// SPDX-License-Identifier: GPL-2.0-or-later /* linux/drivers/mmc/host/sdhci-pci.c - SDHCI on PCI bus interface * * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * * Thanks to the following companies for their support: * * - JMicron (hardware and technical support) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86 #include #endif #include "cqhci.h" #include "sdhci.h" #include "sdhci-cqhci.h" #include "sdhci-pci.h" static void sdhci_pci_hw_reset(struct sdhci_host *host); #ifdef CONFIG_PM_SLEEP static int sdhci_pci_init_wakeup(struct sdhci_pci_chip *chip) { mmc_pm_flag_t pm_flags = 0; bool cap_cd_wake = false; int i; for (i = 0; i < chip->num_slots; i++) { struct sdhci_pci_slot *slot = chip->slots[i]; if (slot) { pm_flags |= slot->host->mmc->pm_flags; if (slot->host->mmc->caps & MMC_CAP_CD_WAKE) cap_cd_wake = true; } } if ((pm_flags & MMC_PM_KEEP_POWER) && (pm_flags & MMC_PM_WAKE_SDIO_IRQ)) return device_wakeup_enable(&chip->pdev->dev); else if (!cap_cd_wake) device_wakeup_disable(&chip->pdev->dev); return 0; } static int sdhci_pci_suspend_host(struct sdhci_pci_chip *chip) { int i, ret; sdhci_pci_init_wakeup(chip); for (i = 0; i < chip->num_slots; i++) { struct sdhci_pci_slot *slot = chip->slots[i]; struct sdhci_host *host; if (!slot) continue; host = slot->host; if (chip->pm_retune && host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); ret = sdhci_suspend_host(host); if (ret) goto err_pci_suspend; if (device_may_wakeup(&chip->pdev->dev)) mmc_gpio_set_cd_wake(host->mmc, true); } return 0; err_pci_suspend: while (--i >= 0) sdhci_resume_host(chip->slots[i]->host); return ret; } int sdhci_pci_resume_host(struct sdhci_pci_chip *chip) { struct sdhci_pci_slot *slot; int i, ret; for (i = 0; i < chip->num_slots; i++) { slot = chip->slots[i]; if (!slot) continue; ret = sdhci_resume_host(slot->host); if (ret) return ret; mmc_gpio_set_cd_wake(slot->host->mmc, false); } return 0; } static int sdhci_cqhci_suspend(struct sdhci_pci_chip *chip) { int ret; ret = cqhci_suspend(chip->slots[0]->host->mmc); if (ret) return ret; return sdhci_pci_suspend_host(chip); } static int sdhci_cqhci_resume(struct sdhci_pci_chip *chip) { int ret; ret = sdhci_pci_resume_host(chip); if (ret) return ret; return cqhci_resume(chip->slots[0]->host->mmc); } #endif #ifdef CONFIG_PM static int sdhci_pci_runtime_suspend_host(struct sdhci_pci_chip *chip) { struct sdhci_pci_slot *slot; struct sdhci_host *host; int i, ret; for (i = 0; i < chip->num_slots; i++) { slot = chip->slots[i]; if (!slot) continue; host = slot->host; ret = sdhci_runtime_suspend_host(host); if (ret) goto err_pci_runtime_suspend; if (chip->rpm_retune && host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); } return 0; err_pci_runtime_suspend: while (--i >= 0) sdhci_runtime_resume_host(chip->slots[i]->host, 0); return ret; } static int sdhci_pci_runtime_resume_host(struct sdhci_pci_chip *chip) { struct sdhci_pci_slot *slot; int i, ret; for (i = 0; i < chip->num_slots; i++) { slot = chip->slots[i]; if (!slot) continue; ret = sdhci_runtime_resume_host(slot->host, 0); if (ret) return ret; } return 0; } static int sdhci_cqhci_runtime_suspend(struct sdhci_pci_chip *chip) { int ret; ret = cqhci_suspend(chip->slots[0]->host->mmc); if (ret) return ret; return sdhci_pci_runtime_suspend_host(chip); } static int sdhci_cqhci_runtime_resume(struct sdhci_pci_chip *chip) { int ret; ret = sdhci_pci_runtime_resume_host(chip); if (ret) return ret; return cqhci_resume(chip->slots[0]->host->mmc); } #endif static u32 sdhci_cqhci_irq(struct sdhci_host *host, u32 intmask) { int cmd_error = 0; int data_error = 0; if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) return intmask; cqhci_irq(host->mmc, intmask, cmd_error, data_error); return 0; } static void sdhci_pci_dumpregs(struct mmc_host *mmc) { sdhci_dumpregs(mmc_priv(mmc)); } /*****************************************************************************\ * * * Hardware specific quirk handling * * * \*****************************************************************************/ static int ricoh_probe(struct sdhci_pci_chip *chip) { if (chip->pdev->subsystem_vendor == PCI_VENDOR_ID_SAMSUNG || chip->pdev->subsystem_vendor == PCI_VENDOR_ID_SONY) chip->quirks |= SDHCI_QUIRK_NO_CARD_NO_RESET; return 0; } static int ricoh_mmc_probe_slot(struct sdhci_pci_slot *slot) { u32 caps = FIELD_PREP(SDHCI_TIMEOUT_CLK_MASK, 0x21) | FIELD_PREP(SDHCI_CLOCK_BASE_MASK, 0x21) | SDHCI_TIMEOUT_CLK_UNIT | SDHCI_CAN_VDD_330 | SDHCI_CAN_DO_HISPD | SDHCI_CAN_DO_SDMA; u32 caps1 = 0; __sdhci_read_caps(slot->host, NULL, &caps, &caps1); return 0; } #ifdef CONFIG_PM_SLEEP static int ricoh_mmc_resume(struct sdhci_pci_chip *chip) { /* Apply a delay to allow controller to settle */ /* Otherwise it becomes confused if card state changed during suspend */ msleep(500); return sdhci_pci_resume_host(chip); } #endif static const struct sdhci_pci_fixes sdhci_ricoh = { .probe = ricoh_probe, .quirks = SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_FORCE_DMA | SDHCI_QUIRK_CLOCK_BEFORE_RESET, }; static const struct sdhci_pci_fixes sdhci_ricoh_mmc = { .probe_slot = ricoh_mmc_probe_slot, #ifdef CONFIG_PM_SLEEP .resume = ricoh_mmc_resume, #endif .quirks = SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_CLOCK_BEFORE_RESET | SDHCI_QUIRK_NO_CARD_NO_RESET, }; static void ene_714_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); sdhci_set_ios(mmc, ios); /* * Some (ENE) controllers misbehave on some ios operations, * signalling timeout and CRC errors even on CMD0. Resetting * it on each ios seems to solve the problem. */ if (!(host->flags & SDHCI_DEVICE_DEAD)) sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); } static int ene_714_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc_host_ops.set_ios = ene_714_set_ios; return 0; } static const struct sdhci_pci_fixes sdhci_ene_712 = { .quirks = SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_BROKEN_DMA, }; static const struct sdhci_pci_fixes sdhci_ene_714 = { .quirks = SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_BROKEN_DMA, .probe_slot = ene_714_probe_slot, }; static const struct sdhci_pci_fixes sdhci_cafe = { .quirks = SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER | SDHCI_QUIRK_NO_BUSY_IRQ | SDHCI_QUIRK_BROKEN_CARD_DETECTION | SDHCI_QUIRK_BROKEN_TIMEOUT_VAL, }; static const struct sdhci_pci_fixes sdhci_intel_qrk = { .quirks = SDHCI_QUIRK_NO_HISPD_BIT, }; static int mrst_hc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA; return 0; } /* * ADMA operation is disabled for Moorestown platform due to * hardware bugs. */ static int mrst_hc_probe(struct sdhci_pci_chip *chip) { /* * slots number is fixed here for MRST as SDIO3/5 are never used and * have hardware bugs. */ chip->num_slots = 1; return 0; } static int pch_hc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA; return 0; } static int mfd_emmc_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE; slot->host->mmc->caps2 |= MMC_CAP2_BOOTPART_NOACC; return 0; } static int mfd_sdio_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps |= MMC_CAP_POWER_OFF_CARD | MMC_CAP_NONREMOVABLE; return 0; } static const struct sdhci_pci_fixes sdhci_intel_mrst_hc0 = { .quirks = SDHCI_QUIRK_BROKEN_ADMA | SDHCI_QUIRK_NO_HISPD_BIT, .probe_slot = mrst_hc_probe_slot, }; static const struct sdhci_pci_fixes sdhci_intel_mrst_hc1_hc2 = { .quirks = SDHCI_QUIRK_BROKEN_ADMA | SDHCI_QUIRK_NO_HISPD_BIT, .probe = mrst_hc_probe, }; static const struct sdhci_pci_fixes sdhci_intel_mfd_sd = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .allow_runtime_pm = true, .own_cd_for_runtime_pm = true, }; static const struct sdhci_pci_fixes sdhci_intel_mfd_sdio = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON, .allow_runtime_pm = true, .probe_slot = mfd_sdio_probe_slot, }; static const struct sdhci_pci_fixes sdhci_intel_mfd_emmc = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .allow_runtime_pm = true, .probe_slot = mfd_emmc_probe_slot, }; static const struct sdhci_pci_fixes sdhci_intel_pch_sdio = { .quirks = SDHCI_QUIRK_BROKEN_ADMA, .probe_slot = pch_hc_probe_slot, }; #ifdef CONFIG_X86 #define BYT_IOSF_SCCEP 0x63 #define BYT_IOSF_OCP_NETCTRL0 0x1078 #define BYT_IOSF_OCP_TIMEOUT_BASE GENMASK(10, 8) static void byt_ocp_setting(struct pci_dev *pdev) { u32 val = 0; if (pdev->device != PCI_DEVICE_ID_INTEL_BYT_EMMC && pdev->device != PCI_DEVICE_ID_INTEL_BYT_SDIO && pdev->device != PCI_DEVICE_ID_INTEL_BYT_SD && pdev->device != PCI_DEVICE_ID_INTEL_BYT_EMMC2) return; if (iosf_mbi_read(BYT_IOSF_SCCEP, MBI_CR_READ, BYT_IOSF_OCP_NETCTRL0, &val)) { dev_err(&pdev->dev, "%s read error\n", __func__); return; } if (!(val & BYT_IOSF_OCP_TIMEOUT_BASE)) return; val &= ~BYT_IOSF_OCP_TIMEOUT_BASE; if (iosf_mbi_write(BYT_IOSF_SCCEP, MBI_CR_WRITE, BYT_IOSF_OCP_NETCTRL0, val)) { dev_err(&pdev->dev, "%s write error\n", __func__); return; } dev_dbg(&pdev->dev, "%s completed\n", __func__); } #else static inline void byt_ocp_setting(struct pci_dev *pdev) { } #endif enum { INTEL_DSM_FNS = 0, INTEL_DSM_V18_SWITCH = 3, INTEL_DSM_V33_SWITCH = 4, INTEL_DSM_DRV_STRENGTH = 9, INTEL_DSM_D3_RETUNE = 10, }; struct intel_host { u32 dsm_fns; int drv_strength; bool d3_retune; bool rpm_retune_ok; bool needs_pwr_off; u32 glk_rx_ctrl1; u32 glk_tun_val; u32 active_ltr; u32 idle_ltr; }; static const guid_t intel_dsm_guid = GUID_INIT(0xF6C13EA5, 0x65CD, 0x461F, 0xAB, 0x7A, 0x29, 0xF7, 0xE8, 0xD5, 0xBD, 0x61); static int __intel_dsm(struct intel_host *intel_host, struct device *dev, unsigned int fn, u32 *result) { union acpi_object *obj; int err = 0; size_t len; obj = acpi_evaluate_dsm_typed(ACPI_HANDLE(dev), &intel_dsm_guid, 0, fn, NULL, ACPI_TYPE_BUFFER); if (!obj) return -EOPNOTSUPP; if (obj->buffer.length < 1) { err = -EINVAL; goto out; } len = min_t(size_t, obj->buffer.length, 4); *result = 0; memcpy(result, obj->buffer.pointer, len); out: ACPI_FREE(obj); return err; } static int intel_dsm(struct intel_host *intel_host, struct device *dev, unsigned int fn, u32 *result) { if (fn > 31 || !(intel_host->dsm_fns & (1 << fn))) return -EOPNOTSUPP; return __intel_dsm(intel_host, dev, fn, result); } static void intel_dsm_init(struct intel_host *intel_host, struct device *dev, struct mmc_host *mmc) { int err; u32 val; intel_host->d3_retune = true; err = __intel_dsm(intel_host, dev, INTEL_DSM_FNS, &intel_host->dsm_fns); if (err) { pr_debug("%s: DSM not supported, error %d\n", mmc_hostname(mmc), err); return; } pr_debug("%s: DSM function mask %#x\n", mmc_hostname(mmc), intel_host->dsm_fns); err = intel_dsm(intel_host, dev, INTEL_DSM_DRV_STRENGTH, &val); intel_host->drv_strength = err ? 0 : val; err = intel_dsm(intel_host, dev, INTEL_DSM_D3_RETUNE, &val); intel_host->d3_retune = err ? true : !!val; } static void sdhci_pci_int_hw_reset(struct sdhci_host *host) { u8 reg; reg = sdhci_readb(host, SDHCI_POWER_CONTROL); reg |= 0x10; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); /* For eMMC, minimum is 1us but give it 9us for good measure */ udelay(9); reg &= ~0x10; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); /* For eMMC, minimum is 200us but give it 300us for good measure */ usleep_range(300, 1000); } static int intel_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, int host_drv, int card_drv, int *drv_type) { struct sdhci_host *host = mmc_priv(card->host); struct sdhci_pci_slot *slot = sdhci_priv(host); struct intel_host *intel_host = sdhci_pci_priv(slot); if (!(mmc_driver_type_mask(intel_host->drv_strength) & card_drv)) return 0; return intel_host->drv_strength; } static int bxt_get_cd(struct mmc_host *mmc) { int gpio_cd = mmc_gpio_get_cd(mmc); if (!gpio_cd) return 0; return sdhci_get_cd_nogpio(mmc); } static int mrfld_get_cd(struct mmc_host *mmc) { return sdhci_get_cd_nogpio(mmc); } #define SDHCI_INTEL_PWR_TIMEOUT_CNT 20 #define SDHCI_INTEL_PWR_TIMEOUT_UDELAY 100 static void sdhci_intel_set_power(struct sdhci_host *host, unsigned char mode, unsigned short vdd) { struct sdhci_pci_slot *slot = sdhci_priv(host); struct intel_host *intel_host = sdhci_pci_priv(slot); int cntr; u8 reg; /* * Bus power may control card power, but a full reset still may not * reset the power, whereas a direct write to SDHCI_POWER_CONTROL can. * That might be needed to initialize correctly, if the card was left * powered on previously. */ if (intel_host->needs_pwr_off) { intel_host->needs_pwr_off = false; if (mode != MMC_POWER_OFF) { sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); usleep_range(10000, 12500); } } sdhci_set_power(host, mode, vdd); if (mode == MMC_POWER_OFF) return; /* * Bus power might not enable after D3 -> D0 transition due to the * present state not yet having propagated. Retry for up to 2ms. */ for (cntr = 0; cntr < SDHCI_INTEL_PWR_TIMEOUT_CNT; cntr++) { reg = sdhci_readb(host, SDHCI_POWER_CONTROL); if (reg & SDHCI_POWER_ON) break; udelay(SDHCI_INTEL_PWR_TIMEOUT_UDELAY); reg |= SDHCI_POWER_ON; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); } } static void sdhci_intel_set_uhs_signaling(struct sdhci_host *host, unsigned int timing) { /* Set UHS timing to SDR25 for High Speed mode */ if (timing == MMC_TIMING_MMC_HS || timing == MMC_TIMING_SD_HS) timing = MMC_TIMING_UHS_SDR25; sdhci_set_uhs_signaling(host, timing); } #define INTEL_HS400_ES_REG 0x78 #define INTEL_HS400_ES_BIT BIT(0) static void intel_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); u32 val; val = sdhci_readl(host, INTEL_HS400_ES_REG); if (ios->enhanced_strobe) val |= INTEL_HS400_ES_BIT; else val &= ~INTEL_HS400_ES_BIT; sdhci_writel(host, val, INTEL_HS400_ES_REG); } static int intel_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct device *dev = mmc_dev(mmc); struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pci_slot *slot = sdhci_priv(host); struct intel_host *intel_host = sdhci_pci_priv(slot); unsigned int fn; u32 result = 0; int err; err = sdhci_start_signal_voltage_switch(mmc, ios); if (err) return err; switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: fn = INTEL_DSM_V33_SWITCH; break; case MMC_SIGNAL_VOLTAGE_180: fn = INTEL_DSM_V18_SWITCH; break; default: return 0; } err = intel_dsm(intel_host, dev, fn, &result); pr_debug("%s: %s DSM fn %u error %d result %u\n", mmc_hostname(mmc), __func__, fn, err, result); return 0; } static const struct sdhci_ops sdhci_intel_byt_ops = { .set_clock = sdhci_set_clock, .set_power = sdhci_intel_set_power, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_intel_set_uhs_signaling, .hw_reset = sdhci_pci_hw_reset, }; static const struct sdhci_ops sdhci_intel_glk_ops = { .set_clock = sdhci_set_clock, .set_power = sdhci_intel_set_power, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_and_cqhci_reset, .set_uhs_signaling = sdhci_intel_set_uhs_signaling, .hw_reset = sdhci_pci_hw_reset, .irq = sdhci_cqhci_irq, }; static void byt_read_dsm(struct sdhci_pci_slot *slot) { struct intel_host *intel_host = sdhci_pci_priv(slot); struct device *dev = &slot->chip->pdev->dev; struct mmc_host *mmc = slot->host->mmc; intel_dsm_init(intel_host, dev, mmc); slot->chip->rpm_retune = intel_host->d3_retune; } static int intel_execute_tuning(struct mmc_host *mmc, u32 opcode) { int err = sdhci_execute_tuning(mmc, opcode); struct sdhci_host *host = mmc_priv(mmc); if (err) return err; /* * Tuning can leave the IP in an active state (Buffer Read Enable bit * set) which prevents the entry to low power states (i.e. S0i3). Data * reset will clear it. */ sdhci_reset(host, SDHCI_RESET_DATA); return 0; } #define INTEL_ACTIVELTR 0x804 #define INTEL_IDLELTR 0x808 #define INTEL_LTR_REQ BIT(15) #define INTEL_LTR_SCALE_MASK GENMASK(11, 10) #define INTEL_LTR_SCALE_1US (2 << 10) #define INTEL_LTR_SCALE_32US (3 << 10) #define INTEL_LTR_VALUE_MASK GENMASK(9, 0) static void intel_cache_ltr(struct sdhci_pci_slot *slot) { struct intel_host *intel_host = sdhci_pci_priv(slot); struct sdhci_host *host = slot->host; intel_host->active_ltr = readl(host->ioaddr + INTEL_ACTIVELTR); intel_host->idle_ltr = readl(host->ioaddr + INTEL_IDLELTR); } static void intel_ltr_set(struct device *dev, s32 val) { struct sdhci_pci_chip *chip = dev_get_drvdata(dev); struct sdhci_pci_slot *slot = chip->slots[0]; struct intel_host *intel_host = sdhci_pci_priv(slot); struct sdhci_host *host = slot->host; u32 ltr; pm_runtime_get_sync(dev); /* * Program latency tolerance (LTR) accordingly what has been asked * by the PM QoS layer or disable it in case we were passed * negative value or PM_QOS_LATENCY_ANY. */ ltr = readl(host->ioaddr + INTEL_ACTIVELTR); if (val == PM_QOS_LATENCY_ANY || val < 0) { ltr &= ~INTEL_LTR_REQ; } else { ltr |= INTEL_LTR_REQ; ltr &= ~INTEL_LTR_SCALE_MASK; ltr &= ~INTEL_LTR_VALUE_MASK; if (val > INTEL_LTR_VALUE_MASK) { val >>= 5; if (val > INTEL_LTR_VALUE_MASK) val = INTEL_LTR_VALUE_MASK; ltr |= INTEL_LTR_SCALE_32US | val; } else { ltr |= INTEL_LTR_SCALE_1US | val; } } if (ltr == intel_host->active_ltr) goto out; writel(ltr, host->ioaddr + INTEL_ACTIVELTR); writel(ltr, host->ioaddr + INTEL_IDLELTR); /* Cache the values into lpss structure */ intel_cache_ltr(slot); out: pm_runtime_put_autosuspend(dev); } static bool intel_use_ltr(struct sdhci_pci_chip *chip) { switch (chip->pdev->device) { case PCI_DEVICE_ID_INTEL_BYT_EMMC: case PCI_DEVICE_ID_INTEL_BYT_EMMC2: case PCI_DEVICE_ID_INTEL_BYT_SDIO: case PCI_DEVICE_ID_INTEL_BYT_SD: case PCI_DEVICE_ID_INTEL_BSW_EMMC: case PCI_DEVICE_ID_INTEL_BSW_SDIO: case PCI_DEVICE_ID_INTEL_BSW_SD: return false; default: return true; } } static void intel_ltr_expose(struct sdhci_pci_chip *chip) { struct device *dev = &chip->pdev->dev; if (!intel_use_ltr(chip)) return; dev->power.set_latency_tolerance = intel_ltr_set; dev_pm_qos_expose_latency_tolerance(dev); } static void intel_ltr_hide(struct sdhci_pci_chip *chip) { struct device *dev = &chip->pdev->dev; if (!intel_use_ltr(chip)) return; dev_pm_qos_hide_latency_tolerance(dev); dev->power.set_latency_tolerance = NULL; } static void byt_probe_slot(struct sdhci_pci_slot *slot) { struct mmc_host_ops *ops = &slot->host->mmc_host_ops; struct device *dev = &slot->chip->pdev->dev; struct mmc_host *mmc = slot->host->mmc; byt_read_dsm(slot); byt_ocp_setting(slot->chip->pdev); ops->execute_tuning = intel_execute_tuning; ops->start_signal_voltage_switch = intel_start_signal_voltage_switch; device_property_read_u32(dev, "max-frequency", &mmc->f_max); if (!mmc->slotno) { slot->chip->slots[mmc->slotno] = slot; intel_ltr_expose(slot->chip); } } static void byt_add_debugfs(struct sdhci_pci_slot *slot) { struct intel_host *intel_host = sdhci_pci_priv(slot); struct mmc_host *mmc = slot->host->mmc; struct dentry *dir = mmc->debugfs_root; if (!intel_use_ltr(slot->chip)) return; debugfs_create_x32("active_ltr", 0444, dir, &intel_host->active_ltr); debugfs_create_x32("idle_ltr", 0444, dir, &intel_host->idle_ltr); intel_cache_ltr(slot); } static int byt_add_host(struct sdhci_pci_slot *slot) { int ret = sdhci_add_host(slot->host); if (!ret) byt_add_debugfs(slot); return ret; } static void byt_remove_slot(struct sdhci_pci_slot *slot, int dead) { struct mmc_host *mmc = slot->host->mmc; if (!mmc->slotno) intel_ltr_hide(slot->chip); } static int byt_emmc_probe_slot(struct sdhci_pci_slot *slot) { byt_probe_slot(slot); slot->host->mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE | MMC_CAP_HW_RESET | MMC_CAP_1_8V_DDR | MMC_CAP_CMD_DURING_TFR | MMC_CAP_WAIT_WHILE_BUSY; slot->hw_reset = sdhci_pci_int_hw_reset; if (slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_BSW_EMMC) slot->host->timeout_clk = 1000; /* 1000 kHz i.e. 1 MHz */ slot->host->mmc_host_ops.select_drive_strength = intel_select_drive_strength; return 0; } static bool glk_broken_cqhci(struct sdhci_pci_slot *slot) { return slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_GLK_EMMC && (dmi_match(DMI_BIOS_VENDOR, "LENOVO") || dmi_match(DMI_SYS_VENDOR, "IRBIS")); } static bool jsl_broken_hs400es(struct sdhci_pci_slot *slot) { return slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_JSL_EMMC && dmi_match(DMI_BIOS_VENDOR, "ASUSTeK COMPUTER INC."); } static int glk_emmc_probe_slot(struct sdhci_pci_slot *slot) { int ret = byt_emmc_probe_slot(slot); if (!glk_broken_cqhci(slot)) slot->host->mmc->caps2 |= MMC_CAP2_CQE; if (slot->chip->pdev->device != PCI_DEVICE_ID_INTEL_GLK_EMMC) { if (!jsl_broken_hs400es(slot)) { slot->host->mmc->caps2 |= MMC_CAP2_HS400_ES; slot->host->mmc_host_ops.hs400_enhanced_strobe = intel_hs400_enhanced_strobe; } slot->host->mmc->caps2 |= MMC_CAP2_CQE_DCMD; } return ret; } static const struct cqhci_host_ops glk_cqhci_ops = { .enable = sdhci_cqe_enable, .disable = sdhci_cqe_disable, .dumpregs = sdhci_pci_dumpregs, }; static int glk_emmc_add_host(struct sdhci_pci_slot *slot) { struct device *dev = &slot->chip->pdev->dev; struct sdhci_host *host = slot->host; struct cqhci_host *cq_host; bool dma64; int ret; ret = sdhci_setup_host(host); if (ret) return ret; cq_host = devm_kzalloc(dev, sizeof(*cq_host), GFP_KERNEL); if (!cq_host) { ret = -ENOMEM; goto cleanup; } cq_host->mmio = host->ioaddr + 0x200; cq_host->quirks |= CQHCI_QUIRK_SHORT_TXFR_DESC_SZ; cq_host->ops = &glk_cqhci_ops; dma64 = host->flags & SDHCI_USE_64_BIT_DMA; if (dma64) cq_host->caps |= CQHCI_TASK_DESC_SZ_128; ret = cqhci_init(cq_host, host->mmc, dma64); if (ret) goto cleanup; ret = __sdhci_add_host(host); if (ret) goto cleanup; byt_add_debugfs(slot); return 0; cleanup: sdhci_cleanup_host(host); return ret; } #ifdef CONFIG_PM #define GLK_RX_CTRL1 0x834 #define GLK_TUN_VAL 0x840 #define GLK_PATH_PLL GENMASK(13, 8) #define GLK_DLY GENMASK(6, 0) /* Workaround firmware failing to restore the tuning value */ static void glk_rpm_retune_wa(struct sdhci_pci_chip *chip, bool susp) { struct sdhci_pci_slot *slot = chip->slots[0]; struct intel_host *intel_host = sdhci_pci_priv(slot); struct sdhci_host *host = slot->host; u32 glk_rx_ctrl1; u32 glk_tun_val; u32 dly; if (intel_host->rpm_retune_ok || !mmc_can_retune(host->mmc)) return; glk_rx_ctrl1 = sdhci_readl(host, GLK_RX_CTRL1); glk_tun_val = sdhci_readl(host, GLK_TUN_VAL); if (susp) { intel_host->glk_rx_ctrl1 = glk_rx_ctrl1; intel_host->glk_tun_val = glk_tun_val; return; } if (!intel_host->glk_tun_val) return; if (glk_rx_ctrl1 != intel_host->glk_rx_ctrl1) { intel_host->rpm_retune_ok = true; return; } dly = FIELD_PREP(GLK_DLY, FIELD_GET(GLK_PATH_PLL, glk_rx_ctrl1) + (intel_host->glk_tun_val << 1)); if (dly == FIELD_GET(GLK_DLY, glk_rx_ctrl1)) return; glk_rx_ctrl1 = (glk_rx_ctrl1 & ~GLK_DLY) | dly; sdhci_writel(host, glk_rx_ctrl1, GLK_RX_CTRL1); intel_host->rpm_retune_ok = true; chip->rpm_retune = true; mmc_retune_needed(host->mmc); pr_info("%s: Requiring re-tune after rpm resume", mmc_hostname(host->mmc)); } static void glk_rpm_retune_chk(struct sdhci_pci_chip *chip, bool susp) { if (chip->pdev->device == PCI_DEVICE_ID_INTEL_GLK_EMMC && !chip->rpm_retune) glk_rpm_retune_wa(chip, susp); } static int glk_runtime_suspend(struct sdhci_pci_chip *chip) { glk_rpm_retune_chk(chip, true); return sdhci_cqhci_runtime_suspend(chip); } static int glk_runtime_resume(struct sdhci_pci_chip *chip) { glk_rpm_retune_chk(chip, false); return sdhci_cqhci_runtime_resume(chip); } #endif #ifdef CONFIG_ACPI static int ni_set_max_freq(struct sdhci_pci_slot *slot) { acpi_status status; unsigned long long max_freq; status = acpi_evaluate_integer(ACPI_HANDLE(&slot->chip->pdev->dev), "MXFQ", NULL, &max_freq); if (ACPI_FAILURE(status)) { dev_err(&slot->chip->pdev->dev, "MXFQ not found in acpi table\n"); return -EINVAL; } slot->host->mmc->f_max = max_freq * 1000000; return 0; } #else static inline int ni_set_max_freq(struct sdhci_pci_slot *slot) { return 0; } #endif static int ni_byt_sdio_probe_slot(struct sdhci_pci_slot *slot) { int err; byt_probe_slot(slot); err = ni_set_max_freq(slot); if (err) return err; slot->host->mmc->caps |= MMC_CAP_POWER_OFF_CARD | MMC_CAP_NONREMOVABLE | MMC_CAP_WAIT_WHILE_BUSY; return 0; } static int byt_sdio_probe_slot(struct sdhci_pci_slot *slot) { byt_probe_slot(slot); slot->host->mmc->caps |= MMC_CAP_POWER_OFF_CARD | MMC_CAP_NONREMOVABLE | MMC_CAP_WAIT_WHILE_BUSY; return 0; } static void byt_needs_pwr_off(struct sdhci_pci_slot *slot) { struct intel_host *intel_host = sdhci_pci_priv(slot); u8 reg = sdhci_readb(slot->host, SDHCI_POWER_CONTROL); intel_host->needs_pwr_off = reg & SDHCI_POWER_ON; } static int byt_sd_probe_slot(struct sdhci_pci_slot *slot) { byt_probe_slot(slot); slot->host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_AGGRESSIVE_PM | MMC_CAP_CD_WAKE; slot->cd_idx = 0; slot->cd_override_level = true; if (slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_BXT_SD || slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_BXTM_SD || slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_APL_SD || slot->chip->pdev->device == PCI_DEVICE_ID_INTEL_GLK_SD) slot->host->mmc_host_ops.get_cd = bxt_get_cd; if (slot->chip->pdev->subsystem_vendor == PCI_VENDOR_ID_NI && slot->chip->pdev->subsystem_device == PCI_SUBDEVICE_ID_NI_78E3) slot->host->mmc->caps2 |= MMC_CAP2_AVOID_3_3V; byt_needs_pwr_off(slot); return 0; } #ifdef CONFIG_PM_SLEEP static int byt_resume(struct sdhci_pci_chip *chip) { byt_ocp_setting(chip->pdev); return sdhci_pci_resume_host(chip); } #endif #ifdef CONFIG_PM static int byt_runtime_resume(struct sdhci_pci_chip *chip) { byt_ocp_setting(chip->pdev); return sdhci_pci_runtime_resume_host(chip); } #endif static const struct sdhci_pci_fixes sdhci_intel_byt_emmc = { #ifdef CONFIG_PM_SLEEP .resume = byt_resume, #endif #ifdef CONFIG_PM .runtime_resume = byt_runtime_resume, #endif .allow_runtime_pm = true, .probe_slot = byt_emmc_probe_slot, .add_host = byt_add_host, .remove_slot = byt_remove_slot, .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 | SDHCI_QUIRK2_STOP_WITH_TC, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_intel_glk_emmc = { .allow_runtime_pm = true, .probe_slot = glk_emmc_probe_slot, .add_host = glk_emmc_add_host, .remove_slot = byt_remove_slot, #ifdef CONFIG_PM_SLEEP .suspend = sdhci_cqhci_suspend, .resume = sdhci_cqhci_resume, #endif #ifdef CONFIG_PM .runtime_suspend = glk_runtime_suspend, .runtime_resume = glk_runtime_resume, #endif .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 | SDHCI_QUIRK2_STOP_WITH_TC, .ops = &sdhci_intel_glk_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_ni_byt_sdio = { #ifdef CONFIG_PM_SLEEP .resume = byt_resume, #endif #ifdef CONFIG_PM .runtime_resume = byt_runtime_resume, #endif .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .allow_runtime_pm = true, .probe_slot = ni_byt_sdio_probe_slot, .add_host = byt_add_host, .remove_slot = byt_remove_slot, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_intel_byt_sdio = { #ifdef CONFIG_PM_SLEEP .resume = byt_resume, #endif #ifdef CONFIG_PM .runtime_resume = byt_runtime_resume, #endif .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .allow_runtime_pm = true, .probe_slot = byt_sdio_probe_slot, .add_host = byt_add_host, .remove_slot = byt_remove_slot, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_pci_fixes sdhci_intel_byt_sd = { #ifdef CONFIG_PM_SLEEP .resume = byt_resume, #endif #ifdef CONFIG_PM .runtime_resume = byt_runtime_resume, #endif .