/* * CAN bus driver for IFI CANFD controller * * Copyright (C) 2016 Marek Vasut * * Details about this controller can be found at * http://www.ifi-pld.de/IP/CANFD/canfd.html * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #define IFI_CANFD_STCMD 0x0 #define IFI_CANFD_STCMD_HARDRESET 0xDEADCAFD #define IFI_CANFD_STCMD_ENABLE BIT(0) #define IFI_CANFD_STCMD_ERROR_ACTIVE BIT(2) #define IFI_CANFD_STCMD_ERROR_PASSIVE BIT(3) #define IFI_CANFD_STCMD_BUSOFF BIT(4) #define IFI_CANFD_STCMD_ERROR_WARNING BIT(5) #define IFI_CANFD_STCMD_BUSMONITOR BIT(16) #define IFI_CANFD_STCMD_LOOPBACK BIT(18) #define IFI_CANFD_STCMD_DISABLE_CANFD BIT(24) #define IFI_CANFD_STCMD_ENABLE_ISO BIT(25) #define IFI_CANFD_STCMD_ENABLE_7_9_8_8_TIMING BIT(26) #define IFI_CANFD_STCMD_NORMAL_MODE ((u32)BIT(31)) #define IFI_CANFD_RXSTCMD 0x4 #define IFI_CANFD_RXSTCMD_REMOVE_MSG BIT(0) #define IFI_CANFD_RXSTCMD_RESET BIT(7) #define IFI_CANFD_RXSTCMD_EMPTY BIT(8) #define IFI_CANFD_RXSTCMD_OVERFLOW BIT(13) #define IFI_CANFD_TXSTCMD 0x8 #define IFI_CANFD_TXSTCMD_ADD_MSG BIT(0) #define IFI_CANFD_TXSTCMD_HIGH_PRIO BIT(1) #define IFI_CANFD_TXSTCMD_RESET BIT(7) #define IFI_CANFD_TXSTCMD_EMPTY BIT(8) #define IFI_CANFD_TXSTCMD_FULL BIT(12) #define IFI_CANFD_TXSTCMD_OVERFLOW BIT(13) #define IFI_CANFD_INTERRUPT 0xc #define IFI_CANFD_INTERRUPT_ERROR_BUSOFF BIT(0) #define IFI_CANFD_INTERRUPT_ERROR_WARNING BIT(1) #define IFI_CANFD_INTERRUPT_ERROR_STATE_CHG BIT(2) #define IFI_CANFD_INTERRUPT_ERROR_REC_TEC_INC BIT(3) #define IFI_CANFD_INTERRUPT_ERROR_COUNTER BIT(10) #define IFI_CANFD_INTERRUPT_TXFIFO_EMPTY BIT(16) #define IFI_CANFD_INTERRUPT_TXFIFO_REMOVE BIT(22) #define IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY BIT(24) #define IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER BIT(25) #define IFI_CANFD_INTERRUPT_SET_IRQ ((u32)BIT(31)) #define IFI_CANFD_IRQMASK 0x10 #define IFI_CANFD_IRQMASK_ERROR_BUSOFF BIT(0) #define IFI_CANFD_IRQMASK_ERROR_WARNING BIT(1) #define IFI_CANFD_IRQMASK_ERROR_STATE_CHG BIT(2) #define IFI_CANFD_IRQMASK_ERROR_REC_TEC_INC BIT(3) #define IFI_CANFD_IRQMASK_SET_ERR BIT(7) #define IFI_CANFD_IRQMASK_SET_TS BIT(15) #define IFI_CANFD_IRQMASK_TXFIFO_EMPTY BIT(16) #define IFI_CANFD_IRQMASK_SET_TX BIT(23) #define IFI_CANFD_IRQMASK_RXFIFO_NEMPTY BIT(24) #define IFI_CANFD_IRQMASK_SET_RX ((u32)BIT(31)) #define IFI_CANFD_TIME 0x14 #define IFI_CANFD_FTIME 0x18 #define IFI_CANFD_TIME_TIMEB_OFF 0 #define IFI_CANFD_TIME_TIMEA_OFF 8 #define IFI_CANFD_TIME_PRESCALE_OFF 16 #define IFI_CANFD_TIME_SJW_OFF_7_9_8_8 25 #define IFI_CANFD_TIME_SJW_OFF_4_12_6_6 28 #define IFI_CANFD_TIME_SET_SJW_4_12_6_6 BIT(6) #define IFI_CANFD_TIME_SET_TIMEB_4_12_6_6 BIT(7) #define IFI_CANFD_TIME_SET_PRESC_4_12_6_6 BIT(14) #define IFI_CANFD_TIME_SET_TIMEA_4_12_6_6 BIT(15) #define IFI_CANFD_TDELAY 0x1c #define IFI_CANFD_TDELAY_DEFAULT 0xb #define IFI_CANFD_TDELAY_MASK 0x3fff #define IFI_CANFD_TDELAY_ABS BIT(14) #define IFI_CANFD_TDELAY_EN BIT(15) #define IFI_CANFD_ERROR 0x20 #define IFI_CANFD_ERROR_TX_OFFSET 0 #define IFI_CANFD_ERROR_TX_MASK 0xff #define IFI_CANFD_ERROR_RX_OFFSET 16 #define IFI_CANFD_ERROR_RX_MASK 0xff #define IFI_CANFD_ERRCNT 0x24 #define IFI_CANFD_SUSPEND 0x28 #define IFI_CANFD_REPEAT 0x2c #define IFI_CANFD_TRAFFIC 0x30 #define IFI_CANFD_TSCONTROL 0x34 #define IFI_CANFD_TSC 0x38 #define IFI_CANFD_TST 0x3c #define IFI_CANFD_RES1 0x40 #define IFI_CANFD_ERROR_CTR 0x44 #define IFI_CANFD_ERROR_CTR_UNLOCK_MAGIC 0x21302899 #define IFI_CANFD_ERROR_CTR_OVERLOAD_FIRST BIT(0) #define IFI_CANFD_ERROR_CTR_ACK_ERROR_FIRST BIT(1) #define IFI_CANFD_ERROR_CTR_BIT0_ERROR_FIRST BIT(2) #define IFI_CANFD_ERROR_CTR_BIT1_ERROR_FIRST BIT(3) #define IFI_CANFD_ERROR_CTR_STUFF_ERROR_FIRST BIT(4) #define IFI_CANFD_ERROR_CTR_CRC_ERROR_FIRST BIT(5) #define IFI_CANFD_ERROR_CTR_FORM_ERROR_FIRST BIT(6) #define IFI_CANFD_ERROR_CTR_OVERLOAD_ALL BIT(8) #define IFI_CANFD_ERROR_CTR_ACK_ERROR_ALL BIT(9) #define IFI_CANFD_ERROR_CTR_BIT0_ERROR_ALL BIT(10) #define IFI_CANFD_ERROR_CTR_BIT1_ERROR_ALL BIT(11) #define IFI_CANFD_ERROR_CTR_STUFF_ERROR_ALL BIT(12) #define IFI_CANFD_ERROR_CTR_CRC_ERROR_ALL BIT(13) #define IFI_CANFD_ERROR_CTR_FORM_ERROR_ALL BIT(14) #define IFI_CANFD_ERROR_CTR_BITPOSITION_OFFSET 16 #define IFI_CANFD_ERROR_CTR_BITPOSITION_MASK 0xff #define IFI_CANFD_ERROR_CTR_ER_RESET BIT(30) #define IFI_CANFD_ERROR_CTR_ER_ENABLE ((u32)BIT(31)) #define IFI_CANFD_PAR 0x48 #define IFI_CANFD_CANCLOCK 0x4c #define IFI_CANFD_SYSCLOCK 0x50 #define IFI_CANFD_VER 0x54 #define IFI_CANFD_VER_REV_MASK 0xff #define IFI_CANFD_VER_REV_MIN_SUPPORTED 0x15 #define IFI_CANFD_IP_ID 0x58 #define IFI_CANFD_IP_ID_VALUE 0xD073CAFD #define IFI_CANFD_TEST 0x5c #define IFI_CANFD_RXFIFO_TS_63_32 0x60 #define IFI_CANFD_RXFIFO_TS_31_0 0x64 #define IFI_CANFD_RXFIFO_DLC 0x68 #define IFI_CANFD_RXFIFO_DLC_DLC_OFFSET 0 #define IFI_CANFD_RXFIFO_DLC_DLC_MASK 0xf #define IFI_CANFD_RXFIFO_DLC_RTR BIT(4) #define IFI_CANFD_RXFIFO_DLC_EDL BIT(5) #define IFI_CANFD_RXFIFO_DLC_BRS BIT(6) #define IFI_CANFD_RXFIFO_DLC_ESI BIT(7) #define IFI_CANFD_RXFIFO_DLC_OBJ_OFFSET 8 #define IFI_CANFD_RXFIFO_DLC_OBJ_MASK 0x1ff #define IFI_CANFD_RXFIFO_DLC_FNR_OFFSET 24 #define IFI_CANFD_RXFIFO_DLC_FNR_MASK 0xff #define IFI_CANFD_RXFIFO_ID 0x6c #define IFI_CANFD_RXFIFO_ID_ID_OFFSET 0 #define IFI_CANFD_RXFIFO_ID_ID_STD_MASK CAN_SFF_MASK #define IFI_CANFD_RXFIFO_ID_ID_STD_OFFSET 0 #define IFI_CANFD_RXFIFO_ID_ID_STD_WIDTH 10 #define IFI_CANFD_RXFIFO_ID_ID_XTD_MASK CAN_EFF_MASK #define IFI_CANFD_RXFIFO_ID_ID_XTD_OFFSET 11 #define IFI_CANFD_RXFIFO_ID_ID_XTD_WIDTH 18 #define IFI_CANFD_RXFIFO_ID_IDE BIT(29) #define IFI_CANFD_RXFIFO_DATA 0x70 /* 0x70..0xac */ #define IFI_CANFD_TXFIFO_SUSPEND_US 0xb0 #define IFI_CANFD_TXFIFO_REPEATCOUNT 0xb4 #define IFI_CANFD_TXFIFO_DLC 0xb8 #define IFI_CANFD_TXFIFO_DLC_DLC_OFFSET 0 #define IFI_CANFD_TXFIFO_DLC_DLC_MASK 0xf #define IFI_CANFD_TXFIFO_DLC_RTR BIT(4) #define IFI_CANFD_TXFIFO_DLC_EDL BIT(5) #define IFI_CANFD_TXFIFO_DLC_BRS BIT(6) #define IFI_CANFD_TXFIFO_DLC_FNR_OFFSET 24 #define IFI_CANFD_TXFIFO_DLC_FNR_MASK 0xff #define IFI_CANFD_TXFIFO_ID 0xbc #define IFI_CANFD_TXFIFO_ID_ID_OFFSET 0 #define IFI_CANFD_TXFIFO_ID_ID_STD_MASK CAN_SFF_MASK #define IFI_CANFD_TXFIFO_ID_ID_STD_OFFSET 0 #define IFI_CANFD_TXFIFO_ID_ID_STD_WIDTH 10 #define IFI_CANFD_TXFIFO_ID_ID_XTD_MASK CAN_EFF_MASK #define IFI_CANFD_TXFIFO_ID_ID_XTD_OFFSET 11 #define IFI_CANFD_TXFIFO_ID_ID_XTD_WIDTH 18 #define IFI_CANFD_TXFIFO_ID_IDE BIT(29) #define IFI_CANFD_TXFIFO_DATA 0xc0 /* 0xb0..0xfc */ #define IFI_CANFD_FILTER_MASK(n) (0x800 + ((n) * 8) + 0) #define IFI_CANFD_FILTER_MASK_EXT BIT(29) #define IFI_CANFD_FILTER_MASK_EDL BIT(30) #define IFI_CANFD_FILTER_MASK_VALID ((u32)BIT(31)) #define IFI_CANFD_FILTER_IDENT(n) (0x800 + ((n) * 8) + 4) #define IFI_CANFD_FILTER_IDENT_IDE BIT(29) #define IFI_CANFD_FILTER_IDENT_CANFD BIT(30) #define IFI_CANFD_FILTER_IDENT_VALID ((u32)BIT(31)) /* IFI CANFD