && priv->irq) mt7530_free_irq(priv); } return ret; } static int mt753x_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_keee *e) { struct mt7530_priv *priv = ds->priv; u32 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port)); e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN); e->tx_lpi_timer = LPI_THRESH_GET(eeecr); return 0; } static int mt753x_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_keee *e) { struct mt7530_priv *priv = ds->priv; u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN; if (e->tx_lpi_timer > 0xFFF) return -EINVAL; set = LPI_THRESH_SET(e->tx_lpi_timer); if (!e->tx_lpi_enabled) /* Force LPI Mode without a delay */ set |= LPI_MODE_EN; mt7530_rmw(priv, MT753X_PMEEECR_P(port), mask, set); return 0; } static void mt753x_conduit_state_change(struct dsa_switch *ds, const struct net_device *conduit, bool operational) { struct dsa_port *cpu_dp = conduit->dsa_ptr; struct mt7530_priv *priv = ds->priv; int val = 0; u8 mask; /* Set the CPU port to trap frames to for MT7530. Trapped frames will be * forwarded to the numerically smallest CPU port whose conduit * interface is up. */ if (priv->id != ID_MT7530 && priv->id != ID_MT7621) return; mask = BIT(cpu_dp->index); if (operational) priv->active_cpu_ports |= mask; else priv->active_cpu_ports &= ~mask; if (priv->active_cpu_ports) { val = MT7530_CPU_EN | MT7530_CPU_PORT(__ffs(priv->active_cpu_ports)); } mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val); } static int mt7988_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; /* Reset the switch */ reset_control_assert(priv->rstc); usleep_range(20, 50); reset_control_deassert(priv->rstc); usleep_range(20, 50); /* Reset the switch PHYs */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST); return mt7531_setup_common(ds); } const struct dsa_switch_ops mt7530_switch_ops = { .get_tag_protocol = mtk_get_tag_protocol, .setup = mt753x_setup, .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port, .get_strings = mt7530_get_strings, .get_ethtool_stats = mt7530_get_ethtool_stats, .get_sset_count = mt7530_get_sset_count, .set_ageing_time = mt7530_set_ageing_time, .port_enable = mt7530_port_enable, .port_disable = mt7530_port_disable, .port_change_mtu = mt7530_port_change_mtu, .port_max_mtu = mt7530_port_max_mtu, .port_stp_state_set = mt7530_stp_state_set, .port_pre_bridge_flags = mt7530_port_pre_bridge_flags, .port_bridge_flags = mt7530_port_bridge_flags, .port_bridge_join = mt7530_port_bridge_join, .port_bridge_leave = mt7530_port_bridge_leave, .port_fdb_add = mt7530_port_fdb_add, .port_fdb_del = mt7530_port_fdb_del, .port_fdb_dump = mt7530_port_fdb_dump, .port_mdb_add = mt7530_port_mdb_add, .port_mdb_del = mt7530_port_mdb_del, .port_vlan_filtering = mt7530_port_vlan_filtering, .port_vlan_add = mt7530_port_vlan_add, .port_vlan_del = mt7530_port_vlan_del, .port_mirror_add = mt753x_port_mirror_add, .port_mirror_del = mt753x_port_mirror_del, .phylink_get_caps = mt753x_phylink_get_caps, .get_mac_eee = mt753x_get_mac_eee, .set_mac_eee = mt753x_set_mac_eee, .conduit_state_change = mt753x_conduit_state_change, }; EXPORT_SYMBOL_GPL(mt7530_switch_ops); static const struct phylink_mac_ops mt753x_phylink_mac_ops = { .mac_select_pcs = mt753x_phylink_mac_select_pcs, .mac_config = mt753x_phylink_mac_config, .mac_link_down = mt753x_phylink_mac_link_down, .mac_link_up = mt753x_phylink_mac_link_up, }; const struct mt753x_info mt753x_table[] = { [ID_MT7621] = { .id = ID_MT7621, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7530_setup, .phy_read_c22 = mt7530_phy_read_c22, .phy_write_c22 = mt7530_phy_write_c22, .phy_read_c45 = mt7530_phy_read_c45, .phy_write_c45 = mt7530_phy_write_c45, .mac_port_get_caps = mt7530_mac_port_get_caps, .mac_port_config = mt7530_mac_config, }, [ID_MT7530] = { .id = ID_MT7530, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7530_setup, .phy_read_c22 = mt7530_phy_read_c22, .phy_write_c22 = mt7530_phy_write_c22, .phy_read_c45 = mt7530_phy_read_c45, .phy_write_c45 = mt7530_phy_write_c45, .mac_port_get_caps = mt7530_mac_port_get_caps, .mac_port_config = mt7530_mac_config, }, [ID_MT7531] = { .id = ID_MT7531, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7531_setup, .phy_read_c22 = mt7531_ind_c22_phy_read, .phy_write_c22 = mt7531_ind_c22_phy_write, .phy_read_c45 = mt7531_ind_c45_phy_read, .phy_write_c45 = mt7531_ind_c45_phy_write, .mac_port_get_caps = mt7531_mac_port_get_caps, .mac_port_config = mt7531_mac_config, }, [ID_MT7988] = { .id = ID_MT7988, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7988_setup, .phy_read_c22 = mt7531_ind_c22_phy_read, .phy_write_c22 = mt7531_ind_c22_phy_write, .phy_read_c45 = mt7531_ind_c45_phy_read, .phy_write_c45 = mt7531_ind_c45_phy_write, .mac_port_get_caps = mt7988_mac_port_get_caps, }, [ID_EN7581] = { .id = ID_EN7581, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7988_setup, .phy_read_c22 = mt7531_ind_c22_phy_read, .phy_write_c22 = mt7531_ind_c22_phy_write, .phy_read_c45 = mt7531_ind_c45_phy_read, .phy_write_c45 = mt7531_ind_c45_phy_write, .mac_port_get_caps = en7581_mac_port_get_caps, }, }; EXPORT_SYMBOL_GPL(mt753x_table); int mt7530_probe_common(struct mt7530_priv *priv) { struct device *dev = priv->dev; priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); if (!priv->ds) return -ENOMEM; priv->ds->dev = dev; priv->ds->num_ports = MT7530_NUM_PORTS; /* Get the hardware identifier from the devicetree node. * We will need it for some of the clock and regulator setup. */ priv->info = of_device_get_match_data(dev); if (!priv->info) return -EINVAL; priv->id = priv->info->id; priv->dev = dev; priv->ds->priv = priv; priv->ds->ops = &mt7530_switch_ops; priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops; mutex_init(&priv->reg_mutex); dev_set_drvdata(dev, priv); return 0; } EXPORT_SYMBOL_GPL(mt7530_probe_common); void mt7530_remove_common(struct mt7530_priv *priv) { if (priv->irq) mt7530_free_irq(priv); dsa_unregister_switch(priv->ds); mutex_destroy(&priv->reg_mutex); } EXPORT_SYMBOL_GPL(mt7530_remove_common); MODULE_AUTHOR("Sean Wang "); MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); MODULE_LICENSE("GPL");