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON | SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_STOP_WITH_TC, .allow_runtime_pm = true, .own_cd_for_runtime_pm = true, .probe_slot = byt_sd_probe_slot, .add_host = byt_add_host, .remove_slot = byt_remove_slot, .ops = &sdhci_intel_byt_ops, .priv_size = sizeof(struct intel_host), }; /* Define Host controllers for Intel Merrifield platform */ #define INTEL_MRFLD_EMMC_0 0 #define INTEL_MRFLD_EMMC_1 1 #define INTEL_MRFLD_SD 2 #define INTEL_MRFLD_SDIO 3 #ifdef CONFIG_ACPI static void intel_mrfld_mmc_fix_up_power_slot(struct sdhci_pci_slot *slot) { struct acpi_device *device; device = ACPI_COMPANION(&slot->chip->pdev->dev); if (device) acpi_device_fix_up_power_extended(device); } #else static inline void intel_mrfld_mmc_fix_up_power_slot(struct sdhci_pci_slot *slot) {} #endif static int intel_mrfld_mmc_probe_slot(struct sdhci_pci_slot *slot) { unsigned int func = PCI_FUNC(slot->chip->pdev->devfn); switch (func) { case INTEL_MRFLD_EMMC_0: case INTEL_MRFLD_EMMC_1: slot->host->mmc->caps |= MMC_CAP_NONREMOVABLE | MMC_CAP_8_BIT_DATA | MMC_CAP_1_8V_DDR; break; case INTEL_MRFLD_SD: slot->cd_idx = 0; slot->cd_override_level = true; /* * There are two PCB designs of SD card slot with the opposite * card detection sense. Quirk this out by ignoring GPIO state * completely in the custom ->get_cd() callback. */ slot->host->mmc_host_ops.get_cd = mrfld_get_cd; slot->host->quirks2 |= SDHCI_QUIRK2_NO_1_8_V; break; case INTEL_MRFLD_SDIO: /* Advertise 2.0v for compatibility with the SDIO card's OCR */ slot->host->ocr_mask = MMC_VDD_20_21 | MMC_VDD_165_195; slot->host->mmc->caps |= MMC_CAP_NONREMOVABLE | MMC_CAP_POWER_OFF_CARD; break; default: return -ENODEV; } intel_mrfld_mmc_fix_up_power_slot(slot); return 0; } static const struct sdhci_pci_fixes sdhci_intel_mrfld_mmc = { .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_BROKEN_HS200 | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .allow_runtime_pm = true, .probe_slot = intel_mrfld_mmc_probe_slot, }; static int jmicron_pmos(struct sdhci_pci_chip *chip, int on) { u8 scratch; int ret; ret = pci_read_config_byte(chip->pdev, 0xAE, &scratch); if (ret) return ret; /* * Turn PMOS on [bit 0], set over current detection to 2.4 V * [bit 1:2] and enable over current debouncing [bit 6]. */ if (on) scratch |= 0x47; else scratch &= ~0x47; return pci_write_config_byte(chip->pdev, 0xAE, scratch); } static int jmicron_probe(struct sdhci_pci_chip *chip) { int ret; u16 mmcdev = 0; if (chip->pdev->revision == 0) { chip->quirks |= SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_32BIT_DMA_SIZE | SDHCI_QUIRK_32BIT_ADMA_SIZE | SDHCI_QUIRK_RESET_AFTER_REQUEST | SDHCI_QUIRK_BROKEN_SMALL_PIO; } /* * JMicron chips can have two interfaces to the same hardware * in order to work around limitations in Microsoft's driver. * We need to make sure we only bind to one of them. * * This code assumes two things: * * 1. The PCI code adds subfunctions in order. * * 2. The MMC interface has a lower subfunction number * than the SD interface. */ if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_SD) mmcdev = PCI_DEVICE_ID_JMICRON_JMB38X_MMC; else if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_SD) mmcdev = PCI_DEVICE_ID_JMICRON_JMB388_ESD; if (mmcdev) { struct pci_dev *sd_dev; sd_dev = NULL; while ((sd_dev = pci_get_device(PCI_VENDOR_ID_JMICRON, mmcdev, sd_dev)) != NULL) { if ((PCI_SLOT(chip->pdev->devfn) == PCI_SLOT(sd_dev->devfn)) && (chip->pdev->bus == sd_dev->bus)) break; } if (sd_dev) { pci_dev_put(sd_dev); dev_info(&chip->pdev->dev, "Refusing to bind to " "secondary interface.\n"); return -ENODEV; } } /* * JMicron chips need a bit of a nudge to enable the power * output pins. */ ret = jmicron_pmos(chip, 1); if (ret) { dev_err(&chip->pdev->dev, "Failure enabling card power\n"); return ret; } /* quirk for unsable RO-detection on JM388 chips */ if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_SD || chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) chip->quirks |= SDHCI_QUIRK_UNSTABLE_RO_DETECT; return 0; } static void jmicron_enable_mmc(struct sdhci_host *host, int on) { u8 scratch; scratch = readb(host->ioaddr + 0xC0); if (on) scratch |= 0x01; else scratch &= ~0x01; writeb(scratch, host->ioaddr + 0xC0); } static int jmicron_probe_slot(struct sdhci_pci_slot *slot) { if (slot->chip->pdev->revision == 0) { u16 version; version = readl(slot->host->ioaddr + SDHCI_HOST_VERSION); version = (version & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT; /* * Older versions of the chip have lots of nasty glitches * in the ADMA engine. It's best just to avoid it * completely. */ if (version < 0xAC) slot->host->quirks |= SDHCI_QUIRK_BROKEN_ADMA; } /* JM388 MMC doesn't support 1.8V while SD supports it */ if (slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) { slot->host->ocr_avail_sd = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_29_30 | MMC_VDD_30_31 | MMC_VDD_165_195; /* allow 1.8V */ slot->host->ocr_avail_mmc = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_29_30 | MMC_VDD_30_31; /* no 1.8V for MMC */ } /* * The secondary interface requires a bit set to get the * interrupts. */ if (slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) jmicron_enable_mmc(slot->host, 1); slot->host->mmc->caps |= MMC_CAP_BUS_WIDTH_TEST; return 0; } static void jmicron_remove_slot(struct sdhci_pci_slot *slot, int dead) { if (dead) return; if (slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || slot->chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) jmicron_enable_mmc(slot->host, 0); } #ifdef CONFIG_PM_SLEEP static int jmicron_suspend(struct sdhci_pci_chip *chip) { int i, ret; ret = sdhci_pci_suspend_host(chip); if (ret) return ret; if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) { for (i = 0; i < chip->num_slots; i++) jmicron_enable_mmc(chip->slots[i]->host, 0); } return 0; } static int jmicron_resume(struct sdhci_pci_chip *chip) { int ret, i; if (chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB38X_MMC || chip->pdev->device == PCI_DEVICE_ID_JMICRON_JMB388_ESD) { for (i = 0; i < chip->num_slots; i++) jmicron_enable_mmc(chip->slots[i]->host, 1); } ret = jmicron_pmos(chip, 1); if (ret) { dev_err(&chip->pdev->dev, "Failure enabling card power\n"); return ret; } return sdhci_pci_resume_host(chip); } #endif static const struct sdhci_pci_fixes sdhci_jmicron = { .probe = jmicron_probe, .probe_slot = jmicron_probe_slot, .remove_slot = jmicron_remove_slot, #ifdef CONFIG_PM_SLEEP .suspend = jmicron_suspend, .resume = jmicron_resume, #endif }; /* SysKonnect CardBus2SDIO extra registers */ #define SYSKT_CTRL 0x200 #define SYSKT_RDFIFO_STAT 0x204 #define SYSKT_WRFIFO_STAT 0x208 #define SYSKT_POWER_DATA 0x20c #define SYSKT_POWER_330 0xef #define SYSKT_POWER_300 0xf8 #define SYSKT_POWER_184 0xcc #define SYSKT_POWER_CMD 0x20d #define SYSKT_POWER_START (1 << 7) #define SYSKT_POWER_STATUS 0x20e #define SYSKT_POWER_STATUS_OK (1 << 0) #define SYSKT_BOARD_REV 0x210 #define SYSKT_CHIP_REV 0x211 #define SYSKT_CONF_DATA 0x212 #define SYSKT_CONF_DATA_1V8 (1 << 2) #define SYSKT_CONF_DATA_2V5 (1 << 1) #define SYSKT_CONF_DATA_3V3 (1 << 0) static int syskt_probe(struct sdhci_pci_chip *chip) { if ((chip->pdev->class & 0x0000FF) == PCI_SDHCI_IFVENDOR) { chip->pdev->class &= ~0x0000FF; chip->pdev->class |= PCI_SDHCI_IFDMA; } return 0; } static int syskt_probe_slot(struct sdhci_pci_slot *slot) { int tm, ps; u8 board_rev = readb(slot->host->ioaddr + SYSKT_BOARD_REV); u8 chip_rev = readb(slot->host->ioaddr + SYSKT_CHIP_REV); dev_info(&slot->chip->pdev->dev, "SysKonnect CardBus2SDIO, " "board rev %d.