// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/mmc/core/sd.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "card.h" #include "host.h" #include "bus.h" #include "mmc_ops.h" #include "quirks.h" #include "sd.h" #include "sd_ops.h" static const unsigned int tran_exp[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const unsigned char tran_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int taac_exp[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const unsigned int taac_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int sd_au_size[] = { 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, }; #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 struct sd_busy_data { struct mmc_card *card; u8 *reg_buf; }; /* * Given the decoded CSD structure, decode the raw CID to our CID structure. */ void mmc_decode_cid(struct mmc_card *card) { u32 *resp = card->raw_cid; /* * Add the raw card ID (cid) data to the entropy pool. It doesn't * matter that not all of it is unique, it's just bonus entropy. */ add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); /* * SD doesn't currently have a version field so we will * have to assume we can parse this. */ card->cid.manfid = unstuff_bits(resp, 120, 8); card->cid.oemid = unstuff_bits(resp, 104, 16); card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); card->cid.hwrev = unstuff_bits(resp, 60, 4); card->cid.fwrev = unstuff_bits(resp, 56, 4); card->cid.serial = unstuff_bits(resp, 24, 32); card->cid.year = unstuff_bits(resp, 12, 8); card->cid.month = unstuff_bits(resp, 8, 4); card->cid.year += 2000; /* SD cards year offset */ } /* * Given a 128-bit response, decode to our card CSD structure. */ static int mmc_decode_csd(struct mmc_card *card) { struct mmc_csd *csd = &card->csd; unsigned int e, m, csd_struct; u32 *resp = card->raw_csd; csd_struct = unstuff_bits(resp, 126, 2); switch (csd_struct) { case 0: m = unstuff_bits(resp, 115, 4); e = unstuff_bits(resp, 112, 3); csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; csd->taac_clks = unstuff_bits(resp, 104, 8) * 100; m = unstuff_bits(resp, 99, 4); e = unstuff_bits(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = unstuff_bits(resp, 84, 12); e = unstuff_bits(resp, 47, 3); m = unstuff_bits(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = unstuff_bits(resp, 80, 4); csd->read_partial = unstuff_bits(resp, 79, 1); csd->write_misalign = unstuff_bits(resp, 78, 1); csd->read_misalign = unstuff_bits(resp, 77, 1); csd->dsr_imp = unstuff_bits(resp, 76, 1); csd->r2w_factor = unstuff_bits(resp, 26, 3); csd->write_blkbits = unstuff_bits(resp, 22, 4); csd->write_partial = unstuff_bits(resp, 21, 1); if (unstuff_bits(resp, 46, 1)) { csd->erase_size = 1; } else if (csd->write_blkbits >= 9) { csd->erase_size = unstuff_bits(resp, 39, 7) + 1; csd->erase_size <<= csd->write_blkbits - 9; } if (unstuff_bits(resp, 13, 1)) mmc_card_set_readonly(card); break; case 1: /* * This is a block-addressed SDHC or SDXC card. Most * interesting fields are unused and have fixed * values. To avoid getting tripped by buggy cards, * we assume those fixed values ourselves. */ mmc_card_set_blockaddr(card); csd->taac_ns = 0; /* Unused */ csd->taac_clks = 0; /* Unused */ m = unstuff_bits(resp, 99, 4); e = unstuff_bits(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = unstuff_bits(resp, 84, 12); csd->c_size = unstuff_bits(resp, 48, 22); /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ if (csd->c_size >= 0xFFFF) mmc_card_set_ext_capacity(card); m = unstuff_bits(resp, 48, 22); csd->capacity = (1 + m) << 10; csd->read_blkbits = 9; csd->read_partial = 0; csd->write_misalign = 0; csd->read_misalign = 0; csd->r2w_factor = 4; /* Unused */ csd->write_blkbits = 9; csd->write_partial = 0; csd->erase_size = 1; if (unstuff_bits(resp, 13, 1)) mmc_card_set_readonly(card); break; default: pr_err("%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd_struct); return -EINVAL; } card->erase_size = csd->erase_size; return 0; } /* * Given a 64-bit response, decode to our card SCR structure. */ static int mmc_decode_scr(struct mmc_card *card) { struct sd_scr *scr = &card->scr; unsigned int scr_struct; u32 resp[4]; resp[3] = card->raw_scr[1]; resp[2] = card->raw_scr[0]; scr_struct = unstuff_bits(resp, 60, 4); if (scr_struct != 0) { pr_err("%s: unrecognised SCR structure version %d\n", mmc_hostname(card->host), scr_struct); return -EINVAL; } scr->sda_vsn = unstuff_bits(resp, 56, 4); scr->bus_widths = unstuff_bits(resp, 48, 4); if (scr->sda_vsn == SCR_SPEC_VER_2) /* Check if Physical Layer Spec v3.0 is supported */ scr->sda_spec3 = unstuff_bits(resp, 47, 1); if (scr->sda_spec3) { scr->sda_spec4 = unstuff_bits(resp, 42, 1); scr->sda_specx = unstuff_bits(resp, 38, 4); } if (unstuff_bits(resp, 55, 1)) card->erased_byte = 0xFF; else card->erased_byte = 0x0; if (scr->sda_spec4) scr->cmds = unstuff_bits(resp, 32, 4); else if (scr->sda_spec3) scr->cmds = unstuff_bits(resp, 32, 2); /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); return -EINVAL; } return 0; } /* * Fetch and process SD Status register. */ static int mmc_read_ssr(struct mmc_card *card) { unsigned int au, es, et, eo; __be32 *raw_ssr; u32 resp[4] = {}; u8 discard_support; int i; if (!