/* SPDX-License-Identifier: GPL-2.0 */ /* Microchip switch driver common header * * Copyright (C) 2017-2024 Microchip Technology Inc. */ #ifndef __KSZ_COMMON_H #define __KSZ_COMMON_H #include #include #include #include #include #include #include #include #include "ksz_ptp.h" #define KSZ_MAX_NUM_PORTS 8 /* all KSZ switches count ports from 1 */ #define KSZ_PORT_1 0 #define KSZ_PORT_2 1 #define KSZ_PORT_4 3 struct ksz_device; struct ksz_port; struct phylink_mac_ops; enum ksz_regmap_width { KSZ_REGMAP_8, KSZ_REGMAP_16, KSZ_REGMAP_32, __KSZ_NUM_REGMAPS, }; struct vlan_table { u32 table[3]; }; struct ksz_port_mib { struct mutex cnt_mutex; /* structure access */ u8 cnt_ptr; u64 *counters; struct rtnl_link_stats64 stats64; struct ethtool_pause_stats pause_stats; struct spinlock stats64_lock; }; struct ksz_mib_names { int index; char string[ETH_GSTRING_LEN]; }; struct ksz_chip_data { u32 chip_id; const char *dev_name; int num_vlans; int num_alus; int num_statics; int cpu_ports; int port_cnt; u8 port_nirqs; u8 num_tx_queues; u8 num_ipms; /* number of Internal Priority Maps */ bool tc_cbs_supported; const struct ksz_dev_ops *ops; const struct phylink_mac_ops *phylink_mac_ops; bool phy_errata_9477; bool ksz87xx_eee_link_erratum; const struct ksz_mib_names *mib_names; int mib_cnt; u8 reg_mib_cnt; const u16 *regs; const u32 *masks; const u8 *shifts; const u8 *xmii_ctrl0; const u8 *xmii_ctrl1; int stp_ctrl_reg; int broadcast_ctrl_reg; int multicast_ctrl_reg; int start_ctrl_reg; bool supports_mii[KSZ_MAX_NUM_PORTS]; bool supports_rmii[KSZ_MAX_NUM_PORTS]; bool supports_rgmii[KSZ_MAX_NUM_PORTS]; bool internal_phy[KSZ_MAX_NUM_PORTS]; bool gbit_capable[KSZ_MAX_NUM_PORTS]; const struct regmap_access_table *wr_table; const struct regmap_access_table *rd_table; }; struct ksz_irq { u16 masked; u16 reg_mask; u16 reg_status; struct irq_domain *domain; int nirqs; int irq_num; char name[16]; struct ksz_device *dev; }; struct ksz_ptp_irq { struct ksz_port *port; u16 ts_reg; bool ts_en; char name[16]; int num; }; struct ksz_switch_macaddr { unsigned char addr[ETH_ALEN]; refcount_t refcount; }; struct ksz_port { bool remove_tag; /* Remove Tag flag set, for ksz8795 only */ bool learning; bool isolated; int stp_state; struct phy_device phydev; u32 fiber:1; /* port is fiber */ u32 force:1; u32 read:1; /* read MIB counters in background */ u32 freeze:1; /* MIB counter freeze is enabled */ struct ksz_port_mib mib; phy_interface_t interface; u32 rgmii_tx_val; u32 rgmii_rx_val; struct ksz_device *ksz_dev; void *acl_priv; struct ksz_irq pirq; u8 num; #if IS_ENABLED(CONFIG_NET_DSA_MICROCHIP_KSZ_PTP) struct hwtstamp_config tstamp_config; bool hwts_tx_en; bool hwts_rx_en; struct ksz_irq ptpirq; struct ksz_ptp_irq ptpmsg_irq[3]; ktime_t tstamp_msg; struct completion tstamp_msg_comp; #endif bool manual_flow; }; struct