%d, chip rev %d.%d\n", board_rev >> 4, board_rev & 0xf, chip_rev >> 4, chip_rev & 0xf); if (chip_rev >= 0x20) slot->host->quirks |= SDHCI_QUIRK_FORCE_DMA; writeb(SYSKT_POWER_330, slot->host->ioaddr + SYSKT_POWER_DATA); writeb(SYSKT_POWER_START, slot->host->ioaddr + SYSKT_POWER_CMD); udelay(50); tm = 10; /* Wait max 1 ms */ do { ps = readw(slot->host->ioaddr + SYSKT_POWER_STATUS); if (ps & SYSKT_POWER_STATUS_OK) break; udelay(100); } while (--tm); if (!tm) { dev_err(&slot->chip->pdev->dev, "power regulator never stabilized"); writeb(0, slot->host->ioaddr + SYSKT_POWER_CMD); return -ENODEV; } return 0; } static const struct sdhci_pci_fixes sdhci_syskt = { .quirks = SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER, .probe = syskt_probe, .probe_slot = syskt_probe_slot, }; static int via_probe(struct sdhci_pci_chip *chip) { if (chip->pdev->revision == 0x10) chip->quirks |= SDHCI_QUIRK_DELAY_AFTER_POWER; return 0; } static const struct sdhci_pci_fixes sdhci_via = { .probe = via_probe, }; static int rtsx_probe_slot(struct sdhci_pci_slot *slot) { slot->host->mmc->caps2 |= MMC_CAP2_HS200; return 0; } static const struct sdhci_pci_fixes sdhci_rtsx = { .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_BROKEN_64_BIT_DMA | SDHCI_QUIRK2_BROKEN_DDR50, .probe_slot = rtsx_probe_slot, }; /*AMD chipset generation*/ enum amd_chipset_gen { AMD_CHIPSET_BEFORE_ML, AMD_CHIPSET_CZ, AMD_CHIPSET_NL, AMD_CHIPSET_UNKNOWN, }; /* AMD registers */ #define AMD_SD_AUTO_PATTERN 0xB8 #define AMD_MSLEEP_DURATION 4 #define AMD_SD_MISC_CONTROL 0xD0 #define AMD_MAX_TUNE_VALUE 0x0B #define AMD_AUTO_TUNE_SEL 0x10800 #define AMD_FIFO_PTR 0x30 #define AMD_BIT_MASK 0x1F static void amd_tuning_reset(struct sdhci_host *host) { unsigned int val; val = sdhci_readw(host, SDHCI_HOST_CONTROL2); val |= SDHCI_CTRL_PRESET_VAL_ENABLE | SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, val, SDHCI_HOST_CONTROL2); val = sdhci_readw(host, SDHCI_HOST_CONTROL2); val &= ~SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, val, SDHCI_HOST_CONTROL2); } static void amd_config_tuning_phase(struct pci_dev *pdev, u8 phase) { unsigned int val; pci_read_config_dword(pdev, AMD_SD_AUTO_PATTERN, &val); val &= ~AMD_BIT_MASK; val |= (AMD_AUTO_TUNE_SEL | (phase << 1)); pci_write_config_dword(pdev, AMD_SD_AUTO_PATTERN, val); } static void amd_enable_manual_tuning(struct pci_dev *pdev) { unsigned int val; pci_read_config_dword(pdev, AMD_SD_MISC_CONTROL, &val); val |= AMD_FIFO_PTR; pci_write_config_dword(pdev, AMD_SD_MISC_CONTROL, val); } static int amd_execute_tuning_hs200(struct sdhci_host *host, u32 opcode) { struct sdhci_pci_slot *slot = sdhci_priv(host); struct pci_dev *pdev = slot->chip->pdev; u8 valid_win = 0; u8 valid_win_max = 0; u8 valid_win_end = 0; u8 ctrl, tune_around; amd_tuning_reset(host); for (tune_around = 0; tune_around < 12; tune_around++) { amd_config_tuning_phase(pdev, tune_around); if (mmc_send_tuning(host->mmc, opcode, NULL)) { valid_win = 0; msleep(AMD_MSLEEP_DURATION); ctrl = SDHCI_RESET_CMD | SDHCI_RESET_DATA; sdhci_writeb(host, ctrl, SDHCI_SOFTWARE_RESET); } else if (++valid_win > valid_win_max) { valid_win_max = valid_win; valid_win_end = tune_around; } } if (!valid_win_max) { dev_err(&pdev->dev, "no tuning point found\n"); return -EIO; } amd_config_tuning_phase(pdev, valid_win_end - valid_win_max / 2); amd_enable_manual_tuning(pdev); host->mmc->retune_period = 0; return 0; } static int amd_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); /* AMD requires custom HS200 tuning */ if (host->timing == MMC_TIMING_MMC_HS200) return amd_execute_tuning_hs200(host, opcode); /* Otherwise perform standard SDHCI tuning */ return sdhci_execute_tuning(mmc, opcode); } static int amd_probe_slot(struct sdhci_pci_slot *slot) { struct mmc_host_ops *ops = &slot->host->mmc_host_ops; ops->execute_tuning = amd_execute_tuning; return 0; } static int amd_probe(struct sdhci_pci_chip *chip) { struct pci_dev *smbus_dev; enum amd_chipset_gen gen; smbus_dev = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_HUDSON2_SMBUS, NULL); if (smbus_dev) { gen = AMD_CHIPSET_BEFORE_ML; } else { smbus_dev = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_KERNCZ_SMBUS, NULL); if (smbus_dev) { if (smbus_dev->revision < 0x51) gen = AMD_CHIPSET_CZ; else gen = AMD_CHIPSET_NL; } else { gen = AMD_CHIPSET_UNKNOWN; } } pci_dev_put(smbus_dev); if (gen == AMD_CHIPSET_BEFORE_ML || gen == AMD_CHIPSET_CZ) chip->quirks2 |= SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD; return 0; } static u32 sdhci_read_present_state(struct sdhci_host *host) { return sdhci_readl(host, SDHCI_PRESENT_STATE); } static void amd_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pci_slot *slot = sdhci_priv(host); struct pci_dev *pdev = slot->chip->pdev; u32 present_state; /* * SDHC 0x7906 requires a hard reset to clear all internal state. * Otherwise it can get into a bad state where the DATA lines are always * read as zeros. */ if (pdev->device == 0x7906 && (mask & SDHCI_RESET_ALL)) { pci_clear_master(pdev); pci_save_state(pdev); pci_set_power_state(pdev, PCI_D3cold); pr_debug("%s: power_state=%u\n", mmc_hostname(host->mmc), pdev->current_state); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); /* * SDHCI_RESET_ALL says the card detect logic should not be * reset, but since we need to reset the entire controller * we should wait until the card detect logic has stabilized. * * This normally takes about 40ms. */ readx_poll_timeout( sdhci_read_present_state, host, present_state, present_state & SDHCI_CD_STABLE, 10000, 100000 ); } return sdhci_reset(host, mask); } static const struct sdhci_ops amd_sdhci_pci_ops = { .set_clock = sdhci_set_clock, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = amd_sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, }; static