(card->csd.cmdclass & CCC_APP_SPEC)) { pr_warn("%s: card lacks mandatory SD Status function\n", mmc_hostname(card->host)); return 0; } raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); if (!raw_ssr) return -ENOMEM; if (mmc_app_sd_status(card, raw_ssr)) { pr_warn("%s: problem reading SD Status register\n", mmc_hostname(card->host)); kfree(raw_ssr); return 0; } for (i = 0; i < 16; i++) card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); kfree(raw_ssr); /* * unstuff_bits only works with four u32s so we have to offset the * bitfield positions accordingly. */ au = unstuff_bits(card->raw_ssr, 428 - 384, 4); if (au) { if (au <= 9 || card->scr.sda_spec3) { card->ssr.au = sd_au_size[au]; es = unstuff_bits(card->raw_ssr, 408 - 384, 16); et = unstuff_bits(card->raw_ssr, 402 - 384, 6); if (es && et) { eo = unstuff_bits(card->raw_ssr, 400 - 384, 2); card->ssr.erase_timeout = (et * 1000) / es; card->ssr.erase_offset = eo * 1000; } } else { pr_warn("%s: SD Status: Invalid Allocation Unit size\n", mmc_hostname(card->host)); } } /* * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set */ resp[3] = card->raw_ssr[6]; discard_support = unstuff_bits(resp, 313 - 288, 1); card->erase_arg = (card->scr.sda_specx && discard_support) ? SD_DISCARD_ARG : SD_ERASE_ARG; return 0; } /* * Fetches and decodes switch information */ static int mmc_read_switch(struct mmc_card *card) { int err; u8 *status; if (card->scr.sda_vsn < SCR_SPEC_VER_1) return 0; if (!(card->csd.cmdclass & CCC_SWITCH)) { pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", mmc_hostname(card->host)); return 0; } status = kmalloc(64, GFP_KERNEL); if (!status) return -ENOMEM; /* * Find out the card's support bits with a mode 0 operation. * The argument does not matter, as the support bits do not * change with the arguments. */ err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status); if (err) { /* * If the host or the card can't do the switch, * fail more gracefully. */ if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) goto out; pr_warn("%s: problem reading Bus Speed modes\n", mmc_hostname(card->host)); err = 0; goto out; } if (status[13] & SD_MODE_HIGH_SPEED) card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; if (card->scr.sda_spec3) { card->sw_caps.sd3_bus_mode = status[13]; /* Driver Strengths supported by the card */ card->sw_caps.sd3_drv_type = status[9]; card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; } out: kfree(status); return err; } /* * Test if the card supports high-speed mode and, if so, switch to it. */ int mmc_sd_switch_hs(struct mmc_card *card) { int err; u8 *status; if (card->scr.sda_vsn < SCR_SPEC_VER_1) return 0; if (!(card->csd.cmdclass & CCC_SWITCH)) return 0; if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) return 0; if (card->sw_caps.hs_max_dtr == 0) return 0; status = kmalloc(64, GFP_KERNEL); if (!status) return -ENOMEM; err = mmc_sd_switch(card, SD_SWITCH_SET, 0, HIGH_SPEED_BUS_SPEED, status); if (err) goto out; if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { pr_warn("%s: Problem switching card into high-speed mode!\n", mmc_hostname(card->host)); err = 0; } else { err = 1; } out: kfree(status); return err; } static int sd_select_driver_type(struct mmc_card *card, u8 *status) { int card_drv_type, drive_strength, drv_type; int err; card->drive_strength = 0; card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; drive_strength = mmc_select_drive_strength(card, card->sw_caps.uhs_max_dtr, card_drv_type, &drv_type); if (drive_strength) { err = mmc_sd_switch(card, SD_SWITCH_SET, 2, drive_strength, status); if (err) return err; if ((status[15] & 0xF) != drive_strength) { pr_warn("%s: Problem setting drive strength!\n", mmc_hostname(card->host)); return 0; } card->drive_strength = drive_strength; } if (drv_type) mmc_set_driver_type(card->host, drv_type); return 0; } static void sd_update_bus_speed_mode(struct mmc_card *card) { /* * If the host doesn't support any of the UHS-I modes, fallback on * default speed. */ if (!mmc_host_uhs(card->host)) { card->sd_bus_speed = 0; return; } if ((card->host->caps & MMC_CAP_UHS_SDR104) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { card->sd_bus_speed = UHS_SDR104_BUS_SPEED; } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { card->sd_bus_speed = UHS_DDR50_BUS_SPEED; } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR50)) { card->sd_bus_speed = UHS_SDR50_BUS_SPEED; } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { card->sd_bus_speed = UHS_SDR25_BUS_SPEED; } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR12)) { card->sd_bus_speed = UHS_SDR12_BUS_SPEED; } } static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) { int err; unsigned int timing = 0; switch (card->sd_bus_speed) { case UHS_SDR104_BUS_SPEED: timing = MMC_TIMING_UHS_SDR104; card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; break; case UHS_DDR50_BUS_SPEED: timing = MMC_TIMING_UHS_DDR50; card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; break; case UHS_SDR50_BUS_SPEED: timing = MMC_TIMING_UHS_SDR50; card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; break; case UHS_SDR25_BUS_SPEED: timing = MMC_TIMING_UHS_SDR25; card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; break; case UHS_SDR12_BUS_SPEED: timing = MMC_TIMING_UHS_SDR12; card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; break; default: return 0; } err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status); if (err) return err; if ((status[16] & 0xF) != card->sd_bus_speed) pr_warn("%s: Problem setting bus speed mode!\n", mmc_hostname(card->host)); else { mmc_set_timing(card->host, timing); mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); } return 0; } /* Get host's max current setting at its current voltage */ static u32 sd_get_host_max_current(struct mmc_host *host) { u32 voltage, max_current; voltage = 1 << host->ios.vdd; switch (voltage) { case MMC_VDD_165_195: max_current = host->max_current_180; break; case MMC_VDD_29_30: case MMC_VDD_30_31: max_current = host->max_current_300; break; case MMC_VDD_32_33: case MMC_VDD_33_34: max_current = host->max_current_330; break; default: max_current = 0; } return max_current; } static int sd_set_current_limit(struct mmc_card *card, u8 *status) { int current_limit = SD_SET_CURRENT_NO_CHANGE; int err; u32 max_current; /* * Current limit switch is only defined for SDR50, SDR104, and DDR50 * bus speed modes. For other bus speed modes, we do not change the * current limit. */ if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) return 0; /* * Host has different current capabilities when operating at * different voltages, so find out its max current first. */ max_current = sd_get_host_max_current(card->host); /* * We only check host's capability here, if we set a limit that is * higher than the card's maximum current, the card will be using its * maximum current, e.g. if the card's maximum current is 300ma, and * when we set current limit to 200ma, the card will draw 200ma, and * when we set current limit to 400/600/800ma, the card will draw its * maximum 300ma from the host. * * The above is incorrect: if we try to set a current limit that is * not supported by the card, the card can rightfully error out the * attempt, and remain at the default current limit. This results * in a 300mA card being limited to 200mA even though the host * supports 800mA. Failures seen with SanDisk 8GB UHS cards with * an iMX6 host. --rmk */ if (max_current >= 800 && card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) current_limit = SD_SET_CURRENT_LIMIT_800; else if (max_current >= 600 && card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) current_limit = SD_SET_CURRENT_LIMIT_600; else if (max_current >= 400 && card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) current_limit = SD_SET_CURRENT_LIMIT_400; else if (max_current >= 200 && card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) current_limit = SD_SET_CURRENT_LIMIT_200; if (current_limit != SD_SET_CURRENT_NO_CHANGE) { err = mmc_sd_switch(card, SD_SWITCH_SET, 3, current_limit, status); if (err) return err; if (((status[15] >> 4) & 0x0F) != current_limit) pr_warn("%s: Problem setting current limit!\n", mmc_hostname(card->host)); } return 0; } /* * UHS-I specific initialization procedure */ static int mmc_sd_init_uhs_card(struct mmc_card *card) { int err; u8 *status; if (!(card->csd.cmdclass & CCC_SWITCH)) return 0; status = kmalloc(64, GFP_KERNEL); if (!status) return -ENOMEM; /* Set 4-bit bus width */ err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); if (err) goto out; mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); /* * Select the bus speed mode depending on host * and card capability. */ sd_update_bus_speed_mode(card); /* Set the driver strength for the card */ err = sd_select_driver_type(card, status); if (err) goto out; /* Set current limit for the card */ err = sd_set_current_limit(card, status); if (err) goto out; /* Set bus speed mode of the card */ err = sd_set_bus_speed_mode(card, status); if (err) goto out; /* * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. */ if (!mmc_host_is_spi(card->host) && (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || card->host->ios.timing == MMC_TIMING_UHS_DDR50 || card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { err = mmc_execute_tuning(card); /* * As SD Specifications Part1 Physical Layer Specification * Version 3.01 says, CMD19 tuning is available for unlocked * cards in transfer state of 1.8V signaling mode. The