// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include #include #include #include #include "core.h" #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) #define SFDP_PARAM_HEADER_PTP(p) \ (((p)->parameter_table_pointer[2] << 16) | \ ((p)->parameter_table_pointer[1] << 8) | \ ((p)->parameter_table_pointer[0] << 0)) #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ #define SFDP_SCCR_MAP_ID 0xff87 /* * Status, Control and Configuration * Register Map. */ #define SFDP_SCCR_MAP_MC_ID 0xff88 /* * Status, Control and Configuration * Register Map Offsets for Multi-Chip * SPI Memory Devices. */ #define SFDP_SIGNATURE 0x50444653U struct sfdp_header { u32 signature; /* Ox50444653U <=> "SFDP" */ u8 minor; u8 major; u8 nph; /* 0-base number of parameter headers */ u8 unused; /* Basic Flash Parameter Table. */ struct sfdp_parameter_header bfpt_header; }; /* Fast Read settings. */ struct sfdp_bfpt_read { /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ u32 hwcaps; /* * The bit in BFPT DWORD tells us * whether the Fast Read x-y-z command is supported. */ u32 supported_dword; u32 supported_bit; /* * The half-word at offset in BFPT DWORD * encodes the op code, the number of mode clocks and the number of wait * states to be used by Fast Read x-y-z command. */ u32 settings_dword; u32 settings_shift; /* The SPI protocol for this Fast Read x-y-z command. */ enum spi_nor_protocol proto; }; struct sfdp_bfpt_erase { /* * The half-word at offset in DWORD encodes the * op code and erase sector size to be used by Sector Erase commands. */ u32 dword; u32 shift; }; #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) #define SMPT_CMD_READ_DUMMY_SHIFT 16 #define SMPT_CMD_READ_DUMMY(_cmd) \ (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) #define SMPT_CMD_READ_DATA_SHIFT 24 #define SMPT_CMD_READ_DATA(_cmd) \ (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) #define SMPT_CMD_OPCODE_SHIFT 8 #define SMPT_CMD_OPCODE(_cmd) \ (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) #define SMPT_MAP_REGION_COUNT_SHIFT 16 #define SMPT_MAP_REGION_COUNT(_header) \ ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ SMPT_MAP_REGION_COUNT_SHIFT) + 1) #define SMPT_MAP_ID_MASK GENMASK(15, 8) #define SMPT_MAP_ID_SHIFT 8 #define SMPT_MAP_ID(_header) \ (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) #define SMPT_MAP_REGION_SIZE_SHIFT 8 #define SMPT_MAP_REGION_SIZE(_region) \ (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) #define SMPT_DESC_TYPE_MAP BIT(1) #define SMPT_DESC_END BIT(0) #define SFDP_4BAIT_DWORD_MAX 2 struct sfdp_4bait { /* The hardware capability. */ u32 hwcaps; /* * The bit in DWORD1 of the 4BAIT tells us whether * the associated 4-byte address op code is supported. */ u32 supported_bit; }; /** * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, * addr_nbytes and read_dummy members of the struct spi_nor * should be previously set. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the serial flash memory * @len: number of bytes to read * @buf: buffer where the data is copied into (dma-safe memory) * * Return: 0 on success, -errno otherwise. */ static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) { ssize_t ret; while (len) { ret = spi_nor_read_data(nor, addr, len, buf); if (ret < 0) return ret; if (!ret || ret > len) return -EIO; buf += ret; addr += ret; len -= ret; } return 0; } /** * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the SFDP area to start reading data from * @len: number of bytes to read * @buf: buffer where the SFDP data are copied into (dma-safe memory) * * Whatever the actual numbers of bytes for address and dummy cycles are * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always * followed by a 3-byte address and 8 dummy clock cycles. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, size_t len, void *buf) { u8 addr_nbytes, read_opcode, read_dummy; int ret; read_opcode = nor->read_opcode; addr_nbytes = nor->addr_nbytes; read_dummy = nor->read_dummy; nor->read_opcode = SPINOR_OP_RDSFDP; nor->addr_nbytes = 3; nor->read_dummy = 8; ret = spi_nor_read_raw(nor, addr, len, buf); nor->read_opcode = read_opcode; nor->addr_nbytes = addr_nbytes; nor->read_dummy = read_dummy; return ret; } /** * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the SFDP area to start reading data from * @len: number of bytes to read * @buf: buffer where the SFDP data are copied into * * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not * guaranteed to be dma-safe. * * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() * otherwise. */ static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, size_t len, void *buf) { void *dma_safe_buf; int ret; dma_safe_buf = kmalloc(len, GFP_KERNEL); if (!dma_safe_buf) return -ENOMEM; ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); memcpy(buf, dma_safe_buf, len); kfree(dma_safe_buf); return ret; } static void spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, u16 