ksz_device { struct dsa_switch *ds; struct ksz_platform_data *pdata; const struct ksz_chip_data *info; struct mutex dev_mutex; /* device access */ struct mutex regmap_mutex; /* regmap access */ struct mutex alu_mutex; /* ALU access */ struct mutex vlan_mutex; /* vlan access */ const struct ksz_dev_ops *dev_ops; struct device *dev; struct regmap *regmap[__KSZ_NUM_REGMAPS]; void *priv; int irq; struct gpio_desc *reset_gpio; /* Optional reset GPIO */ /* chip specific data */ u32 chip_id; u8 chip_rev; int cpu_port; /* port connected to CPU */ int phy_port_cnt; phy_interface_t compat_interface; bool synclko_125; bool synclko_disable; bool wakeup_source; bool pme_active_high; struct vlan_table *vlan_cache; struct ksz_port *ports; struct delayed_work mib_read; unsigned long mib_read_interval; u16 mirror_rx; u16 mirror_tx; u16 port_mask; struct mutex lock_irq; /* IRQ Access */ struct ksz_irq girq; struct ksz_ptp_data ptp_data; struct ksz_switch_macaddr *switch_macaddr; struct net_device *hsr_dev; /* HSR */ u8 hsr_ports; }; /* List of supported models */ enum ksz_model { KSZ8563, KSZ8567, KSZ8795, KSZ8794, KSZ8765, KSZ88X3, KSZ8864, KSZ8895, KSZ9477, KSZ9896, KSZ9897, KSZ9893, KSZ9563, KSZ9567, LAN9370, LAN9371, LAN9372, LAN9373, LAN9374, }; enum ksz_regs { REG_SW_MAC_ADDR, REG_IND_CTRL_0, REG_IND_DATA_8, REG_IND_DATA_CHECK, REG_IND_DATA_HI, REG_IND_DATA_LO, REG_IND_MIB_CHECK, REG_IND_BYTE, P_FORCE_CTRL, P_LINK_STATUS, P_LOCAL_CTRL, P_NEG_RESTART_CTRL, P_REMOTE_STATUS, P_SPEED_STATUS, S_TAIL_TAG_CTRL, P_STP_CTRL, S_START_CTRL, S_BROADCAST_CTRL, S_MULTICAST_CTRL, P_XMII_CTRL_0, P_XMII_CTRL_1, REG_SW_PME_CTRL, REG_PORT_PME_STATUS, REG_PORT_PME_CTRL, }; enum ksz_masks { PORT_802_1P_REMAPPING, SW_TAIL_TAG_ENABLE, MIB_COUNTER_OVERFLOW, MIB_COUNTER_VALID, VLAN_TABLE_FID, VLAN_TABLE_MEMBERSHIP, VLAN_TABLE_VALID, STATIC_MAC_TABLE_VALID, STATIC_MAC_TABLE_USE_FID, STATIC_MAC_TABLE_FID, STATIC_MAC_TABLE_OVERRIDE, STATIC_MAC_TABLE_FWD_PORTS, DYNAMIC_MAC_TABLE_ENTRIES_H, DYNAMIC_MAC_TABLE_MAC_EMPTY, DYNAMIC_MAC_TABLE_NOT_READY, DYNAMIC_MAC_TABLE_ENTRIES, DYNAMIC_MAC_TABLE_FID, DYNAMIC_MAC_TABLE_SRC_PORT, DYNAMIC_MAC_TABLE_TIMESTAMP, ALU_STAT_WRITE, ALU_STAT_READ, P_MII_TX_FLOW_CTRL, P_MII_RX_FLOW_CTRL, }; enum ksz_shifts { VLAN_TABLE_MEMBERSHIP_S, VLAN_TABLE, STATIC_MAC_FWD_PORTS, STATIC_MAC_FID, DYNAMIC_MAC_ENTRIES_H, DYNAMIC_MAC_ENTRIES, DYNAMIC_MAC_FID, DYNAMIC_MAC_TIMESTAMP, DYNAMIC_MAC_SRC_PORT, ALU_STAT_INDEX, }; enum ksz_xmii_ctrl0 { P_MII_100MBIT, P_MII_10MBIT, P_MII_FULL_DUPLEX, P_MII_HALF_DUPLEX, }; enum ksz_xmii_ctrl1 { P_RGMII_SEL, P_RMII_SEL, P_GMII_SEL, P_MII_SEL, P_GMII_1GBIT, P_GMII_NOT_1GBIT, }; struct alu_struct { /* entry 1 */ u8 is_static:1; u8 is_src_filter:1; u8 is_dst_filter:1; u8 prio_age:3; u32 _reserv_0_1:23; u8 mstp:3; /* entry 2 */ u8 is_override:1; u8 is_use_fid:1; u32 _reserv_1_1:23; u8 port_forward:7; /* entry 3 & 4*/ u32 _reserv_2_1:9; u8 fid:7; u8 mac[ETH_ALEN]; }; struct ksz_dev_ops { int (*setup)(struct dsa_switch *ds); void (*teardown)(struct dsa_switch *ds); u32 (*get_port_addr)(int port, int offset); void (*cfg_port_member)(struct ksz_device *dev, int port, u8 member); void (*flush_dyn_mac_table)(struct ksz_device *dev, int port); void (*port_cleanup)(struct ksz_device *dev, int port); void (*port_setup)(struct ksz_device *dev, int port, bool cpu_port); int (*set_ageing_time)(struct ksz_device *dev, unsigned int msecs); int (*r_phy)(struct ksz_device *dev, u16 phy, u16 reg, u16 *val); int (*w_phy)(struct ksz_device *dev, u16 phy, u16 reg, u16 val); void (*r_mib_cnt)(struct ksz_device *dev, int port, u16 addr, u64 *cnt); void (*r_mib_pkt)(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt); void (*r_mib_stat64)(struct ksz_device *dev, int port); int (*vlan_filtering)(struct ksz_device *dev, int port, bool flag, struct netlink_ext_ack *extack); int (*vlan_add)(struct ksz_device *dev, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack); int (*vlan_del)(struct ksz_device *dev, int port, const struct switchdev_obj_port_vlan *vlan); int (*mirror_add)(struct ksz_device *dev, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack); void (*mirror_del)(struct ksz_device *dev, int port, struct dsa_mall_mirror_tc_entry *mirror); int (*fdb_add)(struct ksz_device *dev, int port, const unsigned char *addr, u16 vid, struct dsa_db db); int (*fdb_del)(struct ksz_device *dev, int port, const unsigned char *addr, u16 vid, struct dsa_db db); int (*fdb_dump)(struct ksz_device *dev, int port, dsa_fdb_dump_cb_t *cb, void *data); int (*mdb_add)(struct ksz_device *dev, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db); int (*mdb_del)(struct ksz_device *dev, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db); void (*get_caps)(struct ksz_device *dev, int port, struct phylink_config *config); int (*change_mtu)(struct ksz_device *dev, int port, int mtu); int (*pme_write8)(struct ksz_device *dev, u32 reg, u8 value); int (*pme_pread8)(struct ksz_device *dev, int port, int offset, u8 *data); int (*pme_pwrite8)(struct ksz_device *dev, int port, int offset, u8 data); void (*freeze_mib)(struct ksz_device *dev, int port, bool freeze); void (*port_init_cnt)(struct ksz_device *dev, int port); void (*phylink_mac_link_up)(struct ksz_device *dev, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause); void (*setup_rgmii_delay)(struct ksz_device *dev, int port); int (*tc_cbs_set_cinc)(struct ksz_device *dev, int port, u32 val); void (*config_cpu_port)(struct dsa_switch *ds); int (*enable_stp_addr)(struct ksz_device *dev); int (*reset)(struct ksz_device *dev); int (*init)(struct ksz_device *dev); void (*exit)(struct ksz_device *dev); }; struct