const struct sdhci_pci_fixes sdhci_amd = { .probe = amd_probe, .ops = &amd_sdhci_pci_ops, .probe_slot = amd_probe_slot, }; static const struct pci_device_id pci_ids[] = { SDHCI_PCI_DEVICE(RICOH, R5C822, ricoh), SDHCI_PCI_DEVICE(RICOH, R5C843, ricoh_mmc), SDHCI_PCI_DEVICE(RICOH, R5CE822, ricoh_mmc), SDHCI_PCI_DEVICE(RICOH, R5CE823, ricoh_mmc), SDHCI_PCI_DEVICE(ENE, CB712_SD, ene_712), SDHCI_PCI_DEVICE(ENE, CB712_SD_2, ene_712), SDHCI_PCI_DEVICE(ENE, CB714_SD, ene_714), SDHCI_PCI_DEVICE(ENE, CB714_SD_2, ene_714), SDHCI_PCI_DEVICE(MARVELL, 88ALP01_SD, cafe), SDHCI_PCI_DEVICE(JMICRON, JMB38X_SD, jmicron), SDHCI_PCI_DEVICE(JMICRON, JMB38X_MMC, jmicron), SDHCI_PCI_DEVICE(JMICRON, JMB388_SD, jmicron), SDHCI_PCI_DEVICE(JMICRON, JMB388_ESD, jmicron), SDHCI_PCI_DEVICE(SYSKONNECT, 8000, syskt), SDHCI_PCI_DEVICE(VIA, 95D0, via), SDHCI_PCI_DEVICE(REALTEK, 5250, rtsx), SDHCI_PCI_DEVICE(INTEL, QRK_SD, intel_qrk), SDHCI_PCI_DEVICE(INTEL, MRST_SD0, intel_mrst_hc0), SDHCI_PCI_DEVICE(INTEL, MRST_SD1, intel_mrst_hc1_hc2), SDHCI_PCI_DEVICE(INTEL, MRST_SD2, intel_mrst_hc1_hc2), SDHCI_PCI_DEVICE(INTEL, MFD_SD, intel_mfd_sd), SDHCI_PCI_DEVICE(INTEL, MFD_SDIO1, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, MFD_SDIO2, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, MFD_EMMC0, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, MFD_EMMC1, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, PCH_SDIO0, intel_pch_sdio), SDHCI_PCI_DEVICE(INTEL, PCH_SDIO1, intel_pch_sdio), SDHCI_PCI_DEVICE(INTEL, BYT_EMMC, intel_byt_emmc), SDHCI_PCI_SUBDEVICE(INTEL, BYT_SDIO, NI, 7884, ni_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BYT_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BYT_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, BYT_EMMC2, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BSW_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BSW_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BSW_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CLV_SDIO0, intel_mfd_sd), SDHCI_PCI_DEVICE(INTEL, CLV_SDIO1, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, CLV_SDIO2, intel_mfd_sdio), SDHCI_PCI_DEVICE(INTEL, CLV_EMMC0, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, CLV_EMMC1, intel_mfd_emmc), SDHCI_PCI_DEVICE(INTEL, MRFLD_MMC, intel_mrfld_mmc), SDHCI_PCI_DEVICE(INTEL, SPT_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, SPT_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, SPT_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, DNV_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, CDF_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, BXT_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BXT_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BXT_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, BXTM_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, BXTM_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, BXTM_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, APL_EMMC, intel_byt_emmc), SDHCI_PCI_DEVICE(INTEL, APL_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, APL_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, GLK_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, GLK_SDIO, intel_byt_sdio), SDHCI_PCI_DEVICE(INTEL, GLK_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CNP_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, CNP_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CNPH_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, ICP_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, ICP_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, EHL_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, EHL_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CML_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, CML_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, CMLH_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, JSL_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, JSL_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, LKF_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(INTEL, LKF_SD, intel_byt_sd), SDHCI_PCI_DEVICE(INTEL, ADL_EMMC, intel_glk_emmc), SDHCI_PCI_DEVICE(O2, 8120, o2), SDHCI_PCI_DEVICE(O2, 8220, o2), SDHCI_PCI_DEVICE(O2, 8221, o2), SDHCI_PCI_DEVICE(O2, 8320, o2), SDHCI_PCI_DEVICE(O2, 8321, o2), SDHCI_PCI_DEVICE(O2, FUJIN2, o2), SDHCI_PCI_DEVICE(O2, SDS0, o2), SDHCI_PCI_DEVICE(O2, SDS1, o2), SDHCI_PCI_DEVICE(O2, SEABIRD0, o2), SDHCI_PCI_DEVICE(O2, SEABIRD1, o2), SDHCI_PCI_DEVICE(O2, GG8_9860, o2), SDHCI_PCI_DEVICE(O2, GG8_9861, o2), SDHCI_PCI_DEVICE(O2, GG8_9862, o2), SDHCI_PCI_DEVICE(O2, GG8_9863, o2), SDHCI_PCI_DEVICE(ARASAN, PHY_EMMC, arasan), SDHCI_PCI_DEVICE(SYNOPSYS, DWC_MSHC, snps), SDHCI_PCI_DEVICE(GLI, 9750, gl9750), SDHCI_PCI_DEVICE(GLI, 9755, gl9755), SDHCI_PCI_DEVICE(GLI, 9763E, gl9763e), SDHCI_PCI_DEVICE(GLI, 9767, gl9767), SDHCI_PCI_DEVICE_CLASS(AMD, SYSTEM_SDHCI, PCI_CLASS_MASK, amd), /* Generic SD host controller */ {PCI_DEVICE_CLASS(SYSTEM_SDHCI, PCI_CLASS_MASK)}, { /* end: all zeroes */ }, }; MODULE_DEVICE_TABLE(pci, pci_ids); /*****************************************************************************\ * * * SDHCI core callbacks * * * \*****************************************************************************/ int sdhci_pci_enable_dma(struct sdhci_host *host) { struct sdhci_pci_slot *slot; struct pci_dev *pdev; slot = sdhci_priv(host); pdev = slot->chip->pdev; if (((pdev->class & 0xFFFF00) == (PCI_CLASS_SYSTEM_SDHCI << 8)) && ((pdev->class & 0x0000FF) != PCI_SDHCI_IFDMA) && (host->flags & SDHCI_USE_SDMA)) { dev_warn(&pdev->dev, "Will use DMA mode even though HW " "doesn't fully claim to support it.\n"); } pci_set_master(pdev); return 0; } static void sdhci_pci_hw_reset(struct sdhci_host *host) { struct sdhci_pci_slot *slot = sdhci_priv(host); if (slot->hw_reset) slot->hw_reset(host); } static const struct sdhci_ops sdhci_pci_ops = { .set_clock = sdhci_set_clock, .enable_dma = sdhci_pci_enable_dma, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .hw_reset = sdhci_pci_hw_reset, }; /*****************************************************************************\ * * * Suspend/resume * * * \*****************************************************************************/ #ifdef CONFIG_PM_SLEEP static int sdhci_pci_suspend(struct device *dev) { struct sdhci_pci_chip *chip = dev_get_drvdata(dev); if (!chip) return 0; if (chip->fixes && chip->fixes->suspend) return chip->fixes->suspend(chip); return sdhci_pci_suspend_host(chip); } static int sdhci_pci_resume(struct device *dev) { struct sdhci_pci_chip *chip = dev_get_drvdata(dev); if (!chip) return 0; if (chip->fixes && chip->fixes->resume) return chip->fixes->resume(chip); return