private data structure */ struct ifi_canfd_priv { struct can_priv can; /* must be the first member */ struct napi_struct napi; struct net_device *ndev; void __iomem *base; }; static void ifi_canfd_irq_enable(struct net_device *ndev, bool enable) { struct ifi_canfd_priv *priv = netdev_priv(ndev); u32 enirq = 0; if (enable) { enirq = IFI_CANFD_IRQMASK_TXFIFO_EMPTY | IFI_CANFD_IRQMASK_RXFIFO_NEMPTY | IFI_CANFD_IRQMASK_ERROR_STATE_CHG | IFI_CANFD_IRQMASK_ERROR_WARNING | IFI_CANFD_IRQMASK_ERROR_BUSOFF; if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) enirq |= IFI_CANFD_INTERRUPT_ERROR_COUNTER; } writel(IFI_CANFD_IRQMASK_SET_ERR | IFI_CANFD_IRQMASK_SET_TS | IFI_CANFD_IRQMASK_SET_TX | IFI_CANFD_IRQMASK_SET_RX | enirq, priv->base + IFI_CANFD_IRQMASK); } static void ifi_canfd_read_fifo(struct net_device *ndev) { struct net_device_stats *stats = &ndev->stats; struct ifi_canfd_priv *priv = netdev_priv(ndev); struct canfd_frame *cf; struct sk_buff *skb; const u32 rx_irq_mask = IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY | IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER; u32 rxdlc, rxid; u32 dlc, id; int i; rxdlc = readl(priv->base + IFI_CANFD_RXFIFO_DLC); if (rxdlc & IFI_CANFD_RXFIFO_DLC_EDL) skb = alloc_canfd_skb(ndev, &cf); else skb = alloc_can_skb(ndev, (struct can_frame **)&cf); if (!skb) { stats->rx_dropped++; return; } dlc = (rxdlc >> IFI_CANFD_RXFIFO_DLC_DLC_OFFSET) & IFI_CANFD_RXFIFO_DLC_DLC_MASK; if (rxdlc & IFI_CANFD_RXFIFO_DLC_EDL) cf->len = can_fd_dlc2len(dlc); else cf->len = can_cc_dlc2len(dlc); rxid = readl(priv->base + IFI_CANFD_RXFIFO_ID); id = (rxid >> IFI_CANFD_RXFIFO_ID_ID_OFFSET); if (id & IFI_CANFD_RXFIFO_ID_IDE) { id &= IFI_CANFD_RXFIFO_ID_ID_XTD_MASK; /* * In case the Extended ID frame is received, the standard * and extended part of the ID are swapped in the register, * so swap them back to obtain the correct ID. */ id = (id >> IFI_CANFD_RXFIFO_ID_ID_XTD_OFFSET) | ((id & IFI_CANFD_RXFIFO_ID_ID_STD_MASK) << IFI_CANFD_RXFIFO_ID_ID_XTD_WIDTH); id |= CAN_EFF_FLAG; } else { id &= IFI_CANFD_RXFIFO_ID_ID_STD_MASK; } cf->can_id = id; if (rxdlc & IFI_CANFD_RXFIFO_DLC_ESI) { cf->flags |= CANFD_ESI; netdev_dbg(ndev, "ESI Error\n"); } if (!(rxdlc & IFI_CANFD_RXFIFO_DLC_EDL) && (rxdlc & IFI_CANFD_RXFIFO_DLC_RTR)) { cf->can_id |= CAN_RTR_FLAG; } else { if (rxdlc & IFI_CANFD_RXFIFO_DLC_BRS) cf->flags |= CANFD_BRS; for (i = 0; i < cf->len; i += 4) { *(u32 *)(cf->data + i) = readl(priv->base + IFI_CANFD_RXFIFO_DATA + i); } stats->rx_bytes += cf->len; } stats->rx_packets++; /* Remove the packet from FIFO */ writel(IFI_CANFD_RXSTCMD_REMOVE_MSG, priv->base + IFI_CANFD_RXSTCMD); writel(rx_irq_mask, priv->base + IFI_CANFD_INTERRUPT); netif_receive_skb(skb); } static int ifi_canfd_do_rx_poll(struct net_device *ndev, int quota) { struct ifi_canfd_priv *priv = netdev_priv(ndev); u32 pkts = 0; u32 rxst; rxst = readl(priv->base + IFI_CANFD_RXSTCMD); if (rxst & IFI_CANFD_RXSTCMD_EMPTY) { netdev_dbg(ndev, "No messages in RX FIFO\n"); return 0; } for (;;) { if (rxst & IFI_CANFD_RXSTCMD_EMPTY) break; if (quota <= 0) break; ifi_canfd_read_fifo(ndev); quota--; pkts++; rxst = readl(priv->base + IFI_CANFD_RXSTCMD); } return pkts; } static int ifi_canfd_handle_lost_msg(struct net_device *ndev) { struct net_device_stats *stats = &ndev->stats; struct sk_buff *skb; struct can_frame *frame; netdev_err(ndev, "RX FIFO overflow, message(s) lost.