ksz_device *ksz_switch_alloc(struct device *base, void *priv); int ksz_switch_register(struct ksz_device *dev); void ksz_switch_remove(struct ksz_device *dev); void ksz_init_mib_timer(struct ksz_device *dev); bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port); void ksz_r_mib_stats64(struct ksz_device *dev, int port); void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port); void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state); bool ksz_get_gbit(struct ksz_device *dev, int port); phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit); extern const struct ksz_chip_data ksz_switch_chips[]; int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, struct netlink_ext_ack *extack); void ksz_switch_macaddr_put(struct dsa_switch *ds); void ksz_switch_shutdown(struct ksz_device *dev); int ksz_handle_wake_reason(struct ksz_device *dev, int port); /* Common register access functions */ static inline struct regmap *ksz_regmap_8(struct ksz_device *dev) { return dev->regmap[KSZ_REGMAP_8]; } static inline struct regmap *ksz_regmap_16(struct ksz_device *dev) { return dev->regmap[KSZ_REGMAP_16]; } static inline struct regmap *ksz_regmap_32(struct ksz_device *dev) { return dev->regmap[KSZ_REGMAP_32]; } static inline int ksz_read8(struct ksz_device *dev, u32 reg, u8 *val) { unsigned int value; int ret = regmap_read(ksz_regmap_8(dev), reg, &value); if (ret) dev_err(dev->dev, "can't read 8bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); *val = value; return ret; } static inline int ksz_read16(struct ksz_device *dev, u32 reg, u16 *val) { unsigned int value; int ret = regmap_read(ksz_regmap_16(dev), reg, &value); if (ret) dev_err(dev->dev, "can't read 16bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); *val = value; return ret; } static inline int ksz_read32(struct ksz_device *dev, u32 reg, u32 *val) { unsigned int value; int ret = regmap_read(ksz_regmap_32(dev), reg, &value); if (ret) dev_err(dev->dev, "can't read 32bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); *val = value; return ret; } static inline int ksz_read64(struct ksz_device *dev, u32 reg, u64 *val) { u32 value[2]; int ret; ret = regmap_bulk_read(ksz_regmap_32(dev), reg, value, 2); if (ret) dev_err(dev->dev, "can't read 64bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); else *val = (u64)value[0] << 32 | value[1]; return ret; } static inline int ksz_write8(struct ksz_device *dev, u32 reg, u8 value) { int ret; ret = regmap_write(ksz_regmap_8(dev), reg, value); if (ret) dev_err(dev->dev, "can't write 8bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); return ret; } static inline int ksz_write16(struct ksz_device *dev, u32 reg, u16 value) { int ret; ret = regmap_write(ksz_regmap_16(dev), reg, value); if (ret) dev_err(dev->dev, "can't write 16bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); return