// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2019 Intel Corporation * * Mei_hdcp.c: HDCP client driver for mei bus * * Author: * Ramalingam C */ /** * DOC: MEI_HDCP Client Driver * * This is a client driver to the mei_bus to make the HDCP2.2 services of * ME FW available for the interested consumers like I915. * * This module will act as a translation layer between HDCP protocol * implementor(I915) and ME FW by translating HDCP2.2 authentication * messages to ME FW command payloads and vice versa. */ #include #include #include #include #include #include #include #include #include "mei_hdcp.h" static inline u8 mei_get_ddi_index(enum port port) { switch (port) { case PORT_A: return MEI_DDI_A; case PORT_B ... PORT_F: return (u8)port; default: return MEI_DDI_INVALID_PORT; } } /** * mei_hdcp_initiate_session() - Initiate a Wired HDCP2.2 Tx Session in ME FW * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @ake_data: AKE_Init msg output. * * Return: 0 on Success, <0 on Failure. */ static int mei_hdcp_initiate_session(struct device *dev, struct hdcp_port_data *data, struct hdcp2_ake_init *ake_data) { struct wired_cmd_initiate_hdcp2_session_in session_init_in = { { 0 } }; struct wired_cmd_initiate_hdcp2_session_out session_init_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !ake_data) return -EINVAL; cldev = to_mei_cl_device(dev); session_init_in.header.api_version = HDCP_API_VERSION; session_init_in.header.command_id = WIRED_INITIATE_HDCP2_SESSION; session_init_in.header.status = ME_HDCP_STATUS_SUCCESS; session_init_in.header.buffer_len = WIRED_CMD_BUF_LEN_INITIATE_HDCP2_SESSION_IN; session_init_in.port.integrated_port_type = data->port_type; session_init_in.port.physical_port = mei_get_ddi_index(data->port); session_init_in.protocol = data->protocol; byte = mei_cldev_send(cldev, (u8 *)&session_init_in, sizeof(session_init_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&session_init_out, sizeof(session_init_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (session_init_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X Failed. Status: 0x%X\n", WIRED_INITIATE_HDCP2_SESSION, session_init_out.header.status); return -EIO; } ake_data->msg_id = HDCP_2_2_AKE_INIT; ake_data->tx_caps = session_init_out.tx_caps; memcpy(ake_data->r_tx, session_init_out.r_tx, HDCP_2_2_RTX_LEN); return 0; } /** * mei_hdcp_verify_receiver_cert_prepare_km() - Verify the Receiver Certificate * AKE_Send_Cert and prepare AKE_Stored_Km/AKE_No_Stored_Km * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @rx_cert: AKE_Send_Cert for verification * @km_stored: Pairing status flag output * @ek_pub_km: AKE_Stored_Km/AKE_No_Stored_Km output msg * @msg_sz : size of AKE_XXXXX_Km output msg * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_verify_receiver_cert_prepare_km(struct device *dev, struct hdcp_port_data *data, struct hdcp2_ake_send_cert *rx_cert, bool *km_stored, struct hdcp2_ake_no_stored_km *ek_pub_km, size_t *msg_sz) { struct wired_cmd_verify_receiver_cert_in verify_rxcert_in = { { 0 } }; struct wired_cmd_verify_receiver_cert_out verify_rxcert_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !rx_cert || !km_stored || !ek_pub_km || !msg_sz) return -EINVAL; cldev = to_mei_cl_device(dev); verify_rxcert_in.header.api_version = HDCP_API_VERSION; verify_rxcert_in.header.command_id = WIRED_VERIFY_RECEIVER_CERT; verify_rxcert_in.header.status = ME_HDCP_STATUS_SUCCESS; verify_rxcert_in.header.buffer_len = WIRED_CMD_BUF_LEN_VERIFY_RECEIVER_CERT_IN; verify_rxcert_in.port.integrated_port_type = data->port_type; verify_rxcert_in.port.physical_port = mei_get_ddi_index(data->port); verify_rxcert_in.cert_rx = rx_cert->cert_rx; memcpy(verify_rxcert_in.r_rx, &rx_cert->r_rx, HDCP_2_2_RRX_LEN); memcpy(verify_rxcert_in.rx_caps, rx_cert->rx_caps, HDCP_2_2_RXCAPS_LEN); byte = mei_cldev_send(cldev, (u8 *)&verify_rxcert_in, sizeof(verify_rxcert_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed: %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&verify_rxcert_out, sizeof(verify_rxcert_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed: %zd\n", byte); return byte; } if (verify_rxcert_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X Failed. Status: 0x%X\n", WIRED_VERIFY_RECEIVER_CERT, verify_rxcert_out.header.status); return -EIO; } *km_stored = !!verify_rxcert_out.km_stored; if (verify_rxcert_out.km_stored) { ek_pub_km->msg_id = HDCP_2_2_AKE_STORED_KM; *msg_sz = sizeof(struct hdcp2_ake_stored_km); } else { ek_pub_km->msg_id = HDCP_2_2_AKE_NO_STORED_KM; *msg_sz = sizeof(struct hdcp2_ake_no_stored_km); } memcpy(ek_pub_km->e_kpub_km, &verify_rxcert_out.ekm_buff, sizeof(verify_rxcert_out.ekm_buff)); return 0; } /** * mei_hdcp_verify_hprime() - Verify AKE_Send_H_prime at ME FW. * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @rx_hprime: AKE_Send_H_prime msg for ME FW verification * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_verify_hprime(struct device *dev, struct hdcp_port_data *data, struct hdcp2_ake_send_hprime *rx_hprime) { struct wired_cmd_ake_send_hprime_in send_hprime_in = { { 0 } }; struct wired_cmd_ake_send_hprime_out send_hprime_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !rx_hprime) return -EINVAL; cldev = to_mei_cl_device(dev); send_hprime_in.header.api_version = HDCP_API_VERSION; send_hprime_in.header.command_id = WIRED_AKE_SEND_HPRIME; send_hprime_in.header.status = ME_HDCP_STATUS_SUCCESS; send_hprime_in.header.buffer_len = WIRED_CMD_BUF_LEN_AKE_SEND_HPRIME_IN; send_hprime_in.port.integrated_port_type = data->port_type; send_hprime_in.port.physical_port = mei_get_ddi_index(data->port); memcpy(send_hprime_in.h_prime, rx_hprime->h_prime, HDCP_2_2_H_PRIME_LEN); byte = mei_cldev_send(cldev, (u8 *)&send_hprime_in, sizeof(send_hprime_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&send_hprime_out, sizeof(send_hprime_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (send_hprime_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X Failed. Status: 0x%X\n", WIRED_AKE_SEND_HPRIME, send_hprime_out.header.status); return -EIO; } return 0; } /** * mei_hdcp_store_pairing_info() - Store pairing info received at ME FW * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @pairing_info: AKE_Send_Pairing_Info msg input to ME FW * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_store_pairing_info(struct device *dev, struct hdcp_port_data *data, struct hdcp2_ake_send_pairing_info *pairing_info) { struct wired_cmd_ake_send_pairing_info_in pairing_info_in = { { 0 } }; struct wired_cmd_ake_send_pairing_info_out pairing_info_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !pairing_info) return -EINVAL; cldev = to_mei_cl_device(dev); pairing_info_in.header.api_version = HDCP_API_VERSION; pairing_info_in.header.command_id = WIRED_AKE_SEND_PAIRING_INFO; pairing_info_in.header.status = ME_HDCP_STATUS_SUCCESS; pairing_info_in.header.buffer_len = WIRED_CMD_BUF_LEN_SEND_PAIRING_INFO_IN; pairing_info_in.port.integrated_port_type = data->port_type; pairing_info_in.port.physical_port = mei_get_ddi_index(data->port); memcpy(pairing_info_in.e_kh_km, pairing_info->e_kh_km, HDCP_2_2_E_KH_KM_LEN); byte = mei_cldev_send(cldev, (u8 *)&pairing_info_in, sizeof(pairing_info_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&pairing_info_out, sizeof(pairing_info_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (pairing_info_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X failed. Status: 0x%X\n", WIRED_AKE_SEND_PAIRING_INFO, pairing_info_out.header.status); return -EIO; } return 0; } /** * mei_hdcp_initiate_locality_check() - Prepare LC_Init * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @lc_init_data: LC_Init msg output * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_initiate_locality_check(struct device *dev, struct hdcp_port_data *data, struct hdcp2_lc_init *lc_init_data) { struct wired_cmd_init_locality_check_in lc_init_in = { { 0 } }; struct wired_cmd_init_locality_check_out lc_init_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !lc_init_data) return -EINVAL; cldev = to_mei_cl_device(dev); lc_init_in.header.api_version = HDCP_API_VERSION; lc_init_in.header.command_id = WIRED_INIT_LOCALITY_CHECK; lc_init_in.header.status = ME_HDCP_STATUS_SUCCESS; lc_init_in.header.buffer_len = WIRED_CMD_BUF_LEN_INIT_LOCALITY_CHECK_IN; lc_init_in.port.integrated_port_type = data->port_type; lc_init_in.port.physical_port = mei_get_ddi_index(data->port); byte = mei_cldev_send(cldev, (u8 *)&lc_init_in, sizeof(lc_init_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&lc_init_out, sizeof(lc_init_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (lc_init_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X Failed. status: 0x%X\n", WIRED_INIT_LOCALITY_CHECK, lc_init_out.header.status); return -EIO; } lc_init_data->msg_id = HDCP_2_2_LC_INIT; memcpy(lc_init_data->r_n, lc_init_out.r_n, HDCP_2_2_RN_LEN); return 0; } /** * mei_hdcp_verify_lprime() - Verify lprime. * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @rx_lprime: LC_Send_L_prime msg for ME FW verification * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_verify_lprime(struct device *dev, struct hdcp_port_data *data, struct hdcp2_lc_send_lprime *rx_lprime) { struct wired_cmd_validate_locality_in verify_lprime_in = { { 0 } }; struct wired_cmd_validate_locality_out verify_lprime_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !rx_lprime) return -EINVAL; cldev = to_mei_cl_device(dev); verify_lprime_in.header.api_version = HDCP_API_VERSION; verify_lprime_in.header.command_id = WIRED_VALIDATE_LOCALITY; verify_lprime_in.header.status = ME_HDCP_STATUS_SUCCESS; verify_lprime_in.header.buffer_len = WIRED_CMD_BUF_LEN_VALIDATE_LOCALITY_IN; verify_lprime_in.port.integrated_port_type = data->port_type; verify_lprime_in.port.physical_port = mei_get_ddi_index(data->port); memcpy(verify_lprime_in.l_prime, rx_lprime->l_prime, HDCP_2_2_L_PRIME_LEN); byte = mei_cldev_send(cldev, (u8 *)&verify_lprime_in, sizeof(verify_lprime_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&verify_lprime_out, sizeof(verify_lprime_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (verify_lprime_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n", WIRED_VALIDATE_LOCALITY, verify_lprime_out.header.status); return -EIO; } return 0; } /** * mei_hdcp_get_session_key() - Prepare SKE_Send_Eks. * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @ske_data: SKE_Send_Eks msg output from ME FW. * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_get_session_key(struct device *dev, struct hdcp_port_data *data, struct hdcp2_ske_send_eks *ske_data) { struct wired_cmd_get_session_key_in get_skey_in = { { 0 } }; struct wired_cmd_get_session_key_out get_skey_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data || !ske_data) return -EINVAL; cldev = to_mei_cl_device(dev); get_skey_in.header.api_version = HDCP_API_VERSION; get_skey_in.header.command_id = WIRED_GET_SESSION_KEY; get_skey_in.header.status = ME_HDCP_STATUS_SUCCESS; get_skey_in.header.buffer_len = WIRED_CMD_BUF_LEN_GET_SESSION_KEY_IN; get_skey_in.port.integrated_port_type = data->port_type; get_skey_in.port.physical_port = mei_get_ddi_index(data->port); byte = mei_cldev_send(cldev, (u8 *)&get_skey_in, sizeof(get_skey_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&get_skey_out, sizeof(get_skey_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (get_skey_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n", WIRED_GET_SESSION_KEY, get_skey_out.header.status); return -EIO; } ske_data->msg_id = HDCP_2_2_SKE_SEND_EKS; memcpy(ske_data->e_dkey_ks, get_skey_out.e_dkey_ks, HDCP_2_2_E_DKEY_KS_LEN); memcpy(ske_data->riv, get_skey_out.r_iv, HDCP_2_2_RIV_LEN); return 0; } /** * mei_hdcp_repeater_check_flow_prepare_ack() - Validate the Downstream topology * and prepare rep_ack. * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @rep_topology: Receiver ID List to be validated * @rep_send_ack : repeater ack from ME FW. * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_repeater_check_flow_prepare_ack(struct device *dev, struct hdcp_port_data *data, struct hdcp2_rep_send_receiverid_list *rep_topology, struct hdcp2_rep_send_ack *rep_send_ack) { struct wired_cmd_verify_repeater_in verify_repeater_in = { { 0 } }; struct wired_cmd_verify_repeater_out verify_repeater_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !rep_topology || !rep_send_ack || !data) return -EINVAL; cldev = to_mei_cl_device(dev); verify_repeater_in.header.api_version = HDCP_API_VERSION; verify_repeater_in.header.command_id = WIRED_VERIFY_REPEATER; verify_repeater_in.header.status = ME_HDCP_STATUS_SUCCESS; verify_repeater_in.header.buffer_len = WIRED_CMD_BUF_LEN_VERIFY_REPEATER_IN; verify_repeater_in.port.integrated_port_type = data->port_type; verify_repeater_in.port.physical_port = mei_get_ddi_index(data->port); memcpy(verify_repeater_in.rx_info, rep_topology->rx_info, HDCP_2_2_RXINFO_LEN); memcpy(verify_repeater_in.seq_num_v, rep_topology->seq_num_v, HDCP_2_2_SEQ_NUM_LEN); memcpy(verify_repeater_in.v_prime, rep_topology->v_prime, HDCP_2_2_V_PRIME_HALF_LEN); memcpy(verify_repeater_in.receiver_ids, rep_topology->receiver_ids, HDCP_2_2_RECEIVER_IDS_MAX_LEN); byte = mei_cldev_send(cldev, (u8 *)&verify_repeater_in, sizeof(verify_repeater_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&verify_repeater_out, sizeof(verify_repeater_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (verify_repeater_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n", WIRED_VERIFY_REPEATER, verify_repeater_out.header.status); return -EIO; } memcpy(rep_send_ack->v, verify_repeater_out.v, HDCP_2_2_V_PRIME_HALF_LEN); rep_send_ack->msg_id = HDCP_2_2_REP_SEND_ACK; return 0; } /** * mei_hdcp_verify_mprime() - Verify mprime. * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * @stream_ready: RepeaterAuth_Stream_Ready msg for ME FW verification. * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_verify_mprime(struct device *dev, struct hdcp_port_data *data, struct hdcp2_rep_stream_ready *stream_ready) { struct wired_cmd_repeater_auth_stream_req_in verify_mprime_in = { { 0 } }; struct wired_cmd_repeater_auth_stream_req_out verify_mprime_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !stream_ready || !data) return -EINVAL; cldev = to_mei_cl_device(dev); verify_mprime_in.header.api_version = HDCP_API_VERSION; verify_mprime_in.header.command_id = WIRED_REPEATER_AUTH_STREAM_REQ; verify_mprime_in.header.status = ME_HDCP_STATUS_SUCCESS; verify_mprime_in.header.buffer_len = WIRED_CMD_BUF_LEN_REPEATER_AUTH_STREAM_REQ_MIN_IN; verify_mprime_in.port.integrated_port_type = data->port_type; verify_mprime_in.port.physical_port = mei_get_ddi_index(data->port); memcpy(verify_mprime_in.m_prime, stream_ready->m_prime, HDCP_2_2_MPRIME_LEN); drm_hdcp_cpu_to_be24(verify_mprime_in.seq_num_m, data->seq_num_m); memcpy(verify_mprime_in.streams, data->streams, (data->k * sizeof(struct hdcp2_streamid_type))); verify_mprime_in.k = cpu_to_be16(data->k); byte = mei_cldev_send(cldev, (u8 *)&verify_mprime_in, sizeof(verify_mprime_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&verify_mprime_out, sizeof(verify_mprime_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (verify_mprime_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n", WIRED_REPEATER_AUTH_STREAM_REQ, verify_mprime_out.header.status); return -EIO; } return 0; } /** * mei_hdcp_enable_authentication() - Mark a port as authenticated * through ME FW * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_enable_authentication(struct device *dev, struct hdcp_port_data *data) { struct wired_cmd_enable_auth_in enable_auth_in = { { 0 } }; struct wired_cmd_enable_auth_out enable_auth_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data) return -EINVAL; cldev = to_mei_cl_device(dev); enable_auth_in.header.api_version = HDCP_API_VERSION; enable_auth_in.header.command_id = WIRED_ENABLE_AUTH; enable_auth_in.header.status = ME_HDCP_STATUS_SUCCESS; enable_auth_in.header.buffer_len = WIRED_CMD_BUF_LEN_ENABLE_AUTH_IN; enable_auth_in.port.integrated_port_type = data->port_type; enable_auth_in.port.physical_port = mei_get_ddi_index(data->port); enable_auth_in.stream_type = data->streams[0].stream_type; byte = mei_cldev_send(cldev, (u8 *)&enable_auth_in, sizeof(enable_auth_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&enable_auth_out, sizeof(enable_auth_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (enable_auth_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "ME cmd 0x%08X failed. status: 0x%X\n", WIRED_ENABLE_AUTH, enable_auth_out.header.status); return -EIO; } return 0; } /** * mei_hdcp_close_session() - Close the Wired HDCP Tx session of ME FW per port. * This also disables the authenticated state of the port. * @dev: device corresponding to the mei_cl_device * @data: Intel HW specific hdcp data * * Return: 0 on Success, <0 on Failure */ static int mei_hdcp_close_session(struct device *dev, struct hdcp_port_data *data) { struct wired_cmd_close_session_in session_close_in = { { 0 } }; struct wired_cmd_close_session_out session_close_out = { { 0 } }; struct mei_cl_device *cldev; ssize_t byte; if (!dev || !data) return -EINVAL; cldev = to_mei_cl_device(dev); session_close_in.header.api_version = HDCP_API_VERSION; session_close_in.header.command_id = WIRED_CLOSE_SESSION; session_close_in.header.status = ME_HDCP_STATUS_SUCCESS; session_close_in.header.buffer_len = WIRED_CMD_BUF_LEN_CLOSE_SESSION_IN; session_close_in.port.integrated_port_type = data->port_type; session_close_in.port.physical_port = mei_get_ddi_index(data->port); byte = mei_cldev_send(cldev, (u8 *)&session_close_in, sizeof(session_close_in)); if (byte < 0) { dev_dbg(dev, "mei_cldev_send failed. %zd\n", byte); return byte; } byte = mei_cldev_recv(cldev, (u8 *)&session_close_out, sizeof(session_close_out)); if (byte < 0) { dev_dbg(dev, "mei_cldev_recv failed. %zd\n", byte); return