half, enum spi_nor_protocol proto) { read->num_mode_clocks = (half >> 5) & 0x07; read->num_wait_states = (half >> 0) & 0x1f; read->opcode = (half >> 8) & 0xff; read->proto = proto; } static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { /* Fast Read 1-1-2 */ { SNOR_HWCAPS_READ_1_1_2, SFDP_DWORD(1), BIT(16), /* Supported bit */ SFDP_DWORD(4), 0, /* Settings */ SNOR_PROTO_1_1_2, }, /* Fast Read 1-2-2 */ { SNOR_HWCAPS_READ_1_2_2, SFDP_DWORD(1), BIT(20), /* Supported bit */ SFDP_DWORD(4), 16, /* Settings */ SNOR_PROTO_1_2_2, }, /* Fast Read 2-2-2 */ { SNOR_HWCAPS_READ_2_2_2, SFDP_DWORD(5), BIT(0), /* Supported bit */ SFDP_DWORD(6), 16, /* Settings */ SNOR_PROTO_2_2_2, }, /* Fast Read 1-1-4 */ { SNOR_HWCAPS_READ_1_1_4, SFDP_DWORD(1), BIT(22), /* Supported bit */ SFDP_DWORD(3), 16, /* Settings */ SNOR_PROTO_1_1_4, }, /* Fast Read 1-4-4 */ { SNOR_HWCAPS_READ_1_4_4, SFDP_DWORD(1), BIT(21), /* Supported bit */ SFDP_DWORD(3), 0, /* Settings */ SNOR_PROTO_1_4_4, }, /* Fast Read 4-4-4 */ { SNOR_HWCAPS_READ_4_4_4, SFDP_DWORD(5), BIT(4), /* Supported bit */ SFDP_DWORD(7), 16, /* Settings */ SNOR_PROTO_4_4_4, }, }; static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { /* Erase Type 1 in DWORD8 bits[15:0] */ {SFDP_DWORD(8), 0}, /* Erase Type 2 in DWORD8 bits[31:16] */ {SFDP_DWORD(8), 16}, /* Erase Type 3 in DWORD9 bits[15:0] */ {SFDP_DWORD(9), 0}, /* Erase Type 4 in DWORD9 bits[31:16] */ {SFDP_DWORD(9), 16}, }; /** * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT * @erase: pointer to a structure that describes a SPI NOR erase type * @size: the size of the sector/block erased by the erase type * @opcode: the SPI command op code to erase the sector/block * @i: erase type index as sorted in the Basic Flash Parameter Table * * The supported Erase Types will be sorted at init in ascending order, with * the smallest Erase Type size being the first member in the erase_type array * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in * the Basic Flash Parameter Table since it will be used later on to * synchronize with the supported Erase Types defined in SFDP optional tables. */ static void spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, u32 size, u8 opcode, u8 i) { erase->idx = i; spi_nor_set_erase_type(erase, size, opcode); } /** * spi_nor_map_cmp_erase_type() - compare the map's erase types by size * @l: member in the left half of the map's erase_type array * @r: member in the right half of the map's erase_type array * * Comparison function used in the sort() call to sort in ascending order the * map's erase types, the smallest erase type size being the first member in the * sorted erase_type array. * * Return: the result of @l->size - @r->size */ static int spi_nor_map_cmp_erase_type(const void *l, const void *r) { const struct spi_nor_erase_type *left = l, *right = r; return left->size - right->size; } /** * spi_nor_sort_erase_mask() - sort erase mask * @map: the erase map of the SPI NOR * @erase_mask: the erase type mask to be sorted * * Replicate the sort done for the map's erase types in BFPT: sort the erase * mask in ascending order with the smallest erase type size starting from * BIT(0) in the sorted erase mask. * * Return: sorted erase mask. */ static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) { struct spi_nor_erase_type *erase_type = map->erase_type; int i; u8 sorted_erase_mask = 0; if (!erase_mask) return 0; /* Replicate the sort done for the map's erase types. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) sorted_erase_mask |= BIT(i); return sorted_erase_mask; } /** * spi_nor_regions_sort_erase_types() - sort erase types in each region * @map: the erase map of the SPI NOR * * Function assumes that the erase types defined in the erase map are already * sorted in ascending order, with the smallest erase type size being the first * member in the erase_type array. It replicates the sort done for the map's * erase types. Each region's erase bitmask will indicate which erase types are * supported from the sorted erase types defined in the erase map. * Sort the all region's erase type at init in order to speed up the process of * finding the best erase command at runtime. */ static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) { struct spi_nor_erase_region *region = map->regions; u8 sorted_erase_mask; unsigned int i; for (i = 0; i < map->n_regions; i++) { sorted_erase_mask = spi_nor_sort_erase_mask(map, region[i].erase_mask); /* Overwrite erase mask. */ region[i].erase_mask = sorted_erase_mask; } } /** * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. * @nor: pointer to a 'struct spi_nor' * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing * the Basic Flash Parameter Table length and version * * The Basic Flash Parameter Table is the main and only mandatory table as * defined by the SFDP (JESD216) specification. * It provides us with the total size (memory density) of the data array and * the number of address bytes