ret; } static inline int ksz_write32(struct ksz_device *dev, u32 reg, u32 value) { int ret; ret = regmap_write(ksz_regmap_32(dev), reg, value); if (ret) dev_err(dev->dev, "can't write 32bit reg: 0x%x %pe\n", reg, ERR_PTR(ret)); return ret; } static inline int ksz_rmw16(struct ksz_device *dev, u32 reg, u16 mask, u16 value) { int ret; ret = regmap_update_bits(ksz_regmap_16(dev), reg, mask, value); if (ret) dev_err(dev->dev, "can't rmw 16bit reg 0x%x: %pe\n", reg, ERR_PTR(ret)); return ret; } static inline int ksz_rmw32(struct ksz_device *dev, u32 reg, u32 mask, u32 value) { int ret; ret = regmap_update_bits(ksz_regmap_32(dev), reg, mask, value); if (ret) dev_err(dev->dev, "can't rmw 32bit reg 0x%x: %pe\n", reg, ERR_PTR(ret)); return ret; } static inline int ksz_write64(struct ksz_device *dev, u32 reg, u64 value) { u32 val[2]; /* Ick! ToDo: Add 64bit R/W to regmap on 32bit systems */ value = swab64(value); val[0] = swab32(value & 0xffffffffULL); val[1] = swab32(value >> 32ULL); return regmap_bulk_write(ksz_regmap_32(dev), reg, val, 2); } static inline int ksz_rmw8(struct ksz_device *dev, int offset, u8 mask, u8 val) { int ret; ret = regmap_update_bits(ksz_regmap_8(dev), offset, mask, val); if (ret) dev_err(dev->dev, "can't rmw 8bit reg 0x%x: %pe\n", offset, ERR_PTR(ret)); return ret; } static inline int ksz_pread8(struct ksz_device *dev, int port, int offset, u8 *data) { return ksz_read8(dev, dev->dev_ops->get_port_addr(port, offset), data); } static inline int ksz_pread16(struct ksz_device *dev, int port, int offset, u16 *data) { return ksz_read16(dev, dev->dev_ops->get_port_addr(port, offset), data); } static inline int ksz_pread32(struct ksz_device *dev, int port, int offset, u32 *data) { return ksz_read32(dev, dev->dev_ops->get_port_addr(port, offset), data); } static inline int ksz_pwrite8(struct ksz_device *dev, int port, int offset, u8 data) { return ksz_write8(dev, dev->dev_ops->get_port_addr(port, offset), data); } static inline int ksz_pwrite16(struct ksz_device *dev, int port, int offset, u16 data) { return ksz_write16(dev, dev->dev_ops->get_port_addr(port, offset), data); } static inline int ksz_pwrite32(struct ksz_device *dev, int port, int offset, u32 data) { return ksz_write32(dev, dev->dev_ops->get_port_addr(port, offset), data); } static inline int ksz_prmw8(struct ksz_device *dev, int port, int offset, u8 mask, u8 val) { return ksz_rmw8(dev, dev->dev_ops->get_port_addr(port, offset), mask, val); } static inline int ksz_prmw32(struct ksz_device *dev, int port, int offset, u32 mask, u32 val) { return ksz_rmw32(dev, dev->dev_ops->get_port_addr(port, offset), mask, val); } static inline void ksz_regmap_lock(void *__mtx) { struct mutex *mtx = __mtx; mutex_lock(mtx); } static inline void ksz_regmap_unlock(void *__mtx) { struct mutex *mtx = __mtx; mutex_unlock(mtx); } static inline bool ksz_is_ksz87xx(struct ksz_device *dev) { return dev->chip_id == KSZ8795_CHIP_ID || dev->chip_id == KSZ8794_CHIP_ID || dev->chip_id == KSZ8765_CHIP_ID; } static inline bool ksz_is_ksz88x3(struct ksz_device *dev) { return dev->chip_id == KSZ88X3_CHIP_ID; } static inline bool ksz_is_8895_family(struct ksz_device *dev) { return dev->chip_id == KSZ8895_CHIP_ID || dev->chip_id == KSZ8864_CHIP_ID; } static inline bool is_ksz8(struct ksz_device *dev) { return ksz_is_ksz87xx(dev) || ksz_is_ksz88x3(dev) || ksz_is_8895_family(dev); } static inline bool is_ksz88xx(struct ksz_device *dev) { return ksz_is_ksz88x3(dev) || ksz_is_8895_family(dev); } static inline bool is_ksz9477(struct ksz_device *dev) { return dev->chip_id == KSZ9477_CHIP_ID; } static inline int is_lan937x(struct ksz_device *dev) { return dev->chip_id == LAN9370_CHIP_ID || dev->chip_id == LAN9371_CHIP_ID || dev->chip_id == LAN9372_CHIP_ID || dev->chip_id == LAN9373_CHIP_ID || dev->chip_id == LAN9374_CHIP_ID; } static inline bool is_lan937x_tx_phy(struct ksz_device *dev, int port) { return (dev->chip_id == LAN9371_CHIP_ID || dev->chip_id == LAN9372_CHIP_ID) && port == KSZ_PORT_4; } /* STP State Defines */ #define PORT_TX_ENABLE BIT(2) #define PORT_RX_ENABLE BIT(1) #define PORT_LEARN_DISABLE BIT(0) /* Switch ID Defines */ #define REG_CHIP_ID0 0x00 #define SW_FAMILY_ID_M GENMASK(15, 8) #define KSZ87_FAMILY_ID 0x87 #define KSZ88_FAMILY_ID 0x88 #define KSZ8895_FAMILY_ID 0x95 #define KSZ8_PORT_STATUS_0 0x08 #define KSZ8_PORT_FIBER_MODE BIT(7) #define SW_CHIP_ID_M GENMASK(7, 4) #define KSZ87_CHIP_ID_94 0x6 #define KSZ87_CHIP_ID_95 0x9 #define KSZ88_CHIP_ID_63 0x3 #define KSZ8895_CHIP_ID_95 0x4 #define KSZ8895_CHIP_ID_95R 0x6 /* KSZ8895 specific register */ #define REG_KSZ8864_CHIP_ID 0xFE #define SW_KSZ8864 BIT(7) #define SW_REV_ID_M GENMASK(7, 4) /* KSZ9893, KSZ9563, KSZ8563 specific register */ #define REG_CHIP_ID4 0x0f #define SKU_ID_KSZ8563 0x3c #define SKU_ID_KSZ9563 0x1c /* Driver set switch broadcast storm protection at 10% rate. */ #define BROADCAST_STORM_PROT_RATE 10 /* 148,800 frames * 67 ms / 100 */ #define BROADCAST_STORM_VALUE 9969 #define BROADCAST_STORM_RATE_HI 0x07 #define BROADCAST_STORM_RATE_LO 0xFF #define BROADCAST_STORM_RATE 0x07FF #define MULTICAST_STORM_DISABLE BIT(6) #define SW_START 0x01 /* xMII configuration */ #define P_MII_DUPLEX_M BIT(6) #define P_MII_100MBIT_M BIT(4) #define P_GMII_1GBIT_M BIT(6) #define P_RGMII_ID_IG_ENABLE BIT(4) #define P_RGMII_ID_EG_ENABLE BIT(3) #define P_MII_MAC_MODE BIT(2) #define P_MII_SEL_M 0x3 /* KSZ9477, KSZ87xx Wake-on-LAN (WoL) masks */ #define PME_WOL_MAGICPKT BIT(2) #define PME_WOL_LINKUP BIT(1) #define PME_WOL_ENERGY BIT(0) #define PME_ENABLE BIT(1) #define PME_POLARITY BIT(0) #define KSZ87XX_REG_INT_EN 0x7D #define