small * difference between v3.00 and 3.01 spec means that CMD19 * tuning is also available for DDR50 mode. */ if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { pr_warn("%s: ddr50 tuning failed\n", mmc_hostname(card->host)); err = 0; } } out: kfree(status); return err; } MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], card->raw_cid[2], card->raw_cid[3]); MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], card->raw_csd[2], card->raw_csd[3]); MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); MMC_DEV_ATTR(ssr, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], card->raw_ssr[15]); MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_card *card = mmc_dev_to_card(dev); struct mmc_host *host = card->host; if (card->csd.dsr_imp && host->dsr_req) return sysfs_emit(buf, "0x%x\n", host->dsr); /* return default DSR value */ return sysfs_emit(buf, "0x%x\n", 0x404); } static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); #define sdio_info_attr(num) \ static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ { \ struct mmc_card *card = mmc_dev_to_card(dev); \ \ if (num > card->num_info) \ return -ENODATA; \ if (!card->info[num - 1][0]) \ return 0; \ return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ } \ static DEVICE_ATTR_RO(info##num) sdio_info_attr(1); sdio_info_attr(2); sdio_info_attr(3); sdio_info_attr(4); static struct attribute *sd_std_attrs[] = { &dev_attr_vendor.attr, &dev_attr_device.attr, &dev_attr_revision.attr, &dev_attr_info1.attr, &dev_attr_info2.attr, &dev_attr_info3.attr, &dev_attr_info4.attr, &dev_attr_cid.attr, &dev_attr_csd.attr, &dev_attr_scr.attr, &dev_attr_ssr.attr, &dev_attr_date.attr, &dev_attr_erase_size.attr, &dev_attr_preferred_erase_size.attr, &dev_attr_fwrev.attr, &dev_attr_hwrev.attr, &dev_attr_manfid.attr, &dev_attr_name.attr, &dev_attr_oemid.attr, &dev_attr_serial.attr, &dev_attr_ocr.attr, &dev_attr_rca.attr, &dev_attr_dsr.attr, NULL, }; static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct mmc_card *card = mmc_dev_to_card(dev); /* CIS vendor and device ids, revision and info string are available only for Combo cards */ if ((attr == &dev_attr_vendor.attr || attr == &dev_attr_device.attr || attr == &dev_attr_revision.attr || attr == &dev_attr_info1.attr || attr == &dev_attr_info2.attr || attr == &dev_attr_info3.attr || attr == &dev_attr_info4.attr ) &&!mmc_card_sd_combo(card)) return 0; return attr->mode; } static const struct attribute_group sd_std_group = { .attrs = sd_std_attrs, .is_visible = sd_std_is_visible, }; __ATTRIBUTE_GROUPS(sd_std); const struct device_type sd_type = { .groups = sd_std_groups, }; /* * Fetch CID from card. */ int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) { int err; u32 max_current; int retries = 10; u32 pocr = ocr; try_again: if (!retries) { ocr &= ~SD_OCR_S18R; pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); } /* * Since we're changing the OCR value, we seem to * need to tell some cards to go back to the idle * state. We wait 1ms to give cards time to * respond. */ mmc_go_idle(host); /* * If SD_SEND_IF_COND indicates an SD 2.0 * compliant card and we should set bit 30 * of the ocr to indicate that we can handle * block-addressed SDHC cards. */ err = mmc_send_if_cond(host, ocr); if (!err) ocr |= SD_OCR_CCS; /* * If the host supports one of UHS-I modes, request the card * to switch to 1.8V signaling level. If the card has failed * repeatedly to switch however, skip this. */ if (retries && mmc_host_uhs(host)) ocr |= SD_OCR_S18R; /* * If the host can supply more than 150mA at current voltage, * XPC should be set to 1. */ max_current = sd_get_host_max_current(host); if (max_current > 150) ocr |= SD_OCR_XPC; err = mmc_send_app_op_cond(host, ocr, rocr); if (err) return err; /* * In case the S18A bit is set in the response, let's start the signal * voltage switch procedure. SPI mode doesn't support CMD11. * Note that, according to the spec, the S18A bit is not valid unless * the CCS bit is set as well. We deliberately deviate from the spec in * regards to this, which allows UHS-I to be supported for SDSC cards. */ if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) && rocr && (*rocr & SD_ROCR_S18A)) { err = mmc_set_uhs_voltage(host, pocr); if (err == -EAGAIN) { retries--; goto try_again; } else if (err) { retries = 0; goto try_again; } } err = mmc_send_cid(host, cid); return err; } int mmc_sd_get_csd(struct mmc_card *card) { int err; /* * Fetch CSD from card. */ err = mmc_send_csd(card, card->raw_csd); if (err) return err; err = mmc_decode_csd(card); if (err) return err; return 0; } static int mmc_sd_get_ro(struct mmc_host *host) { int ro; /* * Some systems don't feature a write-protect pin and don't need one. * E.g. because they only have micro-SD card slot. For those systems * assume that the SD card is always read-write. */ if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) return 0; if (!host->ops->get_ro) return -1; ro = host->ops->get_ro(host); return ro; } int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, bool reinit) { int err; if (!reinit) { /* * Fetch SCR from card. */ err = mmc_app_send_scr(card); if (err) return err; err = mmc_decode_scr(card); if (err) return err; /* * Fetch and process SD Status register. */ err = mmc_read_ssr(card); if (err) return err; /* Erase init depends on CSD and SSR */ mmc_init_erase(card); } /* * Fetch switch information from card. Note, sd3_bus_mode can change if * voltage switch outcome changes, so do this always. */ err = mmc_read_switch(card); if (err) return err; /* * For SPI, enable CRC as appropriate. * This CRC enable is located AFTER the reading of the * card registers because some SDHC cards are not able * to provide valid CRCs for non-512-byte blocks. */ if (mmc_host_is_spi(host)) { err = mmc_spi_set_crc(host, use_spi_crc); if (err) return err; } /* * Check if read-only switch is active. */ if (!reinit) { int ro = mmc_sd_get_ro(host); if (ro < 0) { pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", mmc_hostname(host)); } else if (ro > 0) { mmc_card_set_readonly(card); } } return 0; } unsigned mmc_sd_get_max_clock(struct mmc_card *card) { unsigned max_dtr = (unsigned int)-1; if (mmc_card_hs(card)) { if (max_dtr > card->sw_caps.hs_max_dtr) max_dtr = card->sw_caps.hs_max_dtr; } else if (max_dtr > card->csd.max_dtr) { max_dtr = card->csd.max_dtr; } return max_dtr; } static bool mmc_sd_card_using_v18(struct mmc_card *card) { /* * According to the SD spec., the Bus Speed Mode (function group 1) bits * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus * they can be used to determine if the card has already switched to * 1.8V signaling. */ return card->sw_caps.sd3_bus_mode & (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); } static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, u8 reg_data) { struct mmc_host *host = card->host; struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; u8 *reg_buf; reg_buf = kzalloc(512, GFP_KERNEL); if (!reg_buf) return -ENOMEM; mrq.cmd = &cmd; mrq.data = &data; /* * Arguments of CMD49: * [31:31] MIO (0 = memory). * [30:27] FNO (function number). * [26:26] MW - mask write mode (0 = disable). * [25:18] page number. * [17:9] offset address. * [8:0] length (0 = 1 byte). */ cmd.arg = fno << 27 | page << 18 | offset << 9; /* The first byte in the buffer is the data to be written. */ reg_buf[0] = reg_data; data.flags = MMC_DATA_WRITE; data.blksz = 512; data.blocks = 1; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, reg_buf, 512); cmd.opcode = SD_WRITE_EXTR_SINGLE; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; mmc_set_data_timeout(&data, card); mmc_wait_for_req(host, &mrq); kfree(reg_buf); /* * Note that, the SD card is allowed to signal busy on DAT0 up to 1s * after the CMD49. Although, let's leave this to be managed by the * caller. */ if (cmd.error) return cmd.error; if (data.error) return data.error; return 0; } static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, u16 len, u8 *reg_buf) { u32 cmd_args; /* * Command arguments of CMD48: * [31:31] MIO (0 = memory). * [30:27] FNO (function number). * [26:26] reserved (0). * [25:18] page number. * [17:9] offset address. * [8:0] length (0 = 1 byte, 1ff = 512 bytes). */ cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, cmd_args, reg_buf, 512); } static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, u16 offset) { int err; u8 *reg_buf; reg_buf = kzalloc(512, GFP_KERNEL); if (!reg_buf) return -ENOMEM; /* Read the extension register for power management function. */ err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); if (err) { pr_warn("%s: error %d reading PM func of ext reg\n", mmc_hostname(card->host), err); goto out; } /* PM revision consists of 4 bits. */ card->ext_power.rev = reg_buf[0] & 0xf; /* Power Off Notification support at bit 4. */ if (reg_buf[1] & BIT(4)) card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; /* Power Sustenance support at bit 5. */ if (reg_buf[1] & BIT(5)) card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; /* Power Down Mode support at bit 6. */ if (reg_buf[1] & BIT(6)) card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; card->ext_power.fno = fno; card->ext_power.page = page; card->ext_power.offset = offset; out: kfree(reg_buf); return err; } static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, u16 offset) { int err; u8 *reg_buf; reg_buf = kzalloc(512, GFP_KERNEL); if (!reg_buf) return -ENOMEM; err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); if (err) { pr_warn("%s: error %d reading PERF func of ext reg\n", mmc_hostname(card->host), err); goto out; } /* PERF revision. */ card->ext_perf.rev = reg_buf[0]; /* FX_EVENT support at bit 0. */ if (reg_buf[1] & BIT(0)) card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; /* Card initiated self-maintenance support at