\n"); stats->rx_errors++; stats->rx_over_errors++; skb = alloc_can_err_skb(ndev, &frame); if (unlikely(!skb)) return 0; frame->can_id |= CAN_ERR_CRTL; frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; netif_receive_skb(skb); return 1; } static int ifi_canfd_handle_lec_err(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; struct can_frame *cf; struct sk_buff *skb; u32 errctr = readl(priv->base + IFI_CANFD_ERROR_CTR); const u32 errmask = IFI_CANFD_ERROR_CTR_OVERLOAD_FIRST | IFI_CANFD_ERROR_CTR_ACK_ERROR_FIRST | IFI_CANFD_ERROR_CTR_BIT0_ERROR_FIRST | IFI_CANFD_ERROR_CTR_BIT1_ERROR_FIRST | IFI_CANFD_ERROR_CTR_STUFF_ERROR_FIRST | IFI_CANFD_ERROR_CTR_CRC_ERROR_FIRST | IFI_CANFD_ERROR_CTR_FORM_ERROR_FIRST; if (!(errctr & errmask)) /* No error happened. */ return 0; priv->can.can_stats.bus_error++; stats->rx_errors++; /* Propagate the error condition to the CAN stack. */ skb = alloc_can_err_skb(ndev, &cf); if (unlikely(!skb)) return 0; /* Read the error counter register and check for new errors. */ cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; if (errctr & IFI_CANFD_ERROR_CTR_OVERLOAD_FIRST) cf->data[2] |= CAN_ERR_PROT_OVERLOAD; if (errctr & IFI_CANFD_ERROR_CTR_ACK_ERROR_FIRST) cf->data[3] = CAN_ERR_PROT_LOC_ACK; if (errctr & IFI_CANFD_ERROR_CTR_BIT0_ERROR_FIRST) cf->data[2] |= CAN_ERR_PROT_BIT0; if (errctr & IFI_CANFD_ERROR_CTR_BIT1_ERROR_FIRST) cf->data[2] |= CAN_ERR_PROT_BIT1; if (errctr & IFI_CANFD_ERROR_CTR_STUFF_ERROR_FIRST) cf->data[2] |= CAN_ERR_PROT_STUFF; if (errctr & IFI_CANFD_ERROR_CTR_CRC_ERROR_FIRST) cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; if (errctr & IFI_CANFD_ERROR_CTR_FORM_ERROR_FIRST) cf->data[2] |= CAN_ERR_PROT_FORM; /* Reset the error counter, ack the IRQ and re-enable the counter. */ writel(IFI_CANFD_ERROR_CTR_ER_RESET, priv->base + IFI_CANFD_ERROR_CTR); writel(IFI_CANFD_INTERRUPT_ERROR_COUNTER, priv->base + IFI_CANFD_INTERRUPT); writel(IFI_CANFD_ERROR_CTR_ER_ENABLE, priv->base + IFI_CANFD_ERROR_CTR); netif_receive_skb(skb); return 1; } static int ifi_canfd_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec) { struct ifi_canfd_priv *priv = netdev_priv(ndev); u32 err; err = readl(priv->base + IFI_CANFD_ERROR); bec->rxerr = (err >> IFI_CANFD_ERROR_RX_OFFSET) & IFI_CANFD_ERROR_RX_MASK; bec->txerr = (err >> IFI_CANFD_ERROR_TX_OFFSET) & IFI_CANFD_ERROR_TX_MASK; return 0; } static int ifi_canfd_handle_state_change(struct net_device *ndev, enum can_state new_state) { struct ifi_canfd_priv *priv = netdev_priv(ndev); struct can_frame *cf; struct sk_buff *skb; struct can_berr_counter bec; switch (new_state) { case CAN_STATE_ERROR_ACTIVE: /* error active state */ priv->can.can_stats.error_warning++; priv->can.state = CAN_STATE_ERROR_ACTIVE; break; case CAN_STATE_ERROR_WARNING: /* error warning state */ priv->can.can_stats.error_warning++; priv->can.state = CAN_STATE_ERROR_WARNING; break; case CAN_STATE_ERROR_PASSIVE: /* error passive state */ priv->can.can_stats.error_passive++; priv->can.state = CAN_STATE_ERROR_PASSIVE; break; case CAN_STATE_BUS_OFF: /* bus-off state */ priv->can.state = CAN_STATE_BUS_OFF; ifi_canfd_irq_enable(ndev, 0); priv->can.can_stats.bus_off++; can_bus_off(ndev); break; default: break; } /* propagate the error condition to the CAN stack */ skb = alloc_can_err_skb(ndev, &cf); if (unlikely(!skb)) return 0; ifi_canfd_get_berr_counter(ndev, &bec); switch (new_state) { case CAN_STATE_ERROR_WARNING: /* error warning state */ cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; cf->data[1] = (bec.txerr > bec.rxerr) ? CAN_ERR_CRTL_TX_WARNING : CAN_ERR_CRTL_RX_WARNING; cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; break; case CAN_STATE_ERROR_PASSIVE: /* error passive state */ cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; if (bec.txerr > 127) cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; break; case CAN_STATE_BUS_OFF: /* bus-off state */ cf->can_id |= CAN_ERR_BUSOFF; break; default: break; } netif_receive_skb(skb); return 1; } static int ifi_canfd_handle_state_errors(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); u32 stcmd = readl(priv->base + IFI_CANFD_STCMD); int work_done = 0; if ((stcmd & IFI_CANFD_STCMD_ERROR_ACTIVE) && (priv->can.state != CAN_STATE_ERROR_ACTIVE)) { netdev_dbg(ndev, "Error, entered active state\n"); work_done += ifi_canfd_handle_state_change(ndev, CAN_STATE_ERROR_ACTIVE); } if ((stcmd & IFI_CANFD_STCMD_ERROR_WARNING) && (priv->can.state != CAN_STATE_ERROR_WARNING)) { netdev_dbg(ndev, "Error, entered warning state\n"); work_done += ifi_canfd_handle_state_change(ndev, CAN_STATE_ERROR_WARNING); } if ((stcmd & IFI_CANFD_STCMD_ERROR_PASSIVE) && (priv->can.state != CAN_STATE_ERROR_PASSIVE)) { netdev_dbg(ndev, "Error, entered passive state\n"); work_done += ifi_canfd_handle_state_change(ndev, CAN_STATE_ERROR_PASSIVE); } if ((stcmd & IFI_CANFD_STCMD_BUSOFF) && (priv->can.state != CAN_STATE_BUS_OFF)) { netdev_dbg(ndev, "Error, entered bus-off state\n"); work_done += ifi_canfd_handle_state_change(ndev, CAN_STATE_BUS_OFF); } return work_done; } static int ifi_canfd_poll(struct napi_struct *napi, int quota) { struct net_device *ndev = napi->dev; struct ifi_canfd_priv *priv = netdev_priv(ndev); u32 rxstcmd = readl(priv->base + IFI_CANFD_RXSTCMD); int work_done = 0; /* Handle bus state changes */ work_done += ifi_canfd_handle_state_errors(ndev); /* Handle lost messages on RX */ if (rxstcmd & IFI_CANFD_RXSTCMD_OVERFLOW) work_done += ifi_canfd_handle_lost_msg(ndev); /* Handle lec errors on the bus */ if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) work_done += ifi_canfd_handle_lec_err(ndev); /* Handle normal messages on RX */ if (!(rxstcmd & IFI_CANFD_RXSTCMD_EMPTY)) work_done += ifi_canfd_do_rx_poll(ndev, quota - work_done); if (work_done < quota) { napi_complete_done(napi, work_done); ifi_canfd_irq_enable(ndev, 1); } return work_done; } static irqreturn_t ifi_canfd_isr(int irq, void *dev_id) { struct net_device *ndev = (struct net_device *)dev_id; struct ifi_canfd_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; const u32 rx_irq_mask = IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY | IFI_CANFD_INTERRUPT_RXFIFO_NEMPTY_PER | IFI_CANFD_INTERRUPT_ERROR_COUNTER | IFI_CANFD_INTERRUPT_ERROR_STATE_CHG | IFI_CANFD_INTERRUPT_ERROR_WARNING | IFI_CANFD_INTERRUPT_ERROR_BUSOFF; const u32 tx_irq_mask = IFI_CANFD_INTERRUPT_TXFIFO_EMPTY | IFI_CANFD_INTERRUPT_TXFIFO_REMOVE; const u32 clr_irq_mask = ~((u32)IFI_CANFD_INTERRUPT_SET_IRQ); u32 isr; isr = readl(priv->base + IFI_CANFD_INTERRUPT); /* No interrupt */ if (isr == 0) return IRQ_NONE; /* Clear all pending interrupts but ErrWarn */ writel(clr_irq_mask, priv->base + IFI_CANFD_INTERRUPT); /* RX IRQ or bus warning, start NAPI */ if (isr & rx_irq_mask) { ifi_canfd_irq_enable(ndev, 0); napi_schedule(&priv->napi); } /* TX IRQ */ if (isr & IFI_CANFD_INTERRUPT_TXFIFO_REMOVE) { stats->tx_bytes += can_get_echo_skb(ndev, 0, NULL); stats->tx_packets++; } if (isr & tx_irq_mask) netif_wake_queue(ndev); return IRQ_HANDLED; } static const struct can_bittiming_const ifi_canfd_bittiming_const = { .name = KBUILD_MODNAME, .