for Fast Read, Page Program and Sector Erase * commands. * For Fast READ commands, it also gives the number of mode clock cycles and * wait states (regrouped in the number of dummy clock cycles) for each * supported instruction op code. * For Page Program, the page size is now available since JESD216 rev A, however * the supported instruction op codes are still not provided. * For Sector Erase commands, this table stores the supported instruction op * codes and the associated sector sizes. * Finally, the Quad Enable Requirements (QER) are also available since JESD216 * rev A. The QER bits encode the manufacturer dependent procedure to be * executed to set the Quad Enable (QE) bit in some internal register of the * Quad SPI memory. Indeed the QE bit, when it exists, must be set before * sending any Quad SPI command to the memory. Actually, setting the QE bit * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 * and IO3 hence enabling 4 (Quad) I/O lines. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_bfpt(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header) { struct spi_nor_flash_parameter *params = nor->params; struct spi_nor_erase_map *map = ¶ms->erase_map; struct spi_nor_erase_type *erase_type = map->erase_type; struct sfdp_bfpt bfpt; size_t len; int i, cmd, err; u32 addr, val; u32 dword; u16 half; u8 erase_mask; u8 wait_states, mode_clocks, opcode; /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) return -EINVAL; /* Read the Basic Flash Parameter Table. */ len = min_t(size_t, sizeof(bfpt), bfpt_header->length * sizeof(u32)); addr = SFDP_PARAM_HEADER_PTP(bfpt_header); memset(&bfpt, 0, sizeof(bfpt)); err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); if (err < 0) return err; /* Fix endianness of the BFPT DWORDs. */ le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); /* Number of address bytes. */ switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: params->addr_nbytes = 3; params->addr_mode_nbytes = 3; break; case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: params->addr_nbytes = 4; params->addr_mode_nbytes = 4; break; default: break; } /* Flash Memory Density (in bits). */ val = bfpt.dwords[SFDP_DWORD(2)]; if (val & BIT(31)) { val &= ~BIT(31); /* * Prevent overflows on params->size. Anyway, a NOR of 2^64 * bits is unlikely to exist so this error probably means * the BFPT we are reading is corrupted/wrong. */ if (val > 63) return -EINVAL; params->size = 1ULL << val; } else { params->size = val + 1; } params->size >>= 3; /* Convert to bytes. */ /* Fast Read settings. */ for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; struct spi_nor_read_command *read; if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { params->hwcaps.mask &= ~rd->hwcaps; continue; } params->hwcaps.mask |= rd->hwcaps; cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); read = ¶ms->reads[cmd]; half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); } /* * Sector Erase settings. Reinitialize the uniform erase map using the * Erase Types defined in the bfpt table. */ erase_mask = 0; memset(¶ms->erase_map, 0, sizeof(params->erase_map)); for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; u32 erasesize; u8 opcode; half = bfpt.dwords[er->dword] >> er->shift; erasesize = half & 0xff; /* erasesize == 0 means this Erase Type is not supported. */ if (!erasesize) continue; erasesize = 1U << erasesize; opcode = (half >> 8) & 0xff; erase_mask |= BIT(i); spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, opcode, i); } spi_nor_init_uniform_erase_map(map, erase_mask, params->size); /* * Sort all the map's Erase Types in ascending order with the smallest * erase size being the first member in the erase_type array. */ sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), spi_nor_map_cmp_erase_type, NULL); /* * Sort the erase types in the uniform region in order to update the * uniform_erase_type bitmask. The bitmask will be used later on when * selecting the uniform erase. */ spi_nor_regions_sort_erase_types(map); /* Stop here if not JESD216 rev A or later. */ if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ val = bfpt.dwords[SFDP_DWORD(11)]; val &= BFPT_DWORD11_PAGE_SIZE_MASK; val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; params->page_size = 1U << val; /* Quad Enable Requirements. */ switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { case BFPT_DWORD15_QER_NONE: params->quad_enable = NULL; break; case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: /* * Writing only one byte to the Status Register has the * side-effect of clearing Status Register 2. */ case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: /* * Read Configuration Register (35h) instruction is not * supported. */ nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; params->quad_enable = spi_nor_sr2_bit1_quad_enable; break; case BFPT_DWORD15_QER_SR1_BIT6: nor->flags &= ~SNOR_F_HAS_16BIT_SR; params->quad_enable = spi_nor_sr1_bit6_quad_enable; break; case BFPT_DWORD15_QER_SR2_BIT7: nor->flags &= ~SNOR_F_HAS_16BIT_SR; params->quad_enable = spi_nor_sr2_bit7_quad_enable; break; case BFPT_DWORD15_QER_SR2_BIT1: /* * JESD216 rev B or later does not specify if writing only one * byte to the Status Register clears or not the Status * Register 2, so let's be cautious and keep the default * assumption of a 16-bit Write Status (01h) command. */ nor->flags |= SNOR_F_HAS_16BIT_SR; params->quad_enable = spi_nor_sr2_bit1_quad_enable; break; default: dev_dbg(nor->dev, "BFPT QER reserved value used\n"); break; } dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; else dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); /* Soft Reset support. */ if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) nor->flags |= SNOR_F_SOFT_RESET; /* Stop here if not JESD216 rev C or later. */ if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); /* Parse 1-1-8 read instruction */ opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); if (opcode) { mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS, bfpt.dwords[SFDP_DWORD(17)]); wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES, bfpt.dwords[SFDP_DWORD(17)]); params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], mode_clocks, wait_states, opcode, SNOR_PROTO_1_1_8); } /* Parse 1-8-8 read instruction */ opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); if (opcode) { mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS, bfpt.dwords[SFDP_DWORD(17)]); wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES, bfpt.dwords[SFDP_DWORD(17)]); params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_8_8], mode_clocks, wait_states, opcode, SNOR_PROTO_1_8_8); } /* 8D-8D-8D command extension. */ switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { case BFPT_DWORD18_CMD_EXT_REP: nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; break; case BFPT_DWORD18_CMD_EXT_INV: nor->cmd_ext_type = SPI_NOR_EXT_INVERT; break; case BFPT_DWORD18_CMD_EXT_RES: dev_dbg(nor->dev, "Reserved command extension used\n"); break; case BFPT_DWORD18_CMD_EXT_16B: dev_dbg(nor->dev, "16-bit opcodes not supported\n"); return -EOPNOTSUPP; } /* Byte order in 8D-8D-8D mode */ if (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_BYTE_ORDER_SWAPPED) nor->flags |= SNOR_F_SWAP16; return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); } /** * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the * configuration detection command. * @nor: pointer to a 'struct spi_nor' * @settings: configuration detection command descriptor, dword1 */ static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) { switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { case SMPT_CMD_ADDRESS_LEN_0: return 0; case SMPT_CMD_ADDRESS_LEN_3: return 3; case SMPT_CMD_ADDRESS_LEN_4: return 4; case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: default: return nor->params->addr_mode_nbytes; } } /** * spi_nor_smpt_read_dummy() - return the configuration detection command read * latency, in clock cycles. * @nor: pointer to a 'struct spi_nor' * @settings: configuration detection command descriptor, dword1 * * Return: the number of dummy cycles for an SMPT read */ static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) { u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) return nor->read_dummy; return read_dummy; } /** * spi_nor_get_map_in_use() - get the configuration map in use * @nor: pointer to a 'struct spi_nor' * @smpt: pointer to the sector map parameter table * @smpt_len: sector map parameter table length * * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. */ static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, u8 smpt_len) { const u32 *ret; u8 *buf; u32 addr; int err; u8 i; u8 addr_nbytes, read_opcode, read_dummy; u8 read_data_mask, map_id; /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ buf = kmalloc(sizeof(*buf), GFP_KERNEL); if (!buf) return ERR_PTR(-ENOMEM); addr_nbytes = nor->addr_nbytes; read_dummy = nor->read_dummy; read_opcode = nor->read_opcode; map_id = 0; /* Determine if there are any optional Detection Command Descriptors */ for (i = 0; i < smpt_len; i += 2) { if (smpt[i] & SMPT_DESC_TYPE_MAP) break; read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); addr = smpt[i + 1]; err = spi_nor_read_raw(nor, addr, 1, buf); if (err) { ret = ERR_PTR(err); goto out; } /* * Build an index value that is used to select the Sector Map * Configuration that is currently in use. */ map_id = map_id << 1 | !!