KSZ87XX_INT_PME_MASK BIT(4) /* Interrupt */ #define REG_SW_PORT_INT_STATUS__1 0x001B #define REG_SW_PORT_INT_MASK__1 0x001F #define REG_PORT_INT_STATUS 0x001B #define REG_PORT_INT_MASK 0x001F #define PORT_SRC_PHY_INT 1 #define PORT_SRC_PTP_INT 2 #define KSZ8795_HUGE_PACKET_SIZE 2000 #define KSZ8863_HUGE_PACKET_SIZE 1916 #define KSZ8863_NORMAL_PACKET_SIZE 1536 #define KSZ8_LEGAL_PACKET_SIZE 1518 #define KSZ9477_MAX_FRAME_SIZE 9000 #define KSZ8873_REG_GLOBAL_CTRL_12 0x0e /* Drive Strength of I/O Pad * 0: 8mA, 1: 16mA */ #define KSZ8873_DRIVE_STRENGTH_16MA BIT(6) #define KSZ8795_REG_SW_CTRL_20 0xa3 #define KSZ9477_REG_SW_IO_STRENGTH 0x010d #define SW_DRIVE_STRENGTH_M 0x7 #define SW_DRIVE_STRENGTH_2MA 0 #define SW_DRIVE_STRENGTH_4MA 1 #define SW_DRIVE_STRENGTH_8MA 2 #define SW_DRIVE_STRENGTH_12MA 3 #define SW_DRIVE_STRENGTH_16MA 4 #define SW_DRIVE_STRENGTH_20MA 5 #define SW_DRIVE_STRENGTH_24MA 6 #define SW_DRIVE_STRENGTH_28MA 7 #define SW_HI_SPEED_DRIVE_STRENGTH_S 4 #define SW_LO_SPEED_DRIVE_STRENGTH_S 0 #define KSZ9477_REG_PORT_OUT_RATE_0 0x0420 #define KSZ9477_OUT_RATE_NO_LIMIT 0 #define KSZ9477_PORT_MRI_TC_MAP__4 0x0808 #define KSZ9477_PORT_TC_MAP_S 4 /* CBS related registers */ #define REG_PORT_MTI_QUEUE_INDEX__4 0x0900 #define REG_PORT_MTI_QUEUE_CTRL_0 0x0914 #define MTI_SCHEDULE_MODE_M GENMASK(7, 6) #define MTI_SCHEDULE_STRICT_PRIO 0 #define MTI_SCHEDULE_WRR 2 #define MTI_SHAPING_M GENMASK(5, 4) #define MTI_SHAPING_OFF 0 #define MTI_SHAPING_SRP 1 #define MTI_SHAPING_TIME_AWARE 2 #define KSZ9477_PORT_MTI_QUEUE_CTRL_1 0x0915 #define KSZ9477_DEFAULT_WRR_WEIGHT 1 #define REG_PORT_MTI_HI_WATER_MARK 0x0916 #define REG_PORT_MTI_LO_WATER_MARK 0x0918 /* Regmap tables generation */ #define KSZ_SPI_OP_RD 3 #define KSZ_SPI_OP_WR 2 #define swabnot_used(x) 0 #define KSZ_SPI_OP_FLAG_MASK(opcode, swp, regbits, regpad) \ swab##swp((opcode) << ((regbits) + (regpad))) #define KSZ_REGMAP_ENTRY(width, swp, regbits, regpad, regalign) \ { \ .name = #width, \ .val_bits = (width), \ .reg_stride = 1, \ .reg_bits = (regbits) + (regalign), \ .pad_bits = (regpad), \ .max_register = BIT(regbits) - 1, \ .cache_type = REGCACHE_NONE, \ .read_flag_mask = \ KSZ_SPI_OP_FLAG_MASK(KSZ_SPI_OP_RD, swp, \ regbits, regpad), \ .write_flag_mask = \ KSZ_SPI_OP_FLAG_MASK(KSZ_SPI_OP_WR, swp, \ regbits, regpad), \ .lock = ksz_regmap_lock, \ .unlock = ksz_regmap_unlock, \ .reg_format_endian = REGMAP_ENDIAN_BIG, \ .val_format_endian = REGMAP_ENDIAN_BIG \ } #define KSZ_REGMAP_TABLE(ksz, swp, regbits, regpad, regalign) \ static const struct regmap_config ksz##_regmap_config[] = { \ [KSZ_REGMAP_8] = KSZ_REGMAP_ENTRY(8, swp, (regbits), (regpad), (regalign)), \ [KSZ_REGMAP_16] = KSZ_REGMAP_ENTRY(16, swp, (regbits), (regpad), (regalign)), \ [KSZ_REGMAP_32] = KSZ_REGMAP_ENTRY(32, swp, (regbits), (regpad), (regalign)), \ } #endif