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ .tseg1_max = 256, .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ .tseg2_max = 256, .sjw_max = 128, .brp_min = 2, .brp_max = 512, .brp_inc = 1, }; static void ifi_canfd_set_bittiming(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); const struct can_bittiming *bt = &priv->can.bittiming; const struct can_bittiming *dbt = &priv->can.data_bittiming; u16 brp, sjw, tseg1, tseg2, tdc; /* Configure bit timing */ brp = bt->brp - 2; sjw = bt->sjw - 1; tseg1 = bt->prop_seg + bt->phase_seg1 - 1; tseg2 = bt->phase_seg2 - 2; writel((tseg2 << IFI_CANFD_TIME_TIMEB_OFF) | (tseg1 << IFI_CANFD_TIME_TIMEA_OFF) | (brp << IFI_CANFD_TIME_PRESCALE_OFF) | (sjw << IFI_CANFD_TIME_SJW_OFF_7_9_8_8), priv->base + IFI_CANFD_TIME); /* Configure data bit timing */ brp = dbt->brp - 2; sjw = dbt->sjw - 1; tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; tseg2 = dbt->phase_seg2 - 2; writel((tseg2 << IFI_CANFD_TIME_TIMEB_OFF) | (tseg1 << IFI_CANFD_TIME_TIMEA_OFF) | (brp << IFI_CANFD_TIME_PRESCALE_OFF) | (sjw << IFI_CANFD_TIME_SJW_OFF_7_9_8_8), priv->base + IFI_CANFD_FTIME); /* Configure transmitter delay */ tdc = dbt->brp * (dbt->prop_seg + dbt->phase_seg1); tdc &= IFI_CANFD_TDELAY_MASK; writel(IFI_CANFD_TDELAY_EN | tdc, priv->base + IFI_CANFD_TDELAY); } static void ifi_canfd_set_filter(struct net_device *ndev, const u32 id, const u32 mask, const u32 ident) { struct ifi_canfd_priv *priv = netdev_priv(ndev); writel(mask, priv->base + IFI_CANFD_FILTER_MASK(id)); writel(ident, priv->base + IFI_CANFD_FILTER_IDENT(id)); } static void ifi_canfd_set_filters(struct net_device *ndev) { /* Receive all CAN frames (standard ID) */ ifi_canfd_set_filter(ndev, 0, IFI_CANFD_FILTER_MASK_VALID | IFI_CANFD_FILTER_MASK_EXT, IFI_CANFD_FILTER_IDENT_VALID); /* Receive all CAN frames (extended ID) */ ifi_canfd_set_filter(ndev, 1, IFI_CANFD_FILTER_MASK_VALID | IFI_CANFD_FILTER_MASK_EXT, IFI_CANFD_FILTER_IDENT_VALID | IFI_CANFD_FILTER_IDENT_IDE); /* Receive all CANFD frames */ ifi_canfd_set_filter(ndev, 2, IFI_CANFD_FILTER_MASK_VALID | IFI_CANFD_FILTER_MASK_EDL | IFI_CANFD_FILTER_MASK_EXT, IFI_CANFD_FILTER_IDENT_VALID | IFI_CANFD_FILTER_IDENT_CANFD | IFI_CANFD_FILTER_IDENT_IDE); } static void ifi_canfd_start(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); u32 stcmd; /* Reset the IP */ writel(IFI_CANFD_STCMD_HARDRESET, priv->base + IFI_CANFD_STCMD); writel(IFI_CANFD_STCMD_ENABLE_7_9_8_8_TIMING, priv->base + IFI_CANFD_STCMD); ifi_canfd_set_bittiming(ndev); ifi_canfd_set_filters(ndev); /* Reset FIFOs */ writel(IFI_CANFD_RXSTCMD_RESET, priv->base + IFI_CANFD_RXSTCMD); writel(0, priv->base + IFI_CANFD_RXSTCMD); writel(IFI_CANFD_TXSTCMD_RESET, priv->base + IFI_CANFD_TXSTCMD); writel(0, priv->base + IFI_CANFD_TXSTCMD); /* Repeat transmission until successful */ writel(0, priv->base + IFI_CANFD_REPEAT); writel(0, priv->base + IFI_CANFD_SUSPEND); /* Clear all pending interrupts */ writel((u32)(~IFI_CANFD_INTERRUPT_SET_IRQ), priv->base + IFI_CANFD_INTERRUPT); stcmd = IFI_CANFD_STCMD_ENABLE | IFI_CANFD_STCMD_NORMAL_MODE | IFI_CANFD_STCMD_ENABLE_7_9_8_8_TIMING; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) stcmd |= IFI_CANFD_STCMD_BUSMONITOR; if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) stcmd |= IFI_CANFD_STCMD_LOOPBACK; if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && !(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)) stcmd |= IFI_CANFD_STCMD_ENABLE_ISO; if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD)) stcmd |= IFI_CANFD_STCMD_DISABLE_CANFD; priv->can.state = CAN_STATE_ERROR_ACTIVE; ifi_canfd_irq_enable(ndev, 1); /* Unlock, reset and enable the error counter. */ writel(IFI_CANFD_ERROR_CTR_UNLOCK_MAGIC, priv->base + IFI_CANFD_ERROR_CTR); writel(IFI_CANFD_ERROR_CTR_ER_RESET, priv->base + IFI_CANFD_ERROR_CTR); writel(IFI_CANFD_ERROR_CTR_ER_ENABLE, priv->base + IFI_CANFD_ERROR_CTR); /* Enable controller */ writel(stcmd, priv->base + IFI_CANFD_STCMD); } static void ifi_canfd_stop(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); /* Reset and disable the error counter. */ writel(IFI_CANFD_ERROR_CTR_ER_RESET, priv->base + IFI_CANFD_ERROR_CTR); writel(0, priv->base + IFI_CANFD_ERROR_CTR); /* Reset the IP */ writel(IFI_CANFD_STCMD_HARDRESET, priv->base + IFI_CANFD_STCMD); /* Mask all interrupts */ writel(~0, priv->base + IFI_CANFD_IRQMASK); /* Clear all pending interrupts */ writel((u32)(~IFI_CANFD_INTERRUPT_SET_IRQ), priv->base + IFI_CANFD_INTERRUPT); /* Set the state as STOPPED */ priv->can.state = CAN_STATE_STOPPED; } static int ifi_canfd_set_mode(struct net_device *ndev, enum can_mode mode) { switch (mode) { case CAN_MODE_START: ifi_canfd_start(ndev); netif_wake_queue(ndev); break; default: return -EOPNOTSUPP; } return 0; } static int ifi_canfd_open(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); int ret; ret = open_candev(ndev); if (ret) { netdev_err(ndev, "Failed to open CAN device\n"); return ret; } /* Register interrupt handler */ ret = request_irq(ndev->irq, ifi_canfd_isr, IRQF_SHARED, ndev->name, ndev); if (ret < 0) { netdev_err(ndev, "Failed to request interrupt\n"); goto err_irq; } ifi_canfd_start(ndev); napi_enable(&priv->napi); netif_start_queue(ndev); return 0; err_irq: close_candev(ndev); return ret; } static int ifi_canfd_close(struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); netif_stop_queue(ndev); napi_disable(&priv->napi); ifi_canfd_stop(ndev); free_irq(ndev->irq, ndev); close_candev(ndev); return 0; } static netdev_tx_t ifi_canfd_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ifi_canfd_priv *priv = netdev_priv(ndev); struct canfd_frame *cf = (struct canfd_frame *)skb->data; u32 txst, txid, txdlc; int i; if (can_dev_dropped_skb(ndev, skb)) return NETDEV_TX_OK; /* Check if the TX buffer is full */ txst = readl(priv->base + IFI_CANFD_TXSTCMD); if (txst & IFI_CANFD_TXSTCMD_FULL) { netif_stop_queue(ndev); netdev_err(ndev, "BUG! TX FIFO full when queue awake!\n"); return NETDEV_TX_BUSY; } netif_stop_queue(ndev); if (cf->can_id & CAN_EFF_FLAG) { txid = cf->can_id & CAN_EFF_MASK; /* * In case the Extended ID frame is transmitted, the * standard and extended part of the ID are swapped * in the register, so swap them back to send the * correct ID. */ txid = (txid >> IFI_CANFD_TXFIFO_ID_ID_XTD_WIDTH) | ((txid & IFI_CANFD_TXFIFO_ID_ID_XTD_MASK) << IFI_CANFD_TXFIFO_ID_ID_XTD_OFFSET); txid |= IFI_CANFD_TXFIFO_ID_IDE; } else { txid = cf->can_id & CAN_SFF_MASK; } txdlc = can_fd_len2dlc(cf->len); if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && can_is_canfd_skb(skb)) { txdlc |= IFI_CANFD_TXFIFO_DLC_EDL; if (cf->flags & CANFD_BRS) txdlc |= IFI_CANFD_TXFIFO_DLC_BRS; } if (cf->can_id & CAN_RTR_FLAG) txdlc |= IFI_CANFD_TXFIFO_DLC_RTR; /* message ram configuration */ writel(txid, priv->base + IFI_CANFD_TXFIFO_ID); writel(txdlc, priv->base + IFI_CANFD_TXFIFO_DLC); for (i = 0; i < cf->len; i += 4) { writel(*(u32 *)(cf->data + i), priv->base + IFI_CANFD_TXFIFO_DATA + i); } writel(0, priv->base + IFI_CANFD_TXFIFO_REPEATCOUNT); writel(0, priv->base + IFI_CANFD_TXFIFO_SUSPEND_US); can_put_echo_skb(skb, ndev, 0, 0); /* Start the transmission */ writel(IFI_CANFD_TXSTCMD_ADD_MSG, priv->base + IFI_CANFD_TXSTCMD); return NETDEV_TX_OK; } static const struct net_device_ops ifi_canfd_netdev_ops = { .ndo_open = ifi_canfd_open, .ndo_stop = ifi_canfd_close, .ndo_start_xmit = ifi_canfd_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct ethtool_ops ifi_canfd_ethtool_ops = { .get_ts_info = ethtool_op_get_ts_info, }; static int ifi_canfd_plat_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct net_device *ndev; struct ifi_canfd_priv *priv; void __iomem *addr; int irq, ret; u32 id, rev; addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(addr)) return PTR_ERR(addr); irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; id = readl(addr + IFI_CANFD_IP_ID); if (id != IFI_CANFD_IP_ID_VALUE) { dev_err(dev, "This block is not IFI CANFD, id=%08x\n", id); return -EINVAL; } rev = readl(addr + IFI_CANFD_VER) & IFI_CANFD_VER_REV_MASK; if (rev < IFI_CANFD_VER_REV_MIN_SUPPORTED) { dev_err(dev, "This block is too old (rev %i), minimum supported is rev %i\n", rev, IFI_CANFD_VER_REV_MIN_SUPPORTED); return -EINVAL; } ndev = alloc_candev(sizeof(*priv), 1); if (!ndev) return -ENOMEM; ndev->irq = irq; ndev->flags |= IFF_ECHO; /* we support local echo */ ndev->netdev_ops = &ifi_canfd_netdev_ops; ndev->ethtool_ops = &ifi_canfd_ethtool_ops; priv = netdev_priv(ndev); priv->ndev = ndev; priv->base = addr; netif_napi_add(ndev, &priv->napi, ifi_canfd_poll); priv->can.state = CAN_STATE_STOPPED; priv->can.clock.freq = readl(addr + IFI_CANFD_CANCLOCK); priv->can.bittiming_const = &ifi_canfd_bittiming_const; priv->can.data_bittiming_const = &ifi_canfd_bittiming_const; priv->can.do_set_mode = ifi_canfd_set_mode; priv->can.do_get_berr_counter = ifi_canfd_get_berr_counter; /* IFI CANFD can do both Bosch FD and ISO FD */ priv->can.ctrlmode = CAN_CTRLMODE_FD; /* IFI CANFD can do both Bosch FD and ISO FD */ priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO | CAN_CTRLMODE_BERR_REPORTING; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, dev); ret = register_candev(ndev); if (ret) { dev_err(dev, "Failed to register (ret=%d)\n", ret); goto err_reg; } dev_info(dev, "Driver registered: regs=%p, irq=%d, clock=%d\n", priv->base, ndev->irq, priv->can.clock.freq); return 0; err_reg: free_candev(ndev); return ret; } static void ifi_canfd_plat_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); unregister_candev(ndev); platform_set_drvdata(pdev, NULL); free_candev(ndev); } static const struct of_device_id ifi_canfd_of_table[] = { { .compatible = "ifi,canfd-1.0", .data = NULL }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ifi_canfd_of_table); static struct platform_driver ifi_canfd_plat_driver = { .driver = { .name = KBUILD_MODNAME, .of_match_table = ifi_canfd_of_table, }, .probe = ifi_canfd_plat_probe, .remove = ifi_canfd_plat_remove, }; module_platform_driver(ifi_canfd_plat_driver); MODULE_AUTHOR("Marek Vasut "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CAN bus driver for IFI CANFD controller");