bit 0. */ if (reg_buf[2] & BIT(0)) card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; /* Host initiated self-maintenance support at bit 1. */ if (reg_buf[2] & BIT(1)) card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; /* Cache support at bit 0. */ if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card)) card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; /* Command queue support indicated via queue depth bits (0 to 4). */ if (reg_buf[6] & 0x1f) card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; card->ext_perf.fno = fno; card->ext_perf.page = page; card->ext_perf.offset = offset; out: kfree(reg_buf); return err; } static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, u16 *next_ext_addr) { u8 num_regs, fno, page; u16 sfc, offset, ext = *next_ext_addr; u32 reg_addr; /* * Parse only one register set per extension, as that is sufficient to * support the standard functions. This means another 48 bytes in the * buffer must be available. */ if (ext + 48 > 512) return -EFAULT; /* Standard Function Code */ memcpy(&sfc, &gen_info_buf[ext], 2); /* Address to the next extension. */ memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); /* Number of registers for this extension. */ num_regs = gen_info_buf[ext + 42]; /* We support only one register per extension. */ if (num_regs != 1) return 0; /* Extension register address. */ memcpy(®_addr, &gen_info_buf[ext + 44], 4); /* 9 bits (0 to 8) contains the offset address. */ offset = reg_addr & 0x1ff; /* 8 bits (9 to 16) contains the page number. */ page = reg_addr >> 9 & 0xff ; /* 4 bits (18 to 21) contains the function number. */ fno = reg_addr >> 18 & 0xf; /* Standard Function Code for power management. */ if (sfc == 0x1) return sd_parse_ext_reg_power(card, fno, page, offset); /* Standard Function Code for performance enhancement. */ if (sfc == 0x2) return sd_parse_ext_reg_perf(card, fno, page, offset); return 0; } static int sd_read_ext_regs(struct mmc_card *card) { int err, i; u8 num_ext, *gen_info_buf; u16 rev, len, next_ext_addr; if (mmc_host_is_spi(card->host)) return 0; if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) return 0; gen_info_buf = kzalloc(512, GFP_KERNEL); if (!gen_info_buf) return -ENOMEM; /* * Read 512 bytes of general info, which is found at function number 0, * at page 0 and with no offset. */ err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); if (err) { pr_err("%s: error %d reading general info of SD ext reg\n", mmc_hostname(card->host), err); goto out; } /* General info structure revision. */ memcpy(&rev, &gen_info_buf[0], 2); /* Length of general info in bytes. */ memcpy(&len, &gen_info_buf[2], 2); /* Number of extensions to be find. */ num_ext = gen_info_buf[4]; /* * We only support revision 0 and limit it to 512 bytes for simplicity. * No matter what, let's return zero to allow us to continue using the * card, even if we can't support the features from the SD function * extensions registers. */ if (rev != 0 || len > 512) { pr_warn("%s: non-supported SD ext reg layout\n", mmc_hostname(card->host)); goto out; } /* * Parse the extension registers. The first extension should start * immediately after the general info header (16 bytes). */ next_ext_addr = 16; for (i = 0; i < num_ext; i++) { err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); if (err) { pr_err("%s: error %d parsing SD ext reg\n", mmc_hostname(card->host), err); goto out; } } out: kfree(gen_info_buf); return err; } static bool sd_cache_enabled(struct mmc_host *host) { return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; } static int sd_flush_cache(struct mmc_host *host) { struct mmc_card *card = host->card; u8 *reg_buf, fno, page; u16 offset; int err; if (!sd_cache_enabled(host)) return 0; reg_buf = kzalloc(512, GFP_KERNEL); if (!reg_buf) return -ENOMEM; /* * Set Flush Cache at bit 0 in the performance enhancement register at * 261 bytes offset. */ fno = card->ext_perf.fno; page = card->ext_perf.page; offset = card->ext_perf.offset + 261; err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); if (err) { pr_warn("%s: error %d writing Cache Flush bit\n", mmc_hostname(host), err); goto out; } err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, MMC_BUSY_EXTR_SINGLE); if (err) goto out; /* * Read the Flush Cache bit. The card shall reset it, to confirm that * it's has completed the flushing of the cache. */ err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); if (err) { pr_warn("%s: error %d reading Cache Flush bit\n", mmc_hostname(host), err); goto out; } if (reg_buf[0] & BIT(0)) err = -ETIMEDOUT; out: kfree(reg_buf); return err; } static int sd_enable_cache(struct mmc_card *card) { u8 *reg_buf; int err; card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; reg_buf = kzalloc(512, GFP_KERNEL); if (!reg_buf) return -ENOMEM; /* * Set Cache Enable at bit 0 in the performance enhancement register at * 260 bytes offset. */ err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, card->ext_perf.offset + 260, BIT(0)); if (err) { pr_warn("%s: error %d writing Cache Enable bit\n", mmc_hostname(card->host), err); goto out; } err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, MMC_BUSY_EXTR_SINGLE); if (!err) card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; out: kfree(reg_buf); return err; } /* * Handle the detection and initialisation of a card. * * In the case of a resume, "oldcard" will contain the card * we're trying to reinitialise. */ static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, struct mmc_card *oldcard) { struct mmc_card *card; int err; u32 cid[4]; u32 rocr = 0; bool v18_fixup_failed = false; WARN_ON(!host->claimed); retry: err = mmc_sd_get_cid(host, ocr, cid, &rocr); if (err) return err; if (oldcard) { if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { pr_debug("%s: Perhaps the card was replaced\n", mmc_hostname(host)); return -ENOENT; } card = oldcard; } else { /* * Allocate card structure. */ card = mmc_alloc_card(host, &sd_type); if (IS_ERR(card)) return PTR_ERR(card); card->ocr = ocr; card->type = MMC_TYPE_SD; memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); } /* * Call the optional HC's init_card function to handle quirks. */ if (host->ops->init_card) host->ops->init_card(host, card); /* * For native busses: get card RCA and quit open drain mode. */ if (!mmc_host_is_spi(host)) { err = mmc_send_relative_addr(host, &card->rca); if (err) goto free_card; } if (!oldcard) { err = mmc_sd_get_csd(card); if (err) goto free_card; mmc_decode_cid(card); } /* * handling only for cards supporting DSR and hosts requesting * DSR configuration */ if (card->csd.dsr_imp && host->dsr_req) mmc_set_dsr(host); /* * Select card, as all following commands rely on that. */ if (!mmc_host_is_spi(host)) { err = mmc_select_card(card); if (err) goto free_card; } /* Apply quirks prior to card setup */ mmc_fixup_device(card, mmc_sd_fixups); err = mmc_sd_setup_card(host, card, oldcard != NULL); if (err) goto free_card; /* * If the card has not been power cycled, it may still be using 1.8V * signaling. Detect that situation and try to initialize a UHS-I (1.8V) * transfer mode. */ if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && mmc_sd_card_using_v18(card) && host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { if (mmc_host_set_uhs_voltage(host) || mmc_sd_init_uhs_card(card)) { v18_fixup_failed = true; mmc_power_cycle(host, ocr); if (!oldcard) mmc_remove_card(card); goto retry; } goto cont; } /* Initialization sequence for UHS-I cards */ if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { err = mmc_sd_init_uhs_card(card); if (err) goto free_card; } else { /* * Attempt to change to high-speed (if supported) */ err = mmc_sd_switch_hs(card); if (err > 0) mmc_set_timing(card->host, MMC_TIMING_SD_HS); else if (err) goto free_card; /* * Set bus speed. */ mmc_set_clock(host, mmc_sd_get_max_clock(card)); if (host->ios.timing == MMC_TIMING_SD_HS && host->ops->prepare_sd_hs_tuning) { err = host->ops->prepare_sd_hs_tuning(host, card); if (err) goto free_card; } /* * Switch to wider bus (if supported). */ if ((host->caps & MMC_CAP_4_BIT_DATA) && (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); if (err) goto free_card; mmc_set_bus_width(host, MMC_BUS_WIDTH_4); } if (host->ios.timing == MMC_TIMING_SD_HS && host->ops->execute_sd_hs_tuning) { err = host->ops->execute_sd_hs_tuning(host, card); if (err) goto free_card; } } cont: if (!oldcard) { /* Read/parse the extension registers. */ err = sd_read_ext_regs(card); if (err) goto free_card; } /* Enable internal SD cache if supported. */ if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { err = sd_enable_cache(card); if (err) goto free_card; } if (host->cqe_ops && !host->cqe_enabled) { err = host->cqe_ops->cqe_enable(host, card); if (!err) { host->cqe_enabled = true; host->hsq_enabled = true; pr_info("%s: Host Software Queue enabled\n", mmc_hostname(host)); } } if (host->caps2 & MMC_CAP2_AVOID_3_3V && host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { pr_err("%s: Host failed to negotiate down from 3.3V\n", mmc_hostname(host)); err = -EINVAL; goto free_card; } host->card = card; return 0; free_card: if (!oldcard) mmc_remove_card(card); return err; } /* * Host is being removed. Free up the current card. */ static void mmc_sd_remove(struct mmc_host *host) { mmc_remove_card(host->card); host->card = NULL; } /* * Card detection - card is alive. */ static int mmc_sd_alive(struct mmc_host *host) { return mmc_send_status(host->card, NULL); } /* * Card detection callback from host. */ static void mmc_sd_detect(struct mmc_host *host) { int err; mmc_get_card(host->card, NULL); /* * Just check if our card has been removed. */ err = _mmc_detect_card_removed(host); mmc_put_card(host->card, NULL); if (err) { mmc_sd_remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); } } static int sd_can_poweroff_notify(struct mmc_card *card) { return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; } static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) { struct sd_busy_data *data = cb_data; struct mmc_card *card = data->card; int err; /* * Read the status register for the power management function. It's at * one byte offset and is one byte long. The Power Off Notification * Ready is bit 0. */ err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, card->ext_power.offset + 1, 1, data->reg_buf); if (err) { pr_warn("%s: error %d reading status reg of PM func\n", mmc_hostname(card->host), err); return err; } *busy = !