sdhci_pci_resume_host(chip); } #endif #ifdef CONFIG_PM static int sdhci_pci_runtime_suspend(struct device *dev) { struct sdhci_pci_chip *chip = dev_get_drvdata(dev); if (!chip) return 0; if (chip->fixes && chip->fixes->runtime_suspend) return chip->fixes->runtime_suspend(chip); return sdhci_pci_runtime_suspend_host(chip); } static int sdhci_pci_runtime_resume(struct device *dev) { struct sdhci_pci_chip *chip = dev_get_drvdata(dev); if (!chip) return 0; if (chip->fixes && chip->fixes->runtime_resume) return chip->fixes->runtime_resume(chip); return sdhci_pci_runtime_resume_host(chip); } #endif static const struct dev_pm_ops sdhci_pci_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sdhci_pci_suspend, sdhci_pci_resume) SET_RUNTIME_PM_OPS(sdhci_pci_runtime_suspend, sdhci_pci_runtime_resume, NULL) }; /*****************************************************************************\ * * * Device probing/removal * * * \*****************************************************************************/ static struct sdhci_pci_slot *sdhci_pci_probe_slot( struct pci_dev *pdev, struct sdhci_pci_chip *chip, int first_bar, int slotno) { struct sdhci_pci_slot *slot; struct sdhci_host *host; int ret, bar = first_bar + slotno; size_t priv_size = chip->fixes ? chip->fixes->priv_size : 0; if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "BAR %d is not iomem. Aborting.\n", bar); return ERR_PTR(-ENODEV); } if (pci_resource_len(pdev, bar) < 0x100) { dev_err(&pdev->dev, "Invalid iomem size. You may " "experience problems.\n"); } if ((pdev->class & 0x0000FF) == PCI_SDHCI_IFVENDOR) { dev_err(&pdev->dev, "Vendor specific interface. Aborting.\n"); return ERR_PTR(-ENODEV); } if ((pdev->class & 0x0000FF) > PCI_SDHCI_IFVENDOR) { dev_err(&pdev->dev, "Unknown interface. Aborting.\n"); return ERR_PTR(-ENODEV); } host = sdhci_alloc_host(&pdev->dev, sizeof(*slot) + priv_size); if (IS_ERR(host)) { dev_err(&pdev->dev, "cannot allocate host\n"); return ERR_CAST(host); } slot = sdhci_priv(host); slot->chip = chip; slot->host = host; slot->cd_idx = -1; host->hw_name = "PCI"; host->ops = chip->fixes && chip->fixes->ops ? chip->fixes->ops : &sdhci_pci_ops; host->quirks = chip->quirks; host->quirks2 = chip->quirks2; host->irq = pdev->irq; ret = pcim_iomap_regions(pdev, BIT(bar), mmc_hostname(host->mmc)); if (ret) { dev_err(&pdev->dev, "cannot request region\n"); goto cleanup; } host->ioaddr = pcim_iomap_table(pdev)[bar]; if (chip->fixes && chip->fixes->probe_slot) { ret = chip->fixes->probe_slot(slot); if (ret) goto cleanup; } host->mmc->pm_caps = MMC_PM_KEEP_POWER; host->mmc->slotno = slotno; host->mmc->caps2 |= MMC_CAP2_NO_PRESCAN_POWERUP; if (device_can_wakeup(&pdev->dev)) host->mmc->pm_caps |= MMC_PM_WAKE_SDIO_IRQ; if (host->mmc->caps & MMC_CAP_CD_WAKE) device_init_wakeup(&pdev->dev, true); if (slot->cd_idx >= 0) { ret = mmc_gpiod_request_cd(host->mmc, "cd", slot->cd_idx, slot->cd_override_level, 0); if (ret && ret != -EPROBE_DEFER) ret = mmc_gpiod_request_cd(host->mmc, NULL, slot->cd_idx, slot->cd_override_level, 0); if (ret == -EPROBE_DEFER) goto remove; if (ret) { dev_warn(&pdev->dev, "failed to setup card detect gpio\n"); slot->cd_idx = -1; } } if (chip->fixes && chip->fixes->add_host) ret = chip->fixes->add_host(slot); else ret = sdhci_add_host(host); if (ret) goto remove; /* * Check if the chip needs a separate GPIO for card detect to wake up * from runtime suspend. If it is not there, don't allow runtime PM. */ if (chip->fixes && chip->fixes->own_cd_for_runtime_pm && slot->cd_idx < 0) chip->allow_runtime_pm = false; return slot; remove: if (chip->fixes && chip->fixes->remove_slot) chip->fixes->remove_slot(slot, 0); cleanup: sdhci_free_host(host); return ERR_PTR(ret); } static void sdhci_pci_remove_slot(struct sdhci_pci_slot *slot) { int dead; u32 scratch; dead = 0; scratch = readl(slot->host->ioaddr + SDHCI_INT_STATUS); if (scratch == (u32)-1) dead = 1; sdhci_remove_host(slot->host, dead); if (slot->chip->fixes && slot->chip->fixes->remove_slot) slot->chip->fixes->remove_slot(slot, dead); sdhci_free_host(slot->host); } static void sdhci_pci_runtime_pm_allow(struct device *dev) { pm_suspend_ignore_children(dev, 1); pm_runtime_set_autosuspend_delay(dev, 50); pm_runtime_use_autosuspend(dev); pm_runtime_allow(dev); /* Stay active until mmc core scans for a card */ pm_runtime_put_noidle(dev); } static void sdhci_pci_runtime_pm_forbid(struct device *dev) { pm_runtime_forbid(dev); pm_runtime_get_noresume(dev); } static int sdhci_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct sdhci_pci_chip *chip; struct sdhci_pci_slot *slot; u8 slots, first_bar; int ret, i; BUG_ON(pdev == NULL); BUG_ON(ent == NULL); dev_info(&pdev->dev, "SDHCI controller found [%04x:%04x] (rev %x)\n", (int)pdev->vendor, (int)pdev->device, (int)pdev->revision); ret = pci_read_config_byte(pdev, PCI_SLOT_INFO, &slots); if (ret) return ret; slots = PCI_SLOT_INFO_SLOTS(slots) + 1; dev_dbg(&pdev->dev, "found %d slot(s)\n", slots); BUG_ON(slots > MAX_SLOTS); ret = pci_read_config_byte(pdev, PCI_SLOT_INFO, &first_bar); if (ret) return ret; first_bar &= PCI_SLOT_INFO_FIRST_BAR_MASK; if (first_bar > 5) { dev_err(&pdev->dev, "Invalid first BAR. Aborting.\n"); return -ENODEV; } ret = pcim_enable_device(pdev); if (ret) return ret; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->pdev = pdev; chip->fixes = (const struct sdhci_pci_fixes *)ent->driver_data; if (chip->fixes) { chip->quirks = chip->fixes->quirks; chip->quirks2 = chip->fixes->quirks2; chip->allow_runtime_pm = chip->fixes->allow_runtime_pm; } chip->num_slots = slots; chip->pm_retune = true; chip->rpm_retune = true; pci_set_drvdata(pdev, chip); if (chip->fixes && chip->fixes->probe) { ret = chip->fixes->probe(chip); if (ret) return ret; } slots = chip->num_slots; /* Quirk may have changed this */ for (i = 0; i < slots; i++) { slot = sdhci_pci_probe_slot(pdev, chip, first_bar, i); if (IS_ERR(slot)) { for (i--; i >= 0; i--) sdhci_pci_remove_slot(chip->slots[i]); return PTR_ERR(slot); } chip->slots[i] = slot; } if (chip->allow_runtime_pm) sdhci_pci_runtime_pm_allow(&pdev->dev); return 0; } static void sdhci_pci_remove(struct pci_dev *pdev) { int i; struct sdhci_pci_chip *chip = pci_get_drvdata(pdev); if (chip->allow_runtime_pm) sdhci_pci_runtime_pm_forbid(&pdev->dev); for (i = 0; i < chip->num_slots; i++) sdhci_pci_remove_slot(chip->slots[i]); } static struct pci_driver sdhci_driver = { .name = "sdhci-pci", .id_table = pci_ids, .probe = sdhci_pci_probe, .remove = sdhci_pci_remove, .driver = { .pm = &sdhci_pci_pm_ops, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; module_pci_driver(sdhci_driver); MODULE_AUTHOR("Pierre Ossman "); MODULE_DESCRIPTION("Secure Digital Host Controller Interface PCI driver"); MODULE_LICENSE("GPL");