byte; } if (session_close_out.header.status != ME_HDCP_STATUS_SUCCESS) { dev_dbg(dev, "Session Close Failed. status: 0x%X\n", session_close_out.header.status); return -EIO; } return 0; } static const struct i915_hdcp_component_ops mei_hdcp_ops = { .owner = THIS_MODULE, .initiate_hdcp2_session = mei_hdcp_initiate_session, .verify_receiver_cert_prepare_km = mei_hdcp_verify_receiver_cert_prepare_km, .verify_hprime = mei_hdcp_verify_hprime, .store_pairing_info = mei_hdcp_store_pairing_info, .initiate_locality_check = mei_hdcp_initiate_locality_check, .verify_lprime = mei_hdcp_verify_lprime, .get_session_key = mei_hdcp_get_session_key, .repeater_check_flow_prepare_ack = mei_hdcp_repeater_check_flow_prepare_ack, .verify_mprime = mei_hdcp_verify_mprime, .enable_hdcp_authentication = mei_hdcp_enable_authentication, .close_hdcp_session = mei_hdcp_close_session, }; static int mei_component_master_bind(struct device *dev) { struct mei_cl_device *cldev = to_mei_cl_device(dev); struct i915_hdcp_comp_master *comp_master = mei_cldev_get_drvdata(cldev); int ret; dev_dbg(dev, "%s\n", __func__); comp_master->ops = &mei_hdcp_ops; comp_master->mei_dev = dev; ret = component_bind_all(dev, comp_master); if (ret < 0) return ret; return 0; } static void mei_component_master_unbind(struct device *dev) { struct mei_cl_device *cldev = to_mei_cl_device(dev); struct i915_hdcp_comp_master *comp_master = mei_cldev_get_drvdata(cldev); dev_dbg(dev, "%s\n", __func__); component_unbind_all(dev, comp_master); } static const struct component_master_ops mei_component_master_ops = { .bind = mei_component_master_bind, .unbind = mei_component_master_unbind, }; static int mei_hdcp_component_match(struct device *dev, int subcomponent, void *data) { return !strcmp(dev->driver->name, "i915") && subcomponent == I915_COMPONENT_HDCP; } static int mei_hdcp_probe(struct mei_cl_device *cldev, const struct mei_cl_device_id *id) { struct i915_hdcp_comp_master *comp_master; struct component_match *master_match; int ret; ret = mei_cldev_enable(cldev); if (ret < 0) { dev_err(&cldev->dev, "mei_cldev_enable Failed. %d\n", ret); goto enable_err_exit; } comp_master = kzalloc(sizeof(*comp_master), GFP_KERNEL); if (!comp_master) { ret = -ENOMEM; goto err_exit; } master_match = NULL; component_match_add_typed(&cldev->dev, &master_match, mei_hdcp_component_match, comp_master); if (IS_ERR_OR_NULL(master_match)) { ret = -ENOMEM; goto err_exit; } mei_cldev_set_drvdata(cldev, comp_master); ret = component_master_add_with_match(&cldev->dev, &mei_component_master_ops, master_match); if (ret < 0) { dev_err(&cldev->dev, "Master comp add failed %d\n", ret); goto err_exit; } return 0; err_exit: mei_cldev_set_drvdata(cldev, NULL); kfree(comp_master); mei_cldev_disable(cldev); enable_err_exit: return ret; } static int mei_hdcp_remove(struct mei_cl_device *cldev) { struct i915_hdcp_comp_master *comp_master = mei_cldev_get_drvdata(cldev); component_master_del(&cldev->dev, &mei_component_master_ops); kfree(comp_master); mei_cldev_set_drvdata(cldev, NULL); return mei_cldev_disable(cldev); } #define MEI_UUID_HDCP GUID_INIT(0xB638AB7E, 0x94E2, 0x4EA2, 0xA5, \ 0x52, 0xD1, 0xC5, 0x4B, 0x62, 0x7F, 0x04) static struct mei_cl_device_id mei_hdcp_tbl[] = { { .uuid = MEI_UUID_HDCP, .version = MEI_CL_VERSION_ANY }, { } }; MODULE_DEVICE_TABLE(mei, mei_hdcp_tbl); static struct mei_cl_driver mei_hdcp_driver = { .id_table = mei_hdcp_tbl, .name = KBUILD_MODNAME, .probe = mei_hdcp_probe, .remove = mei_hdcp_remove, }; module_mei_cl_driver(mei_hdcp_driver); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MEI HDCP");