(data->reg_buf[0] & BIT(0)); return 0; } static int sd_poweroff_notify(struct mmc_card *card) { struct sd_busy_data cb_data; u8 *reg_buf; int err; reg_buf = kzalloc(512, GFP_KERNEL); if (!reg_buf) return -ENOMEM; /* * Set the Power Off Notification bit in the power management settings * register at 2 bytes offset. */ err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, card->ext_power.offset + 2, BIT(0)); if (err) { pr_warn("%s: error %d writing Power Off Notify bit\n", mmc_hostname(card->host), err); goto out; } /* Find out when the command is completed. */ err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, MMC_BUSY_EXTR_SINGLE); if (err) goto out; cb_data.card = card; cb_data.reg_buf = reg_buf; err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, &sd_busy_poweroff_notify_cb, &cb_data); out: kfree(reg_buf); return err; } static int _mmc_sd_suspend(struct mmc_host *host) { struct mmc_card *card = host->card; int err = 0; mmc_claim_host(host); if (mmc_card_suspended(card)) goto out; if (sd_can_poweroff_notify(card)) err = sd_poweroff_notify(card); else if (!mmc_host_is_spi(host)) err = mmc_deselect_cards(host); if (!err) { mmc_power_off(host); mmc_card_set_suspended(card); } out: mmc_release_host(host); return err; } /* * Callback for suspend */ static int mmc_sd_suspend(struct mmc_host *host) { int err; err = _mmc_sd_suspend(host); if (!err) { pm_runtime_disable(&host->card->dev); pm_runtime_set_suspended(&host->card->dev); } return err; } /* * This function tries to determine if the same card is still present * and, if so, restore all state to it. */ static int _mmc_sd_resume(struct mmc_host *host) { int err = 0; mmc_claim_host(host); if (!mmc_card_suspended(host->card)) goto out; mmc_power_up(host, host->card->ocr); err = mmc_sd_init_card(host, host->card->ocr, host->card); mmc_card_clr_suspended(host->card); out: mmc_release_host(host); return err; } /* * Callback for resume */ static int mmc_sd_resume(struct mmc_host *host) { pm_runtime_enable(&host->card->dev); return 0; } /* * Callback for runtime_suspend. */ static int mmc_sd_runtime_suspend(struct mmc_host *host) { int err; if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) return 0; err = _mmc_sd_suspend(host); if (err) pr_err("%s: error %d doing aggressive suspend\n", mmc_hostname(host), err); return err; } /* * Callback for runtime_resume. */ static int mmc_sd_runtime_resume(struct mmc_host *host) { int err; err = _mmc_sd_resume(host); if (err && err != -ENOMEDIUM) pr_err("%s: error %d doing runtime resume\n", mmc_hostname(host), err); return 0; } static int mmc_sd_hw_reset(struct mmc_host *host) { mmc_power_cycle(host, host->card->ocr); return mmc_sd_init_card(host, host->card->ocr, host->card); } static const struct mmc_bus_ops mmc_sd_ops = { .remove = mmc_sd_remove, .detect = mmc_sd_detect, .runtime_suspend = mmc_sd_runtime_suspend, .runtime_resume = mmc_sd_runtime_resume, .suspend = mmc_sd_suspend, .resume = mmc_sd_resume, .alive = mmc_sd_alive, .shutdown = mmc_sd_suspend, .hw_reset = mmc_sd_hw_reset, .cache_enabled = sd_cache_enabled, .flush_cache = sd_flush_cache, }; /* * Starting point for SD card init. */ int mmc_attach_sd(struct mmc_host *host) { int err; u32 ocr, rocr; WARN_ON(!host->claimed); err = mmc_send_app_op_cond(host, 0, &ocr); if (err) return err; mmc_attach_bus(host, &mmc_sd_ops); if (host->ocr_avail_sd) host->ocr_avail = host->ocr_avail_sd; /* * We need to get OCR a different way for SPI. */ if (mmc_host_is_spi(host)) { mmc_go_idle(host); err = mmc_spi_read_ocr(host, 0, &ocr); if (err) goto err; } /* * Some SD cards claims an out of spec VDD voltage range. Let's treat * these bits as being in-valid and especially also bit7. */ ocr &= ~0x7FFF; rocr = mmc_select_voltage(host, ocr); /* * Can we support the voltage(s) of the card(s)? */ if (!rocr) { err = -EINVAL; goto err; } /* * Detect and init the card. */ err = mmc_sd_init_card(host, rocr, NULL); if (err) goto err; mmc_release_host(host); err = mmc_add_card(host->card); if (err) goto remove_card; mmc_claim_host(host); return 0; remove_card: mmc_remove_card(host->card); host->card = NULL; mmc_claim_host(host); err: mmc_detach_bus(host); pr_err("%s: error %d whilst initialising SD card\n", mmc_hostname(host), err); return err; }