(*buf & read_data_mask); } /* * If command descriptors are provided, they always precede map * descriptors in the table. There is no need to start the iteration * over smpt array all over again. * * Find the matching configuration map. */ ret = ERR_PTR(-EINVAL); while (i < smpt_len) { if (SMPT_MAP_ID(smpt[i]) == map_id) { ret = smpt + i; break; } /* * If there are no more configuration map descriptors and no * configuration ID matched the configuration identifier, the * sector address map is unknown. */ if (smpt[i] & SMPT_DESC_END) break; /* increment the table index to the next map */ i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; } /* fall through */ out: kfree(buf); nor->addr_nbytes = addr_nbytes; nor->read_dummy = read_dummy; nor->read_opcode = read_opcode; return ret; } /** * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid * @region: pointer to a structure that describes a SPI NOR erase region * @erase: pointer to a structure that describes a SPI NOR erase type * @erase_type: erase type bitmask */ static void spi_nor_region_check_overlay(struct spi_nor_erase_region *region, const struct spi_nor_erase_type *erase, const u8 erase_type) { int i; for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { if (!(erase[i].size && erase_type & BIT(erase[i].idx))) continue; if (region->size & erase[i].size_mask) { region->overlaid = true; return; } } } /** * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map * @nor: pointer to a 'struct spi_nor' * @smpt: pointer to the sector map parameter table * * Return: 0 on success, -errno otherwise. */ static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, const u32 *smpt) { struct spi_nor_erase_map *map = &nor->params->erase_map; struct spi_nor_erase_type *erase = map->erase_type; struct spi_nor_erase_region *region; u64 offset; u32 region_count; int i, j; u8 uniform_erase_type, save_uniform_erase_type; u8 erase_type, regions_erase_type; region_count = SMPT_MAP_REGION_COUNT(*smpt); /* * The regions will be freed when the driver detaches from the * device. */ region = devm_kcalloc(nor->dev, region_count, sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; map->regions = region; map->n_regions = region_count; uniform_erase_type = 0xff; regions_erase_type = 0; offset = 0; /* Populate regions. */ for (i = 0; i < region_count; i++) { j = i + 1; /* index for the region dword */ region[i].offset = offset; region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); region[i].erase_mask = erase_type; spi_nor_region_check_overlay(®ion[i], erase, erase_type); /* * Save the erase types that are supported in all regions and * can erase the entire flash memory. */ uniform_erase_type &= erase_type; /* * regions_erase_type mask will indicate all the erase types * supported in this configuration map. */ regions_erase_type |= erase_type; offset = region[i].offset + region[i].size; } save_uniform_erase_type = map->uniform_region.erase_mask; map->uniform_region.erase_mask = spi_nor_sort_erase_mask(map, uniform_erase_type); if (!regions_erase_type) { /* * Roll back to the previous uniform_erase_type mask, SMPT is * broken. */ map->uniform_region.erase_mask = save_uniform_erase_type; return -EINVAL; } /* * BFPT advertises all the erase types supported by all the possible * map configurations. Mask out the erase types that are not supported * by the current map configuration. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) if (!(regions_erase_type & BIT(erase[i].idx))) spi_nor_mask_erase_type(&erase[i]); return 0; } /** * spi_nor_parse_smpt() - parse Sector Map Parameter Table * @nor: pointer to a 'struct spi_nor' * @smpt_header: sector map parameter table header * * This table is optional, but when available, we parse it to identify the * location and size of sectors within the main data array of the flash memory * device and to identify which Erase Types are supported by each sector. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_smpt(struct spi_nor *nor, const struct sfdp_parameter_header *smpt_header) { const u32 *sector_map; u32 *smpt; size_t len; u32 addr; int ret; /* Read the Sector Map Parameter Table. */ len = smpt_header->length * sizeof(*smpt); smpt = kmalloc(len, GFP_KERNEL); if (!smpt) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(smpt_header); ret = spi_nor_read_sfdp(nor, addr, len, smpt); if (ret) goto out; /* Fix endianness of the SMPT DWORDs. */ le32_to_cpu_array(smpt, smpt_header->length); sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); if (IS_ERR(sector_map)) { ret = PTR_ERR(sector_map); goto out; } ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); if (ret) goto out; spi_nor_regions_sort_erase_types(&nor->params->erase_map); /* fall through */ out: kfree(smpt); return ret; } /** * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table * @nor: pointer to a 'struct spi_nor'. * @param_header: pointer to the 'struct sfdp_parameter_header' describing * the 4-Byte Address Instruction Table length and version. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_4bait(struct spi_nor *nor, const struct sfdp_parameter_header *param_header) { static const struct sfdp_4bait reads[] = { { SNOR_HWCAPS_READ, BIT(0) }, { SNOR_HWCAPS_READ_FAST, BIT(1) }, { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, { SNOR_HWCAPS_READ_1_1_8, BIT(20) }, { SNOR_HWCAPS_READ_1_8_8, BIT(21) }, }; static const struct sfdp_4bait programs[] = { { SNOR_HWCAPS_PP, BIT(6) }, { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, }; static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { { 0u /* not used */, BIT(9) }, { 0u /* not used */, BIT(10) }, { 0u /* not used */, BIT(11) }, { 0u /* not used */, BIT(12) }, }; struct spi_nor_flash_parameter *params = nor->params; struct spi_nor_pp_command *params_pp = params->page_programs; struct spi_nor_erase_map *map = ¶ms->erase_map; struct spi_nor_erase_type *erase_type = map->erase_type; u32 *dwords; size_t len; u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; int i, ret; if (param_header->major != SFDP_JESD216_MAJOR || param_header->length < SFDP_4BAIT_DWORD_MAX) return -EINVAL; /* Read the 4-byte Address Instruction Table. */ len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ dwords = kmalloc(len, GFP_KERNEL); if (!dwords) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(param_header); ret = spi_nor_read_sfdp(nor, addr, len, dwords); if (ret) goto out; /* Fix endianness of the 4BAIT DWORDs. */ le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); /* * Compute the subset of (Fast) Read commands for which the 4-byte * version is supported. */ discard_hwcaps = 0; read_hwcaps = 0; for (i = 0; i < ARRAY_SIZE(reads); i++) { const struct sfdp_4bait *read = &reads[i]; discard_hwcaps |= read->hwcaps; if ((params->hwcaps.mask & read->hwcaps) && (dwords[SFDP_DWORD(1)] & read->supported_bit)) read_hwcaps |= read->hwcaps; } /* * Compute the subset of Page Program commands for which the 4-byte * version is supported. */ pp_hwcaps = 0; for (i = 0; i < ARRAY_SIZE(programs); i++) { const struct sfdp_4bait *program = &programs[i]; /* * The 4 Byte Address Instruction (Optional) Table is the only * SFDP table that indicates support for Page Program Commands. * Bypass the params->hwcaps.mask and consider 4BAIT the biggest * authority for specifying Page Program support. */ discard_hwcaps |= program->hwcaps; if (dwords[SFDP_DWORD(1)] & program->supported_bit) pp_hwcaps |= program->hwcaps; } /* * Compute the subset of Sector Erase commands for which the 4-byte * version is supported. */ erase_mask = 0; for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { const struct sfdp_4bait *erase = &erases[i]; if (dwords[SFDP_DWORD(1)] & erase->supported_bit) erase_mask |= BIT(i); } /* Replicate the sort done for the map's erase types in BFPT. */ erase_mask = spi_nor_sort_erase_mask(map, erase_mask); /* * We need at least one 4-byte op code per read, program and erase * operation; the .read(), .write() and .erase() hooks share the * nor->addr_nbytes value. */ if (!read_hwcaps || !pp_hwcaps || !erase_mask) goto out; /* * Discard all operations from the 4-byte instruction set which are * not supported by this memory. */ params->hwcaps.mask &= ~discard_hwcaps; params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); /* Use the 4-byte address instruction set. */ for (i = 0; i < SNOR_CMD_READ_MAX; i++) { struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); } /* 4BAIT is the only SFDP table that indicates page program support. */ if (pp_hwcaps & SNOR_HWCAPS_PP) { spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); } if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], SPINOR_OP_PP_1_1_4_4B, SNOR_PROTO_1_1_4); if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], SPINOR_OP_PP_1_4_4_4B, SNOR_PROTO_1_4_4); for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { if (erase_mask & BIT(i)) erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> erase_type[i].idx * 8) & 0xFF; else spi_nor_mask_erase_type(&erase_type[i]); } /* * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() * later because we already did the conversion to 4byte opcodes. Also, * this latest function implements a legacy quirk for the erase size of * Spansion memory. However this quirk is no longer needed with new * SFDP compliant memories. */ params->addr_nbytes = 4; nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; /* fall through */ out: kfree(dwords); return ret; } #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) /** * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table * @nor: pointer to a 'struct spi_nor' * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing * the Profile 1.0 Table length and version. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_profile1(struct spi_nor *nor, const struct sfdp_parameter_header *profile1_header) { u32 *dwords, addr; size_t len; int ret; u8 dummy, opcode; len = profile1_header->length * sizeof(*dwords); dwords = kmalloc(len, GFP_KERNEL); if (!dwords) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(profile1_header); ret = spi_nor_read_sfdp(nor, addr, len, dwords); if (ret) goto out; le32_to_cpu_array(dwords, profile1_header->length); /* Get 8D-8D-8D fast read opcode and dummy cycles. */ opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); /* Set the Read Status Register dummy cycles and dummy address bytes. */ if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) nor->params->rdsr_dummy = 8; else nor->params->rdsr_dummy = 4; if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) nor->params->rdsr_addr_nbytes = 4; else nor->params->rdsr_addr_nbytes = 0; /* * We don't know what speed the controller is running at. Find the * dummy cycles for the fastest frequency the flash can run at to be * sure we are never short of dummy cycles. A value of 0 means the * frequency is not supported. * * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let * flashes set the correct value if needed in their fixup hooks. */ dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); if (!dummy) dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[SFDP_DWORD(5)]); if (!dummy) dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[SFDP_DWORD(5)]); if (!dummy) dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[SFDP_DWORD(5)]); if (!dummy) dev_dbg(nor->dev, "Can't find dummy cycles from Profile 1.0 table\n"); /* Round up to an even value to avoid tripping controllers up. */ dummy = round_up(dummy, 2); /* Update the fast read settings. */ nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 0, dummy, opcode, SNOR_PROTO_8_8_8_DTR); /* * Page Program is "Required Command" in the xSPI Profile 1.0. Update * the params->hwcaps.mask here. */ nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; out: kfree(dwords); return ret; } #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) /** * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register * Map. * @nor: pointer to a 'struct spi_nor' * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing * the SCCR Map table length and version. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_sccr(struct spi_nor *nor, const struct sfdp_parameter_header *sccr_header) { struct spi_nor_flash_parameter *params = nor->params; u32 *dwords, addr; size_t len; int ret; len = sccr_header->length * sizeof(*dwords); dwords = kmalloc(len, GFP_KERNEL); if (!dwords) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(sccr_header); ret = spi_nor_read_sfdp(nor, addr, len, dwords); if (ret) goto out; le32_to_cpu_array(dwords, sccr_header->length); /* Address offset for volatile registers (die 0) */ if (!params->vreg_offset) { params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), GFP_KERNEL); if (!params->vreg_offset) { ret = -ENOMEM; goto out; } } params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; params->n_dice = 1; if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[SFDP_DWORD(22)])) nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; out: kfree(dwords); return ret; } /** * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration * Register Map Offsets for Multi-Chip SPI Memory * Devices. * @nor: pointer to a 'struct spi_nor' * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing * the SCCR Map offsets table length and version. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_sccr_mc(struct spi_nor *nor, const struct sfdp_parameter_header *sccr_mc_header) { struct spi_nor_flash_parameter *params = nor->params; u32 *dwords, addr; u8 i, n_dice; size_t len; int ret; len = sccr_mc_header->length * sizeof(*dwords); dwords = kmalloc(len, GFP_KERNEL); if (!dwords) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); ret = spi_nor_read_sfdp(nor, addr, len, dwords); if (ret) goto out; le32_to_cpu_array(dwords, sccr_mc_header->length); /* * Pair of DOWRDs (volatile and non-volatile register offsets) per * additional die. Hence, length = 2 * (number of additional dice). */ n_dice = 1 + sccr_mc_header->length / 2; /* Address offset for volatile registers of additional dice */ params->vreg_offset = devm_krealloc(nor->dev, params->vreg_offset, n_dice * sizeof(*dwords), GFP_KERNEL); if (!params->vreg_offset) { ret = -ENOMEM; goto out; } for (i = 1; i < n_dice; i++) params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; params->n_dice = n_dice; out: kfree(dwords); return ret; } /** * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP * tables. * @nor: pointer to a 'struct spi_nor' * * Used to tweak various flash parameters when information provided by the SFDP * tables are wrong. */ static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) { int ret; if (nor->manufacturer && nor->manufacturer->fixups && nor->manufacturer->fixups->post_sfdp) { ret = nor->manufacturer->fixups->post_sfdp(nor); if (ret) return ret; } if (nor->info->fixups && nor->info->fixups->post_sfdp) return nor->info->fixups->post_sfdp(nor); return 0; } /** * spi_nor_check_sfdp_signature() - check for a valid SFDP signature * @nor: pointer to a 'struct spi_nor' * * Used to detect if the flash supports the RDSFDP command as well as the * presence of a valid SFDP table. * * Return: 0 on success, -errno otherwise. */ int spi_nor_check_sfdp_signature(struct spi_nor *nor) { u32 signature; int err; /* Get the SFDP header. */ err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), &signature); if (err < 0) return err; /* Check the SFDP signature. */ if (le32_to_cpu(signature) != SFDP_SIGNATURE) return -EINVAL; return 0; } /** * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 * specification. This is a standard which tends to supported by almost all * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at * runtime the main parameters needed to perform basic SPI flash operations such * as Fast Read, Page Program or Sector Erase commands. * * Return: 0 on success, -errno otherwise. */ int spi_nor_parse_sfdp(struct spi_nor *nor) { const struct sfdp_parameter_header *param_header, *bfpt_header; struct sfdp_parameter_header *param_headers = NULL; struct sfdp_header header; struct device *dev = nor->dev; struct sfdp *sfdp; size_t sfdp_size; size_t psize; int i, err; /* Get the SFDP header. */ err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); if (err < 0) return err; /* Check the SFDP header version. */ if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || header.major != SFDP_JESD216_MAJOR) return -EINVAL; /* * Verify that the first and only mandatory parameter header is a * Basic Flash Parameter Table header as specified in JESD216. */ bfpt_header = &header.bfpt_header; if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || bfpt_header->major != SFDP_JESD216_MAJOR) return -EINVAL; sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); /* * Allocate memory then read all parameter headers with a single * Read SFDP command. These parameter headers will actually be parsed * twice: a first time to get the latest revision of the basic flash * parameter table, then a second time to handle the supported optional * tables. * Hence we read the parameter headers once for all to reduce the * processing time. Also we use kmalloc() instead of devm_kmalloc() * because we don't need to keep these parameter headers: the allocated * memory is always released with kfree() before exiting this function. */ if (header.nph) { psize = header.nph * sizeof(*param_headers); param_headers = kmalloc(psize, GFP_KERNEL); if (!param_headers) return -ENOMEM; err = spi_nor_read_sfdp(nor, sizeof(header), psize, param_headers); if (err < 0) { dev_dbg(dev, "failed to read SFDP parameter headers\n"); goto exit; } } /* * Cache the complete SFDP data. It is not (easily) possible to fetch * SFDP after probe time and we need it for the sysfs access. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; sfdp_size = max_t(size_t, sfdp_size, SFDP_PARAM_HEADER_PTP(param_header) + SFDP_PARAM_HEADER_PARAM_LEN(param_header)); } /* * Limit the total size to a reasonable value to avoid allocating too * much memory just of because the flash returned some insane values. */ if (sfdp_size > PAGE_SIZE) { dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", sfdp_size); sfdp_size = PAGE_SIZE; } sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); if (!sfdp) { err = -ENOMEM; goto exit; } /* * The SFDP is organized in chunks of DWORDs. Thus, in theory, the * sfdp_size should be a multiple of DWORDs. But in case a flash * is not spec compliant, make sure that we have enough space to store * the complete SFDP data. */ sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, sizeof(*sfdp->dwords), GFP_KERNEL); if (!sfdp->dwords) { err = -ENOMEM; devm_kfree(dev, sfdp); goto exit; } err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); if (err < 0) { dev_dbg(dev, "failed to read SFDP data\n"); devm_kfree(dev, sfdp->dwords); devm_kfree(dev, sfdp); goto exit; } nor->sfdp = sfdp; /* * Check other parameter headers to get the latest revision of * the basic flash parameter table. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && param_header->major == SFDP_JESD216_MAJOR && (param_header->minor > bfpt_header->minor || (param_header->minor == bfpt_header->minor && param_header->length > bfpt_header->length))) bfpt_header = param_header; } err = spi_nor_parse_bfpt(nor, bfpt_header); if (err) goto exit; /* Parse optional parameter tables. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; switch (SFDP_PARAM_HEADER_ID(param_header)) { case SFDP_SECTOR_MAP_ID: err = spi_nor_parse_smpt(nor, param_header); break; case SFDP_4BAIT_ID: err = spi_nor_parse_4bait(nor, param_header); break; case SFDP_PROFILE1_ID: err = spi_nor_parse_profile1(nor, param_header); break; case SFDP_SCCR_MAP_ID: err = spi_nor_parse_sccr(nor, param_header); break; case SFDP_SCCR_MAP_MC_ID: err = spi_nor_parse_sccr_mc(nor, param_header); break; default: break; } if (err) { dev_warn(dev, "Failed to parse optional parameter table: %04x\n", SFDP_PARAM_HEADER_ID(param_header)); /* * Let's not drop all information we extracted so far * if optional table parsers fail. In case of failing, * each optional parser is responsible to roll back to * the previously known spi_nor data. */ err = 0; } } err = spi_nor_post_sfdp_fixups(nor); exit: kfree(param_headers); return err; }